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ABSTRACT The evolution of resistance against antimicrobial peptides has long been considered unlikely
due to their mechanism of action, yet experimental selection with antimicrobial peptides (AMPs) results in
rapid evolution of resistance in several species of bacteria. Although numerous studies have utilized mutant
screens to identify loci that determine AMP susceptibility, there is a dearth of data concerning the genomic
changes that accompany experimental evolution of AMP resistance. Using genome resequencing, we ana-
lyzed the mutations that arose during experimental evolution of resistance to the cationic AMPs iseganan,
melittin, and pexiganan, as well as to a combination of melittin and pexiganan, or to the aminoglycoside
antibiotic streptomycin. Analysis of 17 independently replicated Staphylococcus aureus selection lines, in-
cluding unselected controls, showed that each AMP selected for mutations at distinct loci. We identify
mutations in genes involved in the synthesis and maintenance of the cell envelope. These include genes
previously identified from mutant screens for AMP resistance, and genes involved in the response to AMPs
and cell-wall-active antibiotics. Furthermore, transposon insertion mutants were used to verify that a number
of the identified genes are directly involved in determining AMP susceptibility. Strains selected for AMP
resistance under controlled experimental evolution displayed consistent AMP-specific mutations in genes that
determine AMP susceptibility. This suggests that different routes to evolve resistance are favored within a
controlled genetic background.
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Antimicrobial peptides (AMPs), ubiquitous in multicellular organisms
(Zasloff 2002), are considered to be a promising source of new and
potent antibiotics (Nguyen et al. 2011). Current research on AMPs
focuses mostly on the mechanisms of action, and on the development
of therapeutics, whereas only a small number of studies have ad-
dressed the important problem of bacterial resistance evolution. Re-
sistance against cationic AMPs evolves readily in vitro in Escherichia
coli and Pseudomonas aeruginosa (Perron et al. 2006), Salmonella

enterica (Lofton et al. 2013), and Staphylococcus aureus (Habets
and Brockhurst 2012; Dobson et al. 2013). Experimentally evolved
strains of S. aureus that were selected successfully for resistance against
the catioinc protegrin-1 analog iseganan (Dobson et al. 2013) survive
better in a model host (Dobson et al. 2014) that relies heavily on AMPs
to deal with long-lasting infections (Johnston et al. 2014). S. aureus
populations selected for resistance to pexiganan and mellitin also
show a trend toward increased survival in the host (Dobson et al.
2014). Here, we present a genomic analysis of S. aureus strains
from these populations (Dobson et al. 2013), together with suscep-
tibility data from transposon insertion mutants showing that a
number of the identified genes are directly involved in mediating
AMP susceptibility.

MATERIALS AND METHODS
Strains were isolated as single colonies from populations that were
created by selecting S. aureus JLA513 (Shaw et al. 2006) (hla-lacZ hla+,
derived from SH1000, from Simon Foster, University of Sheffield)
for 28 d with increasing concentrations of AMPs, or with the amino-
glycoside antibiotic streptomycin (Dobson et al. 2013). Streptomycin-
selected strains are included here as a positive control since the genetic
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basis of streptomycin resistance is well-characterized in S. aureus.
Briefly, to ensure adaptation to the culture medium, 50 ml of S. aureus
JLA513 culture was passaged serially every 24 hr for 10 d in 5 ml
Müller-Hinton Broth (MHB). Subsequently, five parallel selection lines
were established in each treatment at minimum inhibitory concentra-
tion required to inhibit the growth of 50% of organisms (MIC50) (as
well as unselected controls, which were serially passaged without ex-
posure to AMPs or antibiotics) by inoculating 5 ml of serially passaged
culture into 500 ml of MHB containing the cognate selective agent. A
5-ml aliquot of each 24-hr culture was passaged daily to fresh MHB.
The concentrations of the selective agents were doubled eachweek for a
total of 4 wk. See Supplemental Material, File S1 and Table S1 for full
details and precise concentrations (Dobson et al. 2013). Strains were
isolated from each of three independently selected replicate popu-
lations per selective agent (with the exception of iseganan-selected
populations, where only two frozen population stocks remained
viable), as well as from unselected controls, and the ancestral strain
JLA513. Only strains derived from single colonies were sequenced;
therefore, we cannot infer the frequency of a given mutation within
the population of origin. MIC were calculated for the selective
agents (Table S1) in 96-well plates as previously described (Andrews
2001), and DNA was isolated from each strain using a Roboklon
DNA extraction kit (Roboklon GmbH, Germany). Genomic DNA
from each strain was sequenced for 180 cycles using a HiSeq2000 by
the Beijing Genomics Institute (BGI), resulting in 90-bp paired-end
reads. Sequence data are available from the NCBI SRA under Bio-
Sample accession PRJNA291485. Strain JLA513 (Shaw et al. 2006)
was constructed using strain SH1000, which is a derivative of strain
8325. The genetic differences between SH1000 and other members
of the 8325 lineage have been described using both array-based
resequencing (O’Neill 2010), and subsequently by de novo genome
sequencing (Bæk et al. 2013). The differences comprise: the excision
of three prophages from 8325 (F11, 12, 13), 13 single-nucleotide
polymorphisms (SNPs; two synonymous, 11 nonsynonymous), a
63-bp deletion in the spa-sarS intergenic region, and an 11-bp de-
letion in rsbU (Bæk et al. 2013). Therefore, a consensus reference
genome was first produced to account for these differences. Reads
from JLA513 were assembled using SPAdes (Bankevich et al. 2012),
and the resulting contigs were used to correct for the three phage
excision sites in the 8325 reference genome. JLA513 reads were then
mapped to the resulting sequence and bcftools consensus (H. Li
et al. 2009) was used to correct the remaining 13 SNPs and two
indels. To identify mutations in the selection lines, reads were
mapped to this reference genome using BWA (Li and Durbin
2009) and sorted, deduplicated (to account for optical- and PCR-
duplicates), and indexed using SAMtools (H. Li et al. 2009) and
Picard (http://broadinstitute.github.io/picard). Average coverage
was 134-fold (range 110- to 144-fold). Variants were called using
FreeBayes version v0.9.14-8-g1618f7e (Garrison and Marth 2012),
and coverage was calculated across 25-bp windows using IGVtools
(Thorvaldsdóttir et al. 2013). All variants were independently ver-
ified using a second computational pipeline, breseq (Deatherage and
Barrick 2014). Insertion mutants were obtained from the Nebraska
Transposon Mutant Library (Fey et al. 2013) in order to test if the
identified genes were directly involved in AMP resistance. MICs were
calculated for eachmutant, and the wild-type strain USA300_FPR3757
as described above.

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article.

RESULTS AND DISCUSSION
Between one and four mutations were identified per strain after account-
ing for differences between the JLA513 ancestor and the 8325 reference
genome, and for mutations arising over the course of the experiment
across treatments and unselected controls. In total, 28 mutations were
identified across the 17 strains, including 24 nonsynonymous mutations
affecting 13 genes, a segmental duplication of 124-kb region containing
an entire rrn operon (Table 1 and Table S2) as well as one synonymous
mutation, and two intergenic indels (Table S2).

Pexiganan (PG) resistance was characterized by distinct nonsense
mutations in the gene encoding the XRE-family transcriptional regu-
latorXdrA in strainsPG2.2 andPG4.2 (Table 1 andTable S2). XdrAwas
recently shown to activate transcription of spa (McCallum et al. 2010),
which encodes the protein A virulence factor, and deletion mutants
show increased b-lactam resistance (Ender et al. 2009). Here, a trans-
poson mutant with an insertion in xdrA showed decreased pexiganan
susceptibility (Table 1 and Table S3) indicating that XdrA is directly
involved in pexiganan resistance. In addition to a mutation in xdrA, strain
PG4.2 also carried a nonsynonymous substitution inwcaG, which encodes
a putative UDP-glucose-4 epimerase (Table 1). Only a singlemutation was
observed in strain PG1.1, introducing a frameshift into mgt (sgtB), which
encodes a monofunctional peptidoglycan glycosyltransferase (Table 1). A
distinct nonsense in mgt was also identified in one pexiganan-melittin-
selected (PGML) strain (see below) . An mgt transposon mutant was also
found to be less susceptible to pexiganan (Table1 and Table S3). As part of
the cell wall stimulon (Wang andPeery 2001),mgt is positively regulated by
cell wall stress, andparticipates in the polymerization of lipid II into nascent
peptidoglycan (Lovering et al. 2012). Recent work has shown that mgt
mutations cause peptidoglycan chain length reduction as well as alterations
in cellular morphology and division site placement (Rebets et al. 2014).

All three melittin- (ML) resistant strains were found to carry mis-
sense mutations resulting in either A35T or A35D substitutions in a
gene encoding a putative RluD-like pseudouridylate synthase with no
known role in antimicrobial susceptiblity. A transposon mutant from
the Nebraska Transposon Mutant Library with an insertion in this gene
showed no change inmelittin susceptibility (Table 1 andTable S3). One
melittin-resistant strain carried a L93I missense mutation in a region
encoding an alpha helix immediately adjacent to the conserved active
site quintet in the response regulator WalR (Table 1). WalKR regulates
cell wall metabolism and is ubiquitous in the Firmicutes, where it is the
only known essential two-component system (Dubrac et al. 2008).
walKR mutations, including those affecting the WalR active site, arise
during persistent clinical S. aureus infections and are known to confer
resistance to vancomycin, and the lipopeptide antibiotic daptomycin by
increasing the thickness of the cell wall (Howden et al. 2011). Identical
nonsense mutations were identified in two melittin-resistant strains at
the extreme 59 end of the ytrA open reading frame, which encodes a
winged helix-turn-helix GntR-family repressor (Table 1). Similar to its
B. subtilis ortholog, ytrA is the first gene of an operon that encodes two
putative ABC transporters. In B. subtilis, YtrA binds specifically to an
inverted repeat in the ytrA and ywoB promoters, and transcription of
the ytr and ywo operons is induced by cell-wall-active antibiotics, includ-
ing the peptide antibiotics bacitracin, vancomycin, and ramnoplanin,
with ytrA null mutations causing constitutive expression of both
operons (Salzberg et al. 2011). Notably, the entire ytrA operon has been
shown to be induced by cationic AMPs in S. aureus, where it is under
negative regulation by the AMP sensing system aps (Li et al. 2007), and
has also been implicated in nisin susceptibility in S. aureus SH1000
(Blake and O’Neill 2013). Although ytrA insertions are not present
in the Nebraska Transposon Mutant Library, we were able to ob-
tain two independent ytr operon transposon mutants with insertions
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downstream of ytrA, which did not show any detectable difference in
AMP susceptiblity relative to the wild type (Table S3). This raises the
possibility that the ytrA-null mutations observed here may mediate
AMP susceptibility via derepression of the S. aureus ywo ortholog.

Iseganan (IG) resistance was associated with an identical 5-bp
deletion in the extreme 39 end of the yjbH gene in each of two strains
from independent iseganan-selected lines (Table 1). YjbH controls the
disulfide stress response by binding to the oxidative burst-specific tran-
scriptional regulator Spx, and thereby controlling its degradation by the
ClpXP protease (Göhring et al. 2011), a role that is conserved in Bacillus
subtilis (Larsson et al. 2007). YjbH also modulates b-lactam suscepti-
bility, with deletion mutants showing moderate resistance to various
b-lactams. but not to the glycopeptide antibiotic vancomycin (Göhring
et al. 2011). The precise mechanism by which YjbH modulates suscep-
tibility is unknown. but is proposed to be a consequence of upregu-
lation of PBP4. which results in increased peptidoglycan cross-linking
(Göhring et al. 2011).

There were no common mutations identified in the genomes of
three strains that were selected with a 1:1 wt/wt combination of
pexiganan and melittin (Table 1). However, there were commonalities
with strains that were selected with either melittin or pexiganan. A
single missense mutation was identified in strain PGML3.2, which
substitutes a conserved threonine residue in the winged helix-turn-
helix DNA binding domain of YtrA (note that ytrA nonsense muta-
tions were identified in two melittin-resistant strains described above).
Similarly, a single nonsense mutation was identified in strain PGML5.1
in mgt (also mutated in 1 pexiganan-resistant strain described above).
In contrast, threemissensemutations were identified in the genome of a
second pexiganan-melittin-selected strain. Interestingly, this included
dak2, which encodes a dihydroxyacetone kinase responsible for incorpo-
ration of diphosphatidylglycerol into the cell membrane (M. Li et al.
2009). dak2 was previously identified in a high throughput mutant screen
for loci affecting susceptibility to the anionic human AMP dermcidin
in S. aureus (M. Li et al. 2009). Mutations affecting the nonessential
C-terminal DegV superfamily domain of Dak2 result in altered mem-
brane phospholipid composition and decreased binding and activity
of dermcidin but not of the catioinic human AMPs LL-37 or human
b-defensin-3 (M. Li et al. 2009). Given this lack of cross-resistance

to cationic AMPs in dak2 mutants, Dak2-mediated susceptibility was
thought to be specific to anionic AMPs such as dermcidin (M. Li et al.
2009). It is therefore surprising to find dak2 mutation in response to
selection with a combination of the cationic AMPs mellittin and
pexiganan. Further evidence of the role of Dak2 in susceptibility
to pexiganan and melittin was shown by increased susceptibility to
both AMPs by a dak2 transposon mutant (Table 1 and Table S3).
Note that the dak2 mutation reported here results in a G341D sub-
stitution, whereas the dak2 mutant from the Nebraska Transposon
Mutant Library is a transposon insertion mutant.

Mutations identified in streptomycin-selected strains occurred
mostly in genes with known roles in streptomycin (STR) susceptibility
(Table 1). Frameshift mutations in gidB, which encodes a 16S rRNA-
specific 7-methylguanosine methyltransferase, were identified in all
three streptomycin-selected strains (Table 1). In each case, the frame-
shift occurs within the region encoding the GidB methyltransferase
domain. Mutations in gidB (rsmG) are associated with low-level strepto-
mycin resistance in several species of bacteria including S. aureus
(Mikheil et al. 2012; Verma et al. 2014; Wong et al. 2011; Okamoto
et al. 2007), and it is speculated that loss of 16Smethylation lowers the
binding affinity of streptomycin, thus conferring the resistance phe-
notype (Wong et al. 2011). Here, a gidB transposon mutant was found
to be fourfold less susceptible to streptomycin (Table 1 and Table S3).
Two further mutations were identified that potentially affect ribo-
somal RNA. A 124-kb region containing an entire rrn operon appears
to have been duplicated in a strain STR3.2, whereas strain STR1.1 carries
a nonsynonymous substitution in the essential gene encoding NusA,
which acts as an antiterminator for 16S rRNA transcription, as well as
a chaperone for 16S rRNA folding (Bubunenko et al. 2013) (Table S2).
Mutations were also identified in the glycerol kinase gene glpK in two
strains (Table 1); however, a transposon insertion did not detectably
alter streptomycin susceptibility (Table1 and Table S3).

Numerous studies have utilized mutant screens to identify loci that
determine AMP susceptibility (Peschel et al. 1999; M. Li et al. 2009),
but, with the exception of a single study (Lofton et al. 2013), there is a
dearth of data concerning the genomic changes that accompany exper-
imental evolution of AMP resistance, and whether the same loci are
involved in each instance. Here, genome sequencing of strains isolated

n Table 1 Mutations identified in strains selected for resistance to different antimicrobials

Selection No. of Strainsa Gene Function Locus Tagb Susceptibility of Tn Mutantc

IG 2 yjbH Disulfide stress response SAOUHSC_00938 Not tested
ML 1 walR (yycG) Cell envelope biogenesis SAOUHSC_00020 Not tested
ML 3 rluD-like Pseudouridine synthase SAOUHSC_00944 Unchanged
ML/PGML 3(2ML/1PGML) ytrA ortholog Cell wall stimulon SAOUHSC_02155 Not tested
PG 1 wcaG Nucleoside-diphosphate-sugar epimerase SAOUHSC_00664 Unchanged
PG 2 xdrA Xenobiotic response element SAOUHSC_01979 Decreased
PG 2(1PG/1PGML) mgt (sgtB) Cell wall stimulon SAOUHSC_02012 Decreased
PGML 1 hpr Carbohydrate transport SAOUHSC_01028 Not tested
PGML 1 dak2 Cell envelope biogenesis SAOUHSC_01193 Increased
PGML 1 putA (fadM) Amino acid metabolism SAOUHSC_01884 Unchanged
STR 1 nusA Transcription antitermination SAOUHSC_01243 Not tested
STR 2 glpK Glycerol kinase SAOUHSC_01276 Unchanged
STR 1 rrn operons Ribosome biogenesis 124-kb rrn region Not tested
STR 3 gidB (rsmG) Ribosome biogenesis SAOUHSC_03051 Decreased

IG, iseganan; ML, melittin; PG, pexiganan; PGML, 1:1 wt/wt combination of melittin and pexiganan; STR, streptomycin. See Table S4 for further details on AMPs used.
Three strains were sequenced for each of ML, PG, and PGML selections. Two strains were sequenced for IG.
a

Number of strains with a mutation in a given gene.
b

Identifier in Staphylococcus aureus NCTC 8325 reference genome.
c

Susceptibility of transposon insertion mutants from the Nebraska Transposon Mutant Library to the cognate selective agent. Not tested, transposon mutant not
available. See Table S3.
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from independently replicated AMP selection lines identified muta-
tions associated with AMP resistance evolution, and showed that each
AMP selected for mutations at distinct loci. These mutations affected
genes with known roles in susceptibility to AMPs and/or cell-wall-
active antibiotics, as well as cell wall stress stimulon genes. All cationic
AMPs used here form toroidal pores, yet there was little evidence of
cross resistance or for mutations that were common across all AMP-
selected strains, or even a single AMP, indicating that there are multiple
routes to resistance. There is limited evidence of AMP-specific re-
sponses. For example, the staphylococcal virulence factor MprF deter-
mines susceptibility toward protegrins (e.g., iseganan) but has little effect
on magainin (pexiganan analog) or melittin susceptibility (Peschel et al.
2001). Also, little is known about AMP interactions with other
constituents of the cell membrane, and whether these may contrib-
ute to the specificity observed here. A small number of mutations
occurred in genes with no known role in antimicrobial susceptibility,
such as the gene encoding the RluD-like pseudouridylate synthase,
and may represent compensatory adaptations that warrant further
study. Furthermore, mutations in the walR gene, such as that de-
scribed here, are known to increase multidrug resistance, and to arise
during clinical S. aureus infections (Howden et al. 2011). This is
consistent with the notion that the evolution of resistance to AMPs
may compromise host defenses against infection (Bell and Gouyon
2003; Habets and Brockhurst 2012; Makarova et al. 2016).
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