Thermodynamics and kinetics of defects in Li$_2$S

Ashkan Moradabadi1,2 and Payam Kaghazchi2,

1Institut für Materialwissenschaft, Fachgebiet Materialmodellierung, Technische Universität Darmstadt, Jovanka-Bontschis-Str. 2, 64287 Darmstadt, Germany
2Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany

(Received 2 December 2015; accepted 11 May 2016; published online 26 May 2016)

Li$_2$S is the final product of lithiation of sulfur cathodes in lithium-sulfur (Li-S) batteries. In this work, we study formation and diffusion of defects in Li$_2$S. It is found that for a wide range of voltages (referred to metal Li) between 0.17 V and 2.01 V, positively charged interstitial Li (Li$^+$) is the most favorable defect type with a fixed formation energy of 1.02 eV. The formation energy of negatively charged Li vacancy (V$_{Li}^-$) is also constant, and it is only 0.13 eV higher than that of Li$^+$. For a narrow range of voltages between 0.00 V and 0.17 V, the formation energy of neutral S vacancy is the lowest and it decreases with decreasing the cell voltage. The energy barrier for Li$^+$ diffusion (0.45 eV), which takes place via an exchange mechanism, is 0.18 eV higher than that for V$_{Li}^-$(0.27 eV), which takes place via a single vacancy hopping. Considering formation energies and diffusion barriers, we find that ionic conductivity in Li$_2$S is due to both Li$^+$ and V$_{Li}^-$, but the latter mechanism being slightly more favorable. Published by AIP Publishing.

[http://dx.doi.org/10.1063/1.4952434]

Fundamental understanding of Li ion transport in solid electrode materials is of particular importance for the development of Li-based batteries (LiB) with high rate capabilities and high capacities. The process of Li$^+$ transport has thus been extensively studied in LiB anodes and cathodes using impedance spectroscopy and nuclear magnetic resonance as well as density functional theory (DFT) methods.$^{1-17}$ DFT calculations have provided detailed information on type of dominant ion carriers and their diffusion mechanisms in LiB.14 It was found that Li diffusion occurs via Li vacancy in most cathode materials such as LiCoO$_2$ and LiMnO$_2$,15,18,19 as well as solid electrolyte materials such as Li$_7$La$_3$Zr$_2$O$_{12}$,20 Li$_5$La$_3$Ta$_2$O$_{12},^{20}$ and Li$_{5}$La$_{5}$Nb$_2$O$_{12},^{21}$ while it takes place via interstitial Li in anode materials such as TiO$_2$.22 Li transport via the exchange mechanism (i.e., interstitial Li–site–interstitial Li–) has been reported in solid-electrolyte-interphase materials such as Li$_2$CO$_3$.14 For large-scale applications such as grid-scale storage and electrical vehicles, lithium-sulfur (Li-S) batteries are more promising than LiB because of their high theoretical energy density (2600 Wh/kg$^{-1}$ (Ref. 23)), environmental friendly features, and low production cost.24 During the discharge process, lithium ions react with the sulfur (S$_6$) cathode forming intermediate Li-polysulfides and finally crystalline Li$_2$S.$^{25-28}$ S$_6$ \rightarrow Li$_2$S$_8$ \rightarrow Li$_2$S$_6$ \rightarrow Li$_2$S$_4$ \rightarrow Li$_2$S$_2$ \rightarrow Li$_2$S. It is believed that diffusion of Li$^+$ in Li$_2$S is slow, and therefore, the formation of Li$_2$S crusts on the surface of sulfur cores during the lithiation process leads to an incomplete conversion of sulfur to Li$_2$S. Consequently, the measured discharge capacity is often less than the theoretical value.25 Despite the importance of Li-S batteries, formation and diffusion of ions in Li$_2$S have not been studied so far. In this work, we calculated formation energies of possible defects and diffusion mechanism of the most favorable ones in Li$_2$S.

The DFT calculations were performed using the projector-augmented plane-wave code VASP.29 Bulk Li$_2$S was modelled by $2 \times 2 \times 2$ super cells with $4 \times 4 \times 4$ Monkhorst-Pack k-point mesh with an energy cutoff of 360 eV. The diffusion pathways were calculated with the Nudge Elastic Band (NEB) method using 8 images. We have calculated the electronic and atomic structures as well as defect formation energies and diffusion barriers using the generalized gradient approximation (GGA) exchange-correlation functional proposed by Perdew, Burke, and Ernzerhof (PBE).30

In this work, we have considered the following types of defects: (1) neutral and charged Li vacancy (V$_{Li}$ and V$_{Li}^-$), (2) neutral and charged interstitial Li (Li and Li$^+$), (3) neutral and charged S vacancy (V$_{S}$ and V$_{S}^-$), (4) neutral and charged interstitial S (S and S$^+$), (5) neutral Li Frenkel (FR$_{Li}$), and (6) Li$_2$S Schottky (SC$_{Li2S}$). Formation energies of defects were calculated by

$$\Delta E_{d}^{i} = E_{tot}^{i} - E_{tot}^{defect} + \sum_{i} n_{i} \mu_{i} + q(\epsilon_{F} + \epsilon_{BM}) + \Delta E,$$

where E_{tot}^{i} and E_{tot}^{defect} are the total energies of defective and pristine Li$_2$S. n_{i} and μ_{i} are the number and chemical potential of defects (Li or S). We consider the dependence of the defect formation energy with respect to μ_{Li}, which is limited to a range within which Li$_2$S is thermodynamically stable with respect to bulk Li and S. Li crystal would start to form at the surface of Li$_2$S if μ_{Li} becomes too high (i.e., Li-rich limit). Moreover, since we are interested in ΔE_{d}^{i} as function of (half) cell voltage, we choose the zero value of μ_{Li} to be the chemical potential of Li-rich limit and define

$$\Delta \mu_{Li} = \mu_{Li} - \mu_{Li}^{rich} = \mu_{Li} - \mu_{Li}^{bulk},$$

and obtain the (half) cell voltage with respect to Li electrode by

aElectronic mail: payam.kaghazchi@fu-berlin.de

0033-6951/2016/108(21)/213906/5/$30.00 108, 213906-1 Published by AIP Publishing.

Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to IP: 87.77.118.212 On: Mon, 11 Jul 2016 09:50:56

\[U = -\frac{\Delta \mu_{Li}}{e}, \]

(3)

where \(E_{Li}^{bulk} \) is the total energy per atom of bulk Li with a bcc crystal structure (metal Li). Moreover, \(\Delta \mu_{Li} \) cannot be lower than a Li-poor limit below which Li\(_2\)S decomposes to sulfur. Therefore, in the defect formation energy plot, we also excluded the chemical potentials smaller than \(\mu_{Li}^{poor} = \frac{\Delta G_{Li2S}^{bulk}}{2} \) (half of the Gibbs free energy formation of bulk Li\(_2\)S). Our theoretical value of \(\mu_{Li}^{poor} = 2.01 \) eV is 0.28 eV lower than the experimental value of \(\mu_{Li}^{poor} = 2.29 \) eV (\(\Delta G_{Li2S}^{bulk} \approx -4.58 \) eV (Ref. 31)), which can be mainly because of using PBE functional and/or due to the fact that the theoretical value has been calculated at \(T=0 \) and \(p=0 \), while the experimental value has been measured at \(T=298 \) K and \(p=1 \) bar. In this work, we assume that \(\mu_{Li} \) can change freely between the Li-rich and Li-poor limits but \(\mu_{S} \) has to satisfy this requirement

\[\mu_{S} = E_{Li2S}^{tot} - 2\mu_{Li}, \]

(4)

where \(E_{Li2S}^{tot} \) is the total energy per formula unit of bulk Li\(_2\)S.

In Eq. (1), \(\epsilon_{F} \) is the Fermi level (the energy of the electron reservoir in Li\(_2\)S), referenced to the bulk valence-band maximum (VBM) energy (\(\epsilon_{VBM} \)). \(\Delta \epsilon \) is the correction term to account for the finite-cell size effect of charged defects and also to align the electrostatic potentials of defective and pristine supercells. \(\Delta \epsilon \) was calculated using the FNV approach \(^{32,33} \) with the theoretical value of 3.6 for the dielectric constant. \(^{34} \)

To calculate \(\Delta \epsilon_{i}^{aq} \) and \(\epsilon_{F} \) as function of \(\Delta \mu_{Li} \), we assumed that all possible types of Li and S defects with concentrations of \(n_{i} \) as well as electrons and holes with concentrations of \(n_{e} \) and \(n_{h} \), respectively, can exist simultaneously in Li\(_2\)S and applied the requirement of charge neutrality

\[
\int_{-\infty}^{\epsilon_{VBM}} D(\epsilon) f(\epsilon, \epsilon_{F}) d\epsilon - \int_{-\infty}^{\epsilon_{CBM}} D(\epsilon) [1 - f(\epsilon, \epsilon_{F})] d\epsilon = \sum_{i} q_{i} n_{i}^{0} \exp \left(-\frac{\Delta \epsilon_{i}^{aq}}{k_{B}T} \right),
\]

(5)

In this equation, \(D(\epsilon) \) is the density of states, \(f(\epsilon, \epsilon_{F}) \) is the Fermi-Dirac distribution \(f(\epsilon, \epsilon_{F}) = \{1 + \exp[(\epsilon - \epsilon_{F})/k_{B}T]\}^{-1} \), \(q_{i} \) is the charge state of defect \(i \), \(n_{e}, n_{h}, \) and \(n_{i} \) are the concentration of electrons, holes, and defects of type \(i \), while \(n_{i}^{0} \) is the maximum possible concentration of defects of type \(i \) per unit volume. Since Eqs. (1) and (5) are self-consistent, \(\Delta \epsilon_{i}^{aq} \) and \(\epsilon_{F} \) were calculated iteratively.

Calculated defect formation energy and Fermi energy as function of \(\Delta \mu_{Li} \) (Eq. (2)) and \(U \) (Eq. (3)) are illustrated in Figs. 1 and 2. It is found that for a wide range of \(\Delta \mu_{Li} \) (\(U \)), namely, \(-2.01 \) eV \(\leq \Delta \mu \leq -0.17 \) eV (\(2.01 \) V \(\leq U \leq 0.17 \) V), Li\(^{+} \) is the most favorable defect type with a formation energy of 1.02 eV. At this range of Li chemical potential (cell voltage), V\(_{Li} \) is only 0.13 eV less favorable. The reason that the formation energy of charged defects in this range does not change with \(\Delta \mu_{Li} \) (or \(U \)) is that increase in the Fermi energy

![FIG. 1. Formation energies of different types of defects in bulk Li\(_2\)S as function of \(\Delta \mu_{Li} \) and \(U \). The chemical potential range of Li-poor limit is shaded in grey.](image)

![FIG. 2. Fermi energy of defective Li\(_2\)S as function of \(\Delta \mu_{Li} \) and \(U \). The chemical potential range of Li-poor limit is shaded in grey.](image)
The calculated total density of states for pristine as well as neutral vacant and interstitial Li is presented in Fig. 3. Bulk Li$_2$S is an indirect band gap semiconductor. The GGA-PBE band gap (E_g) calculated in this work is 3.24 eV, which is in agreement with the previous GGA-PBE values of $E_g = 3.36$ eV (Ref. 34) and $E_g = 3.29$ eV.35 It is known that GGA-PBE functional underestimates the width of band gap. We have not found any experimental measurement of E_g for Li$_2$S. To investigate the influence of underestimation of E_g on our results, defect formation energies were calculated for larger values of E_g (up to 4.00 eV). We found that the underestimation of E_g does not affect the conclusions of this work.

Afterwards, we studied Li diffusion for the following mechanisms:

(i) **Li hopping to nearby single and paired Li vacancy sites.** For the divacancy mechanism, we have considered orthogonal and diagonal move. Previous studies indicate that the diagonal pathway is the most favorable pathway for Li diffusion in most layered cathode materials in Li-ion batteries such as LiCoO$_2$ and LiMnO$_2$.15,17 However, since S$^{2-}$ ions are rather large in Li$_2$S, Li ions that move along the diagonal pathway fall to adjacent vacant sites. Therefore, the diagonal diffusion of Li to a divacancy in Li$_2$S is unlikely.

The energy barrier (ΔE_{Li}^{b}) for orthogonal hopping of a Li to a divacant Li site ($\Delta E_{b}^{Li} = 0.20$ eV) is slightly lower than that to a single vacant site ($\Delta E_{v}^{Li} = 0.27$ eV). However, the total energy of a divacancy is 0.20 eV less favorable than two separated single vacancies. Therefore, Li hopping to a single vacancy is a more favorable mechanism than that to a divacant site (see Fig. 4 (left)).

(ii) **Li hopping between interstitial (octahedral) sites and also exchange of Li between interstitial sites and lattice sites.** We find that the exchange mechanism (see Fig. 4 (right)) has a diffusion barrier of $\Delta E_{Li}^{b} = 0.45$ eV, which is much lower than that of 1.58 eV for Li hopping between interstitial sites (which is not shown in Fig. 4).

Lithiation of a S cathode is known to start with the formation of Li$_2$S crusts on the outer surfaces of S particles and continue via a two-phase growth process,36 during which nucleation and growth of Li$_2$S occurs at the Li$_2$S/S interface (see Fig. 5). Thus, the discharge capacity of S cathodes depends strongly on the activation energy barrier of Li ion transport within the Li$_2$S crusts, $\Delta E_{Li}^{a} = \Delta E_{Li}^{d} + \Delta E_{Li}^{b}$, which is the sum of formation energy and diffusion barrier. The calculated values of ΔE_{Li}^{a} in Li$_2$S are very high: 1.47 eV and 1.42 eV for Li$^+^1$ and V$_{Li}^-$, respectively.

FIG. 3. Total density of states (DOS) of pristine, (Li) vacancy, and interstitial (Li) defective Li$_2$S calculated using GGA-PBE functional. The Fermi energy is set to zero.

FIG. 4. Energy profiles and atomic structures for diffusion of (left) Li vacancy as well as (right) simultaneous diffusion of interstitial Li1 to Li2 site and Li2 site to the nearby empty interstitial site (exchange mechanism) in Li$_2$S. Li atoms are in violet, S atoms in yellow, diffusing Li atoms in green, and vacant sites in white.
In summary, we have studied thermodynamics and kinetics of defects in \(\text{Li}_2\text{S} \) using \textit{ab initio} calculations. According to the defect formation energy plot, positively charged interstitial Li is 0.13 eV more favorable than negatively charged Li vacancy almost for the whole range of cell voltages relevant to \(\text{Li}_2\text{S} \) battery, where charge and discharge take place, namely \(1.5 \text{ V} \leq U \leq 2.4 \text{ V} \).\(^{17,38} \) However, the diffusion barrier is 0.18 eV lower in the latter case. We found that the activation energy for formation and diffusion of negatively charged Li vacancy is 0.05 eV lower than the positively charged interstitial Li, which may show a more dominant role of the former defect type in Li ion conductivity of \(\text{Li}_2\text{S} \). Calculated activation energies for Li transport in \(\text{Li}_2\text{S} \) are very high, explaining why the measured discharge capacity is lower than the theoretical value.

The authors gratefully acknowledge support from the “Bundesministerium für Bildung und Forschung” (BMBF), the computing time granted on the Hessian high performance computer “LICHTENBERG” at Technische Universität Darmstadt and Zentraleinrichtung für Datenverarbeitung (ZEDAT) at the Freie Universität Berlin.

\(^{5} \)H. Xia, L. Lu, and G. Ceder, “Li diffusion in LiCo\textsubscript{2}O\textsubscript{2} thin films prepared by pulsed laser deposition,” \textit{J. Power Sources} 159, 1422–1427 (2006).

\(^{20} \)L. J. Miara, S. P. Ong, Y. Mo, W. D. Richards, Y. Park, J. M. Lee, H. S. Lee, and G. Ceder, “Effect of \(\text{Rb} \) and \(\text{Ta} \) doping on the ionic conductivity and stability of the garnet \(\text{Li}_2\text{O}_2 \), (\(\text{La}_3\text{Rb}_y\text{Ta}_z\text{Zr}_2\text{O}_{12} \)) \(0 \leq x \leq 0.3, 0 \leq y \leq 1 \) superionic conductor: A first principles investigation,” \textit{Chem. Mater.} 25, 3048–3055 (2013).

\(^{24} \)P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J. M. Tarascon, “\(\text{Li}_2\text{O}_2 \) and Li-ion batteries with high energy storage,” \textit{Nat. Mater.} 11, 19 (2012).

