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We study ground-state properties of a two-site, two-electron Holstein model describing two mole-
cules coupled indirectly via electron-phonon interaction by using both exact diagonalization and
self-consistent diagrammatic many-body perturbation theory. The Hartree and self-consistent Born
approximations used in the present work are studied at different levels of self-consistency. The
governing equations are shown to exhibit multiple solutions when the electron-phonon interaction
is sufficiently strong, whereas at smaller interactions, only a single solution is found. The additional
solutions at larger electron-phonon couplings correspond to symmetry-broken states with inhomo-
geneous electron densities. A comparison to exact results indicates that this symmetry breaking is
strongly correlated with the formation of a bipolaron state in which the two electrons prefer to reside
on the same molecule. The results further show that the Hartree and partially self-consistent Born
solutions obtained by enforcing symmetry do not compare well with exact energetics, while the
fully self-consistent Born approximation improves the qualitative and quantitative agreement with
exact results in the same symmetric case. This together with a presented natural occupation number
analysis supports the conclusion that the fully self-consistent approximation describes partially the
bipolaron crossover. These results contribute to better understanding how these approximations
cope with the strong localizing effect of the electron-phonon interaction. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4936142]

I. INTRODUCTION

The electron-phonon interaction has proven to be a
useful concept in many systems for describing coupled
motions of electron and nuclei. This model for the
interaction explains classic physical phenomena, such as
conventional superconductivity,1 and plays an important role
in many active fields such as charge transport in molecular
junctions.2–6 This field contains a wealth of interesting physics,
negative differential resistance,7,8 hysteresis,9 image charge
dynamics,10–12 negative friction,13 and multistability14–18 to
name a few, but is at the same time a challenge for a
theorist. The quantum transport problem calls for a method
which can cope with time-dependence in inhomogeneous
open systems and with interactions between charge carriers
and other constituents. In previous work,19,20 we have
developed non-equilibrium many-body perturbation theory
(MBPT) based on the Kadanoff-Baym equations21,22 to study
time-dependent quantum transport in systems with electron-
electron interactions. The long term goal is to study time-
dependent transport phenomena in a single formalism in
the presence of both electron-phonon and electron-electron
interactions. As a first step towards this goal, we have included
the electron-phonon interactions in this formalism for finite
systems in equilibrium and non-equilibrium.23 As a benefit
of addressing finite systems, we are given the possibility
to test the performance of many-body approximations by

comparing to exact diagonalization24 results which are not
available for open systems. In the present work, we focus on
the electron-phonon interaction only to make this comparison
as transparent as possible and to simplify the analysis of the
used many-body approximations. This also means that we
can test the many-body approximations in a situation where
there are qualitatively different ground states depending on the
strength of the electron-phonon interaction. Such a situation
is relevant in the case of quantum transport as the initial
state affects the physics of quantum transport and is related to
phenomena such as bistability.14–17

The finite system studied here is the homogeneous, two-
site Holstein model which is a minimalistic model representing
interacting electrons and phonons.25 The electrons are allowed
to occupy localized molecular orbitals and couple via their
density to a primary molecular vibrational mode. This
electron-phonon interaction gives rise to a situation in which
the electron and nuclear motions are intertwined creating a
bound state known as a polaron.24,26 The Holstein model
has been widely used to study extended systems such as
molecular crystals.27,28 Also the ground-state properties of the
two-site system have been studied extensively with analytic
and numerically exact methods,29–39 in various forms of order-
by-order perturbation theory,40,41 and in terms of a cumulant
treatment.42 The present work extends these studies to
diagrammatic self-consistent many-body perturbation theory
which we have previously applied to purely electronic
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systems.22,43,44 Although self-consistent many-body theory
has been used ubiquitously to investigate the ground state
and spectral properties of the extended model,45–49 to our
knowledge small finite systems have not been investigated
to the same extent. This observation together with the facts
that finite systems form the interacting region of a typical
quantum transport calculation,3 and that the quality of a many-
body approximation can change considerably with the system
size,50–52 makes the investigation of these approximations
relevant also in the case of finite systems. The focus of
the present work is in the situation in which the electron-
phonon coupling leads to an effective attractive interaction
between electrons and for a sufficiently strong interaction
to a two-electron bound state known as a bipolaron.24,26

The competition between de-localization and localization
brought upon by the kinetic energy and interaction is seen as
qualitatively different ground states in the weak- and strong-
interaction limits. This work addresses the question how
many-body perturbation theory describes this change and the
strong localizing effect of the interaction when homogeneity
is not enforced a priori.

The self-consistent diagrammatic many-body perturba-
tion theory21 is used in the present work to obtain the
dressed electron and phonon propagators which can be used
to calculate one-body observables and interaction energies.
These objects are obtained from coupled Dyson equations
self-consistently, meaning that the self-energy is a functional
of these propagators. This implies that perturbation theory
is done to infinite order in the interaction albeit that only
certain classes of perturbative terms are summed to infinite
order. The self-energies are space-time non-local potentials
describing interactions between electrons and phonons and
are subject to approximations. We are, in particular, interested
in the so-called conserving approximations,21,53,54 which are
vital in quantum transport as they guarantee the conservation
of energy, momentum, and particle number. The self-energy
approximations considered are the Hartree (H) and partially
(Gd) or fully self-consistent (GD) Born approximations2

which all are conserving in the sense that they conserve
the particle number. The partially self-consistent Born
approximation is a standard approximation in the quantum
transport case, while its fully self-consistent counterpart is
not used as commonly,2 but has been studied in the high-
dimensional extended Holstein model, e.g., in combination
with dynamical mean-field theory.47,49 One aim of this work
is to bridge the gap between these two approximations by
investigating the effects of increased self-consistency realized
by dressing the phonon propagator. Another important open
question is the behavior of these approximations when we do
not explicitly restrict ourselves to a homogeneous solution,
but allow spontaneous symmetry-breaking, lack of which has
been attributed to the breakdown of a fully self-consistent
Born approximation in the extreme adiabatic limit.55 As we
will show, the different physical regimes of the system show
up as multiple solutions to the self-consistent equations of
many-body perturbation theory, and some of these solutions
do break the reflection symmetry of the two-site model. This
is an example of the existence of multiple solutions in many-
body perturbation theory, a topic which has been addressed

recently in a more general context,56 but here these solutions
have a physical origin being related to a bipolaron formation.

The paper is organized as follows. First, we introduce
many-body perturbation theory and the framework in
which it is used. This includes introducing the self-
energy approximations and explaining how observables are
calculated. Then, the two-site Holstein model is introduced,
followed by the main section on analytic and numerical results
in which we analyze in detail the exact bipolaronic ground
state and multiple solutions and symmetry breaking in the
approximations. The results are presented starting with an
exact diagonalization (ED) study, followed by results for
different levels of perturbation theory, and ending with a
comparison to exact results. Finally, we conclude with an
outlook and summary of the results. Supplementary material
is presented in the appendices.

II. THEORY

A. Hamiltonian

The present work is based on many-body perturbation
theory. In this section, we briefly introduce the physical
context to which we apply our approach. The physical system
studied here is a prototype example, namely, a system of
interacting fermions and bosons or, as we will henceforth
say, electrons and phonons. The Hamiltonian operator of this
system can, in general, be written as

Ĥ =

i

ωiâ
†
i âi +


i j

hi j ĉ
†
i ĉj

+

i jk

�
mi

jk â†i + mi∗
k j âi

�
ĉ†j ĉk,

where ĉi/ĉ
†
i are electron and âi/â

†
i phonon annihila-

tion/creation operators. These operators obey the usual
canonical commutation relations

{ĉi, ĉ
†
j} = δi j,

[âi, â
†
j] = δi j,

where δi j denotes the Kronecker delta. The properties of the
system are encoded in the elements of the electron hi j and
phonon ωiδi j one-body matrices and in the electron-phonon
interaction tensor mi

jk
.

In order to be consistent with the standard representation
of many-body perturbation theory of interacting electrons and
phonons,57,58 we further introduce the self-adjoint phonon
operators

φ̂1, i ≡
�
â†i + âi

�
/
√

2, φ̂2, i ≡ ı
�
â†i − âi

�
/
√

2,

to which we associate a collective index I ≡ {ςi ∈ {1,2}, i}
so that we can write their commutation relation compactly as

[φ̂I , φ̂J] = αI J,

where

αiςi, jς j
≡ −σ2;ςiς j

δi j,

and
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σ2 =
*..
,

0 −ı

ı 0

+//
-

denotes the second Pauli spin matrix. These operators,
proportional to the displacement and momentum field
operators, allow us to rewrite the Hamiltonian operator as

Ĥ =

I J

ΩI J φ̂I φ̂J +

i j

hi j ĉ
†
i ĉj

+

I jk

M I
jk φ̂I ĉ

†
j ĉk, (1)

where the new phonon and electron-phonon interaction
elements are defined as

Ωiςi, jς j
≡ ωi(δi jδςiς j

+ αiςi, jς j
)/2,

M iςi
jk
≡ δςi,1

�
mi

jk + mi
k j
∗�/
√

2

− ıδςi,2
�
mi

jk − mi
k j
∗�/
√

2.

B. Many-body perturbation theory

The electron and phonon propagators are the building
blocks of the many-body perturbation theory discussed here.
They are functions which describe the propagation of electrons
and phonons in the interacting system and can be used to
evaluate expectation values of mostly one-body observables.
The central objects are the field expectation values

φI(z) ≡ 1
Z

Tr

T

e−ı


dz̄ Ĥ (z̄)φ̂I(z)


, (2)

electron propagators

Gi j(z; z′) ≡ 1
ıZ

Tr

T

e−ı


dz̄ H (z̄)ĉi(z)ĉ†j(z′)


,

and phonon propagators

DI J(z; z′) ≡ 1
ıZ

Tr

T

e−ı


dz̄ H (z̄)

∆φ̂I(z)∆φ̂J(z′)

,

where ∆φ̂I ≡ φ̂I − φI is a fluctuation operator, and all
operators are given in the Schrödinger picture but have time-
arguments z, z′, z̄ for book-keeping reasons.21 Moreover, Ĥ(z)
denotes the Hamiltonian operator, Z ≡ Tr[e−ı  dz Ĥ (z)] the
grand-canonical partition function, Tr denotes the trace over a
complete set of quantum states, and T is the time-ordering
operator on a Keldysh time-contour.21

The perturbation expansion of these objects with respect
to the electron-phonon interaction can be constructed with
help of Wick’s theorem. The diagrammatic two G- and D-line
irreducible form of this perturbation theory allows us to
write these perturbation expansions in a closed form. In the
present work, we focus on the equilibrium properties which
are accessible in the imaginary-time or Matsubara formalism.
The contour times are defined as z ≡ −ıτ, τ ∈ [0, β], and
propagators, which are in general two-time functions, become
functions of the relative time only

aM(τ − τ′) ≡ a(z = −ıτ, z′ = −ıτ′),
where a is a two-time function, and the superscript M refers
to a Matsubara component. The expectation values of the field

operators can then be written as

φM
iςi
≡ φM

iςi
(τ) = ı

ωi


jk

M iςi
jk

GM
k j(0−), (3)

where the superscript 0− refers to taking the limit to zero
from below. The electron and phonon propagators satisfy
non-linear Fredholm integral equations of the second kind.
These equations, known as Dyson equations, are given by

GM(τ) = gM(τ) + �gM ⋆ΣM ⋆GM
�(τ),

DM(τ) = dM(τ) + �dM ⋆ΠM ⋆DM
�(τ),

where boldfaced symbols denote matrices, with the usual
definition (ab)i j ≡ 

k aikbk j of a matrix product, and the
convolutions are defined as

[aM ⋆ bM](τ) ≡ −ı
β

0

dτ′ aM(τ − τ′)bM(τ′),

where a,b are matrix valued Matsubara functions. The bare
propagators, that is propagators of the non-interacting system,
which appear above are given by

gM(τ) = −ıθ(τ)�1 − f+(βhM)�e−hMτ

+ ıθ(−τ) f+(βhM)e−hMτ,

dM(τ) = −ıαθ(τ)�1 + f−(βαω)�e−αωτ

− ıαθ(−τ) f−(βαω)e−αωτ,

where hM ≡ h − µ and µ is the chemical potential,
(αω)iςi, jς j

≡ ωiαiςi, jς j
, θ denotes the Heaviside function,

and f±(z) ≡ �
ez ± 1

�−1 denote the Fermi-Dirac and Bose-
Einstein distribution functions, respectively. The integral
kernels Σ ≡ Σ[G,D] and Π ≡ Π[G,D] that appear in the
Dyson equations are non-local one-body potentials known as
electron and phonon self-energies. The self-energies contain
information about interactions and are objects which need
to be approximated. The electron and phonon propagators
of the interacting system can be obtained once a self-energy
approximation is chosen.

C. Self-energy approximations

The self-energy approximations used in this work are
shown diagrammatically in Fig. 1. The top graph of this
figure represents the Hartree (H) approximation, while the
middle graph is the partially self-consistent Born (Gd)
approximation.2 The bottom graph represents the fully self-
consistent Born (GD) approximation which is also known as
Migdal-Eliashberg (ME) approximation.59–61

The Hartree approximation is the simplest approximation:
the electron self-energy is approximated with the Hartree
diagram, which can be written as

ΣH[G]Mi j (τ) = ıδ(τ)

K

MK
i j φ

M
K ,

and the phonon self-energy is neglected. The Hartree
approximation is a time-local, static approximation which
corresponds to a mean-field description.

The second approximation is the partially self-consistent
Born approximation. This approximation also takes into
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FIG. 1. The Hartree (H), partially self-consistent (Gd), and fully self-
consistent (GD) Born self-energies summarize the many-body approxima-
tions used in this work. A line with an arrow indicates a dressed electron
propagator, while single and two-fold wiggly lines represent bare and dressed
phonon propagators, respectively.

account the Fock (F) diagram

ΣF[G,D]Mi j (τ) = ı


kl,PQ

MP
ikMQ

l j
DM

PQ(τ)GM
kl (τ),

which is a time-nonlocal memory term describing single-
phonon absorption/emission processes. The electron self-
energy is given in this approximation by

ΣGd[G]Mi j (τ) ≡ ΣH[G]Mi j (τ) + ΣF[G,d]Mi j (τ),
where d is the bare phonon propagator which means that the
phonon self-energy is taken to be zero.

The third, and last, approximation is the fully self-
consistent Born approximation in which the electron self-
energy is given by

ΣGD[G,D]Mi j (τ) ≡ ΣH[G]Mi j (τ) + ΣF[G,D]Mi j (τ),
and the phonon self-energy is approximated with the bubble
diagram

ΠGG[G]MIJ(τ) = −ı

kl,pq

M I
klM

J
pqGM

qk(τ)GM
lp(−τ), (4)

which describes simple phonon induced electron-hole
excitation processes.

D. Observables

The electron and phonon propagators allow us to
evaluate one-body observables and additionally some more
complicated observables such as the interaction energies. In
the following, we introduce the observables considered in
this work and explain how they can be evaluated from the
knowledge of the electron and phonon propagators.

The equilibrium electron one-body reduced density
matrices are given by

γi j = ⟨ĉ†j ĉi⟩
= −ıGM

i j (0−),
where the angular brackets denote the grand-canonical
ensemble average similar to Eq. (2). The diagonal elements
of this density matrix give the electron density

ni ≡ γii,

while also off-diagonal elements are needed in order to eval-
uate electronic natural occupation numbers and/or orbitals.
In order to address energetics, we consider the electron Ee,
phonon Ep, and electron-phonon Eep interaction energies
which are evaluated according to

Ee =

i j

hi jγ j i,

EpC ≡

I J

ΩI Jφ
M
J φ

M
I ,

Ep = EpC + ı

I J

ΩI JDM
JI(0−),

EepC ≡ −ı

I jk

φM
I M I

jkGM
k j(0−),

Eep= EepC −

i j

β
0

dτ
�
Σ
M
i j (−τ) − ΣMH ;i j(−τ)

�
GM

ji (τ−),

where the additional subscript C refers to the classical (mean-
field) piece of this energy. The total energy is then evaluated
by summing all contributions according to

E ≡ Ee + Ep + Eep.

This is in agreement with the energy functional

EGM = ı

i

∂τGM
ii (τ)

�
τ=0−

− 1
ı


I J

ΩI J

�
DM

JI(0−) − ıφM
J φ

M
I

�
,

which is known, in the purely electronic case, as the Galitski-
Migdal functional. The derivation of this functional is given
in Appendix A.

III. MODEL

Our model system is a two-site Holstein model29–41 which
can be viewed as a minimal representation of a system in
which electrons move between two molecules, so that they
are coupled to the vibrational modes of these molecules. The
Hamiltonian operator for a single primary vibrational mode
of two identical molecules, henceforth referred to as sites 1
and 2, and minimal, localized basis for electrons is given by

Ĥ = ω0

2
i=1

â†i âi − g
2

i=1

(â†i + âi)n̂i + Ĥe,

Ĥe = −T

σ

(
ĉ†1σĉ2σ + ĉ†2σĉ1σ

)
,

where âi is the phonon annihilation operator at site i, ĉiσ is
the electronic operator that annihilates an electron of spin σ
at site i, and n̂i =


σ ĉ†iσĉiσ is the electron density operator

at site i. The parameters ω0, T , and g characterize the bare
vibrational frequency, inter-site hopping, and local electron-
phonon interaction strength, respectively. The displacement
and momentum operators, defined in this model as ûi ≡ φ̂1, i
and p̂i ≡ φ̂2, i, allow us to rewrite the Hamiltonian operator as

Ĥ =
ω0

2

2
i=1

�
p̂2
i + û2

i − 1
�
−
√

2g
2

i=1

ûin̂i + He,
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which is equivalent to the Hamiltonian of Eq. (1) with
the matrix elements Ωiςi, jς j

= ω0δi j(δςiς j
− σ2;ςiς j

)/2 and
M iςi

jσ,kσ′ = −
√

2gδςi,1δσσ′δi jδ jk. The properties of this model
depend on two parameters: the adiabatic ratio

γ ≡ ω0

T

and the effective interaction

λ ≡ 2g2

Tω0
. (5)

The adiabatic ratio γ describes the relative energy scale of
electrons and nuclei, while the effective interaction λ is a
measure of the coupling between the motions of these two
constituents. This interaction is equal to the ratio of the
Lang-Firsov62 bipolaron energy to the energy of two free
electrons and turns out to be a useful quantity for analyzing
the many-body approximations.

IV. RESULTS

A. Exact properties

The main feature of the Holstein model is that it undergoes
a cross-over, as a function of the interaction strength, from
nearly free electrons to self-trapped quasi-particles known as
polarons.24,26 Our focus is in the two-electron case in which a
phonon-mediated attractive interaction leads to the formation
of a polaron pair referred to as a bipolaron. The purpose of
this section is to clarify what is this correlated state and how
it behaves as a function of the adiabatic ratio and effective
interaction.

Our discussion starts with a limiting case obtained by
rewriting the Hamiltonian operator as

Ĥ = ω0

2
i=1

(
â†i −

g

ω0
n̂i

) (
âi −

g

ω0
n̂i

)
− g

2

ω0

2
i=1


σ

ĉ†iσĉiσ −
2g2

ω0

2
i=1

n̂i↑n̂i↓ + Ĥe

and considering the situation 2g2/ω0 ≫ T , namely, λ ≫ 1.
The electron Hamiltonian Ĥe has the energy scale T and is thus
a candidate for a perturbation expansion, assuming that a finite
converge radius exists. The unperturbed Hamiltonian obtained
by setting T to zero is diagonal in the electron and phonon
site representations. The first term in this operator describes
two shifted harmonic oscillators whose shift depends on the
electron population and interaction strength. The second term
is an electronic one-body term, and the last term represents
an attractive interaction between electrons. The eigenstates
can be labeled with eigenvalues ni of the site density
operators n̂i since they commute with the Hamiltonian. Then,
the degenerate two-electron ground state of the unperturbed
system obtained by choosing n1 = 2, n2 = 0 or n2 = 2, n1 = 0
consists of a localized electron pair accompanied by a lattice
distortion described by a shifted oscillator. This state is to be
understood in this case as a bipolaron, that is a bound state of
two electrons and a lattice displacement.

At finite hopping T , the electronic Hamiltonian Ĥe

removes the degeneracy, and the competition between the
de-localizing effect of the kinetic energy and the localizing
effect of the interaction determines whether or not the ground
state can be characterized with this quasi-particle. As we will
soon see, in this case, the notion of a bipolaron is not perfect
as there is no sharp distinction between a nearly free electron
and a bipolaronic state. In the following, we consider this
regime and give a more precise definition of a bipolaron.
This discussion requires some preliminaries starting with the
transformation

â ≡ (â1 − â2)/
√

2,

Â≡ (â1 + â2)/
√

2,

where operators â and Â fulfill the fundamental commutation
relations for bosons. The original Hamiltonian can then be
separated into two parts, Ĥ = Ĥtot + Ĥrel, describing the total
and relative motion of the dimer, respectively. In particular,

Ĥtot ≡ ω0Â†Â − gN̂Û, (6)

Û ≡ (Â + Â†)/√2, (7)

where Û is the operator for the total displacement. This
Hamiltonian simply corresponds to a shifted harmonic
oscillator which can be solved exactly. The relative part
of the Hamiltonian is given by

Ĥrel ≡ ω0â†â − g(n̂1 − n̂2)û + Ĥe, (8)

û ≡ (â + â†)/√2, (9)

where û is the operator for the relative displacement. The
eigenvalue equation for the full Hamiltonian Ĥ can be written
as

Ĥ |ΦN
(n, j)⟩ = EN

(n, j)|ΦN
(n, j)⟩,

where we denote the N-electron eigenstates as |ΦN
(n, j)⟩ and

their energies as EN
(n, j). The double labeling (n, j) reflects the

fact that, because of the partitioning of Ĥ into two parts, the
full eigenstates can be written as the products

|ΦN
(n, j)⟩= |n,N⟩|ΨN

j ⟩,
Ĥtot|n,N⟩=

(
ω0n − g

2N2

2ω0

)
|n,N⟩,

Ĥrel|ΨN
j ⟩= εNn |ΨN

j ⟩,
where |n,N⟩ and |ΨN

j ⟩ are the eigenstates of Ĥtot and Ĥrel,
respectively. The Hamiltonian commutes with the total spin Ŝ2

and z component Ŝz, [Ŝ2, Ĥ] = 0 and [Ŝz, Ĥ] = 0; therefore, we
can classify states according to their spin angular momentum.
The ground state for two electrons (N = 2) is in the subspace
with S(S + 1) = 0 and Sz = 0. The relative Hamiltonian is
also invariant under the operation of the parity operator,
which swaps indices 1 and 2 and changes û to −û. Hence,
the eigenstates of Ĥrel have either even or odd parity. In
particular, the ground state is even under parity operation.
Thus, by symmetry, we have ⟨û⟩=0, ⟨n̂1⟩ = ⟨n̂2⟩ = 1, which
are expectation values taken with respect to the symmetric
ground state. The two-electron singlet Hilbert space is then

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Fri, 18 Mar

2016 10:58:44



234101-6 Säkkinen et al. J. Chem. Phys. 143, 234101 (2015)

spanned by

|1⟩e = 1
√

2

(
ĉ†1↑ĉ

†
2↓ − ĉ†1↓ĉ

†
2↑

) |0⟩e,
|2⟩e = 1

√
2

(
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓

) |0⟩e,
|3⟩e = 1

√
2

(
ĉ†1↑ĉ

†
1↓ − ĉ†2↑ĉ

†
2↓

) |0⟩e,
(10)

where |0⟩e denotes the electronic vacuum. The relative
Hamiltonian can be written in this subspace as the operator-
valued matrix

ĤN=2
rel =

*...
,

ω0â†â −2T 0
−2T ω0â†â −2gû

0 −2gû ω0â†â

+///
-

. (11)

This Hamiltonian can be diagonalized numerically by
expressing the phonon operators as matrices in a basis set
of Fock number states

�|n⟩ph
	
, which in practical calculations

is truncated up to a maximum value Nph, i.e., n ≤ Nph. In
our exact diagonalization approach, Nph = 100 turns out to
be sufficient for the convergence of the relevant quantities.
Alternatively, using the fact that

â†â =
p̂2

2
+

û2

2
− 1

2
, (12)

and by choosing a finite difference representation for
momentum p̂ and the displacement û operators, the
diagonalization can also be performed in real space. Either of
the two diagonalization approaches yields accurate ground-
state energies as long as the truncated basis for nuclear
motion is large enough. However, each approach has its own
advantages in calculating certain properties.

We are now set to investigate the finite T properties
of this model and illustrate the bipolaronic nature of the
system. In Fig. 2, we show results for two sets of parameters,
corresponding to the small and large electron hopping regimes:
γ = 8 in anti-adiabatic regime on the left hand side and
γ = 1/8 in adiabatic regime on the right hand side. The top
panels show the two-electron ground-state energies εN=2

0 , that
is the lowest eigenvalues of ĤN=2

rel , as a function of the effective
electron-phonon interaction λ for both adiabatic ratios γ.
These ground-state energies are compared with two times the
one-electron ground-state energies 2εN=1

0 , which are obtained
by diagonalizing the relative Hamiltonian represented in the
one-electron subspace with Sz = 1/2 (same as Sz = −1/2).
The figure shows that when the electron phonon interaction
strength is small, the energies are very close to one another, and
when the electron-phonon interaction strength is increased,
the two-electron ground-state becomes much lower in energy
and decreases faster as a function of the interaction. This
suggests a physical picture in which for weak interactions,
the two electrons, or polarons, are almost independent. A
strong electron-phonon interaction, on the other hand, gives
rise to a large effective attraction between electrons leading
to a strongly bound electron, or polaron pair, which is seen as
increased binding energy 2εN=1

0 − εN=2
0 . This picture can be

elucidated by investigating the double occupancy which is a
correlation function of the occupations of spin up and down
electron at the same site. Without loss of generality, we focus

on site 1 for the double occupancy

⟨n̂1↑n̂1↓⟩ = ⟨Ψ2
0 |n̂1↑n̂1↓|Ψ2

0⟩,
where n̂1α = ĉ†1αĉ1α, and |Ψ2

0⟩ is the two-electron ground state.
The double-occupancy is shown in the top panels of Fig. 2 as
a function of the electron phonon interaction strength λ for
both adiabatic ratios γ. The figure shows that this quantity
is equal to one-quarter for a non-interacting system stating
due to symmetry that it is equally probable to find electrons
in the same or different sites. As the interaction is increased,
the double-occupancy approaches one-half irrespectively of
the adiabatic ratio. This result implies that an electron-pair
is formed as a function of the interaction. The effect of the
adiabatic ratio is that the crossover from the non-interacting
system to a system in which an electron pair is formed happens
more abruptly in the adiabatic γ = 1/8 case.

The increase of the binding energy indicates a crossover
to a strongly bound two-electron state when the interaction
is strong enough. This goes hand in hand with an increase
of the double-occupancy which says that the probability of
finding two electrons at the same site is large compared to the
probability of finding them at different sites. This picture can
be made more quantitative by introducing the joint probability
density of finding electrons at the sites i, j and nuclei at the
relative coordinate u. The joint probability density is defined
as

Pii(u) ≡ |⟨i ↑, i ↓; u|Ψ2
0⟩|2,

Pi j(u) ≡

σσ′
σ,σ′

|⟨iσ, jσ′; u|Ψ2
0⟩|2, i , j, (13)

where |iσ, jσ′; u⟩ ≡ ĉ†iσĉ†
jσ′|0⟩e|u⟩with |u⟩ being an eigenstate

of û. The lower panels (a)–(c) of Fig. 2 display these
probability densities. The probability of finding electrons
on the same site is in the non-interacting limit equal to the
probability of finding them at different sites. As the electron-
phonon interaction is increased, the maximum of the joint
probability density of finding electrons on the site one (two)
increases and the position of the maximum moves towards
larger (smaller) values of the relative displacement. On the
other hand, the maximum of the joint probability density
of finding electrons on neighboring sites decreases and the
position of this maximum remains fixed at the origin as the
interaction is increased. Thus, for any non-zero interaction, it
is more likely to find the electrons occupying the same site and
accompanied by a non-zero displacement. This however does
not mean that the ground state is characterized well by the
notion of an electron pair and an associated displacement. This
leads us to the concept of a working definition of a bipolaron.
We regard for the present work a bipolaron being a good
representative of the ground state when the maxima of the joint
probability densities of electrons appearing at the same site,
maxu Pii(u), i = 1,2, cf. Eq. (13), are at least two times larger
than the maximum of the joint probability density to finding
the electrons at different sites maxu P12(u). We note that this
definition is not unique, and depending on one’s viewpoint,
other choices can be made, but it does denote a situation in
which an electron pair accompanied by a displacement is a
dominant feature of the ground state. This working definition
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FIG. 2. The top panel displays the two-electron εN=2
0 , two times one-electron 2εN=1

0 ground-state energies, and double occupancy ⟨n̂1↑n̂1↓⟩ as a function of
electron-phonon interaction strength λ. The energies are represented on the right (energy) and double-occupancies on the left (probability) axis, respectively.
The bottom panel shows the joint probability densities Pi j(u) to find electrons at the sites i, j and nuclei at the relative displacement u, and the probability
density P(u) to find the nuclear displacement at u for three different electron-phonon interaction strengths. The lowest BO surfaces E0 for different cases are
shown in the same panels. They are plotted according to Eq. (15a) with only a constant shift, in order to let their minima touch the bottom of the figures. Left:
Small hopping regime, γ = 8 in the anti-adiabatic limit. Right: Large hopping regime, γ = 1/8 in the adiabatic limit.

allows us to summarize the results of Fig. 2 by saying that
panels (a) and (c) represent in both adiabatic and anti-adiabatic
regimes two nearly free electrons and a bipolaron, respectively.
The middle panel (b), on the other hand, corresponds to
a ground state which is not characterized well by a single
notion of either two nearly free electrons, two polarons, or a
bipolaron.

The lower panels of Fig. 2 also display the probability
density

P(u) ≡

i

Pii(u) + P12(u) (14)

of finding the nuclei at relative coordinate u. The figure
shows that prior to the bipolaron formation, this probability

distribution has a single maximum located at the origin.
As the interaction is increased, the ground state becomes
more and more bipolaron-like and the nuclear distribution
P(u) starts to split symmetrically, as it should due to the
symmetry of the Hamiltonian. In the adiabatic case, it already
forms two well-separated peaks when λ = 1.7 in panel (c),
indicating that it is more likely to find the nuclei at u far
from zero, either positive or negative. In the anti-adiabatic
case, this splitting happens much slower as a function of λ
and the peaks are still not well-separated at λ = 3. However,
we already see the trend of the splitting behavior which
is the same as in the adiabatic case, the only difference is
that a quantitatively much larger λ is needed to split the
nuclear distribution. Hence, the formation of the bipolaron
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coincides with the splitting of the nuclear distribution in the
adiabatic limit, while in the anti-adiabatic case, the bipolaron
formation does not necessarily imply the splitting P(u), and
there is a smaller nuclear displacement associated with the
bipolaron compared to the displacement in the adiabatic
case.

As a last topic on exact properties, we discuss the adiabatic
limit which leads us naturally to the Born-Oppenheimer (BO)
approximation. This perspective leads us to scrutinize the
splitting of the nuclear probability density P(u) using the
adiabatic potential energy surfaces. We use Eq. (12) and
set p̂ ≡ 0 in the BO approximation. Then, we diagonalize
the 3 by 3 block in Eq. (11), where u is now taking the
role of a parameter. The eigenvalues E0(u), E1(u), and E2(u)
correspond to the ground-state, first, and second excited-state
BO surfaces (Fig. 2), respectively,

E0(u) = ω0 *
,

u2

2
− 2
γ


1 +

λγ

2
u2+
-
, (15a)

E1(u) = u2

2
ω0, (15b)

E2(u) = ω0 *
,

u2

2
+

2
γ


1 +

λγ

2
u2+
-
. (15c)

In the BO or adiabatic approximation, the nuclei are moving on
the ground-state surface E0(u), which behaves as an effective
potential. The shape of this potential determines therefore
to a large extent the shape of P(u). From the figure, we
clearly see that the formation of a double minimum in E0(u)
directly attributes to the splitting of P(u). In particular, in the
adiabatic regime γ = 1/8, this correspondence is a very good
approximation because the kinetic energy of the electrons
is much larger than the phonon frequency, and hence, the
ground-state BO surface is enough to capture the motion of
the nuclei. In Eq. (15a), we notice that the second term in the
parenthesis, which is just the energy difference between the
ground and the first excited BO surfaces (Eq. (15b)), is small
when γ is large (anti-adiabatic). Hence, in the anti-adiabatic
regime, the coupling between the lowest two surfaces is large,
especially near the origin u = 0. This is why in Fig. 2(b) on
the left, the correspondence between the potential surface and
the shape of the probability distribution is not convincible.
The reason is that the first excited surface also influences the
nuclear motion and considering only the ground BO surface
is not enough.

From Eq. (15a), it can also be worked out that the
condition for the formation of a double minimum, at
u1,2 = ±


2(λ2 − 1)/λγ, is for λ > 1 simply given by taking

the derivative of E0(u) with respect to u. We can write down
the ground-electronic state | χBO

0 (u)⟩ in the BO approximation
in terms of the basis defined in Eq. (10),

| χBO
0 (u)⟩ =

|1⟩e +


1 + λγ
2 u2|2⟩e +


λγ
2 u|3⟩e

(2 + λγu2)1/2 .

Using this state, we can compute the double occupancy at site
1 in the BO approximation

⟨n̂1↑n̂1↓⟩ =
 ∞

−∞
duPBO(u)⟨χBO

0 (u)|n̂1↑n̂1↓| χBO
0 (u)⟩

=

 ∞

−∞
duPBO(u)

1 + λγu2 + 2


λγ
2


1 + λγ

2 u2u

2(2 + λγu2)
=

 ∞

−∞
duPBO(u) 1 + λγu2

2(2 + λγu2) ,

where PBO(u) is the nuclear distribution P(u) in the BO picture.
We have used the fact the BO state is factorizable and PBO(u)
is an even function of u. Next, we consider the case when
γ → 0. If λ < 1, E0 reaches its minimum at 0. We perform
the harmonic approximation by calculating

1
ω0

d2E0

du2

����0
= 1 − λ,

which means PBO(u) is peaked at the origin with width
∼(1 − λ)−1/4, independent of γ. For λ > 1, the barrier between
the double minimum at u1,2 becomes infinite. Hence, we
can consider each well separately and perform the harmonic
approximation around u1,2. By taking the second derivative of
E0(u) with respect to u and evaluating it at the two minima
u1,2, we obtain

1
ω0

d2E0

du2

����u1,2

=
λ2 − 1
λ2 .

Thus, for λ > 1, PBO can be approximated by two
Gaussian wave packets around the positions u1,2 with width
∼
�
λ2/(λ2 − 1)�1/4, independent of γ. Moreover, in the limit

γ → 0, the second term in the integrand changes very slowly
near umax, either 0 or u1,2, at which PBO is peaked. This is due
to the fact that the rate of change is proportional to

√
γ → 0.

Hence, we can replace the term λγu2 by λγu2
max, for either

λ < 1 or λ > 1, namely,

⟨n̂1↑n̂1↓⟩ ≃ 1 + λγu2
max

2(2 + λγu2
max)

 ∞

−∞
duPBO(u)

=




1/4 λ < 1

2λ2 − 1
4λ2 λ > 1

.

This demonstrates the sharp change, a kink at λ = 1, of
the double occupancy for an increasing electron-phonon
interaction in the adiabatic case, and its value is always
between 1/4 and 1/2. As a final remark, we emphasize that
the appearance of the double-well structure for λ > 1 in the
BO picture is closely related to the issue of symmetry-breaking
discussed in Secs. IV B–IV F.

B. Mean-field

Let us begin scrutinizing the Holstein dimer from
the perspective of our many-body approximations by
considering the simplest self-consistent method, the Hartree
approximation. This self-energy approximation gives rise
to a mean-field approximation in which the electrons feel
the nuclear displacement instantaneously. The displacement
expectation value

ui =
√

2gni/ω0
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allows us to write the Hartree self-energy as

Σ
M
H;i j(τ) = −ıδi jδ(τ)Tλni, (16)

where ni is the spin-summed site density. This term is time-
local which means that it can be accounted for with an effective
one-body Hamiltonian given by

hM
H ≡ *

,

−Tλn1 − µ −T
−T −Tλn2 − µ

+
-
, (17)

where µ is the chemical potential which is to be chosen in
the following. We refer to the nonlinear eigenvalue equations
associated with this matrix as the Hartree equations. The two
eigenvalues and eigenvectors of these equations are given by

ϵH,±= −
TλN

2
± T


1 + λ2(n1 − N/2)2 − µ,

ψH;1,±=
−1

1 + (λn1 + µ/T + ϵH,±(n1)/T)2
,

ψH;2,±=
λn1 + µ/T + ϵH,±(n1)/T

1 + (λn1 + µ/T + ϵH,±(n1)/T)2
,

where N is the electron number and λ is the dimensionless
interaction of Eq. (5). The eigendecomposition can be used to
form a self-consistency relation for the density n1 at the first
site. This relation can be written for two electrons (N = 2) by
fixing the chemical potential at

µ = −Tλ (18)

and taking the zero-temperature limit (β ≫ 2T) so that it is
given by

n1 = 2|ψH;1,−|2
=

2

1 +
�
λ(n1 − 1) − 

1 + λ2(n1 − 1)2�2
.

By reordering terms this can be written as a cubic equation
for the spin-summed site density at site 1, which has the three
solutions

ns ≡ 1,

na±≡ 1 ±


1 − 1/λ2,

where subscripts s and a stand for symmetric and asymmetric,
respectively. The symmetric solution (ns) is always real
valued and hence an acceptable candidate for the lowest
energy solution. The asymmetric solutions (na±) are however
complex when λ < 1 and therefore acceptable solutions only
when they become real valued, that is for λ ≥ 1. This means
that at the critical interaction λH

C ≡ 1, a single physically
acceptable solution splits into three acceptable solutions. Our
next task is then to check which one is the lowest energy
solution. This can be achieved by using the spin-summed
reduced density matrices

γs ≡
*..
,

1 1

1 1

+//
-
,

γa±≡
*..
,

na± 1/λ

1/λ 2 − na±

+//
-
,

where the asymmetric density matrix is only defined for
λ ≥ 1. These density matrices together with the displacement
expectation value, and momentum expectation value (pi = 0)
can be used to evaluate the electron Ee, phonon Ep,
and electron-phonon Eep interaction energies. The energy
components of the symmetric solution are given

Ee,s/T = −2,

Ep,s/T = λ,

Eep,s/T = −2λ,

and those of the asymmetric solution by

Ee,a±/T = −2/λ,

Ep,a±/T = 2λ − 1/λ,

Eep,a±/T = −4λ + 2/λ.

These different energy components allow us to evaluate the
total energies

Es/T = −λ − 2, (19)
Ea±/T = −2λ − 1/λ, (20)

which indicate that the asymmetric solution is the lowest
energy solution which by definition is the ground state.

As discussed in Sec. IV A, for the ground state of
the exact solution, the double-occupancy on a given site
approaches one-half for large interactions (λ) representing a
bipolaron state. On the other hand, in the mean-field approach,
we have found that above the critical interaction λH

C, the
ground state becomes degenerate with two symmetry-broken
states. In these states, the electrons prefer to populate the
same site, and as the displacement is linearly proportional
to the electron density at that site, this electron pair is
accompanied by a lattice deformation. This supports the
conclusion that the mean-field approach mimics the formation
of a bipolaron by symmetry-breaking and localization. The
formation appears continuously, although in contrast to the
exact case not smoothly, and very rapidly, in the manner of a
bifurcation.

C. Beyond mean-field, asymptotic solution

Symmetry-breaking is a well-known feature of mean-
field theories.63–65 This leads us to question what is needed
to remedy this situation. Let us explore this thought by
scrutinizing the partially self-consistent Born approximation.
Although we are not in a position to be able to handle
this approximation purely analytically, we can investigate its
asymptotic behavior in the adiabatic and anti-adiabatic limits.

The self-energy is a sum of the Hartree and Fock self-
energies. The former is given in Eq. (16) and the latter can be
written as

ΣF[G]Mi j (τ) = ıω0Tλδi jd(τ)GM
ii (τ),

where we introduced

2ıd(τ) = θ(τ)� f−(βω0)eω0τ +
�
1 + f−(βω0)�e−ω0τ

�

+ θ(−τ)� f−(βω0)e−ω0τ +
�
1 + f−(βω0)�eω0τ

�

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Fri, 18 Mar

2016 10:58:44



234101-10 Säkkinen et al. J. Chem. Phys. 143, 234101 (2015)

as the diagonal elements of the displacement-displacement
component of the bare phonon propagator.

Let us start with the adiabatic limit in which ω0 ≪ T
independent of λ. In this limit, the electron propagator decays
much faster than the phonon propagator allowing us to
approximate the latter with a constant value. The ω0 → 0
limit gives the constant

ıω0d(τ) → 1
β
,

which can be used to write the self-energy in the imaginary-
frequency representation as

ΣGd[G]Mi j (pn) = ΣH[G]Mi j + δi j
Tλ
β

GM
ii (pn),

where pn = ıπ(2n + 1)/β is a fermionic imaginary frequency.
The electron propagator then satisfies the Dyson equation

GM(pn) = gM(pn) + gM(pn)ΣGd[G]M(pn)GM(pn)
which is diagonal in the frequencies, and one can see that in the
zero-temperature limit β ≫ 1, the self-energy approaches the
Hartree self-energy. This analysis suggests that the partially
self-consistent Born approximation reduces to the mean-field
approximation in the adiabatic limit and is thus similarly
expected to break the symmetry at λ = 1.

The anti-adiabatic limitω0 ≫ T , independent of λ, can be
treated similarly. Now the phonon propagator decays rapidly
compared to the electron propagator and is non-negligible
only for |τ | → 0 or β. This allows us to approximate the
phonon propagator with its value at the limit ω0 → ∞ which
amounts to

ω0e∓ω0τ

1 − e−βω0
→ δ±(τ),

where we introduced a delta function defined as δ±(τ) ≡ δ(τ∓)
on the intervals [0, β] and [−β,0], respectively, and zero
otherwise. The phonon propagator can therefore be written as

2ıω0d(τ) = δ+(β − τ) + δ+(τ) + δ−(−β − τ) + δ−(τ),
where τ ∈ [−β, β]. This approximation enters the self-energy
which in turn appears as an integral kernel in the convolution

�
ΣM

F ⋆GM
�
i j
(τ) = −ı


k

β
0

dτ′ ΣF[G]Mik (τ − τ′)GM
k j(τ′)

= −ıTλ
2
�
GM

ii (0+) + GM
ii (0−)

�
GM

i j (τ),
where τ is restricted on the open interval (0, β) since the
values of this convolution are different at the end points.
The convolution appears as an integral kernel in the Dyson
equation which allows us to disregard the discontinuity at
the end points. Then, the identity GM

i j (0+) − GM
i j (0−) = −ıδi j

allows us to conclude that

ΣGd[G]Mi j (τ) = ΣH[G]Mi j
+ δi jδ(τ)TλGM

ii (0−) − ıδi jδ(τ)
Tλ
2

=
ΣH[G]Mi j

2
+ ıδi jδ(τ) µ2 ,

which shows that the self-energy reduces to the Hartree self-
energy plus a constant contributing to the chemical potential.
We conclude that in the anti-adiabatic limit, the partially self-
consistent Born approximation becomes again identical to the
mean-field but now with a renormalized interaction λ/2. This
new interaction means that also the bifurcation point shifts to
λ = 2. We therefore expect that partial self-consistency does
not prevent symmetry-breaking and that, unlike in the Hartree
approximation, the bifurcation point is not independent of the
adiabatic ratio.

D. Beyond mean-field, phonon vacuum instability

The discussion on the properties of the nuclear system
has so far remained at a mean-field level. In the following,
we investigate how the phonon propagator is affected by
the interaction. The phonon vacuum instability is a known
issue when the propagator is dressed with a bare polarization
bubble, that is one evaluated with non-interacting electron
propagators.32,66 Next, we revise this peculiarity in the context
of the Holstein dimer and investigate what happens when
we use a symmetry-broken instead of a symmetric electron
propagator.

The phonon propagator satisfies in the imaginary-
frequency representation the equation

DM(νn) = dM(νn) + dM(νn)Π[G]M(νn)DM(νn),
where νn = ı2πn/β is a bosonic imaginary-frequency.
Observables are then accessible by either using analytic
continuation to real frequencies or by transforming back to
imaginary-time and taking the limit 0− to evaluate time-local
observables. The Lehmann representation, or a partial fraction
decomposition, of the phonon propagator convenient for either
of the two choices can be accomplished by calculating the
roots of the characteristic function

det
�
ν2
n1 − ω2

01 − ω0Π[G]M11(νn)
�
,

where 1 denotes the identity matrix, and [Π[G]M11(νn)]i j
≡ Π[G]M1i,1 j(νn) is the displacement-displacement component
of the phonon self-energy. The roots of this equation
are usually understood via analytic continuation as the
renormalized phonon frequencies.

The imaginary-frequency representation of the self-
energy given in Eq. (4) can be written as

Π[G]M1i,1 j(νn) =
2Tω0λ

β

∞
q=−∞

GM
i j (pq)GM

ji (pq − νn).

The electron propagator is approximated with the mean-field
propagator

GM
H (pn) = �

pn1 − hM
H

�−1
,

where hM
H ≡ hM

H (λ/λC) is defined in Eq. (17), and the critical
interaction λC ≥ 1 has been introduced to be able to represent
also the partially self-consistent propagator, which we have
shown to reduce to the mean-field one but with a renormalized
interaction. This approximation leads for a sufficiently low
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temperature β ≫ 2T to the self-energy

Π[GH]M1i,1 j(νn) =
2T2ω0λλ̄

−1

ν2
n − 4λ̄2T2

*..
,

1 −1

−1 1

+//
-
,

where the effective interaction

λ̄ ≡ λ̄(λ) = θ(λ − λC)λ/λC + θ(λC − λ)
is introduced to allow us to incorporate both the symmetric
(λ < λC) and asymmetric (λ > λC) cases in a single equation.
The characteristic function is then evaluated with this self-
energy and set to zero which leads to the two equations

0= x2 − ω2
0,

0= x2 − ω2
0 −

4T2ω2
0λλ̄

−1

x2 − 4λ̄2T2
,

where x denotes the sought solution. The roots of the first
equation are just the bare phonon frequencies ω0 which
reflects the fact that the total displacement U couples only
to the electron number and therefore its frequency remains
invariant. The second equation can be re-written as a fourth
order polynomial equation whose roots ω±,−ω± satisfy

ω2
±

T2 = 2
�
γ2/4 + λ̄2�

(
1 ±


1 +

γ2λ̄−1(λ − λ̄3)
�
γ2/4 + λ̄2

�2

)
.

These roots represent the renormalized phonon frequencies
related to the relative displacement u. The important
observation here is that these frequencies should be real
valued, but in fact, ω− becomes imaginary when λ − λ̄3 > 0
which indicates the phonon vacuum instability. The critical
value of interaction at which this happens is

λ > 1

for a symmetric λ̄ = 1 electron propagator and

λ < λ3/2
C

for an asymmetric λ̄ = λ/λC electron propagator. This shows
that there is a finite region λ ∈ (1, λ3/2

C
) in which imaginary

phonon frequencies appear.
The imaginary frequencies have a direct impact on

observables which are obtained, for example, using the
displacement-displacement component [DM

11(νn)]i j ≡ DM
1i,1 j(νn) of the phonon propagator. This component can be written

as

DM
11(νn) = ω0

(
ν2
n1 − ω2

01 − ω0Π[GH]M11(νn)
)−1
,

which shows that it is diagonalized by the same transformation
as the self-energy. The two diagonal components of this
propagator representing the total and relative displacement
modes are given by

DM
U (νn) = d0(νn),

DM
u (νn) = ω0

ω2
+ − ω2

−


j ∈{±}

jω−1
j

�
ω2

j − 4λ̄2T2�d j(νn),

where the displacement-displacement component of the bare
phonon propagator is given by

d j(νn) ≡ ω j

ν2
n − ω2

j

for a mode labeled with j. This representation shows that when
the frequency ω− becomes imaginary the relative component
diverges for ω− = ±ı2πn/β due to the divergence of the bare
propagator.

These results suggest in the mean-field case (λC = 1)
that enforcing symmetry leads to instability at λ = 1,
while allowing asymmetry avoids it, retaining a physically
acceptable situation. This observation complements the
adiabatic picture in which a double well is formed for λ > 1,
leaving the mean-field approximation the option to break the
symmetry by falling into one of the two minima or to retain
it and to lead to phonon mode softening. Additionally, we
have seen that adding partial self-consistency leads to the
renormalized interaction λ/2 in the anti-adiabatic limit which
implies that the bifurcation point of the electron propagator
is λC = 2 in our analysis. This means that dressing the
phonon propagator leads to the phonon vacuum instability
for λ ∈ (1,2√2). As a consequence of this instability, the
phonon propagator and therefore observables obtained from
it diverge.

E. Beyond mean-field, full numerical solution

As we have shown, the Hartree approximation gives rise
to multiple solutions and to a symmetry-broken lowest energy
solution. We have also shown that going one step beyond this
approximation neither prevents the appearance of multiple
solutions nor symmetry-breaking in the extreme adiabatic
limits. Here, we address the question what happens for finite
adiabatic ratios, and moreover, we investigate if dressing the
phonon propagator leads to qualitatively different results, as
we have speculated in Sec. IV D.

In the following, we compare ground-state results
obtained by ED and approximate results obtained using the
H and Gd and GD self-consistent Born approximations. The
approximate results are calculated by choosing the chemical
potential of Eq. (18), and the inverse temperature β/ω−1

0 = 103

which represents the zero-temperature limit. Our objective is
to show whether symmetric and asymmetric solutions (co-)
exist in all approximations for parameters which span the
adiabatic (γ < 1) and anti-adiabatic (γ > 1) weak (λ < 1) and
strong (λ > 1) coupling regimes. The adiabatic ratio is varied
in the present work by fixing ω0 to unity and changing only
values of the hopping T amplitude. The approximate results
are obtained by numerically solving the coupled electron and
phonon Dyson equations by using either a symmetric or an
asymmetric initial guess according to the iterative procedure
summarized graphically in Fig. 3. This procedure enforces
the anti-hermiticity of the propagators in the spatial indices
and hence it does not allow for unphysical solutions which
would violate this property. We terminate the self-consistent
cycle once the residual norm of both propagators is below a
tolerance of 10−8 after which we say that we have converged to
a solution. The numerical details are discussed in Appendix B.
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FIG. 3. Overview of the iterative process used to solve for the electron (G)
and phonon (D) propagators. The symmetric solution is obtained by choosing
λ0= 0,∆λ = 0.01 and the asymmetric solutions are obtained by choosing
λ0= 4,∆λ =−0.01.

As the first result, we show in Fig. 4 the relative
electron density n1 − n2 as a function of the interaction and
adiabatic ratio for the solutions obtained by a symmetric
and an asymmetric initial guess, from here on referred to
as asymmetric and symmetric solutions. The figure shows
that a symmetric guess converges to a solution which has
the homogeneous electron density n1 = n2 = 1 independent
of the approximation and for all parameters considered.
An asymmetric guess on the other hand converges for a
sufficiently strong interaction to a solution which has an

inhomogeneous electron density n1 , n2. Once asymmetric
solutions have emerged as a function of the interaction, both
types of solutions co-exist for the parameters explored in the
present work. The asymmetric solutions have in common that
the relative density approaches two as the interaction gets
stronger which, similarly to the mean-field case, signals the
formation of a localized bipolaron. The manner in which
this asymmetric solution appears is however not in common
to all approximations. The mean-field approximation, as
discussed earlier, breaks the symmetry in the manner of
a bifurcation. The same is true for the partially self-
consistent approximation, but not for the fully self-consistent
approximation in which asymmetric solutions are found to
emerge discontinuously from the symmetric solution as a
function of the interaction. Additionally, on the contrary to
the mean-field case, the value of the interaction at which
the asymmetric solution emerges is not independent of the
adiabatic ratio, but is pushed to higher interactions λ > 1
in the correlated approximations. The critical interaction
λC below which we do not find an asymmetric solution
is shown in Fig. 5 as a function of the adiabatic ratio.
This figure shows that the critical point approaches one in
the adiabatic limit irrespective of the approximation, while
its value depends on the approximation for finite adiabatic
ratios and in the anti-adiabatic limit. As the adiabatic ratio
is increased, the critical interaction approaches two in the
partially self-consistent approximation, which is consistent
with the asymptotic limit proposed in Sec. IV C. In the fully
self-consistent approximation, the critical point is shifted to
even higher interactions so that for the highest adiabatic ratio
γ = 16, we do not find it in the range of interactions λ ∈ [0,4]
studied in this work.

The reason why we find a critical interaction below which
we cannot obtain an asymmetric solution is, in the mean-field
case, the fact that we do not allow unphysical complex
valued densities. The partially self-consistent approximation

FIG. 4. The relative n1−n2 electron density for the symmetric (solid lines on top of each other) and asymmetric (dashed lines) solutions as a function of the
interaction λ for different adiabatic ratios γ. Note that the electron density is fixed at two, which we find also numerically. The dotted vertical lines denote the
critical values λC of the interaction given next to a line.
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FIG. 5. The critical value of interaction λC at which an asymmetric solution
emerges as a function of the adiabatic ratio.

has been shown to reduce to the mean-field approximation
in the adiabatic and anti-adiabatic limits which suggests that
the same reason holds for the partially self-consistent case.
On the other hand, we do not know if this is the case for
the fully self-consistent approximation. The discussion of
the phonon vacuum instability32 given in Sec. IV D rather
supports the view that an asymmetric electron propagator
causes a divergence of the phonon propagator, and due to self-
consistency, we do not find a physical asymmetric solution.
However, the symmetric solution does not show any signs of
the phonon vacuum instability in the sense that we find a finite
solution.

The total energies shown in Fig. 6 in units of the hopping
allow us to determine which one of the solutions, symmetric
or asymmetric, is the lowest energy solution for a given
approximation. These total energies are independent of the
adiabatic ratio in the mean-field approximation, and the
asymmetric solution is lower than the symmetric solution
in the energy. The total energies obtained in either the
partially or fully self-consistent approximation are however

not independent of the adiabatic ratio. In the adiabatic limit, we
find similarly to the mean-field situation that the asymmetric
solution is lower in energy once it has emerged. Although
this is true for all approximations, adding self-consistency
brings the symmetric solution down in energy, especially
when the phonon propagator is dressed. As the adiabatic ratio
increases, the critical point moves to a higher interaction, and
the symmetric solution is lower in energy for a sufficiently high
adiabatic ratio. This happens when the total energy becomes
lower than the exact total energy. In the anti-adiabatic limit,
the symmetric solution is the lowest energy solution in both
correlated approximations for the interactions considered in
this work.

These results confirm that solutions with inhomogeneous
densities exist also in the correlated approximations in which
they can be, similarly to the mean-field case, understood
to mimic a bipolaron. The critical interaction at which these
solutions appear agrees qualitatively in the adiabatic limit with
the abrupt formation of a bipolaron in the true ground state,
see Sec. IV A. The approximate solutions however break the
symmetry suddenly irrespective of the adiabatic ratio which
does not agree with the less abrupt formation of a bipolaronic
ground state in the anti-adiabatic limit. The bottom line is that
although the asymmetry can be motivated physically, it still
does produce inhomogeneity in a homogeneous system. This
artefact can be circumvented by constraining ourselves to the
homogeneous solution which we find for all parameter values
considered here.

F. Comparison with exact diagonalization

The many-body approximations used here have been
shown to exhibit homogeneous and inhomogeneous densities.
The symmetry-broken solution has been attributed to describe
a localized bipolaron, while the nature of the symmetric

FIG. 6. The total energies (E/T ) for the asymmetric (dashed line) and symmetric (solid line) solutions as a function of the interaction λ for different adiabatic
ratios γ. The inset shows the difference EMBPT−EED between approximate (MBPT) and exact (ED) total energies. The dotted vertical lines denote the critical
values of interaction λC.
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solution has so far remained unclear. In the following, we
aim to clarify some physical aspects of both solutions by
comparing them energetically with exact diagonalization.

Let us start by taking a closer look at the exact and
approximate total energies which are shown in Fig. 6 in units
of the hopping. The exact total energies shown in the main
panel display roughly linear behavior as a function of the
effective interaction for the weak and strong interactions. The
slopes of these lines depend on the adiabatic ratio so that for the
scaled energy E/T , the slope related to the weak interactions
is steeper in the anti-adiabatic limit. In the adiabatic limit,
these two limiting cases are joined together by an abrupt,
smooth change in the slope of the total energy curve, while,
in the anti-adiabatic limit, this abrupt change is smoothened
out and moved to higher values of the interaction. This feature
has been shown to correspond to an increase in the binding
energy of the bipolaron, see Sec. IV A, and has been used to
signal a crossover to an on-site bipolaron in the more general
Hubbard-Holstein model.67

Let us next compare the approximate total energies to
the exact total energy starting with the symmetric solutions
and using as help the difference between approximate and
exact total energies shown in the inset of Fig. 6. The
symmetric mean-field solution does not show any change
in the slope of the total energy as a function of the interaction,
as seen from Eq. (19). This together with the fact that the
total energy is independent of the adiabatic ratio results in
very poor agreement with the exact total energies for all
parameters except for the weak interaction adiabatic region.
The symmetric partially self-consistent solution shows a
change, although almost negligible in comparison to the
exact case, in its slope as a function of the interaction. The
largest difference to the mean-field case is that the total energy
depends on the adiabatic ratio. This qualitative difference leads
to relatively good agreement with the exact results for weak
interactions and adiabatic ratios smaller than one, while in the
anti-adiabatic cases, the total energy is underestimated even for
a very weak interaction. The fully self-consistent solution, as
opposed to the other symmetric approximate solutions, shows
a clear signature of a change in the slope of the total energy.
This change appears at the correct values of the interaction,
but still underestimates the change of the slope of the exact
total energy as a function of λ. This observation allows us
to conclude that out of the symmetric solutions, the fully
self-consistent solution is in best agreement with the exact
results giving relatively good results for weak- to moderate
interactions in the adiabatic limit and weak interactions in the
anti-adiabatic limit.

The asymmetric solutions, unlike their symmetric
counterparts, show all qualitatively similar behavior as a
function of the interaction once they have emerged. The
asymmetric solutions appear in the adiabatic regime roughly
at the same point in which the slope of the exact total energy
changes abruptly. As the critical interaction λC is shifted in the
correlated approximations to higher interactions as a function
of the adiabatic ratio, it can be said to follow a similar
trend as the slope of the exact total energy does, although
only the symmetry-breaking can be said to be abrupt in the
anti-adiabatic regime. The total energy differences shown in

the inset illustrate the fact that all symmetry-broken total
energies approach asymptotically to the exact total energy as
a function of the interaction. This is particularly true in the
adiabatic limit in which symmetric total energies are in good
agreement at the critical values λC, and hence, the symmetry-
broken total energies are in quantitative agreement with the
exact result. The fact that asymmetric total energies are so
good in the strong interaction limit is related to the almost
degenerate ground and first excited state of the system. A
linear combination of these states leads to a symmetry-broken
state whose energy however is extremely close to the true total
energy.31

The electron, phonon, and electron-phonon interaction
energies are shown for the exact solution in the insets of
Fig. 7. The electron energy is Ee/T = η2 − η1, where η1 and
η2 are eigenvalues of the spin-summed, one-body reduced
density matrix, that is so-called natural occupation numbers.68

This energy contribution remains almost a constant in the
limit of weak interactions and increases as a function of the
interaction roughly as −2/λ in the strong interaction case in
the adiabatic limit. As the adiabatic ratio is increased, the
electron energy changes less abruptly and shows almost linear
increase as a function of the interaction. The exact phonon
energy, which is a sum of the classical EpC/T = λ and
quantum EpQ ≡ Ep − EpC contributions, and the electron-
phonon interaction energy, which is a sum of the classical
EepC = −2λ and quantum EpQ ≡ Eep − EepC contributions,
show a linear increase and decrease as a function of
the interaction in the weak and strong interaction limits,
respectively. As for the total energy, the change from the
linear behavior for weak interactions to the linear behavior
for strong interactions appears abruptly in the adiabatic limit
and as smoothened out and at higher interactions when the
adiabatic ratio is increased.

The main panels of Fig. 7 display differences between
the approximate and exact energy components as a function
of the parameters. Let us first discuss the symmetric solutions
which give the classical energy components exactly, as
seen from Eq. (3), and therefore, the energy differences
measure the difference in the quantum contributions. The
overall picture here is that these energy components deviate
from their exact correspondence more than their sum does,
that is the total energy, which implies some kind of error
cancellation. The symmetric mean-field and partially self-
consistent solutions describe nuclear motion at the mean-
field level which means that they fail when the quantum
contribution becomes large. Our data show that the quantum
contribution becomes appreciable for all parameters except
for the adiabatic weak interaction regime in which these
two approximations give relatively good agreement to the
exact phonon energy. In the fully self-consistent case, we
however dress the phonon propagator and therefore gain the
ability to capture some of the quantum contribution. This
is seen in the figure as an improved agreement with the
exact phonon energy for all adiabatic ratios and values of the
interactions. The symmetric mean-field solution gives −2T
as the electron energy which means that it agrees adequately
with exact results only in the adiabatic weak interaction limit
in which the exact electron energy remains roughly constant
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FIG. 7. The insets display exact phonon (open circles, Ep/T ), electron (no points, Ee/T ), and electron-phonon interaction (filled circles, Eep/T ) energies as
a function of the interaction λ for different adiabatic ratios γ. The main panels display the differences EMBPT−EED between approximate (MBPT) and exact
(ED) energy components for the symmetric (solid line) and asymmetric (dashed line) solutions. The dotted vertical lines denote the critical values of interaction
λC, and labels next to lines on the left most panel are meant to guide the reader when moving to the panels on the right.

as a function of the interaction. The partially self-consistent
approximation incorporates some electron correlation beyond
mean-field which is seen as improved agreement with exact
results for all adiabatic ratios. The qualitative gain of further
introducing self-consistency in the fully self-consistent case is
that the electron energy is in better agreement with the exact
result also in the adiabatic limit. The last energy component
is the electron-phonon interaction energy which deviates the
most from the exact result. As in the case of other energy
components, the mean-field solution again fails to give good
agreement with exact results except in the adiabatic weak
coupling regime. The partially and especially the fully self-
consistent solutions improve on the mean-field picture, so that
the latter is again in the best agreement with exact electron-
phonon interaction energy for all parameters considered. The
error in the interaction energy is of the opposite sign to the
error in the phonon energy, mostly also to the electron energy,
and therefore leads to the error cancellation observed for the
total energy.

Once the asymmetric solutions appear when the
interaction is increased, their energy components behave
similarly to one another, as seen for the total energies.
Also the trend is the same as for the total energies,
that is all energy components approach asymptotically as
a function of interaction towards the corresponding exact
energy component. There is even a quantitative agreement
with the exact energy components for a high enough
interaction. Additionally, we find, like in the symmetric
case, that there is an error cancellation occurring between
the different components. The quantum contributions to the
phonon and electron-phonon interaction energies are shown
in Fig. 8 for the correlated solutions, and these contributions
are by construction identically to zero for the mean-field
approximation. This figure shows that an asymmetric solution,
irrespective of the approximation, gives quantum energy

contributions which tend towards zero as a function of
the interaction, and hence, the energies consist solely of a
classical-like, mean-field contribution.

As a last indicator of the physical nature of these
solutions, we show in Fig. 9 the difference η1 − η2 of the
eigenvalues of the spin-summed, electron one-body reduced
density matrix. This difference is only shown for the exact
solution and the correlated approximations since the natural
occupation numbers are by construction fixed to η1 = 2 and
η2 = 0 in the mean-field approximation. The figure shows
that the difference approaches two as a function of the
interaction also for the asymmetric solutions of the correlated

FIG. 8. The quantum or correlation contributions to the phonon (open circles,
EpQ/T ) and electron-phonon interaction (filled circles, EepQ/T ) energies
for the exact, and asymmetric (dashed line) and symmetric (solid line) solu-
tions as a function of the interaction λ for different adiabatic ratios γ. The
dotted vertical lines denote the critical values of interaction λC.
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FIG. 9. The difference η1−η2 of the eigenvalues of the spin-summed, elec-
tron one-body reduced density matrix for the asymmetric (dashed line) and
symmetric (full line) solutions as a function of the interaction (λ) for different
adiabatic ratios (γ). The dotted vertical lines denote the critical values of
interaction λC.

approximations. This means that the agreement with the
exact electron energy follows through the symmetry-broken
eigenvectors of the density matrix. However, this is not the
case for the symmetric solutions out of which the fully
self-consistent agrees qualitatively with the exact natural
occupation numbers. There is also an observation to be made
from this figure, namely, due to the fact that the particle
number is always two, the eigenvalues are between zero
and two for all approximate solutions. This shows that the
many-body approximation here satisfy an N-representability
condition.69 In the anti-adiabatic limit, the natural occupation
numbers can be used to construct the ground-state wave
function, and therefore, they give invaluable information
about the bipolaronic ground state. The first step to make this
correspondence is to map the Holstein model to the attractive
Hubbard model using the Lang-Firsov transformation.21,70

The transformed Hamiltonian is then given for two electrons
by

ˆ̃H
T
= −λ + γ

2
i=1

â†i âi − λ
2

i=1

n̂i↑n̂i↓

−

σ

�
X̂†1 X̂2ĉ†1σĉ2σ + X̂†2 X̂1ĉ†2σĉ1σ

�

and obtained by the transformed operators

ˆ̃ai ≡ âi +

λ/2γn̂i,

ˆ̃ci ≡ X̂iĉi,

X̂i ≡ e
√

λ/2γ(â†
i
−âi).

If we take the anti-adiabatic limit, or more precisely λ/2γ → 0
such that λ remains finite,70 we arrive at the Hamiltonian

ĤH ≡ −Tλ + ω0

2
i=1

â†i âi − λ

i

n̂i↑n̂i↓

−T

σ

�
ĉ†2σĉ1σ + ĉ†1σĉ2σ

�
,

where the phonon part is just the non-interacting one, and
the electronic part is equal to the Hamiltonian operator of
the attractive Hubbard model with the interaction −λ. The
ground-state wave function is a product of a zero-phonon
state and an electronic wave function which can be written by
Löwdin-Shull expansion68 as

|Ψe⟩ = b1 + b2

2
�
ĉ†1↑ĉ

†
1↓ + ĉ†2↑ĉ

†
2↓
�|0⟩e

+
b1 − b2

2
�
ĉ†1↑ĉ

†
2↓ + ĉ†2↑ĉ

†
1↓
�|0⟩e,

where |0⟩e is the empty electronic state, and bi =

ηi/2 are

called natural amplitudes. In general, the coefficients bi are
defined up to a sign.71,72 However, since in this case the
ground state can be calculated analytically, we can readily
determine the signs to be positive in our case. At the limit of
strong interactions, the natural occupation numbers approach
one which implies that b1 − b2 approaches zero and therefore,
the ground-state wave function describes two electrons on the
same site, which is the bipolaronic ground state in the anti-
adiabatic case. The natural occupation numbers shown for the
approximations in the anti-adiabatic case γ = 8 then imply that
the fully self-consistent approximation describes a paired two-
electron state without symmetry-breaking and localization.
The figure also shows that this pairing is overestimated for a
wide range of values of the interaction in the intermediate to
strong couplings.

The presented results re-enforce the picture that the
asymmetric solutions can be seen to describe a classical-like,
localized bipolaron. This kind of state is the degenerate
ground-state solution in the extreme adiabatic and anti-
adiabatic limits obtained by neglecting the nuclear and
electron kinetic energies, but not for finite parameters for
which degeneracy is broken and the solution is symmetric. On
the other hand, we have seen that if we restrict ourselves to
a solution which respects this symmetry, only the fully self-
consistent approximation shows sufficient indirect evidence
that a correlated two-electron state is formed as a function of
the interaction. This indirect evidence is further supported by
the natural occupation number analysis in the anti-adiabatic
limit.

V. CONCLUSION

We have studied the ground-state properties of the
homogeneous two-site and two-electron Holstein model. Our
study has been conducted using many-body perturbation
theory, based on the Hartree and partially and fully
self-consistent Born approximations. We have calculated
electron densities, natural occupation numbers, as well as
total energies and electron, phonon, and electron-phonon
interaction energies. We have analyzed the results by analytic
and numerical means and compared them to numerically exact
results obtained via exact diagonalization.
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The results show that there exists a critical interaction
above which the many-body approximations support at
least three solutions. One of these solutions is spatially
homogeneous, while the other two are inhomogeneous in both
electron population and nuclear displacement and therefore
break the reflection symmetry of the system. The symmetry-
broken electron density approaches two on one of the sites
and zero on the other, while the displacement increases
and decreases linearly with the electron density, respectively.
The energy components and total energies of these solutions
have been shown to agree at best quantitatively with exact
results, while their quantum contributions approach zero for
strong interactions. These observations support the physical
picture that the inhomogeneous solutions represent a localized,
classical-like bipolaron. The asymmetric solutions are alike
irrespective of the approximation, but this is not to the case
for the homogeneous solutions. The comparison of the energy
components and total energies shows that the homogeneous
solutions of the Hartree and partially self-consistent Born
approximations do not agree even qualitatively with exact
results for intermediate to strong interactions. The fully
self-consistent approximation instead does compare well
with exact results at least up to intermediate interactions
in the adiabatic case and at least for weak interactions in
the anti-adiabatic case. This approximation also shows a
significant, although underestimated, change in the slope
of the total energy in the adiabatic case γ = 1/8 in a
qualitative agreement with the exact solution where we
associate this change with a crossover to a bipolaronic state
as in Ref. 67. The homogeneous solution of the fully self-
consistent Born approximation is then understood to describe
partially a bipolaron crossover in this adiabatic case. A
study in an infinite dimensional extended system has shown
that this approximation predicts qualitatively a polaronic
crossover, but gives only exponentially decaying quasi-particle
spectral weight and hence no true bipolaronic metal-insulator
transition.47 The spin-summed natural occupation numbers
obey a trend analogous to the energetics, they approach each
other as a function of the interaction in the exact and fully self-
consistent Born solutions but do not change as significantly
in the less sophisticated approximations. We have shown by
mapping the model to the attractive Hubbard model in the
anti-adiabatic limit that natural occupation numbers which
approach one another indicate the formation of a paired
two-electron state. This observation favors a conclusion that
the homogeneous solution of the fully self-consistent Born
approximation describes a paired two-electron state for the
anti-adiabatic case γ = 8 considered here.

The presented results contribute to understanding how
these approximations behave in the presence of a strong
localizing interaction. In particular, we have shown that
the many-body approximations used in this work have
multiple physical solutions, and they give rise to spontaneous
symmetry-breaking if allowed. These general features
appear naturally in the bipolaronic system studied here
and therefore raise a question if these features manifest
themselves in dynamical settings, such as in time-dependent
quantum transport through molecular junctions, as instable or
metastable dynamics. The extension of the present formalism

to these cases requires the solution of the two-time Kadanoff-
Baym equations for open systems which we have studied
extensively in the last few years for the case of purely
electronic systems. The next step into this direction is to study
how dynamical properties at the level of response functions are
described in the many-body approximations discussed here.23

This knowledge will be of great importance for understanding
how the new time-scale related to nuclear motion appears
in the transient regime.12 Finally, we remark that this may
also require further simplifications of the Kadanoff-Baym
equations which lead to computationally more favorable
single-time equations.73–77
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APPENDIX A: ENERGY FUNCTIONAL

The total energies presented in this work are obtained
using an energy functional whose derivation will be given
below. The underlying idea is that the electron propagator
obeys the equation of motion

ı∂zGi j(z; z′) = δi jδ(z, z′) +

k

hikGk j(z; z′)

− ı

kl

M l
ik


T

φ̂l(z)ĉH ;k(z)ĉ†H ; j(z′)


,

which together with the phonon propagator allows us to write
the energy components as

Ep(z) =

I J

ΩI J



φ̂H ;I(z)φ̂H ;J(z)�

= −1
ı


I J

ΩI J

�
DJ I(z, z+) − ıφI(z)φJ(z)�,

Ee(z) =

i j

hi j


ĉ†H ;i(z)ĉH ; j(z)


=

1
ı


i j

hi jG j i(z, z+),

Eep(z) =

I


jk

M I
jk


φ̂H ;I(z)ĉ†H ; j(z)ĉH ;k(z)


=

1
ı


ik

�
ıδik∂z − hik

�
Gki(z; z′)�

z′=z+,

where the subscript H denotes a Heisenberg picture operator.
Finally, by combining these results, we find that the total
energy can be written as

EGM(z) =

i

∂zGii(z; z′)�
z′=z+

− 1
ı


I J

(
ΩI J

�
DJ I(z, z+) − ıφI(z)φJ(z)�

)
and is therefore a functional of the electron and phonon
propagators. We call this functional according to its deriving
principles Galitski-Migdal functional.78–80
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APPENDIX B: NUMERICAL DETAILS

The numerical method used in the present work to
solve the coupled, equilibrium Dyson equations is the widely
used method of fixed-point iterations. This method has been
previously described in Ref. 81. Here, we extend this approach
with some necessary modifications to allow for electron-
phonon coupling in the system.

In the present work, the electron and phonon propagators
are discretized in the imaginary-time τ on the geometric grid

τk+1 − τk ≡ abk

such that τ0 = 0 and τk ∈ [0, β/2]. The grid in the interval
τ ∈ [β/2, β] is obtained by mirroring of this grid with respect
to β/2. The grid parameters used here are a = 10−3 and
b = 1.1, or even smaller. The equations are first rewritten in
terms of static electron gMs and phonon dM

s propagators which
satisfy the equations of motion

−
�
∂τ + h − µs

�
gM

s (τ)= ıδ(τ) + �ΣM
s ⋆ gM

s
�(τ),

−
�
α∂τ + ω1

�
dM

s (τ)= ıδ(τ) + �ΠM
s ⋆ dM

s
�(τ),

where µs denotes a static chemical potential, while ΣMs and
ΠM

s denote static self-energies. The word static refers here to
the fact that these quantities are independent of the propagators
GM and DM which we want to solve. The Dyson equations
for these propagators can be then rewritten as

GM(τ)= gM
s (τ) + �gM

s ⋆Σ
M
⋆GM

�(τ),
DM(τ)= dM

s (τ) + �dM
s ⋆Π

M
⋆DM

�(τ),

where we defined the effective electron Σ
M

S (τ) ≡ ΣM(τ) −
ΣM

s (τ) + ıδ(τ)�µ − µs
�

and phonon Π
M

S (τ) ≡ ΠM(τ) −ΠM
s

(τ) self-energies.
The method of fixed-point iterations relies on the idea

that the solution to the equations is a fixed-point of a
mapping which, given the propagators as an input, gives
new propagators as its output. This procedure can be iterated
to generate a sequence of propagators which in the ideal case
converges to a fixed point of this mapping. This work is based
on a scheme in which the propagators of the k-th iteration are
given as inputs to the mappings

FG : {G,D}→ gM
s + gM

s ⋆Σ[G,D]⋆G,

FD : {G,D}→ dM
s + dM

s ⋆Π[G]⋆D,

which give a new pair of propagators as its output. This
mapping by itself can be unstable, so in order to improve
the convergence of this sequence, we have implemented a
well-known convergence acceleration method called Direct
Inversion of Iterative Subspace (DIIS).82,83 We apply this
technique by storing a history of N latest iterates, and
constructing new optimized electron and phonon propagators

in the k-th iteration round according to

Gk
opt(τ)=

Nk
i=0

ciGk−i(τ),

Dk
opt(τ)=

Nk
i=0

ciDk−i(τ),

where Nk = min(k,N − 1) and the coefficients ci are fixed by
minimizing the residual norm rk ≡ ���

���G
k
opt − FG

�
Gk

opt,Dk
opt
����
���
2
+

���
���D

k
opt − FD

�
Gk

opt,Dk
opt
����
���
2

under the constraint that the coeffi-
cients ci sum up to unity. The norm is defined in the usual
way ||a|| ≡ ⟨a,a⟩ in terms of the inner product

⟨a,b⟩ ≡
β

0

dτ tr
�
a†(τ)b(τ)�,

where a,b are matrix valued Matsubara functions, and tr
denotes the usual matrix trace. To overcome the fact that
this optimization problem is inherently non-linear, we make
the usual approximation by assuming that the residuals are
approximately linear which allows us to write

rk ≈
Nk

i, j=0

c∗i cjRk, i j,

where we defined residual matrix Rk, i j

≡ ⟨δGk−i, δGk− j⟩ + ⟨δDk−i, δDk− j⟩ where δGk−i ≡ Gk−i −
FG

�
Gk−i,Dk−i

�
and δDk−i ≡ Dk−i − FD

�
Gk−i,Dk−i

�
. This

simplified constrained optimization problem leads to the usual
set of linear equations

*..
,

Rk −1

1T 0

+//
-

*..
,

C

µ

+//
-
=
*..
,

0̄

−1

+//
-
,

where C ≡ (c0, . . . ,cNk
)T is a column vector, and µ is a

Lagrange multiplier enforcing the equality constraint. Finally,
new iterates are given by the linear combinations

GM
k+1= dFG[GM

k ,D
M
k ] + (1 − d)Gk

opt,

DM
k+1= dFD[GM

k ,D
M
k ] + (1 − d)Dk

opt,

where d is an empirically chosen damping factor, which
is typically fixed to 0.2–1.0. Although convergence of this
iterative sequence is not guaranteed, we have found that it
does usually converge to a solution. The convergence criterion
used in the present work is that the change of the total energy
and the value of the residual norm Rk,00 are both below the
tolerance 10−8.
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