
Optimization of classical nonpolarizable force fields for OH− and H3O+
Douwe Jan Bonthuis, Shavkat I. Mamatkulov, and Roland R. Netz 
 
Citation: The Journal of Chemical Physics 144, 104503 (2016); doi: 10.1063/1.4942771 
View online: http://dx.doi.org/10.1063/1.4942771 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/144/10?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Investigation of the CH3Cl + CN− reaction in water: Multilevel quantum mechanics/molecular mechanics
study 
J. Chem. Phys. 142, 244505 (2015); 10.1063/1.4922938 
 
Chemical dynamics simulations of the monohydrated OH−(H2O) + CH3I reaction. Atomic-level mechanisms
and comparison with experiment 
J. Chem. Phys. 142, 244308 (2015); 10.1063/1.4922451 
 
A multilayered-representation quantum mechanical/molecular mechanics study of the SN2 reaction of CH3Br
+ OH− in aqueous solution 
J. Chem. Phys. 137, 184501 (2012); 10.1063/1.4766357 
 
Theoretical studies of UO 2 ( OH ) ( H 2 O ) n + , UO 2 ( OH ) 2 ( H 2 O ) n , NpO 2 ( OH ) ( H 2 O ) n , and
PuO 2 ( OH ) ( H 2 O ) n + ( n ≤ 21 ) complexes in aqueous solution 
J. Chem. Phys. 131, 164504 (2009); 10.1063/1.3244041 
 
The H 2 O 2 + OH → HO 2 + H 2 O reaction in aqueous solution from a charge-dependent continuum model
of solvation 
J. Chem. Phys. 129, 014506 (2008); 10.1063/1.2943315 
 
 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  87.77.118.212 On: Mon, 02 May

2016 10:44:30

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1765179907/x01/AIP-PT/JCP_ArticleDL_011316/APR_1640x440BannerAd11-15.jpg/434f71374e315a556e61414141774c75?x
http://scitation.aip.org/search?value1=Douwe+Jan+Bonthuis&option1=author
http://scitation.aip.org/search?value1=Shavkat+I.+Mamatkulov&option1=author
http://scitation.aip.org/search?value1=Roland+R.+Netz&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4942771
http://scitation.aip.org/content/aip/journal/jcp/144/10?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922938?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922938?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922451?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/142/24/10.1063/1.4922451?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/18/10.1063/1.4766357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/18/10.1063/1.4766357?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/16/10.1063/1.3244041?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/131/16/10.1063/1.3244041?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/129/1/10.1063/1.2943315?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/129/1/10.1063/1.2943315?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 144, 104503 (2016)

Optimization of classical nonpolarizable force fields for OH− and H3O+
Douwe Jan Bonthuis,1,a) Shavkat I. Mamatkulov,2 and Roland R. Netz3
1Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3NP, United Kingdom
2Ion-Plasma and Laser Technologies Institute of the Uzbekistan AS, Tashkent, Uzbekistan
3Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany

(Received 10 September 2015; accepted 11 February 2016; published online 8 March 2016)

We optimize force fields for H3O+ and OH− that reproduce the experimental solvation free energies
and the activities of H3O+Cl− and Na+OH− solutions up to concentrations of 1.5 mol/l. The force
fields are optimized with respect to the partial charge on the hydrogen atoms and the Lennard-Jones
parameters of the oxygen atoms. Remarkably, the partial charge on the hydrogen atom of the
optimized H3O+ force field is 0.8 ± 0.1|e|—significantly higher than the value typically used for
nonpolarizable water models and H3O+ force fields. In contrast, the optimal partial charge on the
hydrogen atom of OH− turns out to be zero. Standard combination rules can be used for H3O+Cl−

solutions, while for Na+OH− solutions, we need to significantly increase the effective anion-cation
Lennard-Jones radius. While highlighting the importance of intramolecular electrostatics, our results
show that it is possible to generate thermodynamically consistent force fields without using atomic
polarizability. C 2016 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4942771]

I. INTRODUCTION

It is difficult to overstate the importance of H3O+ and
OH− in chemistry and biology. For example, any chemical
reaction in aqueous solution that involves gaining or losing
a proton is pH dependent. The pH dependence of surface
charge densities, which control the behavior of colloids in
water—and therefore most biological interactions—is partic-
ularly strong.1,2 In biology, protons have a special importance
because proton gradients, which serve as an intermediate for
energy storage in mitochondria, are being considered as the
origin of complex life.3 Nevertheless, there are still many
remaining questions surrounding the properties of H3O+ and
OH− in water, such as the molecular origin of their high
mobility and their surface activity.4–6

The success of the simple rigid water model SPC/E
(Simple Point Charge/Extended),7 that has neither molecular
nor atomic polarizability, at reproducing water properties is
remarkable. Most notably, the water’s structure factor and
dielectric response function are captured accurately based on
the careful optimization of the Lennard-Jones (LJ) parameters
and partial charges only.8,9 Also for monovalent and divalent
ions, optimization of the LJ parameters and combination
rules suffices to reproduce solvation free energy, solvation
enthalpy, and activity coefficients,10–12 as well as density,
isothermal compressibility, and solution activity as a function
of salt concentration,13,14 and cation-specific binding onto
protein surface charges.15 In contrast, similar force fields for
the water ions have been lacking up to now. Yet without
such force fields, thermodynamically consistent simulations
of H3O+ and OH− in water are out of reach.

In this paper, we report the optimization of nonpolarizable
atomistic force fields for H3O+ and OH− based on their
solvation free energies and the thermodynamic activities of

a)Electronic mail: douwe.bonthuis@physics.ox.ac.uk

H3O+Cl− and Na+OH− solutions. We perform thermodynamic
integrations for different values of the LJ parameters σi and ϵ i

of the oxygen and the partial charge δi on the hydrogen atoms
to calculate the solvation free energy, where i denotes the ion
type (H3O+ or OH−). For each value of δi, this provides us
with a curve in σi − ϵ i space along which the experimental
solvation free energy is reproduced. Along these isolines, we
calculate the logarithmic derivative of the activity with respect
to the concentration using Kirkwood-Buff theory. We find an
optimal force field for H3O+ by varying δi, ϵ i, andσi. For OH−,
we also need to modify the combination rule for the effective
Na+–OH− LJ radius. Note that we do not intend to propose a
microscopic model of, e.g., the charge distributions or the sizes
of H3O+ and OH− ions. Instead, our aim is to develop force
fields that reproduce the ions’ thermodynamic properties—in
particular, their solvation free energies and thermodynamic
activities. This ensures a correct binding strength of hydration
water, as well as realistic effective interionic interactions.
With two experimental reference quantities, the system is
underdetermined. However, the sensitivity of these quantities
to the force field parameters—especially to δi—is so strong
that we are able to determine unique force fields for both
H3O+ and OH− with a margin for δi of only 0.1e. We check
the transferability of our optimized force fields by comparison
with experimental data for the dielectric constant and the mass
densities of aqueous Na+OH− and H3O+Cl− solutions, and find
good agreement.

II. LITERATURE FORCE FIELDS

Many different force fields for H3O+ and OH− have been
proposed in the literature. Most force fields have either flexible
bond lengths or flexible angles or both, atomic polarizability
or virtual LJ sites, and the geometric structure of the different
models varies widely. Listing all possible combinations would

0021-9606/2016/144(10)/104503/10/$30.00 144, 104503-1 © 2016 AIP Publishing LLC
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TABLE I. The partial charge δi on the hydrogen atom of ion i, or on a virtual
site close to the hydrogen atom, for several force fields used in the literature.

Ion δi (|e |) Remarks Reference

H3O+ 0.585 Flexible angles 16,17
0.424 Double Coulomb/LJ site for oxygen 18
1.26 With one additional virtual LJ site 19
0.4722 With atomic polarizability 6,20
0.4606 Flexible angles and bond lengths 21
0.416 Rigid molecule 22

OH− 0.23 Split Coulomb/LJ site for hydrogen, double
Coulomb/LJ site for oxygen, and 5 additional
virtual LJ sites

18

0.32 Rigid molecule 17
0.35 With atomic polarizability 6,20

be too exhaustive, but as for water models, the most important
characteristic for the thermodynamic properties of the ions is
the distribution of the partial charges. To give an impression
of the typical charge distributions used, we list the values of
the partial charge on the hydrogen atoms δi in terms of the
elementary charge e of several literature force fields in Table I.
Note that partial charges on the other atomic sites complement
the partial charges on the hydrogen atom to attain the ion’s
net charge. With one notable exception, δH3O+ is close to the
value used for water (δH2O = 0.4238 for SPC/E), while δOH−

is slightly lower.

III. EXPERIMENTAL REFERENCE VALUES

A. Experimental values of the solvation free energy

Experimentally, the solvation free energy of ions can
only be measured for neutral pairs. To determine the energy
for a single ion, a reference ion has to be chosen, for
which traditionally the proton H+ is used. Estimates of the
solvation free energy of the proton, however, vary between
−1056 kJ/mol23 and −1104.5 kJ/mol.24 To circumvent this
discrepancy, we use the difference in solvation free energy
between the ion in question and chloride, for which some
consensus exists regarding its force field parameters.10 We
calculate the energy of transfer of an ion from the 1 atm gas
phase to the 1 mol/l liquid phase. The solvation free energy of
H3O+ is calculated using the following thermodynamic cycle:

2 H2Ogas
∆Ggas
−→ OH−gas + H3O+gas

↑ −2∆GH2O ↓ ∆GOH− ↓ ∆GH3O+

2 H2Oaq
−∆Gaq
←− OH−aq + H3O+aq.

(1)

The gas phase reaction energy ∆Ggas = ∆
fGH3O+ + ∆

fGOH−

− 2∆fGH2O can be estimated from the standard Gibbs
free energies of formation in the ideal gas phase at a
pressure of 0.1 MPa and a temperature of 298 K, ∆fGH2O
= −228.6 kJ/mol, ∆fGH3O+ = 606.6 kJ/mol and ∆fGOH−

= −138.7 kJ/mol,25 giving ∆Ggas = 925.1 kJ/mol. This value
has been disputed, however, and we use a value of ∆Ggas

= 945.6 kJ/mol, which is considered to be more accurate.26–28

To calculate the reaction energy in the liquid phase, ∆Gaq, we
use

exp
(−∆Gaq

kT

)
=

�
OH−

�
aq[H3O+]aq

[H2O]2aq

, (2)

where [. . .] denotes activity. Activity coefficients for H3O+ and
OH− are assumed to be 1 because of the low concentrations
involved, leading to

�
OH−

�
aq = [H3O+]aq = 10−7 mol/l. Since

the H2O concentration is not close to zero, the activity of
pure water with respect to the 1 mol/l reference state cannot
be assumed to be 1, but the water activity will be canceled
out in the final expression, as we will show later. We find
∆Gaq = 2kT ln [H2O]aq + 79.9 kJ/mol. The Gibbs free energy
of solvation of water ∆GH2O is obtained from the relation

exp
(−∆GH2O

kT

)
=

[H2O]aq

[H2O]gas
. (3)

The activity of saturated water vapor at T = 298 K equals
[H2O]gas = 1.27 · 10−3 mol/l,29 again assuming an activity
coefficient of 1. Eq. (3) gives ∆GH2O = −kT ln [H2O]aq
− 16.5 kJ/mol, for going from the 1 mol/l gas state to the
1 mol/l liquid state. To go from the 1 atm standard state to the
1 mol/l liquid state, 7.9 kJ/mol has to be added.30

From the cycle in Eq. (1), we derive ∆GH3O+

+ ∆GOH− = ∆Gaq + 2∆GH2O − ∆Ggas = −882.9 kJ/mol. Using
the experimental values from Tissandier24 for ∆∆GOH−

= ∆GH+OH− − ∆GH+Cl−, and using ∆GH+OH− = ∆GH+ + ∆GOH−

and ∆GH+Cl− = ∆GH+ + ∆GCl−, we find

∆∆GOH− = ∆GOH− − ∆GCl− = −126.6 kJ/mol,
Σ∆GH3O+ = ∆GH3O+ + ∆GCl− = −756.3 kJ/mol.

(4)

These values agree within several kJ/mol with the values
given by Ref. 27: ∆∆GOH− = −126.7 kJ/mol and Σ∆GH3O+

= −758.6 kJ/mol. Note that the values mentioned in Ref. 27
correspond to the transfer of an ion from 1 mol/l gas to 1 mol/l
liquid, so 7.9 kJ/mol has been added to the solvation energy
of each ion to compare to our values.

B. Experimental values of the activity derivative

To optimize the force fields with respect to the activity
coefficient, we use the mean activity coefficients of HCl and
NaOH solutions. From the numerical derivatives of the curves
of the mean activity coefficient γ versus salt concentration n
given by Refs. 31 and 32, we find at n = 1.0 mol/l,

∂ ln γ
∂ ln n

���NaOH
= 0.02 and

∂ ln γ
∂ ln n

���HCl
= 0.18, (5)

in agreement with the values given in Ref. 33.

IV. MOLECULAR DYNAMICS SIMULATIONS

A. Geometric structure of the hydronium
and hydroxide ions

For the OH− and H3O+ ions, we use the model sketched in
Fig. 1. The partial charge on the hydrogen atom is denoted by
δi. Hydronium has a trigonal pyramidal shape. The minimum
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FIG. 1. Schematic images of (a) a hydronium and (b) a hydroxide ion. Partial
charges q are indicated in terms of the partial charge δH3O+ and δOH− on the
hydrogen atoms.

energy structure estimated from ab initio calculations for an
isolated H3O+ ion has a H–O–H angle of 112.5◦,34 which has
been used in earlier H3O+ force fields.6 However, the actual
angle of an isolated H3O+ ion is estimated to be 110◦–112◦,34

and diode laser spectroscopy measurements yield an angle of
111.3◦ in the gas phase.35 Following Ref. 20, we employ an
angle of 111.4◦, which is achieved by constraining the H–H
bond to 0.1619 nm. The O–H bond length is set to 0.98 Å for
H3O+6,20,34,35 and 1.0 Å for OH−.6,20 All distances within the
ions are constrained in our simulations.

B. Thermodynamic integration

We perform thermodynamic integrations to calculate
the solvation free energies of H3O+ and OH− by atomistic
molecular dynamics simulation using the  package.36

Each thermodynamic integration is carried out in two steps.
First, the energy resulting from the LJ interaction is calculated
by creating a neutral sphere with only LJ interactions. Second,
the sphere is charged to calculate the energy resulting from
the Coulomb interaction. Creation and charging of the particle
take place by perturbing the interaction potential along a
path parameterized by the coupling parameters λ and λ,
respectively. The perturbed interaction potential V λ

i j between
two particles i and j, located a distance ri j apart, is given by

V λ
i j =

λqiqj

4πϵ0ri j
+ 4ϵ i jλ



(
σi j

ri j

)12

−
(
σi j

ri j

)6
, (6)

with qi and qj being the unperturbed partial charges, andσij and
ϵ ij being the unperturbed LJ diameter and interaction energy,
respectively. The Hamiltonian Hλ used for the molecular
dynamics equals the sum of the kinetic energy and the potential
energy,

Hλ (λ, λ) =
N
i=1

miv
2
i

2
+

N
i< j

V λ
i j

�
ri j

�
, (7)

with mi being the particle’s mass and vi being its velocity. The
solvation free energy is calculated from the integral

∆G =
 1

0


∂Hλ (λ,0)

∂λ


dλ +

 1

0


∂Hλ (1, λ)

∂λ


dλ, (8)

where ⟨. . .⟩ denotes the ensemble average, which is
approximated by the time average. The integrations are
performed for the interaction parameters of a single molecule.
The two integrals in Eq. (8) are performed in two separate steps
over a 12-point Gaussian sequence along the solvation path, λi

∈ {0.009 22,0.047 94,0.115 05,0.260 634,0.316 08,0.437 38,
0.562 62,0.683 92,0.793 66,0.884 95,0.952 06,0.990 78}.

C. Correction terms

The combination of Ewald summation and periodic
boundary conditions necessitates removal of the energy due
to long-ranged electrostatic interactions between the primary
simulation box and its periodic images. This first correction
term can be split into two parts.37 The first part corresponds to
the interaction energy of the ion with its own periodic images
in a vacuum,

∆Gf1 = −
e2

8πε0

ξ

R
, (9)

with R being the size of the simulation box and ε0 being
the permittivity of the vacuum. The prefactor of the Wigner
energy per particle on a cubic lattice equals ξ = −2.837 297.38

The second part corresponds to the effect of the periodic
images of the ion on the solvent, which for spherical ions of
radius ra equals

∆Gf2 =
e2 (ε − 1)
8πεε0R


ξ +

4π
3

( ra
R

)2
− 16π2

45

( ra
R

)5

, (10)

with ε = 71 being the dielectric constant of bulk SPC/E
water.39 The sum of Eqs. (9) and (10) gives the finite-size
correction term ∆Gf = ∆Gf1 + ∆Gf2,

∆Gf =
e2 (ε − 1)
6εε0 R

( ra
R

)2
− 4π

15

( ra
R

)5

− e2ξ

8πεε0R
. (11)

Strictly speaking, these equations are not precisely applicable
because the hydronium and hydroxide ions have partial
charges. In this case, the finite-size correction comprises
an extra term corresponding to the interaction of each partial
charge with the periodic images of the other partial charges.
The terms due to the ion size ra will be more complicated for
non-spherical ions. For our system, however, Eq. (11) equals
around 2 kJ/mol, and any modification of the correction will
have an even smaller effect. Therefore, we use Eq. (11) in our
optimization.

The experimental solvation free energies of Eq. (4) refer
to a hypothetical transfer from a 1 atm ideal gas phase
into a 1 mol/l ideal solution. Therefore, we add a second
correction term corresponding to the compression free energy
of an ideal gas from a pressure of p0 = 1 atm to a pressure
of p1 = kT nN · 103, which is the pressure in Pascal at a
concentration of n, with N being Avogadro’s number,

∆Gp = kT ln (p1/p0) . (12)

Using n = 1 mol/l, we find p1 = 24.6 atm and ∆Gp

= 7.9 kJ/mol.
The third correction term corresponds to the energy

required to bring an ion from a vacuum to bulk water. Passing
the interface potential ψs of the water, consisting of dipolar
and quadrupolar terms,40 requires an energy of

∆Gs = zeψs. (13)

The value of the interface potential is highly debated. A value
of ψs = −0.527 V has been found in simulations with the
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TIP4Q-FQ water force field,41 which has been used in earlier
force field optimizations.10 For SPC/E, the interface potential
has been found to be ψs = −0.546 V42 or ψs = −0.600 V.43

Apart from the system size and the real-space cutoff length
for the electrostatics, the difference between these simulations
is the cutoff length used for the LJ interaction, 10 Å42 versus
8 Å.43 In the original SPC/E optimization, a cutoff radius of
9 Å was used.7 As we employ a cutoff radius of 10 Å, we use
ψs = −0.546, leading to ∆Gs = −52.7 kJ/mol. Note that ∆Gs

does not affect the optimization because we use the solvation
free energy sum of positive and negative ions or the difference
between negative ions.

Finally, long-ranged dispersion interactions lead to an
extra correction term, which may need to be included if
different force fields have been derived using different cutoff
schemes. For a homogeneous fluid with N heterogeneous LJ
sites, the energy correction equals44

G =
16 πρ
N − 1


i< j

*
,

ϵ i jσ
12
i j

9 r9
c

−
ϵ i jσ

6
i j

3 r3
c

+
-
, (14)

with rc being the LJ cutoff radius and ρ being the average
density of the pure solvent. The direct contribution of the
long-ranged interaction correction to the solvation free energy
is calculated analytically from the difference between only
water and water with one added ion using Eq. (14). For our
system, the correction ∆G amounts to 0.5 kJ/mol at most,
and is therefore neglected in the calculations.

D. Kirkwood-Buff integration

Optimization of the force fields with respect to the
solvation free energies yields curves in σi − ϵ i space. Along
these free energy isolines, we optimize the force fields
with respect to the activity coefficient of ion pairs. Using
charge neutrality, the monovalent ion density n = n+ = n− can
be expressed in terms of Kirkwood-Buff integrals G∞αβ as
n = (G∞+− − G∞++)−1.45 Therefore, the logarithmic derivative of
the activity with respect to n equals the following combination
of Kirkwood-Buff integrals:45

acc = 1 +
∂ ln γ
∂ ln n

=
G∞+− − G∞++

2 (G∞+− − G∞+s) . (15)

The subscripts +, −, and s denote cation, anion, and solvent,
respectively, and γ denotes the mean activity coefficient of
anions and cations. In Eq. (15), G∞αβ is the integral of the
excess pair correlation functions of the species α and β over
infinite space, given by the R → ∞ limit of the expression46

GR
αβ (R) =

1
v (R)


v(R)


v(R)

�
gαβ (r1,r2) − 1

�
dr1dr2, (16)

with gαβ (r1,r2) being the pair correlation function. Both
integrals in Eq. (16) are performed over the spherical
volume v (R) = 4

3πR3. In a homogeneous isotropic fluid,
the pair correlation function can be written as gαβ (r1,r2)
= gαβ (|r1 − r2|). Therefore, the double integral in Eq. (16)
can be reduced to a single integral over the radial coordinate
r using a geometrical weight function w (r,R), which differs
from 4πr2 for finite R,47

GR
αβ (R) =

 2R

0
w (r,R) �gαβ (r) − 1

�
dr, (17)

with

w (r,R) = 1
v (R)


v(R)


v(R)

δ (r − |r1 − r2|) dr1dr2

= 4πr2

1 − 3 r

4R
+

r3

16R3


. (18)

The upper integration limit in Eq. (17) comes from the fact
that |r1 − r2| ≤ 2R. The difference between G∞αβ and GR

αβ (R)
in Eq. (17) scales linearly with 1/R,47 which enables us to
calculate G∞αβ, including uncertainty, by extrapolating Eq. (17)
to infinite box size.

E. Simulation details

1. Thermodynamic integration

For the thermodynamic integration in , we use
stochastic dynamics simulations.36 We use a simulation box
filled with 506 SPC/E molecules, apart from a handful of
simulations where we use 2580 SPC/E molecules to check
for finite-size effects. We use periodic boundary conditions
in all directions and geometric combination rules for the LJ
interaction between species i and j,

ϵ i j =
√
ϵ iϵ j and σi j =

√
σiσ j . (19)

In the following, we always refer to the diagonal values ϵ i ≡ ϵ ii

and σi ≡ σii, corresponding to the interaction parameters
between identical atoms. Because all molecules that we use
have only a single LJ site, we use the name of the molecule
for the index i rather than the name of the atom. The LJ
interactions are truncated at rc = 1.0 nm using a shifted cutoff
scheme, where a nonlinear function is added between r = 0
and r = rc to smoothen the interaction near rc. We use a
shifted cutoff because the simple LJ cutoff scheme may lead
to artifacts when used in future nonequilibrium molecular
dynamics simulations of electrokinetic flows.48,49 For the
Coulomb interactions, we employ a real-space cutoff length
of 1.2 nm and particle mesh Ewald summation for larger
separations, using cubic interpolations and a grid spacing of
0.12 nm for the reciprocal space sum, coupled with tinfoil
boundary conditions. The temperature is fixed at 300 K
and the pressure at 1 bar using the Berendsen thermostat
and barostat, respectively. All distances within the ions are
constrained using the  algorithm, and all distances within
the water molecules using . To avoid instabilities, we
use a soft-core interaction potential for the LJ integration,36,50

V
�
ri j

�
= (1 − λ)V 0

i j

(
r A
i j

)
+ λV 1

i j

(
rB
i j

)
, (20)

where λ and V λ
i j refer to the LJ part of the original potential

defined in Eq. (6). The distances r A
i j and rB

i j are given by

r A
i j =

(
ασ6

Aλ
p + r6

i j

) 1
6 and rB

i j =
(
ασ6

B(1 − λ)p + r6
i j

) 1
6 ,

(21)

where σA and σB refer to either the σi j value of the original
LJ interaction, or an input parameter σ when the original
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FIG. 2. The solvation free energy sum Σ∆G for rigid H3O+ and Cl− for different values of the partial charge δH3O+ and the LJ parameters of the oxygen, ϵH3O+

and σH3O+, compared with the experimental value (solid black line, Eq. (4)). The uncertainty in the simulation results is less than 0.4 kJ/mol.

value of σi j equals zero. We use σ = 0.3 nm, α = 0.5 and
an exponent p = 1. Simulations are performed with a 2 fs time
step. Simulation boxes are equilibrated for at least 2 ns, after
which ∂H/∂λ is collected every 0.2 ps for 5 ns at every value
of λ.

2. Kirkwood-Buff integration

The radial distribution functions gαβ (r) of the salt
solutions are obtained from separate simulations performed in
the NPT ensemble, at a pressure of 1 bar and temperature T
= 300 K using Parrinello-Rahman and Nosé-Hoover coupling
methods, respectively. The simulation box (a cubic box with
sides of length R = 4.5 nm) contains 100 H3O+/OH− and
100 Cl−/Na+ ions together with 5400 water molecules, which
yields a solution with a concentration of 1.03 mol/l. For Na+

and Cl−, we use the Smith-Dang force fields summarized
in Ref. 11, which reproduce the mean activity coefficient
at a concentration of 0.3 mol/l, as well as the solvation
free energy of Na+Cl− reasonably well. Note that there is
no guarantee that the Kirkwood-Buff derived force fields,13

which accurately reproduce the activity derivatives of Na+Cl−

solutions, reproduce the solvation free energy equally well.
The trajectory of the particles is written every 0.2 ps for a total
simulation time of 100 ns, of which the first 10 ns is discarded
for equilibration. Other simulation parameters are identical
to the ones used for the thermodynamic integration. We
calculate acc from Eq. (15) and G∞αβ by linearly extrapolating
Eq. (17) to 1/R = 0. We have verified our simulation method
by reproducing the activity coefficient of Na+Cl− as a function
of salt concentration using the force fields of Ref. 13 over
the concentration range from 0.1 to 3.0 mol/l, showing
excellent agreement with the experimental data and the
original simulation results (data not shown).

V. RESULTS AND DISCUSSION

A. Solvation free energy

1. Chloride

The solvation free energy of the Smith-Dang Cl−51

depends slightly on the cutoff scheme used and on the value of

the surface potential. Using ψs = −0.527 (∆G = 50.8 kJ/mol)
and the simple LJ cutoff at 9 Å and long-range correction to the
energy and pressure, we arrive at−307 ± 1 kJ/mol using 
and −305 ± 0.4 kJ/mol using , comparing well with
the value of −306 kJ/mol calculated by Horinek, Mamatkulov,
and Netz.10 Using ψs = −0.546 (∆G = 52.7 kJ/mol) and a
shifted cutoff scheme at 10 Å without long-range correction,
as we employ in our current work, we arrive at ∆GCl−

= −300.5 ± 0.2 kJ/mol. We have used an extra long simulation
of 20 ns to calculate this value.

2. Hydronium

In Fig. 2, we plot the sum of the solvation free energies
Σ∆G for rigid H3O+ and Cl− as a function of the LJ interaction
strength ϵH3O+ of the H3O+–H3O+ interaction. We show the
free energy for different values of the partial charge δH3O+ and

FIG. 3. Solvation free energy isolines of H3O+ in σH3O+—ϵH3O+ space,
extracted from Fig. 2. The solvation free energy sum Σ∆G along the curves
matches the experimental value of Eq. (4). The lines correspond to a fit of the
heuristic function

�
ϵH3O++ A

��
σH3O++B

�
=C , the parameters of which are

listed in Table II.
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FIG. 4. The solvation free energy difference ∆∆G for OH− and Cl− for different values of the partial charge δOH− and the LJ parameters of the oxygen, ϵOH−

and σOH−, compared with the experimental value (solid black line, Eq. (4)). The uncertainty in the simulation results is less than 0.5 kJ/mol.

for different values of the LJ radius σH3O+, together with the
experimental value of Eq. (4). The combinations of σH3O+ and
ϵH3O+ for which the solvation free energy sum Σ∆G matches
its experimental value are shown in Fig. 3 for different values
of the partial charge δH3O+.

3. Hydroxide

The difference of the free energy ∆∆G for OH− and
Cl− is shown in Fig. 4 as a function of ϵOH− of the
OH−–OH− interaction. The combinations of σOH− and ϵOH−

for which the solvation free energy difference ∆∆G matches
the experimental value (Eq. (4)) are shown in Fig. 5 for
different values of the partial charge δOH−.

We fit the curves in Figs. 3 and 5 with the heuristic
function (ϵ i + A) (σi + B) = C. The parameters A, B, and C
are summarized in Table II for H3O+ and in Table III for OH−.

FIG. 5. Solvation free energy isolines of OH− in σOH−–ϵOH− space, extracted
from Fig. 4. The solvation free energy difference ∆∆G along the curves
matches the experimental value of Eq. (4). Lines correspond to a fit of the
heuristic function (ϵOH−+ A)(σOH−+B)=C with the parameters given in
Table III.

B. Activity derivatives

1. Hydronium

The log-log derivative acc of the activity of a 1.0 mol/l
H3O+Cl− solution, calculated from Eq. (15), is shown in Fig. 6,
together with the experimental values of Eq. (5). Because acc

is calculated along the free energy isolines shown in Fig. 3, the
value of σH3O+ varies along with ϵH3O+ to keep the solvation
free energy constant and equal to the experimental value.
The curves for δH3O+ = 0.8|e| and δH3O+ = 1.0|e| cross the
experimental line in the region ϵH3O+ = 0.6 − 1.0 kJ/mol,
leading to several possible combinations of ϵH3O+ and
σH3O+. Interestingly, the curves for smaller partial charges
do not reach the experimental activity derivative at all. We
choose the LJ parameter combinations (a) ϵH3O+ = 0.6 kJ/mol,
σH3O+ = 0.343 nm at δH3O+ = 1.0|e|, (b) ϵH3O+ = 0.8 kJ/mol,
σH3O+ = 0.31 nm at δH3O+ = 0.8|e|, and (c) ϵH3O+ = 1.0 kJ/mol,
σH3O+ = 0.332 nm at δH3O+ = 1.0|e| for further analysis.
An excellent match between the simulation data and the
experimental activity derivative of the H3O+Cl− solution is
obtained for the LJ parameter combinations (b) of Fig. 6
(ϵH3O+ = 0.8 kJ/mol, σH3O+ = 0.31 nm with δH3O+ = 0.8|e|)

TABLE II. Parameters of the function
�
ϵH3O++ A

��
σH3O++B

�
=C , σ in Å,

used to fit the solvation free energy isolines for H3O+ in Fig. 3.

δH3O+ (|e |) A B C

0.4 0.282 865 −2.314 66 0.258 036
0.6 0.358 120 −2.544 38 0.328 952
0.8 0.331 164 −2.774 38 0.351 967
1.0 0.256 339 −3.065 91 0.314 208

TABLE III. Parameters of the function (ϵOH−+ A)(σOH−+B)=C , σ in Å,
used to fit the solvation free energy isolines for OH− in Fig. 5.

δOH− (|e |) A B C

0.0 0.468 548 −2.979 14 0.431 134
0.2 0.496 065 −3.050 08 0.489 751
0.4 0.611 913 −3.206 60 0.581 816
0.6 0.783 927 −3.373 83 0.747 371
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FIG. 6. Activity coefficient derivative (Eq. (15)) of the 1 mol/l H3O+Cl− elec-
trolyte as a function of the LJ parameters that lie on the solvation free energy
isoline (Fig. 3) for different partial charge distributions on atoms. For H3O+,
the LJ diameter is varied between σH3O+= 0.25 nm and σH3O+= 0.38 nm.
Satisfactory matches between the simulated and the experimental activity
derivative (solid line, acc = 1.18) are obtained at (a) δH3O+= 1.0|e | and
ϵH3O+= 0.6 kJ/mol, σH3O+= 0.343 nm; (b) δH3O+= 0.8|e | and ϵH3O+

= 0.8 kJ/mol, σH3O+= 0.310 nm; and (c) δH3O+= 1.0|e | and ϵH3O+

= 1.0 kJ/mol, σH3O+= 0.332 nm.

over a wide range of concentrations, as we show in the top
panel of Fig. 7. In contrast to the curve for δH3O+ = 0.8|e|,
the activity derivative for a partial charge of δH3O+

= 1.0|e|—which works well at n= 1.0 mol/l by construction—
deviates from the experimental line for high and low
concentrations for both parameter combinations (a) and
(c) of Fig. 6 (bottom panel of Fig. 7). As the system
is underdetermined, we expect good results for a limited
set of parameters close to those of the optimized force
field. However, given the sensitivity of the thermodynamic
properties to δH3O+ in particular, we can restrict the possible
partial charges to δH3O+ = 0.8 ± 0.1|e|.

FIG. 7. Activity coefficient derivative (Eq. (15)) of the H3O+Cl− electrolyte
as a function of the salt concentration. Error bars are only shown when larger
than the symbol size. Activity derivatives are calculated at δH3O+= 0.8|e |
for ϵH3O+= 0.8 kJ/mol, σH3O+= 0.310 nm (black stars, (b) in Fig. 6); at
δH3O+= 1.0|e | for ϵH3O+= 0.6 kJ/mol, σH3O+= 0.343 nm (red triangles, (a)
in Fig. 6); and at δH3O+= 1.0|e | for ϵH3O+= 1.0 kJ/mol, σH3O+= 0.332 nm
(green diamonds, (c) in Fig. 6). The best match between the simulation data
and the experimental activity derivative of the H3O+Cl− solution is obtained
for the LJ parameters ϵH3O+= 0.8 kJ/mol, σH3O+= 0.310 nm (black stars)
with δH3O+= 0.8|e | (upper panel).

FIG. 8. Activity coefficient derivative (Eq. (15)) of a 1.0 mol/l Na+OH− solu-
tion as a function of LJ parameters that lie on the solvation free energy isoline
(Fig. 5) and partial charge distribution on atoms. For OH−, the LJ diameter is
varied between σOH−= 0.3 nm andσOH−= 0.43 nm. The horizontal solid line
denotes the corresponding experimental activity derivative value of Na+OH−

at 1 mol/l (acc = 1.02). For further optimization, we choose δOH−= 0 and the
LJ parameter combination of ϵOH−= 0.05 kJ/mol, σOH−= 0.381 nm, which
gives an activity derivative closest to the experimental value.

2. Hydroxide

We show the log-log derivative acc of the activity of a
1.0 mol/l Na+OH− solution in Fig. 8. Clearly, the LJ parameter
combinations that reproduce the OH− and Na+ solvation free
energies fail to reproduce the experimental activity coefficient
derivatives of a Na+OH− solution. To overcome this problem,
we follow a recently proposed scheme, which modifies the
combination rule for the cation-anion effective radius, and
was used to reproduce the experimental activity derivatives of
monovalent and divalent salt solutions.11,12 Such a procedure
makes sense, since the standard combination rules of Eq. (19)
are completely heuristic, and there is a-priori no reason
why they should work for every combination of atoms.

FIG. 9. The activity derivative (Eq. (15)) as a function of the scaling prefactor
λσ at 1 mol/l of Na+OH−. The symbols show the simulation results, the
dashed curve is a fourth-order polynomial fitting function to guide the eye. We
use δOH−= 0 and the LJ parameters ϵOH−= 0.05 kJ/mol, σOH−= 0.381 nm at
δOH−= 0|e | for OH−, together with the Smith-Dang parameters for Na+.11

The horizontal solid line denotes the corresponding experimental activity
derivative acc = 1.02 of Na+OH− at 1 mol/l.
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FIG. 10. The activity derivative (Eq. (15)) as a function of the Na+OH−

concentration. The symbols show the simulation results, the curve denotes
the experimental activity derivative.31–33 We use the LJ parameters ϵOH−

= 0.05 kJ/mol, σOH−= 0.381 nm, and the Smith-Dang sodium parameters
with a scaling prefactor of λσ = 1.5.

Therefore, to modify the activity without changing the single-
ion solvation free energies, a freely adjustable scaling factor
λσ is introduced in the cation-anion effective radius

σ+− = λσ
√
σ+σ−. (22)

TABLE IV. Non-bonded interaction parameters used in the simulations with
final LJ parameters and partial charges q obtained in this work for Na+OH−

and H3O+Cl− salt solutions. The geometric combination rules are used for
σi j and ϵi j (Eq. (19)), and the LJ radius for the OH−–Na+ interaction is
modified according to Eq. (22) with λσ = 1.5. The parameters for i = j are
denoted by σi and ϵi.

Sites σi (nm) ϵi (kJ/mol) q (|e |) Reference

O (H3O+) 0.31 0.8 −1.4 This work
H (H3O+) 0 0 0.8 This work
O (OH−) 0.381 0.05 −1.0 This work
H (OH−) 0 0 0 This work
Na+ 0.261 0.4186 1 11
Cl− 0.452 0.4186 −1 11
O (H2O) 0.3166 0.65 −0.8476 7
H (H2O) 0 0 0.4238 7

The cation-cation, anion-anion, and water-ion combination
rules are not modified.

We choose the lowest possible partial charge, δOH− = 0
and ϵOH− = 0.05 kJ/mol, which gives the best results for acc

(Fig. 8). The cation-anion scaling prefactor λσ is varied in
discrete steps, λσ ∈ {1.0,1.2,1.3,1.5,1.6,1.8}. In Fig. 9, we
show the activity derivatives acc as a function of the scaling
prefactor λσ at a concentration of Na+OH− of 1.0 mol/l. The

FIG. 11. The radial distribution functions gαβ(r ), where α and β refer to the ions and the water molecules, of H3O+Cl− and Na+OH− solutions at a concentration
of n = 1 mol/l. For H3O+, OH−, and H2O, we use the position of the oxygen atom to calculate gαβ(r ).
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experimental value for acc (Eq. (5)) is denoted by a horizontal
line. The symbols show the simulated activity derivatives
and the dashed line denotes a fourth-order polynomial fit. A
match between the simulated and the experimental activity
derivatives for Na+OH− is obtained at λσ = 1.5. Using this
value, we reproduce the activity derivatives of Na+OH−

solutions well in a wide concentration range (Fig. 10),
validating our newly developed force field.

In Table IV, we summarize the results of our force
field optimization, together with the parameters of Na+, Cl−,
and SPC/E water. The radial distribution functions of the
H3O+Cl− and Na+OH− solutions, using the optimized force
field parameters of Table IV at a concentration of n = 1 mol/l,
are shown in Fig. 11.

C. Comparison with experimental data
and quantum chemistry

To test the performance of the new force fields, we
compare the static dielectric constant and the mass density
of Na+OH− and H3O+Cl− solutions as a function of the
ionic concentration with experimental data52,53 (Fig. 12). We
calculate the static dielectric constant from the fluctuations
of the total dipole moment, which is accurate for bulk
systems.40 The dielectric constant decreases as a function
of the concentration and the dielectric decrement agrees
well with the experimental data (Fig. 12(a)). Note that the
dielectric constant of the SPC/E water model is lower than the
experimental value of pure water,39 so our simulation results
are shifted with respect to the experimental data by a roughly
constant value.

The new force fields also correctly reproduce the
increasing mass density as a function of ion concentration,
showing a significantly stronger increase for Na+OH− than
for H3O+Cl−, in agreement with the experimental data
(Fig. 12(b)); whereas the mass density increment of Na+OH−

solutions is overestimated, the density of H3O+Cl− solutions
follows the experimental data very accurately.

Quantum chemical calculations of the charge distribution
on H3O+ molecules consistently indicate a lower value of
δH3O+, see Table I. One example of a quantum chemistry
optimized H3O+ molecule6 has a lower dipole moment (Pz

= 0.037 e nm) and a larger diagonalized traceless quadrupole
moment (Qxx = Qy y = 0.11 e nm2 and Qzz = −0.23 e nm2)
than our optimized force field (Pz = 0.066 e nm, Qxx

= Qy y = 0.002 e nm2, Qzz = −0.003 e nm2), all with respect
to the center of mass. However, it is important to realize
that the thermodynamics of the solvated proton originate in
the properties of a mixture of hydrated proton complexes,
such as the hydronium (H3O+), the Zundel (H5O+2), and
the Eigen (H9O+4) forms, which may have different charge
distributions. The electrostatic moments of the quantum
chemistry optimized Zundel ion,6 for example, are much closer
to the values of our new force field (Pz = 0.066 e nm, Qxx

= 0.010 e nm2, Qy y = −0.001 e nm2, Qzz = −0.009 e nm2).
Consequently, a quantum chemical calculation of hydronium
does not necessarily yield electrostatic moments that are
consistent with thermodynamics when used in conjunction
with a nonpolarizable force field. In fact, as can be

FIG. 12. The static dielectric constant (a) and mass density (b) of simulated
H3O+Cl− and Na+OH− solutions as a function of the ion concentration (solid
symbols). The open symbols and solid lines correspond to experimental data
from Refs. 52 (a) and 53 (b), and the dashed lines are drawn as a guide to the
eye.

derived from Figs. 2 and 6, the force field parameters
referenced in Table I fail to reproduce the experimental
solvation free energy, the activity derivative, or both. For
example, the rigid nonpolarizable H3O+ force field of Ref. 22
(σH3O+ = 0.29 nm, ϵH3O+ = 1.15 kJ/mol, δH3O+ = 0.416|e|),
which has a value of δH3O+ which is typical for quantum
chemistry optimized force fields, yields a solvation free energy
sum of Σ∆GH3O+ = −679.9 ± 0.3 kJ/mol (in SPC/E water, with
Cl− as the reference ion), which is 76.4 kJ/mol higher than
the experimental value. In some sense, one might say that our
optimized force field parameters compensate for the neglect
of polarizability and other multi-body effects—as indeed any
correctly parameterized nonpolarizable force field does.

The thermodynamically consistent OH− ion does not
have a dipole moment at all. Although surprising at the
first sight, this result is supported by recent small-angle
x-ray scattering experiments, showing that the wave vector-
dependent structure factor of Na+OH− solutions resembles
that of Na+F− solutions.54

VI. CONCLUSIONS

We have developed nonpolarizable hydronium and
hydroxide ion force fields, to be used in conjunction with the
SPC/E water model, through molecular dynamics simulations.
The parameters of the force fields are optimized with respect
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to the experimental solvation free energies and the activities
of Na+OH− and H3O+Cl− salt solutions. Our optimization thus
ensures that the properties of both water-ion interactions and
ion pairing are reproduced in accordance with experimental
findings. The obtained models for Na+OH− and H3O+Cl− allow
for precise molecular dynamics simulations of the relative
distribution of these ions in aqueous salt solutions, accurately
reproducing their experimental solvation free energies and
solution activities over a wide range of concentrations.
Having such thermodynamically consistent force fields is
important not only for simulating electrolyte solutions but
also for studying the effects of ions on larger solutes.55,56

Both the solvation free energy and the degree of anion-cation
aggregation are very sensitive to the partial charge on the
hydrogen atoms of H3O+ and OH−. For H3O+, the partial
charge of the new force field is significantly higher than the
one used for the hydrogen of water and significantly higher
than the one employed in the most commonly used H3O+

force fields from the literature. In contrast to H3O+, the partial
charge of the new OH− force field exhibits the opposite
trend. In fact, in order to reproduce the activity derivatives
for Na+OH−, the partial charge needs to be set to zero, in
addition to a modification of the anion-cation LJ combination
rule. The strong deviations of the force field parameters from
previous force field models might provide an explanation for
the generally poor comparison with experimental data that
have been obtained with previous force fields. Comparisons
with experimental data for observables that have not been used
in the optimization, specifically with the dielectric decrement
and the mass density, show good agreement, suggesting that
the optimized force fields are transferable to different settings.
Our results show that, generally speaking, polarizability is
not necessary to create thermodynamically consistent force
field models. With this optimization, we have obtained a force
field for the water ions that treats both the electrostatic and
the short-ranged interactions on the same level as the highly
successful, rigid, nonpolarizable, simple point charge models
for water.
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