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We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and
anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete
symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conduc-
tance g, but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g
and F . Since F is a universal number in many other situations, this finding is remarkable. We apply our general
considerations to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.
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I. INTRODUCTION

Driven by a combination of key advances in materials fab-
rication and profound conceptual progress, the past decade
has witnessed an explosive increase in the study of elec-
tronic systems dispersing linearly around isolated band touch-
ing points [1]. Notably, this includes graphene [2, 3], vari-
ous two-dimensional organic compounds [4], and the surface
states of three-dimensional topological insulators [5–8]. In
three dimensions, a Dirac semimetal [9, 10], which has two
coinciding linear band touching points with opposite chiral-
ity, was observed experimentally [11, 12], and the first Weyl
semimetal [13, 14], which has non-degenerate band-touching
points, was observed very recently [15–17]. Subsequently the
first transport measurements on Weyl semimetals were per-
formed [18, 19]. A Weyl semimetal phase is also predicted
to occur, e.g., in multilayer structures [20] and pyrochlore iri-
dates [13].

By virtue of stochiometry, the Fermi level lies exactly at the
nodal point of the low-energy “cones” in many of these mate-
rials, and their electronic behavior is neither that of insulators
— there is no gap — nor that of conventional metals — there
is a vanishing density of states at the nodal point. Indeed it has
been shown experimentally [3, 21] and theoretically [22–24]
that the conductivity σ reaches a minimal but finite value at a
nodal point in two dimensions, whereas a nodal point in three
dimensions is characterized by a finite conductanceG, its con-
ductivity σ being zero [24, 25]. The Fano factor F , defined as
the ratio of shot noise power and current, was found to be an
excellent indicator of the quantum nature of electronic trans-
port at the nodal point, taking the universal sub-Poissonian
value F = 1/3 in graphene [22]. In Weyl semimetals F was
found to discriminate between a pseudoballistic regime [24] at
weak disorder and a diffusive regime at strong disorder [25].
Unlike the conductance G, which retains a dependence on the
ratio W/L of sample width W and sample length L, the Fano
factor F is independent of both W and L.

Anisotropy and tilt of the cones are often neglected, es-
sentially for two distinct reasons: (i) they are forbidden by
symmetry in important special cases, such as graphene, and
(ii) they do not alter the topology of the low-energy theory.
Here, however, we demonstrate that tilts and, to a lesser ex-
tent, anisotropies lead to clear signatures in quantum trans-

port, affecting both the conductance and the Fano factor in
absence of disorder. We find the tilt dependence of the Fano
factor F remarkable, because in many cases of interest F was
found to be a number with a considerable degree of universal-
ity [22, 24, 26–28]. Our results apply — with various degrees
of numerical relevance — to a number of experimentally rel-
evant systems for which tilted and anisotropic conical disper-
sion either occur generically, as in the case of Weyl semimet-
als, or for which the forbidding symmetries are easily broken,
such as strained graphene.

II. TILTED AND ANISOTROPIC CONES

In the vicinity of a nodal point, a generic Dirac or Weyl
Hamiltonian can be written as

H =
∑
i,j

vijkiσj + (aiki − u)σ0, (1)

where the sum is over i, j = x, y or i, j = x, y, z for di-
mensionalities d = 2 and d = 3, respectively. Further σx,y,z
are the Pauli matrices and σ0 is the 2 × 2 unit matrix. The
dispersion is shown schematically in Fig. 1. The “tilt” term
proportional to ai is typically discarded, as it does not affect
the eigenspinors and, hence, the topology of the band struc-
ture. As we show below, inclusion of this term does affect
transport at the nodal point, however. Tilts can occur only if
particle-hole symmetry is absent, and tilt is additionally con-
strained by point group symmetries. With a suitable choice
of the pseudospin quantization axis, the anisotropy matrix vij
can be brought to upper diagonal form, vyx = vzx = vzy = 0.
Anisotropies are generic if the cone is not located at a high
symmetry point in the Brillouin zone.

Considering graphene as an important example, we note
that the trigonal “warping” of Dirac cones respects the crys-
talline symmetries and leads to anisotropies, but only at
quadratic order in the momentum k. The anisotropies to lin-
ear order (1), which amount to a “squeezing” of the cone
along some direction, are, just as any tilt of the cone, for-
bidden by the threefold point group symmetry of the honey-
comb lattice, combined with the location of the Dirac cones at
high-symmetry points in the Brillouin zone. However, as soon
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Figure 1. (Color online) A tilted Dirac cone in two dimensions. The
momentum coordinates are labeled kx and ky; the third dimension
represents energy. Transparent planes indicate zero-energy plane (vi-
olet) and tilt a = (−0.5, 0) (green plane), respectively.

as the threefold rotation symmetry is relaxed anisotropies oc-
cur. If, in addition, second-nearest-neighbor hopping is also
taken into account the particle-hole symmetry is lost, and the
cones acquire finite tilts. This scenario applies to strained
graphene and will be discussed in more detail below. For
three-dimensional Weyl semimetals, the band touching oc-
cur at lower symmetry points; hence anisotropies and tilts are
ubiquitous.

III. TRANSPORT: LOW-ENERGY THEORY

We calculate the conductance G and the Fano factor F for
a region of length L and width W , taking the limit W � L
in order to eliminate a spurious dependence on the transverse
boundary conditions [22]. We choose the x axis in the trans-
port direction, so that the nodal semimetal corresponds to the
region 0 < x < L, whereas the source and drain leads have
x < 0 and x > L, respectively. The potential u is set to zero
for 0 < x < L, to model transport at the nodal point. We take
the limit u → ∞ for x < 0 and x > L to model strongly
doped leads.

The transverse momentum k⊥ = ky (d = 2) or k⊥ =
(ky, kz) (d = 3) is conserved, and for each value of k⊥ we cal-
culate the transmission coefficient T (k⊥) by matching wave
functions in the sample and the leads (see Appendix for de-
tails). The conductance G per cone is then given by the Lan-
dauer formula

G =
e2

h

(
W

2π

)d−1 ∫
dd−1k⊥T (k⊥). (2)

The aspect-ratio dependence can be partially eliminated by
changing to the dimensionless conductance referred to a cube,
defined by the relations

G =
e2

h

(
W

L

)d−1

g. (3)

In two dimensions g is identical to the conductivity σ. In three
dimensions, a finite value for g in the limit W , L → ∞ im-
plies a vanishing conductivity σ = GL/W 2 = (e2/h)g/L.

The Fano factor, the ratio of shot noise and current, is given
by [29]

F =

∫
dd−1k⊥T (k⊥)(1− T (k⊥))∫

dd−1k⊥T (k⊥)
. (4)

No anisotropy, no tilt.– For the isotropic cone without tilt
(ai = 0, vij = v0δij) the conductance and Fano factor are
known from the literature [22, 24, 25],

g =
1

π
, F =

1

3
, (d = 2), (5)

g =
ln 2

2π
, F =

1 + 2 ln 2

6 ln 2
, (d = 3). (6)

Anisotropy, no tilt.– For the general anisotropic case but
without tilt, ai = 0, i = 1, . . . , d, one finds

g =
1

π

v2xx + v2xy
vxxvyy

(d = 2), (7)

while the Fano factor is unaffected by the anisotropy; i.e., F
is given by Eq. (5). For the diagonal case (vxy = 0) this result
can be understood as a simple scaling of the y coordinate,
which affects the conductance g, but not the Fano factor F . In
three dimensions the exact result in the diagonal case (vxy =
vxz = vyz = 0) is given by the corresponding rescaling

g =
ln 2

2π

v2xx
vyyvzz

(d = 3), (8)

while there is no simple formula for the general case. Still, the
Fano factor remains unaffected by any anisotropy and is given
by Eq. (6).

No anisotropy, tilted cones.– Although a closed analytical
solution for a tilted Dirac cone is possible in two dimensions,
the explicit expressions are too lengthy to be reproduced here.
Instead, we will present a numerical evaluation of the solution
for representative values of the tilt parameters ax, ay , and az
for fixed values of vij = δij . Without anisotropy the dimen-
sionless conductance g and the Fano factor depend on the total
magnitude a2 = a2x + a2y (d = 2) or a2 = a2x + a2y + a2z of the
tilt and the angle ϕ = arccos(|ax|/a) between the tilt axis and
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Figure 2. (Color online) Dimensionless conductance g and Fano fac-
tor F for a tilted two-dimensional Dirac cone, as a function of the
angle ϕ between transport and tilt direction. The tilt strength a is
given in the legend.
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Figure 3. (Color online) Same as in Fig. 2, but for a three-
dimensional Weyl cone.

the transport direction only. The limit a = 1 corresponds to a
maximally tilted cone with a flat band along the tilt direction.
Results are shown in Figs. 2 and 3 for d = 2 and d = 3 and
for representative values of the tilt strength a.

We note that the results are quantitatively different in two
and three dimensions, but qualitatively very similar. There is
an important difference between a tilt parallel to the transport
direction, where g decreases upon increasing the tilt strength,
and a tilt perpendicular to the transport direction, where g in-
creases with increasing tilt strength. The Fano factor F is un-
affected by a tilt in the transport direction, and increases with
increasing tilt if there is a finite angle between the tilt direction
and the transport axis. Interestingly, upon averaging over all
orientations of the tilt axis, we find a systematic but small de-
crease in conductance for both two and three dimensions. The
main conclusion, however, is that the Fano factor is no longer
a universal number once the tilt of the dispersion is taken into
account, but depends on the magnitude and direction of the
tilt.

The analytical solution for a two-dimensional Dirac cone
takes a simple form if the tilt axis and the transport direc-
tion are collinear (ϕ = 0). In that case one finds g =
(1/π)

√
1− a2, F = 1/3. Further, for small tilt strengths it is

possible to expand the analytical solution in two dimensions.
We find

g =
1

π
+
a2

2π

(
4

3
sin2 ϕ− 1

)
+O(a4), (9)

F =
1

3
+

2a2

45
sin2 ϕ+O(a4), (10)

which deviates less then 1% from the exact value up to a =
0.5.

Anisotropy and tilted cones.– In the presence of both
anisotropy and tilt the dimensionless conductance and the
Fano factor are qualitatively similar as in the absence of
anisotropy. However, for a tilt in transport direction the Fano
factor changes if the anisotropies are not orientated along the
axis of the reference frames, i.e., if one of vxy, vxz or vyz is
nonzero.

IV. APPLICATION TO LATTICE MODELS

In generic lattice models, the cones are both anisotropic and
tilted, and moreover, contributions from an even number of
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Figure 4. (Color online) Dimensionless conductance g of a strained
graphene sheet as a function of the strain ε for different orientationsϕ
(the angle between transport direction and ~s) and summed over both
Dirac cones and spin. The inset shows a hexagon of the graphene
lattice for ε = 0.2.

cones must be taken into account simultaneously. Below, we
provide explicit results for two specific tight-binding models.

Strained graphene.– In “intrinsic,” unstrained graphene the
Dirac cones are located at high symmetry points in the Bril-
louin zone. The application of strain changes the positions of
the Dirac points and the cones are no longer protected by crys-
talline symmetries. Whereas the simplest tight-binding model
with nearest-neighbor hopping only is particle-hole symmet-
ric, which rules out a tilt of the Dirac cones, realistic tight-
binding models have longer-range hopping, which lifts the
particle-hole symmetry [30]. As an example, we now apply
the above calculations to the model of quinoid-type strained
graphene, as described by Goerbig et al. in Ref. 4. Transport
properties of strained graphene have been studied earlier [31],
but without the inclusion of a tilt of the Dirac cones.

A schematic of the tight-binding model for quinoid-type
strained graphene is shown in the inset of Fig. 4. It con-
sists of a honeycomb lattice which is extended/compressed
in the direction perpendicular to the lattice vector ~s, such
that each hexagon has four “short” bonds of length a and
two “long” bonds of length a′ for positive strain ε > 0.
Strain is measured in terms of a dimensionless strain parame-
ter ε = a′/a − 1. The tight-binding model of Ref. 4 contains
nearest-neighbor hopping amplitudes as well as next-nearest-
neighbor hopping, and we take the magnitudes of the hopping
amplitudes from Ref. 4. Figure 4 shows the conductance g
for strains 0 < |ε| < 0.3 and three representative angles ϕ.
The strain is perpendicular to the ~s direction (as depicted in
Fig. 4). The angle ϕ is defined as the angle between the trans-
port direction and ~s. The tilt is of order a/v ∼ 0.06 (v being
the velocity in tilt direction) for the (already quite unrealistic)
strain ε = 0.3 [4]. As a consequence of this numerically small
value of the tilt strength, the relative change in Fano factor
remains small, . 0.1% for ε < 0.3. While this variation is
probably out of reach of experimental detection, it shows that
Fano factor F = 1/3 is not strictly “universal” in graphene
but can be changed by the breaking of symmetries.

Weyl semimetal.– As an example in three dimensions we
consider a tight-binding model of a spin-orbit coupled py-
rochlore slab which hosts a Weyl semimetal phase with Weyl
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Figure 5. (Color online) Dimensionless conductance g (solid line)
and Fano factor F (dashed line) for a pyrochlore slab as a function of
the in-plane next-nearest-neighbor hopping amplitude t2 (left panel).
Transport direction is parallel to the crystal axis ~s (as shown in the
upper right panel). Hopping parameters are indicated in the lower
right panel.

cones that may be significantly tilted [32, 33]. In this case the
lattice structure is layered, see Fig. 5, so that it is intrinsically
anisotropic and no external strain needs to be applied in order
to lift any symmetries forbidding a tilt of the Weyl cone. The
model consists of a tight-binding Hamiltonian that contains
spin-orbit coupling, in-plane and interplane nearest-neighbor
hopping amplitudes, and in-plane next-nearest-neighbor hop-
ping amplitudes. It was found to have a Weyl-semimetal
phase for a certain range of parameter space, with a tilt of
the Weyl cone that depends on the magnitude of the next-
nearest-neighbor hopping amplitude t2. There are six Weyl
cones, located on the Γ–M lines [33] in the projected two-
dimensional Brilluoin zone of the slab geometry. The Weyl
points are related to each other by the sixfold symmetry of the
underlying lattice. We have numerically determined the posi-
tion as well as tilt and anisotropy parameters as a function of
the next-nearest-neighbor hopping t2, keeping the other model
parameters, defined in the lower right panel of Fig. 5, fixed
(t1 = −1, t⊥ = 2, λ1 = 0.3, λ2 = 0.2), and calculated the di-
mensionless conductance g and the Fano factor F . The results
are shown in Fig. 5 for an in-plane transport direction aligned
with one of the crystal axes as indicated in the inset. The
dependence on the orientation of the pyrochlore slab is very
weak, less than 1% for both g and F , which can be under-
stood as a consequence of there being six different contribut-
ing cones: when rotating the sample, some cones are rotated
“away” from the transport direction, while others are rotated
“towards” the transport direction. The changes in transport
properties in different cones then have opposite signs (cf. Fig.
3), leading to a very weak angular dependence of g and F .
The magnitude of the dimensionless conductance g and the
Fano factor F can however differ substantially from the val-
ues calculated in the absence of a tilt.

V. DISCUSSION

We have investigated the effect of anisotropies and tilts of
Dirac and Weyl cones on quantum transport properties at the
nodal point. Neither anisotropies nor tilts change the topol-
ogy of the band structure and for this reason they are often
neglected. We showed that a tilt nevertheless affects the di-
mensionless conductance g and Fano factor F . The latter ob-
servation is remarkable, since the Fano factor is often found
to be a universal number, that does not depend on system-
specific details.

Applying our results to the example of strained graphene,
we found that the inclusion of a tilt of the Dirac cone leads
to a sizable directional dependence of the conductance g. For
realistic strains, the tilt effect on the Fano factor F is nonzero,
though numerically very small — underlining the symme-
try protected nature of “universal” quantum transport in two-
dimensional Dirac materials. The consequences of a tilted
dispersion, including a shift of the Fano factor F , may be
more significant for other two-dimensional materials possess-
ing more strongly tilted Dirac cones, such as the organic com-
pound α–(BEDT-TTF)2I3 [4, 34].

While the first observations of Weyl semimetals are a great
experimental success, they all observed time-reversal sym-
metric Weyl semimetals [16? –19]. These Weyl semimet-
als have additional states crossing the Fermi level opposed to
the still hypothetical time-reversal symmetry breaking Weyl
semimetals [13], where the only states crossing the Fermi
level are Weyl nodes, as is the case in our example of a py-
rochlore slab. Hence the full transport properties could be
obtained from the combined contribution of the Weyl nodes,
whereas in the experimentally observed materials one should
account also for the other states at the Fermi level.

In a recent work three of us proposed that the Fano factor
can be used as a universal quantity to discriminate different
transport regimes in a disordered Weyl semimetal [25]: In a
calculation that did not include tilt or anisotropy, F was found
to take the ballistic value (6) below a critical disorder strength,
whereas F approaches the smaller diffusive value F = 1/3 at
larger disorder. Our present results indicate that there is no
universal value for the Fano factor in the ballistic limit. How-
ever, we also find that a tilt of the Weyl cone can only increase
F , so that the Fano factor continues to be a powerful indicator
discriminating the pseudoballistic and diffusive regimes.

For tilted and anisotropic cones the conductance varies
strongly with transport direction and can be either higher or
lower than the conductance of the symmetric cone. In con-
trast the Fano factor is only sensitive to the tilt of the cone and,
whereas it still depends on the angle between tilt and transport
direction, the Fano factor always increases for tilted cones.
These insights should be useful for the experimental identifi-
cation and characterization of a range of Weyl and Dirac ma-
terials by means of transport measurements.
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Appendix A

We calculate ballistic transport in a scattering region of
length L and width W as described in the main text. The
Hamiltonian is given by

H =
∑
ij

vijkiσj + (aiki − u)σ0 . (A1)

The aiki terms can be interpreted as a tilt of the cone and vij
as a d × d matrix describing the anisotropy of the dispersion,
where it is sufficient to have nonzero entries on the upper tri-
angular to describe all possible anisotropies of a cone. The
dispersion is given by

ε1,2(k) = −u+ axkx + ayky + azkz

±
√
k2x(v2xx + v2xy + v2xz) + 2kx(ky(vxyvyy + vxzvyz) + kzvxzvzz) + k2y(v2yy + v2yz) + 2kykzvyzvzz + k2zv

2
zz . (A2)

Whenever the above square-root expression occurs we will
abbreviate it as

√· · ·. Then the spinors are

χ1,2 =

− kxvxx − i (kxvxy + kyvyy)

kxvxz + kyvyz + kzvzz ∓
√· · ·

1

 (A3)

and the velocities used to normalize incoming and outgoing
plane waves are v(k) = ∂kε(k). We consider the limit of
highly doped leads (u → ∞) in u = 0 in the scattering
region. The transverse momentum k⊥ = ky (d = 2) and
k⊥ = (ky, kz) (d = 3) is quantized due to the finite width W ,

ky =
2πn

W
kz =

2πm

W
. (A4)

For any mode of given momentum ky, kz we determine the x
component of the wave vectors kin, kr, kt of the incoming, re-
flected, and transmitted wave and the x component in the scat-
tering region k̃1,2 by solving Eq. (A2) for ε(k) = 0. Then we

calculate the transmission and reflection amplitude by wave
function matching at the beginning and the end of the scatter-
ing region (x = 0, L):

1√
vin

χin +
r√
vr
χr = αχ1 + βχ2 , (A5)

t√
vt
χt = αχ1 expik̃1L +βχ2 expik̃2L . (A6)

The total transmission probability can be obtained by sum-
ming over all modes:

T =
∑
k⊥

|t(k⊥)|2 . (A7)

In the limit L
W → 0 one may replace the sum by an integral

which gives Eq. (2) of the main text.
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