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A B S T R A C T

Topological insulators constitute a new quantum phase of matter that is char-
acterized by a band gap in the bulk, just like an ordinary insulator, but hosts
gapless states on its surface. Illuminating a topological insulator by light is ex-
pected to lead to a unique current response due to the helical nature of the
surface states. Such photocurrents flowing on the surface of a topological insu-
lator will be spin-polarized and the ability to induce and control spin-polarized
currents might make topological insulators valuable materials for spintronic de-
vices. The surface photocurrent response would also be a tool for studying the
dynamical properties of the topological surface states.

In this thesis, we investigate the theory of photocurrent generation and relax-
ation in topological insulators. We first study photocurrent generation within
a pure surface state model and find that minimal coupling between light and
electrons leads to a vanishing photocurrent. For a finite photocurrent one has to
consider the small Zeeman coupling between the light and the electron spin.

Photocurrents on the surface of 3D topological insulators have been experimen-
tally observed using laser energies larger than the bulk band gap. We thus ex-
tend our pure surface model and include the low-energy bulk states to account
for excitations involving the surface Dirac cone and the bulk. We indeed find
that photoinduced transitions between surface and bulk states can lead to a pho-
tocurrent which is several orders of magnitude larger than the effect in the pure
surface model.

We also investigate photocurrent relaxation by carrier-carrier scattering. While
such scattering processes cannot relax current in quadratically dispersing sys-
tems, they do affect the current in the linearly dispersing surface states. We study
the limit of a single particle-hole pair and analyze how scattering affects the in-
dividual electron and hole contributions to the current. We find that the effect
of carrier-carrier scattering on the individual electron and hole currents strongly
depends on the position of the Fermi level, even leading to an amplification of
the electron current for positive Fermi energy. This results in a suppression of
the relaxation of photocurrents carried by electron-hole pairs.
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Z U S A M M E N FA S S U N G

Topologische Isolatoren beschreiben eine neue Phase der Materie, welche eine
Bandlücke im Volumen, an der Oberfläche jedoch metallische Zustände aufweist.
Bestrahlt man einen topologischen Isolator mit Licht, erwartet man, dass die
helikalen Oberflächenzustände zu einzigartigen Photoströmen führen. Photo-
ströme auf der Oberfläche sind spinpolarisiert. Die Möglichkeit spinpolarisierte
Ströme zu kontrollieren könnte topologische Isolatoren zu wertvollen Materi-
alien für Spintronikanwendungen machen. Außerdem ließe sich mit Photoströ-
men die dynamischen Eigenschaften von topologischen Isolatoren untersuchen.

In der vorliegenden Arbeit untersuchen wir die Theorie der Anregung und
Relaxation von Photoströmen in topologischen Isolatoren. Zuerst untersuchen
wir die Anregung von Photoströmen in einem Modell nur für die Oberflächen-
zustände und finden, dass die minimale Kopplung zwischen Licht und Elek-
tronen zu keinem Strom führt, sondern man die kleine Zeeman-Kopplung be-
trachten muss.

Photoströme wurden experimentell auf der Oberfläche von topologischen Iso-
latoren mit Laserenergien gemessen, welche die Bandlücke übersteigen. Wir er-
weitern daher unser Modell und betrachten zusätzlich die niederenergetischen
Volumenzustände. Wir finden, dass Übergänge zwischen Volumen- und Ober-
flächenzuständen durch Photonenabsorption zu Photoströmen führen können,
welche die Ströme im reinen Oberflächenmodell um mehrere Größenordnungen
übersteigen.

Schließlich betrachten wir die Relaxation von Photoströmen durch Elektron-
Elektron Streuung. Während Strom in Systemen mit quadratischer Dispersion
durch solche Streuprozesse nicht relaxiert, wird Strom in den Dirac-Oberflächen-
zuständen davon beeinflusst. Wir untersuchen ein einzelnes angeregtes Elektron-
Loch-Paar und analysieren, wie sich Streuprozesse auf den Elektronen- und
Lochstrom auswirken. Wir zeigen, dass die einzelnen Effekte stark von der Fer-
mienergie abhängen und der Elektronenstrom sich für positive Fermienergie
sogar erhöht. Die Relaxation des Photostroms, der durch ein Elektron-Loch-Paar
produziert wird, ist dadurch stark verlangsamt.
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1
I N T R O D U C T I O N

Discovering and understanding different phases of matter is one of the main
principles of condensed matter physics. Two phases that we know from everyday
life are, e.g., the liquid and solid phases of water. Landau’s paradigm states that
different phases of matter can be characterized by their broken symmetries. In
the case of liquid and solid water, the liquid phase exhibits rotational symmetry
when looking at the arrangement of atoms and molecules. An observer can rotate
the system by any angle and the arrangement will look the same. The ice crystals
of the solid phase, however, break this symmetry. The crystal structure is only
invariant under rotations by specific angles, i.e., a multiple of 60 degrees.

The discovery of the quantum Hall effect [von Klitzing et al., 1980], led to the
understanding that there are phases of matter that cannot be distinguished by
a breaking of the underlying symmetry but instead by their topological order.
The quantum Hall effect occurs in electronic systems that are confined to two
dimensions and subject to a strong perpendicular magnetic field. Electrons are
forced onto cyclotron orbits and the band structure is characterized by quan-
tized Landau levels. These Landau levels are macroscopically degenerate and
increasing the magnetic field increases the number of electronic states hosted by
a single Landau level. An energy gap between the highest occupied and lowest
unoccupied level occurs, just like in an ordinary insulator, when a certain num-
ber of Landau levels is filled and the rest are empty. This quantum Hall insulator
(QHI) is, however, very different from a normal insulator. Applying an external
electric field leads to drifting cyclotron orbits and a finite and quantized Hall
conductivity σxy = ne2/h with integer n.

This remarkable quantization of the Hall conductivity can be understood in
terms of Laughlin’s argument [Laughlin, 1981]. Consider a quantum Hall sam-
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Figure 1.1: (a) Illustration of Laughlin’s argument for the quantization of the Hall con-
ductivity. Consider a quantum Hall sample in the geometry of an annulus
with a perpendicular magnetic field B. An additional magnetic flux Φ is
threaded trough the loop and varied in time. Laughlin argued that if the flux
is changed adiabatically by a flux quantum h/e then an integer number of
charges will be pumped across the annulus explaining the quantization of the
Hall conductivity. (b) The perpendicular magnetic field forces the electrons
onto cyclotron orbits inside the quantum Hall sample. At the edge between
the QHI and a normal insulator the electrons perform skipping orbits, mov-
ing in one direction only.

ple in the geometry of an annulus with a uniform magnetic field everywhere
perpendicular to the surface as illustrated in Fig. 1.1 (a). Now think of an addi-
tional magnetic flux threading the hole of the loop. If we vary this flux in time,
we generate an electromotive force E = −dΦ/dt and a corresponding electric
field E around the circumference of the loop by Faraday’s law. By the classical
Hall effect, this produces a charge current along the radial direction. A change
of Φ by one flux quantum h/e, however, maps the Hamiltonian of the system
onto itself due to gauge invariance, requiring the transfer of an integer num-
ber of electrons across the annulus. Microscopically, the flux change shifts the
individual wavefunctions such that, for n occupied Landau levels, n states at
one edge are pushed above the Fermi energy while n states at the other edge are
pushed below the Fermi energy. Since an adiabatic change of the flux cannot lead
to excitations across the gap, thermal equilibrium is restored by transporting n
electrons across the annulus. Since by this argument always an integer num-
ber of electrons is transferred from one edge to the other, the Hall conductivity
is quantized. This argument was extended by Halperin [1982] who showed that
quantum Hall systems exhibit one dimensional (1D) current-carrying edge states.
Classically this can be understood within the cyclotron orbit picture where elec-
trons at the edge perform skipping orbits and move along an edge as illustrated
in Fig. 1.1 (b). Since electrons in a particular edge can move in one direction only,
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1.1 discovery of 2d and 3d topological insulators

Figure 1.2: Band structure of a metal, an insulator, and a TI. In the case of a metal, the
Fermi energy lies in the conduction band while in the case of an insulator
the Fermi energy lies in the gap between valence and conduction band. A TI
is characterized by a bulk band gap as in the insulator, and gapless metallic
surface states that traverse the bulk gap (red lines).

they are insensitive to scattering by impurities explaining the perfectly quantized
Hall conductivity.

These edge states at the sample boundary are a necessary consequence of the dis-
tinct topological orders of the quantum Hall system and a normal insulator. The
number n describing the quantized Hall conductivity can actually be interpreted
as a topological invariant, called a Chern number, which by definition is an inte-
ger. While for the quantum Hall system n = 1, 2, 3, ... depending on the number
of filled Landau levels, an ordinary insulator is characterized by n = 0. In the
absence of a gap closing, the QHI cannot be turned into a normal insulating state
by smooth deformations of the system parameters. Thus, at the boundary where
the Chern number changes, the gap has to close leading to gapless topologically
protected edge states.

1.1 discovery of 2d and 3d topological insulators

The discovery of the integer quantum Hall effect in 1980 [von Klitzing et al.,
1980] provided an example that a bulk band gap does not necessarily lead to an
insulating state. This effect, however, requires the application of a strong mag-
netic field and a motivation for studying TIs was the question whether such a
quantum Hall state could be induced in systems without a macroscopic mag-
netic field [Haldane, 1988]. Indeed, TIs constitute a new topological phase of
matter which is induced by spin-orbit coupling and does not require an external
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magnetic field. TIs are insulators in the sense that they exhibit a bulk band gap
between the highest occupied and lowest empty band prohibiting the movement
of charges in the bulk. On their surface (or edge in two dimensions), however,
TIs have gapless metallic states similar to the edge states in the quantum Hall
system [see Fig. 1.2].

A first example of such a phase in two dimensions was predicted in 2005. Kane
and Mele [2005] proposed that spin-orbit coupling, if sufficiently strong, could
induce a quantum spin Hall (QSH) effect in graphene without any external mag-
netic field. The QSH state is considered to be the first 2D TI that was understood
[Moore, 2010]. This state is characterized by a bulk band gap in combination
with conducting edge states that traverse the gap. The gapless edge states are
spin-filtered, i.e., electrons with opposite spin propagate in opposite directions
as illustrated in Fig. 1.3 (a). These edge states can be understood by an extension
of Laughlin’s argument given above. If spin is conserved, an adiabatic change of
Φ by one flux quantum h/e [cf. Fig. 1.1 (a)] transports a spin h̄ across the annu-
lus. An adiabatic change in the flux, however, cannot excite a particle across the
bulk band gap leading to the conclusion that there have to be gapless edge states
[Kane and Mele, 2005]. If spin is not conserved, Laughlin’s argument does not
hold but edge states can nevertheless still exist. When time-reversal symmetry is
preserved, the states in the same edge are Kramers pairs, i.e., a state and its time
reversed. As long as time reversal symmetry is preserved, Kramers degeneracy
ensures the crossing of the energy states at special points in the Brillouin zone,
i.e., at the time-reversal invariant momenta (TRIM) such as k = 0. For an even
number of Kramers pairs at one edge, the states can hybridize pairwise and
form an energy gap as illustrated in Fig. 1.3 (b). For an odd number of Kramers
pairs, however, even if perturbations induce hybridization, a single Kramers pair
will always be left as long as the gap does not close [cf. Fig. 1.3 (c)]. For an odd
number of Kramers pairs, the band structure can thus not be deformed adiabat-
ically into that of a trivial insulator without closing the gap and the edge states
are topologically protected. Elastic backscattering between the states in the same
edge, i.e., between Kramers pairs, is prohibited and therefore electrons in edge
states are insensitive to scattering from impurities.1

Physically, the nontrivial topology which leads to the edge states is based on the
occurrence of a band inversion and the topological protection of the edge states
can also be understood within the framework of the band theory of solids [Bloch,
1929]. A normal insulator exhibits a band gap between the highest occupied and

1 Electron interactions can, in general, lead to inelastic backscattering and thus to a finite conduc-
tivity.
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1.1 discovery of 2d and 3d topological insulators

Figure 1.3: (a) Schematic illustration of a QSH insulator with topologically protected
edge states. Electrons in the same edge but with opposite spin move in oppo-
site directions. In the other edge the directions are reversed. As long as time-
reversal symmetry is preserved, elastic backscattering between electrons in
one edge is forbidden. (b) An even number of Kramers pairs in one edge can
can hybridize leading to a trivial insulator state. (c) For an odd number of
Kramers pairs a single gapless edge state will remain leading to a topologi-
cally nontrivial state. Physically this is connected to the occurrence of a band
inversion.

lowest unoccupied state. In TI materials strong spin-orbit coupling can shift the
energy bands such that there is a level crossing in the low-energy band structure
leading to an inverted energy gap as illustrated in Fig. 1.4. If this band inversion
occurs between conduction and valence band-edge states with opposite parity, it
can lead to a TI phase that is topologically distinct from a normal insulator. This
distinction is characterized by a Z2 topological invariant which, in an inversion
symmetric system, is related to the product of the parity eigenvalues of Kramers
pairs of occupied bands at the TRIM [Fu and Kane, 2007]. A band inversion
between states of opposite parity then indicates a change in the topological Z2
invariant. As long as time-reversal symmetry is not broken, continuous deforma-
tions of the system parameters cannot turn a TI into a normal insulator without
closing the energy gap. Thus, at the interface between a TI and a trivial insula-
tor where the topological order changes, there have to be gapless modes. These
gapless edge states (or surface states in three dimensions) are then protected by
time-reversal symmetry.

The experimental observation of this new state of matter proved difficult at first.
It was found that graphene has only very weak spin-orbit coupling [Yao et al.,
2007; Huertas-Hernando et al., 2006; Min et al., 2006] resulting in a band gap
which was too small to support observable TI behavior. Soon after, however, it
was theoretically predicted [Bernevig et al., 2006] and experimentally observed
[König et al., 2007] that 2D TIs can be realized in (Hg,Cd)Te quantum wells. In
this system, a quantum phase transition occurs as a function of quantum well
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Figure 1.4: Schematic illustration of the band inversion that leads to topologically pro-
tected surface states (red). Initially the system is in a normal insulator state.
In TIs strong spin-orbit coupling can induce a level shifting that leads to
an inversion of the energy bands. As long as time reversal symmetry is pre-
served, the band structure of a 3D TI cannot be continuously deformed into
that of a normal insulator without closing the energy gap.

thickness dQW. For dQW smaller than a critical thickness the system would exhibit
trivial insulator behavior. For dQW larger than a critical thickness, however, a
band inversion occurs leading to a time-reversal invariant bulk insulating state
with topologically protected edge states. The system would be a QSH insulator
with a single pair of helical edge states.

Around the same time, topological insulators were theoretically predicted to also
exist in three dimensions [Fu and Kane, 2007] and experimentally observed in
BixSb1−x in an angle resolved photoemission spectroscopy (ARPES) experiment
mapping the surface band structure [Hsieh et al., 2008]. Observation of the topo-
logical nature of possible 3D TIs by transport experiments, as conducted for
the experimental observation of the 2D QSH insulator, proved difficult due to
competing bulk contributions to the conductivity. With ARPES, however, it was
possible to image the material’s band structure and reveal whether surface Dirac
bands exist. In ARPES, energetic photons are used to emit electrons from a ma-
terial. The analysis of energy and momentum of these photoemitted electrons
reveals information about the band structure of the system. Since surface states
have no dispersion in the direction perpendicular to the surface in contrast to
bulk states, it is possible to separate surface and bulk contributions by studying
energy and momentum of the emitted electrons.

Following the discovery of the first 3D TI, other materials were predicted to be
3D TIs [Zhang et al., 2009a; Yan et al., 2010], and experimentally observed by
ARPES [Hsieh et al., 2009a; Chen et al., 2009; Xia et al., 2009; Zhang et al., 2009b;
Wang et al., 2011] and scanning tunneling spectroscopy [Zhang et al., 2009b;
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1.1 discovery of 2d and 3d topological insulators

Alpichshev et al., 2010]. Among the most promising candidates were Bi-based
compounds, such as Bi2Se3 and Bi2Te3, which were coined ’second generation’
materials by Moore [2009]. The 3D TI Bi2Se3 has many advantages over the first
discovered material BixSb1−x. Bi2Se3 is a compound as opposed to an alloy and
might thus be prepared with less disorder and with a higher degree of purity.
While BixSb1−x has a complicated surface state structure, Bi2Se3 only exhibits
a single pair of topologically protected surface states. In addition Bi2Se3 has a
large band gap of ∼ 0.3 eV (3600 K) making the topological behavior accessible
at larger temperature or even room temperature for high purity samples [Xia
et al., 2009]. Indeed, topological behavior was observed in Bi2Se3 up to room
temperature and surface states traversing the bulk gap of Bi2Se3 were revealed
using ARPES [Hsieh et al., 2009a]. The theoretical idealization of these surface
states would be a single Dirac cone, making this topological insulator closely
related to the Dirac electronic structure of graphene [Moore, 2010].

The intense attention this new state of matter has received from condensed mat-
ter physicists is rooted in its unique properties which for the edge or surface
states are ’unlike any other known one- (1D) or two-dimensional (2D) electronic
system’ [Hasan and Kane, 2010]. Conventional charge transport is limited by
dissipation induced by backscattering of carriers at, e.g., impurities or defects.
2D TIs exhibit 1D edge states that are protected against elastic backscattering by
time-reversal symmetry leading to a low dissipation state.2 The strong spin-orbit
coupling in 3D TIs leads to a unique surface state spin structure. The surface
states are helical, i.e., spin and momentum are locked perpendicular to each
other such that each surface-momentum possesses a unique spin direction.

These fascinating properties of TIs, such as helical gapless surface states, lead
to a variety of possible applications. When brought into contact with supercon-
ductors, TIs might be used to realize topological superconducting phases hosting
Majorana modes [Fu and Kane, 2008]. Such Majorana bound states could be used
to engineer new types of quantum bits suggesting a possible application of TIs
in quantum computers. The topological surface states also lead to exotic optical
phenomena. It was, e.g., predicted that when time-reversal symmetry is broken,
gapped surface states cause giant Kerr rotations of polarized light [Tse and Mac-
Donald, 2010]. The magneto-optical Kerr effect describes the change of the polar-
ization of light that is reflected from a magnetic surface. The angle by which the
polarization plane is rotated is directly related to the magnetization of the mate-
rial. For incident linearly polarized light it was predicted that multiple internal

2 Strictly speaking this is only true for weak interactions. Electron interactions can preserve time-
reversal symmetry and lead to inelastic backscattering.
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reflections between the top and bottom surfaces of a thin film TI can enhance
the rotation of the polarization plane leading to a large Kerr angle θK ' π/2
[Tse and MacDonald, 2010]. Their gapless helical surface states also make TIs
promising materials for optoelectronic applications such as transparent conduc-
tors [Peng et al., 2012] and wide-band photodetectors [Zhang et al., 2010b]. In
addition, it has been proposed [Raghu et al., 2010; Hosur, 2011; Ganichev and
Prettl, 2003] and experimentally observed [McIver et al., 2012; Duan et al., 2014]
that a TI illuminated with light can exhibit an electric charge current on the
surface, a so-called photocurrent.

1.2 photocurrents

Because of the spin-helical nature of the surface states, a surface charge current
flowing in a TI is necessarily spin polarized. Such spin-polarized currents are
an essential ingredient for spintronics where not only the charge but also the
spin degree of freedom plays a role in electronic applications. Photocurrent gen-
eration on the surface of a TI would allow for the injection and manipulation
of such spin-polarized currents, making TIs promising materials for spintronic
devices. Last year, it was experimentally observed that a charge current flowing
in a thin film TI can manipulate the magnetization of an adjacent ferromagnet,
paving the way for the application of TIs in computer memory and logic [Mell-
nik et al., 2014]. As we will see in more detail later, photocurrents in TIs might
also be used to distinguish between bulk and surface contributions in transport
experiments where signatures of the topological behavior are often masked by
additional bulk effects. Understanding the photocurrent response of TIs, thus,
lays the groundwork for a variety of further research on TIs and their applica-
tions. Currents restricted to the surface would pave the way to study the surface
states and topological behavior in transport experiments. The ability to inject
and control spin-polarized currents would advance 3D TIs as possible materials
for opto-spintronic devices.

1.2.1 Photocurrent generation

Photocurrents can be induced in materials by a variety of processes. If light
excites electrons such that the distribution of excited carriers is symmetric in
momentum space, no net current will flow since the contributions from carriers
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1.2 photocurrents

Figure 1.5: Schematic illustration of the photocurrent generation on TI surfaces. Left:
Shining light onto a surface generates a photocurrent j. Right: Due to the heli-
cal spin structure of the surface states of TIs, circularly polarized light prefer-
ably interact with electrons at +k but not at−k exciting electrons asymmetric
in momentum space. The resulting asymmetric carrier distribution leads to
a net photocurrent.

at ±k cancel each other. A photocurrent can thus only be induced if the final
distribution of excited carriers is asymmetric in momentum space. Without an
external field which breaks the symmetry, this can happen, e.g., when scattering
or relaxation processes of excited particles are asymmetric or when the trans-
fer of photon momentum to the charge carriers leads to a shift or ’drag’ of the
excited carrier distribution. Even simpler one can imagine that the initial exci-
tation of electrons by photon absorption occurs asymmetrically in momentum
space leading to a net photocurrent. This last effect, i.e., the generation of a pho-
tocurrent by asymmetric excitations, will be the focus of Chaps. 4 and 5 of this
thesis.

Microscopically, the possibility of such asymmetric excitations in 3D TIs can be
easily motivated. In the widely used 3D TI Bi2Se3, the surface states, in an ide-
alized model, can be described by a single Dirac cone [cf. Sec. 2.1]. The surface
states are helical, i.e., electron spin and momentum are locked perpendicular to
each other. Thus, electrons with the same energy but at opposite momenta have
opposite spin. Light with energy less than the bulk band gap excites electrons
within the Dirac cone. Circularly polarized light preferably couples to electrons
with spins that are either aligned or anti-aligned to the wavevector q of the light
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depending on the light’s helicity [Meier and Zakharchenya, 1984] [cf. Sec. 2.2.3].
Thus, when shining circularly polarized light obliquely onto the surface of a TI,
electrons with a spin component, say, parallel to q are preferably excited over
electrons with a spin component anti-parallel to q. Since opposite spins corre-
spond to opposite momenta, this leads to electrons being excited at, say, +k but
not at −k as illustrated in Fig. 1.5. Changing the helicity of the light would then
excite electrons at −k but not at +k, reversing the direction of the induced cur-
rent. Exciting surface electrons within the Dirac cone using circularly polarized
light can thus lead to a carrier distribution which is asymmetric in momentum
space and a net photocurrent. Based on the mechanism just explained, switching
the polarization of the light between left- and right-circular polarization changes
the sign of the induced photocurrent. In the bulk of a 3D TI a photocurrent re-
sponse due to the described mechanism will vanish. The bulk states of TIs such
as Bi2Se3 are spin-degenerate such that circularly polarized light would lead to
equal excitations at both +k and −k with a no net current.

A photocurrent response has been observed experimentally on the surface of the
3D TI Bi2Se3 [McIver et al., 2012; Duan et al., 2014]. McIver et al. [2012] studied
the dependence of the photocurrent on the light polarization and found a contri-
bution which changes sign with the helicity of the light. Due to its importance
for this thesis, this experiment will be reviewed in Chap. 3. While the authors
report that the measured photocurrent has surface state origin, the microscopic
mechanisms underlying the experimental observation are unclear. In Chaps. 4

and 5 we theoretically investigate the photocurrent generation on TI surfaces
and shed light onto the microscopic processes involved in this effect.

Phenomenologically the photocurrent response to an electromagnetic wave can
be described within the framework of the photogalvanic effect (PGE) [for a re-
view see, e.g., Ganichev and Prettl [2003]]. In Sec. 2.2 we will see in detail based
on symmetry arguments, that to leading order in the electric field amplitude
the PGE vanishes in inversion symmetric systems. On TI surfaces, however, in-
version symmetry is always broken and photocurrents can occur. Yet the crys-
tal symmetry imposes constraints on their orientation and polarization depen-
dence.

Indeed, 3D TIs such as Bi2Se3 obey bulk inversion symmetry and photocurrents
are only allowed because inversion symmetry is broken by the surface.3 This
may actually prove to be a valuable tool for accessing surface properties even

3 There exist other effects not considered in this thesis, such as the photon drag effect, that are
allowed in inversion symmetric systems.
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1.2 photocurrents

when the chemical potential is in the bulk valence or conduction band. Many 3D
TIs (such as Bi2Se3) are naturally electron-doped which means that the chemical
potential does not lie within the bulk band gap but inside the bulk conduction
band. Observing topological behavior in transport experiments thus becomes dif-
ficult as surface effects are often masked by contributions from the metallic bulk.
For instance, the widely used 3D TI Bi2Se3 is naturally n-type. When a cleaved
surface is exposed to air, electron doping even increases due to surface charg-
ing effects that are caused by adsorbates from the environment or by migrating
defects [Park et al., 2010; Hsieh et al., 2009b]. There have been experimental re-
ports that the Fermi level in 3D TIs can be varied by additional doping or back
gates [Checkelsky et al., 2009; Hsieh et al., 2009a; Chen et al., 2010] but preparing
samples in a such a way that transport experiments single out the surface con-
tributions proves difficult. A photocurrent signature with obvious surface origin
might thus be a valuable tool.

Motivated by these ideas, this thesis provides a theoretical analysis of photocur-
rent generation in TIs. The mechanism described above [cf. Fig. 1.5] gives an
intuitive picture of how photocurrents might be generated on TI surfaces and
suggests that the microscopic origin of the experimentally measured photocur-
rent could be understood within a simple Dirac cone model. In Chap. 4 we
therefore study the photocurrent generation within a pure surface state model.
We calculate the photocurrent response due to asymmetric excitations within the
Dirac cone and analyze the polarization dependence of the resulting current and
its dependence on the angle of incidence of the light. Surprisingly we find, con-
trary to the earlier assumption, that a pure surface state model is not sufficient
to explain the experimental observations even taking into account various cor-
rections to the linear dispersion. Thus, understanding the effects of photocurrent
generation in TIs requires a more advanced model.

In Chap. 5 we therefore extend our model to include the low energy bulk states
[cf. Fig. 1.6]. While deep in the bulk the dominant photocurrent response should
vanish due to inversion symmetry, this is not the case near the surface where
light can induce transitions between surface and bulk states. Indeed, the experi-
mental measurements of photocurrents where conducted with photon energies
that exceed the bulk band gap [McIver et al., 2012; Duan et al., 2014]. We thus
study the photocurrent response at the surface of a TI within a four-band model
for the surface and bulk states [Liu et al., 2010] [cf. Sec. 2.1]. We analyze the
dependence of the photocurrent on the angle of incidence of the light and on the
light polarization and study the microscopic processes responsible for the pho-
tocurrent generation. We consider transitions between the surface Dirac cone
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Figure 1.6: Photoinduced transitions between the spin-helical surface states (red) and
the bulk states might lead to a net photocurrent. We will consider transitions
from the bulk valence band (BVB) to the surface Dirac cone and from the
Dirac cone into the bulk conduction band (BCB).

and the bulk valence band or the bulk conduction band as illustrated in Fig. 1.6
and study the dependence of the resulting photocurrent on the Fermi energy.

1.2.2 Photocurrent relaxation

For a comprehensive study of photocurrents in TIs, it is not sufficient to restrict
the analysis to the generation of photocurrents. The magnitude of a photore-
sponse is, of course, governed by both the excitation process and the subsequent
relaxation of the current. For a full understanding of surface photocurrents in
TIs one therefore needs to study current relaxation in Dirac systems.

As described above, the photocurrent is carried by excited electron-hole pairs.
Thus, scattering events that change the momentum of electron or hole can in
principle affect the current. For quadratic dispersions, momentum conserving
scattering events such as electron-electron scattering will not change the current.
Indeed, momentum is proportional to velocity and thus current. Momentum
conservation thus implies current conservation in quadratically dispersing sys-
tems. This argument does not hold for the linearly dispersing surface states of
TIs. Here, momentum is no longer proportional to velocity and even momentum
conserving scattering events can relax the current.

In Chap. 6 we will therefore present a detailed analysis of photocurrent re-
laxation in the surface states of TIs. We will focus on a perfectly linear dis-
persion such that our results are also applicable to other Dirac systems, e.g.,
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graphene. In linearly dispersing systems, current relaxation can occur through,
e.g., electron-electron (e-e), electron-phonon, or impurity scattering. Considering
a sufficiently clean sample one might neglect impurity or disorder scattering.
Also for sufficiently low temperatures one expects that e-e interaction domi-
nates over electron-phonon scattering. At low temperatures, e-e scattering can
be more effective than electron-phonon interactions in relaxing excited carriers
in graphene if the particles are excited with low pump fluences below the opti-
cal phonon frequencies [Winzer et al., 2010; Kim et al., 2011; Song et al., 2011;
Winzer and Malic, 2012; Song et al., 2013; Tani et al., 2012]. In Chap. 6 we will
therefore study how e-e scattering affects the photocurrent in Dirac systems.

Energy relaxation of excited particles in linearly dispersing systems has already
been studied in detail both theoretically [Cheianov and Fal’ko, 2006; Butscher
et al., 2007; Stauber et al., 2007; Tse and Das Sarma, 2009; Winzer et al., 2010;
Kim et al., 2011; Winzer and Malic, 2012; Song et al., 2013; Tomadin et al., 2013]
and experimentally [Hsieh et al., 2011; Kumar et al., 2011; Breusing et al., 2011;
Sobota et al., 2012; Hajlaoui et al., 2012; Tani et al., 2012; Gierz et al., 2013; Brida
et al., 2013] and some interesting effects were discovered. It was predicted that
e-e scattering can lead to carrier multiplication [Winzer et al., 2010; Winzer and
Malic, 2012; Song et al., 2013]. When a highly excited electron interacts with the
Fermi sea, it relaxes in small energy steps and in each step excites an electron
from the Fermi sea to above the Fermi energy [Song et al., 2013] [cf. Fig. 1.7]. De-
pending on the pump fluence used to initially excite the particles, this ’relaxation
cascade’ [Song et al., 2013] can lead to a large number of excited electrons. For
large pump fluences, competing scattering processes that do not lead to carrier
multiplication such as electron-phonon scattering or electron-hole recombination
become more effective [Winzer and Malic, 2012; Song et al., 2013]. Experimental
observations of carrier multiplication were consequently reported for low pump
fluences [Tani et al., 2012; Tielrooij et al., 2013; Plötzing et al., 2014].

While energy relaxation in Dirac system has been explored in detail, the question
remains how current is affected by e-e scattering. Sun et al. [2012] analyzed the
effect of a hot carrier background on photocurrents in graphene. The hot back-
ground was found to effectively reduce the photocurrent with a relaxation rate
that is determined by the density of the thermal carrier background. In Chap. 6

we analyze current relaxation in a very different regime. Considering that e-e
scattering may dominate for low pump fluences, we will study the limit of a
single excited electron-hole pair that undergoes carrier-carrier scattering events
as illustrated in Fig. 1.7. We will look at the relaxation dynamics of electron and
hole independently and find surprising results. Scattering of electron and hole
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Figure 1.7: After photoexcitation creates an electron-hole pair, carrier-carrier scattering
will relax the particles and affect the photocurrent. The excited electron, e.g.,
relaxes by exciting an electron from the Fermi sea to above the Fermi energy.
Similar processes also exist for the hole.

can have a very different effect on the current and this effect strongly depends
on the position of the Fermi level, specifically, whether it is above or below the
Dirac point. We consider the effect of a single scattering event on the current
and also study the limit of many scattering events when the excited carriers
have completely relaxed.
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2
T H E O R E T I C A L B A C K G R O U N D

In this chapter we discuss some theoretical background that will be needed in
the following chapters. A widely used 3D TI is Bi2Se3 due to its large band
gap and simple surface structure, and we introduce a model Hamiltonian for
this system in Sec. 2.1. We also give an overview of photogalvanic effects from
the point of view of symmetry in Sec. 2.2 which provides a backdrop to the
discussion in Chaps. 4 and 5.

2.1 model 3d topological insulator bi2se3

In this section we discuss a model Hamiltonian for the 3D TI Bi2Se3. As dis-
cussed in the previous chapter, this ’second generation’ [Moore, 2009] TI is well
suited as a model system, due to its large band gap which makes topological
behavior accessible at room temperature, and due to its relatively simple sur-
face band structure involving a single Dirac cone in the idealized picture. We
start our description of the material with the crystal structure and correspond-
ing symmetry properties of Bi2Se3 crystals before studying the atomic orbitals.
The presentation is based on Zhang et al. [2009a] and Liu et al. [2010].

2.1.1 Crystal structure and symmetries

Materials belonging to the Bi2Se3 family, including Bi2Te3, Sb2Se3, and Sb2Te3
have a rhombohedral crystal structure with space group D5

3d (R3̄m). The crystal
consists of layers stacked along the z-direction where each layer consists of either
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Figure 2.1: Lattice structure of Bi2Se3. a) Along the z-direction the lattice consists of al-
ternating layer of Bi and Se atoms. Five consecutive layers, termed quintuple
layer (QL), make up the building block of the lattice. b) Viewed from the top,
the 2D layers can be arranged in three different orientations leading to the
three-fold rotational symmetry and the mirror axis as explained in the text.

Bi and Se atoms as illustrated in Fig. 2.1 (a). The unit cell of Bi2Se3 contains five
atoms, two Bi atoms and three Se atoms, such that five consecutive atomic layers
taken together are the building block of the crystal. Within such a quintuple
layer (QL), Bi and Se layers alternate and coupling is strong due to chemical
bonds between Bi and Se, whereas the coupling between quintuple layers is
mediated only by weak van der Waals forces. Viewed from above, the crystal
structure can be seen as stacked triangular lattices which can have three possible
orientations as illustrated in Fig. 2.1 (b). The coordinate system is chosen such
that the z-direction is perpendicular to the atomic layers and the origin is taken
to be the Se site at the center of a QL. Choosing the binary axis with twofold
rotational symmetry to be the x-axis, the crystal has the following symmetries as
seen in Fig. 2.1: There is threefold rotational symmetry around the z-direction,
twofold rotational symmetry around the x-direction, and inversion symmetry
about the origin. In addition to the Se site at the origin, a single unit cell consists
of two equivalent Bi atoms (Bi and Bi’) and two equivalent Se atoms (Se1 and
Se1’), related by inversion symmetry. When talking about surface states in the
following chapters we will always be considering the (111) surface of Bi2Se3
which describes a surface in the xy-plane as illustrated in Fig. 2.1 (b). Naturally,
inversion symmetry is broken at the surface and the crystal symmetry reduce

16



2.1 model 3d topological insulator bi2se3

from D5
3d to C3v. The surface thus exhibits three-fold rotational symmetry around

the z-axis and a mirror symmetry about the y-axis.

In order to verify that a material is a 3D TI, one needs to know the states at
all eight time-reversal invariant momenta [Fu et al., 2007]. Ab initio calculations
[Zhang et al., 2009a] proved that Bi2Se3 is indeed a 3D TI and that its topological
nature is rooted in a band inversion at the Γ point only. To understand the origin
of the topological surface states of Bi2Se3 we can thus focus on the low energy
physics near the Γ point.

The electronic configuration is 6s26p3 for Bi and 4s24p4 for Se. We are interested
in a low-energy model for Bi2Se3 and it is thus sufficient to include only the
outermost p orbitals. Combining the orbitals of the equivalent Bi and Se atoms,
respectively, one can form bonding and anti-bonding states with definite parity.
Taking into account all effects such as hybridization of orbitals and level shifts
due to the crystal symmetry and resulting crystal field splittings but neglecting
spin-orbit coupling (SOC), the energy of the Bi orbitals is higher than the Se
orbitals [Liu et al., 2010]. As this neglects spin, the band structure is still topo-
logically trivial. The atomic SOC Hamiltonian is given by

HSOC = αl · s, (2.1)

where
α =

h̄
4m2

0c2
1
r

∂V
∂r

(2.2)

is the spin-orbit coupling strength which depends on the crystal potential V(r),
and l and s describe orbital and spin angular momentum, respectively. Including
SOC shifts the low-energy states and results in a level crossing of the low-energy
Bi and Se states as illustrated in Fig. 2.2. Since the Bi and Se states have oppo-
site parity, this crossing marks a band inversion and a topological phase tran-
sition from a normal insulator to a topological insulator [Zhang et al., 2009a].
This topological phase transition due to band inversion is thus analogous to
the topological phase transition in HgTe quantum wells [Bernevig et al., 2006;
König et al., 2007]. While in the quantum wells the phase transition was tuned
by changing the well thickness, in Bi2Se3 the strong spin-orbit coupling drives
the system into a topological-insulator phase. The band inversion in Bi2Se3 leads
to the formation of gapless surface states near the Γ point. These surface states
are topologically protected as long as time-reversal symmetry is not broken and
consequently, smooth deformations of the band structure that do not close the
band gap will not effect the surface states.
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Figure 2.2: Schematic illustration of the origin of the topological nature of Bi2Se3. With-
out including spin-orbit coupling (SOC) Bi2Se3 would be a normal insulator.
Including SOC the bandstructure near the Γ point exhibits a level crossing
between states of opposite parity leading to the formation of a topological
insulator with gapless surface states indicated in red.

Since the topological nature of Bi2Se3 is solely determined by the states near the
Γ point the essential physics can be captured in an effective low energy model.
The four lowest energy states are

|Bi+,±1
2
〉 = aB

±|Bi+, pz, ↑↓〉+ bB
±|Bi+, p±, ↓↑〉 (2.3)

|Se−,±1
2
〉 = aS

±|Se−, pz, ↑↓〉+ bS
±|Se−, p±, ↓↑〉, (2.4)

where |X, p±, σ〉 = ∓1
2

(
|X, px, σ〉 ± i|X, py, σ〉

)
and the superscript denotes par-

ity. aS,B
± , bS,B

± are hybridizations between states with equal total angular momen-
tum and describe the distribution of weight on the different orbitals. Starting
from these four states, Zhang et al. [2009a] constructed a Hamiltonian from
the theory of invariants taking into account the crystal symmetries. In the ba-
sis |Bi+, 1

2〉, |Se−, 1
2〉, |Bi+,−1

2〉, |Se−,−1
2〉 the symmetry operations can be repre-

sented as follows: Time reversal becomes T = iσyK, where σ denotes the spin
Pauli matrices in spin space and K is complex conjugation. The threefold rota-
tional symmetry about the z-axis becomes R3 = ei(Π/2)θ with Π = σz ⊗ 1 and
θ = 2π/3. Twofold rotation around the x-axis becomes R2 = iσx ⊗ τz and inver-
sion becomes P = 1⊗ τz, where τ acts in the basis of the Bi and Se sublattices.
Note that ’spin’ actually refers to total angular momentum J = L + S since the
±1/2 in the basis {|Bi+,±1

2〉, |Se−,±1
2〉} represent total angular momentum. It

turns out, however, that the low energy states have orbital weight mostly on the
pz orbitals (∼ 50− 70% [Zhang et al., 2013; Zhu et al., 2013]) with smaller contri-
butions from the px and py orbitals (∼ 30% [Zhang et al., 2013; Zhu et al., 2013]).
Thus we will continue to talk about ’spin’ instead of total angular momentum.
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Finally, up to cubic order in k the effective 4× 4 Hamiltonian can be written as
[Liu et al., 2010]

He f f =εk1⊗ 1 +M(k)1⊗ τz + B(kz)kz1⊗ τy +A(k‖)(σxky − σykx)⊗ τx

+
R1

2
(k3

+ + k3
−)σz ⊗ τx +

R2

2i
(k3

+ − k3
−)1⊗ τy, (2.5)

where

εk = C0 + C1k2
z + C2k2

‖, (2.6)

M(k) = M0 + M1k2
z + M2k2

‖, (2.7)

B(kz) = B0 + B2k2
z, (2.8)

A(k‖) = A0 + A2k2
‖, (2.9)

and k2
‖ = k2

x + k2
y and k± = kx ± iky. Numerical values for these parameters were

obtained by Zhang et al. [2009a] using k · p theory. The basic idea behind this
approximation method is to assume that the wavefunction is known at some
special point in the Brillouin zone, here the Γ point at k = 0, and to treat terms
in the Hamiltonian that are proportional to k · p as a perturbation. Since the
wavefunction at the Γ point can be obtained by ab initio calculations, this ap-
proximation provides a method of finding numerical values for the parameters
in He f f . Fig. 2.3 shows the bulk and surface states resulting from the Hamilto-
nian (2.5). One can easily deduce that the bulk states in the four-band model
described by Eq. (2.5) are spin degenerate. There are two bands with opposite
spin orientations at both positive and negative energy ±E. The surface states,
however, are not degenerate but exhibit a unique spin structure for positive and
negative energy as we will see in the following section.

2.1.2 Surface states in the four-band model

In this section we show that solving the effective Hamiltonian (2.5) with appro-
priate boundary conditions gives indeed surface state solutions. For clarity of
calculation, we only include terms in Eq. (2.5) that are essential for the existence
of topological surface states. We thus study the simplified Hamiltonian

H0 =(M0 + k2
z M1)1⊗ τz + B0kz1⊗ τy + A0(σxky − σykx)⊗ τx. (2.10)
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Figure 2.3: Band structure of Bi2Se3 obtained from Eq. (2.5). The shaded areas represent
the bulk conduction band (CB) and valence band (VB). The bulk exhibits a
band gap that is traversed by gapless surface states indicated in red.

We consider the semi-infinite half space z > 0 which corresponds to the (111)
surface of Bi2Se3. Replacing kz by −i∂z we obtain the eigenvalue equation

H0(kz → −i∂z)Ψ(z) = EΨ(z), (2.11)

whose solution describes the surface states and their energy dispersion. Looking
at Hamiltonian (2.10) we see that there is only one term that is not a unit matrix
in spin space, namely A0(σxky− σykx). The corresponding eigenvectors are easily
determined,

A0(σxky − σykx)

(
±ie−iφ

1

)
= ±A0k‖

(
±ie−iφ

1

)
, (2.12)

where tan φ = ky/kx. The wavefunctions will thus have the form

Ψ↑(z) =
1√
2

(
ie−iφ

1

)
⊗ χ(A0, z) (2.13)

Ψ↓(z) =
1√
2

(
−ie−iφ

1

)
⊗ χ(−A0, z), (2.14)

with χ(±A0, z) obeying

h±(kz → −i∂z)χ(±A0, z) = E±χ(±A0, z). (2.15)

Here h± is a reduced 2× 2 Hamiltonian given by

h± = (M0 + k2
z M1)τz + B0kzτy ± A0k‖τx. (2.16)

20



2.1 model 3d topological insulator bi2se3

Inserting the trial wavefunction χλeλz into the Schrödinger equation (2.15) yields
four possible solutions for λ [Shan et al., 2010],

λ2
± =

2M0M1 + B2
0

2M2
1

±
√

4B2
0 M0M1 + B4

0

4M4
1

+
E2 − A2

0k2

M2
1

(2.17)

with corresponding eigenvectors

χλ(A0) =

(
A0k−B0λ

E−M0+λ2 M1

1

)
. (2.18)

A general wavefunction χ(z) is then a superposition of the four solutions χ±λ± ,

χ(A0, z) = ∑
α,β=±

γα,βχ(αλβ)eαλβz, (2.19)

where the coefficients γα,β are determined by boundary conditions.

Up until now the considerations were general and apply to surface states as well
as bulk states near the surface. We now want to solve for the surface states using
the open boundary conditions

Ψ(z = 0) = 0. (2.20)

If surface states exist they should, of course, be localized near the surface, i.e.,
the wavefunction should also obey

Ψ(z→ ∞)→ 0. (2.21)

With this condition the only non-zero coefficients in the superposition (2.19), will
belong to λ with negative real part. Thus there will only be surface state solutions
if at least two solutions for λ have a negative real part, otherwise we cannot fulfill
the boundary conditions. Eq. (2.19) then gives a system of two equations with
two unknowns which we can solve, leading to the energy solutions [Shan et al.,
2010; Liu et al., 2010]

E = ±A0k (2.22)

for χ(±A0) respectively. The positive and negative energy surface states can now
be simplified [Shan et al., 2010],

Ψ↑(z) =
1√
N

(
ie−iφ

1

)
⊗
(

1
1

)(
e−λ+z − e−λ−z

)
, (2.23)

Ψ↓(z) =
1√
N

(
−ie−iφ

1

)
⊗
(

1
1

)(
e−λ+z − e−λ−z

)
(2.24)
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Figure 2.4: Surface state probability distribution as a function of z obtained from
Eqs. (2.23)-(2.25). For M1 > 0, M0 > 0 leads to a normal insulator and M0 < 0
to a TI. The surface state is clearly localized near the surface at z = 0 and falls
off exponentially into the bulk of the TI. The results are the same for the pos-
itive and negative energy state. One can see that the surface state penetrates
∼ 2 nm into the TI.

where Ψ↑ denotes the positive energy state and Ψ↓ the negative energy state,
and [Liu et al., 2010]

λ± =
B0

2M1
±
√

B2
0 + 4M0M1

4M2
1

. (2.25)

N is a normalization constant. The surface states have a unique spin structure
which rotates around the Dirac cone, such that electrons at opposite momenta
have opposite spin. For positive and negative energy the spin structure is in-
verted.

From Eq. (2.25) we see that topological surface states only exist if M0M1 < 0.
For M0M1 > 0 we cannot fulfill the boundary conditions given by Eq. (2.20)
and (2.21) and consequently no surface states exist. For Bi2Se3 the parameters
obey M0 = −0.28 eV< 0 and M1 = 6.86 eVÅ2 > 0 [Liu et al., 2010] such that
Bi2Se3 indeed exhibits topological surface states at the domain wall with a trivial
insulator.1 For M1 > 0, M0 < 0 thus describes the necessary band inversion
condition for Bi2Se3 to be a TI. Calculating the probability distribution illustrated
in Fig. 2.4 shows that the surface states penetrate ∼ 2 nm into the solid which
corresponds to roughly two quintuple layers with ∼ 75% contribution from the
first QL and ∼ 25% from the second QL from DFT analysis [Zhu et al., 2013].

1 While obtaining the solution Eqs. (2.23)-(2.25) we already used that for Bi2Se3 B0/M1 > 0. For the
opposite case one would, of course, have to change the signs in the exponents of the exponential
functions.
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2.1.3 Effective 2D surface-state model

We have shown that Bi2Se3 exhibits topological surface states and would like to
obtain an effective surface Hamiltonian for them. The solution given by Eqs. (2.23)
- (2.25) depends on the boundary conditions and parameters. The general form
of the surface state wavefunction is, however, general, and we can always write
the surface states as Φ↑ = | ↑〉 ⊗ |χ〉 and Φ↓ = | ↓〉 ⊗ |χ〉, where χ contains
the information about material details, such as the boundary conditions. Project-
ing the Hamiltonian given by Eq. (2.5) onto the subspace defined by the basis
[Φ↑, Φ↓], one arrives at the effective surface Hamiltonian [Zhang et al., 2009a; Fu,
2009; Liu et al., 2010]

HS = C̃0 + C̃2k2
‖ + vF(σxky − σykx) +

λ

2
(k3

+ + k3
−)σz. (2.26)

The first two terms account for particle-hole asymmetry and the third gives the
linear Dirac spectrum. The last term is a cubic warping term and describes devia-
tions from linearity. As before, k2

‖ = k2
x + k2

y and k± = kx ± iky. This Hamiltonian

is time-reversal symmetric, i.e., T −1HS(k‖)T = HS(−k‖). The states at ±k‖ are
Kramers partners, i.e., connected by time-reversal symmetry. Therefore, as long
as time-reversal symmetry is preserved, backscattering between states with op-
posite momenta is forbidden. The energy dispersion of the surface electrons is
given by

E± = C̃0 + C̃2k2
‖ ±

√
v2

Fk2
‖ + λ2k6

‖ cos2(3φ) (2.27)

and the surface states can be written as

Ψ± =
1√
N±

(
ivFk‖e−iφ

±E− λk3
‖ cos(3φ)

)
(2.28)

where E = E+ and N± = v2
Fk2
‖ +

(
±E− λk3

‖ cos(3φ)
)2

the normalization con-

stant. For the particle-hole symmetric case without warping, i.e., for C̃0 = C̃2 =
λ = 0, this reduces to a perfectly linear dispersion and the spin structure of the
previous result given by Eqs. (2.23) and (2.24).
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Figure 2.5: Dirac cone and spin structure of the surface states. (a) λ = 0, i.e., perfectly
linear dispersion: Red arrows indicate the spin orientation which is purely
in-plane and locked perpendicular to momentum. (b) λ > 0, i.e., includ-
ing hexagonal warping: The constant energy contours acquire a hexagonal
shape with stronger warping for larger energies. The red and blue shading
illustrates the spin z-component which is tilted in and out of the plane due
to warping.

Let us now look at the surface states more closely when including warping. The
spin polarization in k-space is easily obtained,

〈Ψ+|σx|Ψ+〉 =
2vFk‖ sin φ

N+

(
E− λk3

‖ cos(3φ)
)

(2.29)

〈Ψ+|σy|Ψ+〉 = −
2vFk‖ cos φ

N+

(
E− λk3

‖ cos(3φ)
)

(2.30)

〈Ψ+|σz|Ψ+〉 =
2λk3

‖ cos(3φ)

N+

(
E− λk3

‖ cos(3φ)
)

. (2.31)

In the absence of warping, λ = 0, the spin structure is purely in-plane and spin
and momentum are locked perpendicular to each other. This case is illustrated
in Fig. 2.5 (a) neglecting particle-hole asymmetry. We see how the spin rotates
around the Dirac cone. Finite λ induces hexagonal warping in the constant en-
ergy contours which becomes more pronounced with increasing energy. For fi-
nite warping the spins acquire a component along the z-direction perpendicular
to the surface. While rotating around the constant energy contour, the spins now
tilt alternatingly in and out of plane as illustrated by the red and blue shading
in Fig. 2.5 (b).
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2.2 photogalvanic effects

With this knowledge about the surface and bulk states of Bi2Se3, we can continue
to study the photocurrent response of TIs. In the following section, we will dis-
cuss the photocurrent generation based on the photogalvanic effect and see how
the photocurrent response is restricted by the crystal symmetries of Bi2Se3.

2.2 photogalvanic effects

A finite photocurrent on the surface of a TI requires an excited carrier distri-
bution which is asymmetric in momentum space. Phenomenologically this re-
sults from the low spatial symmetry of the crystal surface and can be explained
within the framework of the photogalvanic effects that describe the direct current
response of a homogeneous medium under uniform illumination.

Phenomena belonging to the class of photogalvanic effects (PGE) were first pre-
dicted and observed more than 40 years ago [for a review see, e.g., Belinicher
and Sturman [1980]; Sturman and Fridkin [1992]; Ivchenko and Pikus [1997]].
One usually distinguishes between the circular PGE (CPGE), where the induced
photocurrent changes sign when the helicity of the light is switched between left-
and right-circular polarization, and the linear PGE (LPGE) that is independent
of the light’s helicity. The generation of a direct current by the CPGE or LPGE
is based on asymmetric excitation or relaxation processes in the system and can
only occur in media with sufficiently low spatial symmetry. Due to the intrinsic
asymmetry, however, a photocurrent can be generated without the application of
additional external fields. Another effect belonging to this class is the so-called
photon drag effect, where the current is driven by transfer of momentum from
the photons to the electrons.

The PGEs have been studied extensively in semiconductors and semiconductor
quantum wells (QWs). Especially the CPGE has proved to be a powerful tool for
studying non-equilibrium processes in semiconductor QWs revealing informa-
tion about the relaxation dynamics of excited electrons, the spin splitting of the
band structure, or the symmetry of the crystal [for a review see, e.g., Ganichev
and Prettl [2003]; Ivchenko and Ganichev [2008]]. Photocurrents can be gener-
ated in QW structures where spin degeneracy is broken due to k-linear terms
in the Hamiltonian, e.g., due to bulk inversion asymmetry or structural inver-
sion asymmetry. In 3D TIs we expect that effects such as the CPGE or LPGE
can induce photocurrents at the surface where the bulk inversion symmetry is
broken.
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The leading order dc electric current response to an oscillating electric field is of
second order in the electric field amplitude and can be written as

jλ = σλµνEµ(ω)E∗ν(ω), (2.32)

where we imply Einstein’s summation convention. σλµν is the (third-rank) pho-
tocurrent conductivity tensor and Eβ(ω) = E∗β(−ω) is the complex electric field
amplitude, with the real oscillating electric field given by E(t) = E(ω)eiωt +
E∗(ω)e−iωt. Under spatial inversion, the product of the electric-field components
remains invariant, i.e., Eµ(ω)E∗ν(ω) → Eµ(ω)E∗ν(ω), while the current changes
sign, i.e., jλ → −jλ. Any tensor describing a physical property of a system should
be invariant with respect to its symmetry operations. Thus for an inversion sym-
metric system, σλµν should be invariant under spatial inversion. For odd-rank
tensors, however, inversion symmetry leads to σλµν → −σλµν. Thus σλµν has to
vanish for inversion symmetric systems. Since the bulk of the 3D TI Bi2Se3 is in-
version symmetric, a photocurrent response described by Eq. (2.32) can only be
induced at the surface of the TI. The current jλ, of course, has to be real so that
σλµν = σ∗λνµ. This tells us that the real part of σλµν is symmetric and the imagi-
nary part is antisymmetric in the last two indices. Making use of this property,
we can write the photocurrent response (2.32) as

jλ =
i
2

Im[σλµν](EµE∗ν − EνE∗µ) +
1
2

Re[σλµν](EµE∗ν + E∗µEν). (2.33)

The first term can be written as a cross product such that we get [Ganichev and
Prettl, 2003]

jλ = γλµi(E× E∗)µ + χλµν(EµE∗ν + E∗µEν). (2.34)

γ is related to the imaginary part of the tensor σλµν and χλµν = 1
2 Re[σλµν]

is symmetric in the last two indices, χλµν = χλνµ. In addition to these two
contributions, the second order current response also includes a photon-drag
current proportional to the photon momentum q. The tensor σλµν = σλµν(q)
could depend on q, σλµν(q) = σλµν(0) + Tλδµνqδ, where T is a fourth-rank ten-
sor. This includes the photon-drag contribution jλ(q) = TλδµνqδEµE∗ν . Since T is
a fourth-rank tensor, this contribution to the photocurrent is allowed in inver-
sion symmetric systems such as bulk Bi2Se3. Microscopically, the photon drag
effect originates from the photoexcitation from an initial state Ψi(k0) to a fi-
nal state Ψ f (k0 + q) ≈ Ψ f (k0) +

q
k0

Ψ′f , assuming q
k0
� 1. If vertical transitions,

Ψi(k0)→ Ψ f (k0), induce a finite photocurrent, the contribution from the photon
drag effect is expected to be small. The main interest of this thesis is therefore in
the contributions in Eq. (2.34) and we will neglect the photon drag effect from
here on. Although we have established that the current given by Eq. (2.34) van-
ishes in inversion symmetric systems, there can, of course, be terms of higher
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2.2 photogalvanic effects

order in the electric field and independent of the photon momentum even in
inversion symmetric systems. To leading order, however, the photocurrent re-
sponse to an oscillating electric field is given by Eq. (2.34) [Ganichev and Prettl,
2003].

2.2.1 Symmetry analysis of CPGE and LPGE

We now want to study Eq. (2.34) in more detail. The first term vanishes for
linearly polarized light and describes the CPGE. This term changes sign when
switching between left- and right-circular polarization. The second term is inde-
pendent of the helicity of the light and describes the LPGE. The photocurrent
response to polarized light is restricted by the symmetry properties of the given
system and we have already discussed that the CPGE and LPGE vanish in in-
version symmetric systems. When studying the photocurrent on the surface of a
3D TI such as Bi2Se3, the tensors γ and χ have to be invariant under the surface
crystal symmetry operations. In the previous section we have seen that the (111)
surface of Bi2Se3 exhibits three-fold rotational symmetry about the z-axis and is
mirror symmetric about the yz-plane. Starting with γ, we can see by looking at
Eqs. (2.33) and (2.34) that γ is actually a pseudotensor. Since γ has to be invariant
under the described symmetry operations, the pseudotensor has to obey

γ = RγRT (2.35)

γ = −MγMT, (2.36)

where

R =

cos
(2π

3

)
− sin

(2π
3

)
0

sin
(2π

3

)
cos

(2π
3

)
0

0 0 1

 (2.37)

describes the rotation by a multiple of angle 2π/3 around the z-axis and

M =

−1 0 0
0 1 0
0 0 1

 (2.38)

describes the reflection about the yz-plane. Evaluating Eq. (2.35) and Eq. (2.36),
ones find that γ has only two nonzero elements, i.e., γxy = −γyx = γ. The
photocurrent from the CPGE thus simplifies to

jCPGE = iγ
[
(EzE∗x − ExE∗z )x̂− (EyE∗z − EzE∗y)ŷ

]
. (2.39)
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We can already see that the CPGE response of the Bi2Se3 surface vanishes for
normally incident light, i.e., for Ez = 0.

We now turn to the second term in Eq. (2.34). As for γ, the crystal symmetry
only allows some elements of χ to be nonzero. The surface crystal symmetry
operations T, i.e., rotation by 2πn/3 and reflection about the yz-plane, imply

χpqr = TplTqmTrnχlmn. (2.40)

Remembering that χ is symmetric in the last two indices, one finds that χ only
has four independent elements given by χyyy = −χyxx = −χxxy = −χxyx, χzyy =
χzxx, χyyz = χyzy = χxxz = χxzx, and χzzz. All other elements vanish. The surface
current from the LPGE then becomes2

jx = −2χyyy

(
ExE∗y + EyE∗x

)
+ 2χyyz

(
ExE∗z + EzE∗x

)
, (2.41)

jy = 2χyyy

(∣∣Ey
∣∣2 − |Ex|2

)
+ 2χyyz

(
EzE∗y + EyE∗z

)
. (2.42)

2.2.2 CPGE and LPGE for arbitrary polarization of light

For light of arbitrary polarization, generated by a λ/4 waveplate [see App. A],
and incident onto the surface with wavevector

q = −q

sin θ cos ϕ

sin θ sin ϕ

cos θ

 (2.43)

in terms of the polar angle θ and the azimuthal angle ϕ, the electric field can be
written as

E(t) = E0

2
e−iωt+iqr

−i sin 2α sin ϕ + (1− i cos 2α) cos θ cos ϕ

i sin 2α cos ϕ + (1− i cos 2α) cos θ sin ϕ

−(1− i cos 2α) sin θ

+ c.c, (2.44)

where c.c denotes complex conjugation. α describes the polarization state (P-
linear polarization: α = 0; left-circular: α = π/4; P-linear: α = π/2; right-circular:
α = 3π/4).

2 If the crystal axes do not coincide with the coordinate system used to describe the electric field
components, i.e., if the two coordinate systems are oriented at an unknown angle β, one has to
rotate χ by β before inserting it into Eq. (2.34). The presented currents are obtained for β = 0.

28



2.2 photogalvanic effects

Inserting Eq. (2.44) into Eq. (2.39), the photocurrent from the CPGE becomes

jCPGE ∼ sin 2α sin θ

(
− sin ϕ

cos ϕ.

)
(2.45)

We see that the current changes sign when switching between left-circular (α =
π/4) and right-circular (α = 3π/4) polarized light. An important result of
Eq. (2.45) is that jCPGE always flows perpendicular to the plane of incidence
of the light.

For the LPGE we find the following contributions for light of arbitrary polariza-
tion parametrized by α:

jLPGE = jLPGE,1 sin 4α + jLPGE,2 cos 4α + jLPGE,3, (2.46)

where the direction and magnitude of jLPGE,i depend on the angle of incidence
of the light. We see that the contribution to the current originating from the
LPGE does not change sign when switching the light’s helicity between left-
circular (α = π/4) and right-circular (α = 3π/4) polarization, i.e., is helicity-
independent, and can in general flow in any direction.

In combination, the photocurrent from the CPGE and LPGE perpendicular to
the plane of incidence of the light can thus in general be written as

j⊥ = C sin 2α + L1 sin 4α + L2 cos 4α + D. (2.47)

This dependence of the surface photocurrent on the light polarization has been
experimentally observed in Bi2Se3 [McIver et al., 2012] and will be the focus of
Chap. 3. The coefficient C denotes the helicity-dependent contribution from the
CPGE and is proportional to the tensor-element γ [cf. Eq. 2.39]. The helicity-
independent contributions L1, L2, and D originate from the LPGE and thus de-
pend on the non-vanishing elements of χ. Note that the polarization dependence
is not unique in the sense that higher-order contributions to the photocurrent,
e.g., from the photon-drag effect, can give similar terms.

2.2.3 Microscopic origin of the CPGE

It is well known that circularly polarized light can induce a spin-polarized ex-
cited carrier distribution in semiconductor systems due to angular momentum
selection rules. The sign of the spin polarization then depends on the helicity of
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the light. In the spin-helical surface states, any spin-polarized distribution is also
asymmetric in momentum space and would carry a net current.

Microscopically, the CPGE occurs due to asymmetric excitation or relaxation pro-
cesses, as mentioned above. Within the basic mechanism of photocurrent gener-
ation, light excites electrons asymmetrically in momentum space. In this section
we explain the principle of how such asymmetric excitations using circularly po-
larized light can occur in spin-helical materials based on the model Hamiltonian
of the (111) surface of Bi2Se3. While the CPGE in spin-helical systems can be mo-
tivated by the following argument, the LPGE usually has more complex origin
and depends on the detailed system parameters as indicated by Eq. (2.46).

As seen in Chap. 2, the simplest Hamiltonian for a surface in the xy-plane can
be written as [Liu et al., 2010]

H = vF(kyσx − kxσy), (2.48)

where vF is the Fermi velocity, ki the in-plane momentum and σi describes the
electron spin. This Hamiltonian describes linearly dispersing states with an in-
plane spin structure locked perpendicular to momentum.

To leading order, the interaction between the surface electrons and light is de-
scribed by minimal coupling k→ k− e

h̄ A, where A is the vector potential of the
light and q the photon momentum. For normally incident left circularly polar-
ized light, adopting the convention to determine the handedness by looking in
the direction of propagation of the light, the vector potential is given by

A = A0

(
cos(qz−ωt)
− sin(qz−ωt)

)
, (2.49)

such that the interaction Hamiltonian can be written as

Hint = −
evF

h̄
(Ayσx − Axσy)

= −A0evF

2h̄

{
−ieiωt−iqz(σx − iσy) + ie−iωt−iqz(σx + iσy)

}
. (2.50)

The first term in Eq. (2.50) describes the emission and the second the absorption
of a photon. Changing the helicity of the light, i.e., taking ω → −ω, interchanges
the two terms. We see that the interaction with the light is described by spin rais-
ing and lowering operators reflecting that the light’s spin angular momentum is
quantized along the z-direction, i.e., along q. If we vary the angle of incidence
of the light, the quantization axis rotates accordingly. Spin-selection rules thus
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Figure 2.6: While left circularly polarized light preferentially induces transitions from
spin-down states to spin-up states but not from spin-up to spin-down, the
effect of right circularly polarized light is exactly opposite. For electrons that
have opposite spin at opposite momenta this mechanism might lead to exci-
tations which are asymmetric in momentum space.

require that circularly polarized light preferentially couples to spins that are ei-
ther aligned or anti-aligned to its wavevector, depending on helicity. The effect of
the interaction with normally incident circularly polarized light is schematically
illustrated in Fig. 2.6. This suggests that for a helical spin structure with spin-
momentum locking, as exhibited by the surface electrons of TIs such as Bi2Se3,
circularly polarized light can excite surface electrons asymmetrically around the
Dirac cone and thereby induce a net electric current. Changing the helicity of the
light would then change the direction of the current.

This expectation is actually not borne out by the simple model described by
Eqs. (2.48) and (2.50). The spin structure of the surface electrons is completely
in-plane while the interaction only contains spin raising or lowering operators
in the z-direction, i.e., perpendicular to the surface. The light will thus excite
carriers symmetrically in momentum space, producing no net current. This can
also be seen from symmetry considerations. The Hamiltonian (2.48) is rotation-
ally symmetric about the z-axis and normally incident circularly polarized light
does not break this rotational symmetry. Therefore there is no preferred direc-
tion for current flow and no net charge current. This result is also in agreement
with the symmetry analysis of the previous sections. In Eq. (2.39) we found that
a finite z-component of the light field is needed to induce a helicity-dependent
photocurrent but the vector potential given by Eq. (2.49) only has in-plane com-
ponents.

Shining light onto the TI surface at a finite oblique angle breaks the rotational
symmetry of the system as seen in Eq. (2.39). Moreover, there are many correc-
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tions to the Hamiltonian (2.48), such as hexagonal warping which tilts the spin
out of the plane. The z-component of the electron spin has opposite signs for
states at ±k and for positive and negative energies [Fu, 2009; Zhang et al., 2010a;
Wang et al., 2011].

As we will review in the following section, photocurrents have indeed been
observed on the surface of Bi2Se3.
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3
P H O T O C U R R E N T E X P E R I M E N T S O N T O P O L O G I C A L
I N S U L AT O R S

As explained in the previous chapter, inversion symmetry is broken at the sur-
face of a 3D TI and one expects a photocurrent response when the surface is
illuminated by light. Microscopically, circularly polarized light should excite
the spin-helical surface electrons asymmetrically in momentum space leading
to a net helicity-dependent photocurrent. Helicity-independent currents could
be generated by the LPGE. By the spin-momentum locking, a charge current
flowing on the surface would be spin polarized which makes TIs interesting
materials for spintronic applications.

When studying transport properties of 3D TIs in experiment one is frequently
confronted with the problem that Bi2Se3 is naturally n-type with a Fermi level
in the bulk conduction band. Transport signatures are thus dominated by bulk
contributions masking the topological surface states [Taskin and Ando, 2009;
Checkelsky et al., 2009; Peng et al., 2010; Analytis et al., 2010]. Photocurrents
that originate from the intrinsic asymmetry near the surface of a 3D TI might
therefore prove to be a valuable tool.

In the experimental search for photocurrents in TIs, a large CPGE was first ob-
served in HgTe quantum wells where the structural inversion asymmetry leads
to strong Rashba spin-orbit coupling [Wittmann et al., 2010]. The first experi-
ment to measure a helicity-dependent photocurrent on the surface of a 3D TI
was performed in 2011 by the Gedik group at MIT [McIver et al., 2012], motivat-
ing further experiments on photocurrents in TIs [Kastl et al., 2012; Duan et al.,
2014; Kastl et al., 2015a,b]. Due to its importance to this thesis and its comprehen-
sive analysis, we will review the experiment performed by McIver et al. [2012]
in detail in the following section.
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(a) (b)

Figure 3.1: (a) Schematic illustration of the experimental setup. Bi2Se3 is illuminated by
light at an arbitrary angle of incidence and the current is measured along the
y-direction. (b) AFM image of a 120 nm thick Bi2Se3 device in a two-terminal
geometry. Reprinted with permission from [McIver et al., 2012]. Copyright
2011 by Nature Publishing Group.

3.1 experimental evidence of surface photocurrents in bi2se3

All the results and figures presented in this section were obtained by McIver
et al. [2012].

3.1.1 Set-up and sample details

In their experiment McIver et al. [2012] measured photocurrents on the surface
of unbiased Bi2Se3 devices. The general setup and an AFM image of a typical
sample are illustrated in Fig. 3.1. The measurement was done in a two-terminal
setup where the current is measured only along the y-direction while varying
the laser polarization as well as the angle of incidence. Typical sample sizes were
3.5 µm in width (along x), 5 µm in length (along y), and 120 nm in thickness.
As mentioned in Sec. 2.1, the surface states of Bi2Se3 extend ∼ 2 nm into the
bulk, which means that coupling between surfaces can be neglected. Magneto-
transport measurements at low temperatures (4 K) show that the samples were
electron doped with a bulk carrier density of n ∼ 2 · 1017 cm−3 and a bulk carrier
mobility of µ ∼ 6000− 8000 cm2/Vs.
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Figure 3.2: (a) When the laser spot is located directly at the sample center at y = 0, laser
heating is isotropic excluding possible thermoelectric currents due to heat
gradients. (b) The current for the laser spot at y = 0 exhibits the linear de-
pendence on the light’s intensity characteristic of a photocurrent. Reprinted
with permission from [McIver et al., 2012]. Copyright 2011 by Nature Pub-
lishing Group.

3.1.2 Excluding thermoelectric effects

To induce the photocurrent a 795 nm (1.56 eV) laser was used. The spot size of
100 µm covered the entire sample. Since Bi2Se3 is well known as a good thermo-
electric material, a thermoelectric current due to laser heating might mask the
intrinsic photocurrent response. In order to rule out thermoelectric contributions
to the current, the center of the laser spot was placed directly at the sample cen-
ter at y = 0 so that laser heating should be isotropic [see Fig. 3.2 (a)]. The authors
measured the dependence of the resulting current as function of laser intensity
as illustrated in Fig. 3.2 (b). Using low laser intensities to minimize laser heating,
the current exhibited a linear dependence on the laser intensity which is charac-
teristic of a photocurrent response. At high intensities ∼ 1 kW/cm2, strong de-
viations from linearity were observed. Systematic photocurrent measurements
were thus conducted in the low-intensity regime with I = 60 W/cm2.
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(a) (b)

(c)

Figure 3.3: Measured photocurrent for various angles of incidence for (a) light obliquely
incident perpendicular to the measurement direction, (b) parallel to the
measurement direction, and (c) for normal incidence. A significant helicity-
dependent contribution to the current is only be measured when light is
obliquely incident perpendicular to the measurement direction. Reprinted
with permission from [McIver et al., 2012]. Copyright 2011 by Nature Pub-
lishing Group.
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3.1.3 Results and interpretation

The measured laser induced photocurrent response consists of four contribu-
tions [cf. Eq. (2.47)]:

jy(α) = C sin 2α + L1 sin 4α + L2 cos 4α + D. (3.1)

The coefficients C, L1, L2, and D were determined by a fits to the measurement.
The angle α describes the degree of polarization [cf. Eq. (2.44)] (P-linearly polar-
ized: α = 0: left-circular: α = π/4; P-linear: α = π/2; right-circular: α = 3π/4).
This polarization dependence of the measured photocurrent is consistent with
the symmetry analysis in the previous chapter given by Eqs. (2.45) and (2.46).
C can thus be identified as the helicity-dependent component of the current, as
this contribution changes sign with helicity and vanishes for linear polarization.
The contribution L1 vanishes for circularly polarized light and the contribution
L2 is the same for left- or right-circularly polarized light. The contributions L1
and L2 are thus both helicity-independent while the contribution D is completely
polarization independent.

The magnitude of the various contributions strongly depends on the angle of
incidence of the laser. The results are illustrated in Fig. 3.3 for three different
angles of incidence. For oblique incidence in the xz-plane [Fig. 3.3 (a)] the pho-
tocurrent has a finite helicity-dependent contribution. C, L1, and L2 are of the
same order of magnitude and the polarization independent background D is
approximately two orders of magnitude larger. For oblique incidence in the yz-
plane [Fig. 3.3 (b)] the photocurrent is reduced and the helicity-dependent con-
tribution becomes negligible. For normal incidence [Fig. 3.3 (c)] the photocurrent
is reduced even further and there is no helicity-dependent contribution.

The helicity dependence in combination with the strong dependence on the an-
gle of incidence, indicates that the photocurrent proportional to C originates
from the surface states. The dependence of the helicity-dependent photocurrent
on the angle of incidence is in complete agreement with the symmetry analysis
given by Eq. (2.45). The helicity-dependent contribution C vanishes for normal
incidence and flows perpendicular to the plane of incidence, i.e., C vanishes
when light is incident in the yz-plane parallel to the measurement direction.

This behavior of the helicity-dependent contribution can also be understood
from a microscopic point of view. Surface state electrons in 3D TIs at oppo-
site momenta have opposite spin. Circular polarized light interacts preferably
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with spins that are either parallel or antiparallel to the wavevector of the light
depending on the helicity [Meier and Zakharchenya, 1984] [cf. Sec. 2.2.3]. This
means that left circularly polarized light preferably excites electrons at, say, +k
but not at −k, creating asymmetric excitations in momentum space. Changing
the helicity of the light would then preferably excite electrons at −k but not at
+k creating a current that flows in the opposite direction. In total this would
lead to a helicity-dependent current which agrees with the observations. In ad-
dition, we know that electron spin and momentum are locked perpendicular to
each other and that the spins lie mostly in-plane. Circularly polarized light in-
cident in the xz-plane preferably couples to spins that also lie in the xz-plane.
Due to spin-momentum locking this would create a helicity-dependent current
along the y-direction, in agreement with the results of Fig. 3.3 (a). Circularly
polarized light incident in the yz-plane would induce a helicity-dependent cur-
rent along the x-direction. Since the experimental setup only captures current
flowing along the y-direction, there should be no helicity-dependent contribu-
tion, in agreement with the experiment. Last, for normal incidence of the laser,
electrons with spin along the z-direction would be preferably excited. Since the
spin-structure is, however, mostly in-plane, normal incidence would lead to exci-
tations that are isotropic in momentum space [cf. Sec. 2.2.3]. Even with warping
which tilts the spins out of plane, the spin structure has a trigonal symmetry
around the Dirac cone, due to the rotational symmetry of the crystal surface [cf.
Fig. 2.1]. Excitations would reflect this symmetric in momentum space, which
precludes a finite charge current. Thus for normal incidence there should indeed
be no helicity-dependent photocurrent.

The observed helicity-dependent photocurrent C is therefore in agreement with
a surface-state origin. We have, however, not yet discussed whether such a contri-
bution can also originate from the bulk. Naively, the helicity-dependent contribu-
tion cannot have bulk origin, since the bulk of Bi2Se3 is inversion symmetric and
a CPGE is not allowed. The crystal exhibits inversion symmetry, the bulk states
are spin-degenerate, and thus cannot induce a helicity-dependent photocurrent.
Real Bi2Se3 samples, however, experience band bending near the surface when
being exposed to the environment after cleaving, leading to the formation of
a two-dimensional electron gas (2DEG) at the inversion layer [Xia et al., 2009;
Hsieh et al., 2009a; Bianchi et al., 2010]. This 2DEG coexists with the Dirac cone
near the surface. The resulting electric field in the inversion layer induces Rashba
spin-splitting [Xia et al., 2009; Bianchi et al., 2010] and spin-split QW states can
also induce a CPGE [Ganichev and Prettl, 2003]. McIver et al. [2012] argue that
the measured response is unlikely to originate from the 2DEG. ARPES measure-
ments of the band structure were performed after cleaving in UHV and several
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Figure 3.4: (a) Temperature dependence of the various contributions to the photocur-
rent. Inset: optical absorptivity of P-polarized light at oblique incidence as a
function of temperature. (b) Dependence of the change in absorptivity as a
function of light polarization measured at room temperature. Reprinted with
permission from [McIver et al., 2012]. Copyright 2011 by Nature Publishing
Group.

hours later at room temperature and no evidence for Rashba split bands was
found. Even though the device fabrication might induce additional electron dop-
ing, the helicity-dependent photocurrent response from the Rashba split bands
is expected to be small [Yazyev et al., 2010]. The reason is that, in contrast to the
helical Dirac surface states, the 2DEG has two Fermi surfaces with opposite spin
polarizations. Electrons that have the same spin can propagate in opposite direc-
tions and thus there is a cancellation effect between left and right movers. For
Rashba SOC αh̄(k× σ)z, the current would be proportional to the SOC coupling
strength α. For the Dirac surface states, in contrast, the current would be propor-
tional to the Fermi velocity vF. Since one expects α � vF [Xia et al., 2009; Chen
et al., 2009], the only way the CPGE from the 2DEG could dominate the response
is if the inversion layer protrudes far into the bulk. An estimate of the inversion
layer depth from the bulk carrier density, average effective mass and dielectric
constant lead to penetration lengths of the inversion layer that are similar to the
penetration lengths of the surface states and McIver et al. [2012] conclude that
the CPGE from the surface states is expected to dominate the response.

The magnitude of the photocurrent is actually temperature dependent since the
transition probability is affected by the thermal broadening of the interband tran-
sitions based on electron-phonon interactions [Lautenschlager et al., 1987] and
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by the broadening of the Fermi distribution function. To analyze the origin of
the other contributions L1, L2, and D to the photocurrent, the temperature de-
pendence of the various components was studied. The results are illustrated in
Fig. 3.4 (a). The similar behavior of C and L1 indicate that L1 may also have
surface-state origin. L2 and D show a similar temperature dependence, but the
behavior differs from that of C and L1. Thus L2 and D probably share the same
origin. This is further corroborated by analyzing the dependence of the absorp-
tivity on photon polarization. Fig. 3.2 (b) shows that the absorptivity is well
fitted by L2/D cos 4α. Since the absorptivity is connected to the bulk index of
refraction [Hecht, 1998], L2 and D are concluded to have bulk origin.

3.2 summary

In their experiment McIver et al. [2012] measured surface photocurrents in the
3D TI Bi2Se3. They analyzed the polarization dependence of the current and
found a contribution that changes sign when switching between left- and right-
circular polarization. This helicity-dependent contribution to the photocurrent
vanishes when the laser is incident parallel to the measurement direction. The
polarization dependence of the current is consistent with the phenomenological
model of the CPGE discussed in Chap. 2 and a Dirac cone origin. Further ex-
perimental evidence of surface photocurrents on Bi2Se3 was obtained by Duan
et al. [2014]. Using a similar experimental setup as discussed above, Duan et al.
[2014] reported the observation of a helicity-dependent photocurrent response
with Dirac cone origin.

Since both experiments used photon energies larger than the bulk band gap, a
Dirac cone origin of the contributions C and L1 implies that these photocurrents
are generated by transitions between surface and bulk states, i.e., excitations
from the bulk valence band into the surface Dirac cone or from the Dirac cone
into the bulk conduction band. Since L2 and D are concluded to have bulk origin,
they should be generated by transitions from the bulk valence band into the bulk
conduction band. The LPGE, however, vanishes in the inversion symmetric bulk
and thus L2 and D are probably generated by higher-order processes, such as the
photon-drag effect. C and L1, on the other hand, can originate from the CPGE
and LPGE, respectively.

In order to understand the microscopic origin of C and L1, in Chap. 5 we the-
oretically study the photocurrent generation in the regime where the photon
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energy exceeds the band gap and consider transitions that involve the surface
Dirac cone. This analysis is, however, analytically involved and in Chap. 4 we
will therefore first consider the regime where excitations take place within the
Dirac cone. The band gap of Bi2Se3 is large, ∼ 300 meV, and for a Fermi level
near the Dirac point THz radiation would excite electrons from the lower to the
upper part of the Dirac cone. CPGE and LPGE are allowed and we expect a pho-
tocurrent response. Thus, before including the bulk states in Chap. 5, we give a
detailed analysis of photocurrent generation within a pure surface-state model
in the following chapter.
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4
P H O T O C U R R E N T R E S P O N S E O F T O P O L O G I C A L
I N S U L AT O R S U R FA C E S TAT E S

The helical nature of surface states is expected to lead to a rather unique pho-
tocurrent response to electromagnetic radiation [Raghu et al., 2010; Hosur, 2011;
Ganichev and Prettl, 2003]. In order to understand the microscopic processes
involved, we study the photocurrent generation within a minimal model of a TI
surface and focus on the current induced by asymmetric excitations in momen-
tum space [cf. Fig. 4.1 (a)].

The content and results of this chapter were previously published as [Junck et al.,
2013].

4.1 introduction

Our model is motivated by Bi2Se3, the 3D TI used in the experiment, and we fo-
cus on the surface states in this chapter. In the first part, we consider the interac-
tion with circularly polarized light before generalizing to arbitrary polarization
at the end of the chapter.

The surface crystal structure of Bi2Se3 exhibits trigonal rotational symmetry
which precludes a photocurrent response for normally incident circularly po-
larized light [cf. Chap. 2]. We therefore consider oblique incidence of the light
which breaks the rotational symmetry [cf. Fig. 4.1 (c)]. Microscopically, one then
expects that circularly polarized light leads to excitations that occur asymmetri-
cally in momentum space [cf. Sec. 2.2.3, Fig. 4.1 (a)] and thus to a photocurrent
response as experimentally observed by McIver et al. [2012].
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We find, however, that the photocurrent for the usual minimal coupling between
light and electrons, p→ p− eA, vanishes in a pure surface-state model even for
oblique incidence. While this may seem surprising, we show that a symmetry
analysis explains the vanishing photocurrent. Only when we include the small
Zeeman coupling between the surface-electron spin and the magnetic field of the
light do we find a photocurrent response in the pure surface-state model. The
leading contribution results from an interference between orbital and Zeeman
coupling and is helicity independent. We also find a helicity-dependent contri-
bution to the photocurrent as measured in the experiment and suggested by the
simple mechanism illustrated in Fig. 4.1 (a). This contribution is, however, very
small as it is quadratic in the Zeeman coupling.

The photocurrent response of the surface states of Bi2Se3 to circularly polarized
light has been studied previously. Hosur [2011] considered normal incidence
and included an in-plane magnetic field to break the rotational symmetry. He
found a leading order contribution to the photocurrent ∼ λB2, with warping
λ [Fu, 2009; Wang et al., 2011; Basak et al., 2011] and magnetic field B. We
find, however, that to the order considered by Hosur [2011], the photocurrent
actually vanishes. A finite photocurrent response for minimal coupling requires
additional perturbations to the Dirac spectrum such as a momentum-dependent
correction to the Fermi velocity [Fu, 2009].

4.2 perfect dirac cone

Before presenting the full analysis including the Zeeman coupling and the in-
plane magnetic field, we now first consider the perfect Dirac cone for obliquely
incident circularly polarized light. We choose the surface to lie in the xy-plane
and motivated by the (111) surface of Bi2Se3, we consider the model Hamilto-
nian [cf. Sec. 2.1]

H = vF(pxσy − pyσx), (4.1)

where vF is the Fermi velocity. The chemical potential and the energy h̄ω of
the incident radiation are tuned such that electrons are only excited within the
Dirac cone within the bulk band gap (Egap = 0.3 eV for Bi2Se3 [Xia et al., 2009;
Zhang et al., 2009a]) [cf. Fig. 2.3]. This Hamiltonian is particle-hole symmetric,
H|p,±〉 = ±E|p,±〉, with

E = vF p. (4.2)
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Figure 4.1: (a) Basic principle for the generation of a helicity-dependent photocurrent (cf.
Fig. 2.6). The spin direction is indicated by dark red arrows and filled and
empty circles indicate electrons and holes, respectively. Circularly polarized
light leads to spin-dependent transitions and electrons are excited asymmetri-
cal in momentum space. (b) Illustration of the warping effect on the constant
energy contours. Lighter colors/shades correspond to larger absolute values
of energy. The in-plane spin orientation is again indicated by dark red arrows,
circles with +(−) indicate positive (negative) spin z-component. (c) Illustra-
tion of the orientation of the surface, the direction of the incident light q, and
the resulting main contribution to the current j.

We consider left-circularly polarized light obliquely incident onto the sample as
illustrated in Fig. 4.1 (c),

A(t) =
A0

2
e−iωt+iqr

 cos ϕ + i cos θ sin ϕ

− sin ϕ + i cos θ cos ϕ

i sin θ

+ c.c, (4.3)

with polar angle θ ε [0, π/2] and the azimuthal angle ϕ defined from the negative
y-axis, such that light is incident in the yz-plane for ϕ = 0, i.e., a mirror plane of
the sample. The direction of propagation of the light q is given by

q̂ =

sin θ sin ϕ

sin θ cos ϕ

− cos θ

 . (4.4)
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For ϕ = 0, q lies in the yz-plane at an angle θ from the positive z-axis, such
that q̂ = sin θ ŷ− cos θ ẑ [see Fig. 4.1]. The interaction Hamiltonian for minimal
coupling between light and electrons, p→ p− eA, is then given by

H′ = −e
∂H
∂p
· A. (4.5)

The contributions of the vector potential ∝ e±iωt lead to the emission and absorp-
tion of photons, respectively. In order to distinguish these processes we write
the interaction Hamiltonian as H′ = H′+ + H′− with H′± ∝ A± = A0e±iωt corre-
sponding to the recombination (H+) and creation (H−) of electron-hole pairs by
emission and absorption of photons.

4.2.1 Derivation of the photocurrent density

For a system without spin degeneracy the current density in two dimensions
can be written as

j = −e ∑
β=±

∑
p

vp,β(np,β − n0
p,β), (4.6)

where ± denotes the positive- and negative-energy band, respectively, np,β (n0
p,β)

is the distribution function (equilibrium distribution function) of momentum
state p in band β, and vp,β is the velocity of a particle in state p in band β.
The expression for the current given by Eq. (4.6) only contains deviations from
equilibrium np − n0

p since filled bands do not carry a net charge current. We can
determine the out-of-equilibrium distribution np,± by studying the Boltzmann
equation

dnp,±
dt

= ±Γ|p,−〉→|p,+〉(n
0
p,− − n0

p,+) + Irelax

[
np,±

]
, (4.7)

where we consider vertical transitions in momentum space as usual, i.e., we
neglect the photon momentum. Here Γ is the transition rate from state |p,−〉 in
the lower band to state |p,+〉 in the upper band, i.e., it describes processes that
fill the state |p,+〉. Irelax

[
np,±

]
is a collision integral that describes relaxation

of particles in state |p,±〉 and that in general can be of complicated form. For
small deviations from equilibrium, however, we can apply the relaxation time
approximation. Assuming that momentum relaxation occurs on a much faster
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timescale than energy relaxation and that electrons and holes relax at the same
rate, the collision integral becomes

Irelax

[
np,±

]
= −

np,± − n0
p,±

τp
, (4.8)

where τp is the momentum relaxation time. The steady-state solution of the
Boltzmann equation in relaxation time approximation thus gives

np,± − n0
p,± = ±τp Γ|p,−〉→|p,+〉(n

0
p,− − n0

p,+). (4.9)

The transition rate Γ can be calculated using Fermi’s Golden Rule. For T =
0, the equilibrium distribution functions become Heaviside stepfunctions and
(n0

p,− − n0
p,+) in Eq. (4.9) is only nonzero if the state |p,−〉 is occupied and the

state |p,+〉 is unoccupied. This implies that the chemical potential has to lie
between the energies of the two states participating in the transition [cf. Fig. 4.1]
which gives a condition for the minimum photon energy required to induce
transitions.

Assuming h̄ω/2 > |µ| for the photon energy with µ measured from the Dirac
point, the current density becomes

j = −4πeτp

h̄ ∑
p

vp,+|〈p,+|H′−|p,−〉|2δ(2E− h̄ω), (4.10)

where we used that vp,+ = −vp,− and Ep,+ = −Ep,− = E due to particle-hole
symmetry.

4.2.2 Vanishing photocurrent response

Using Eqs. (4.1)-(4.5) the photocurrent density given by Eq. (4.10) can be evalu-
ated in a straightforward manner leading to

j ∝
∫ 2π

0
dφ

(
cos φ

sin φ

) ∣∣Ax sin φ− Ay cos φ
∣∣2 = 0, (4.11)

where tan φ = py/px and Ax,y are the in-plane components of the vector po-
tential. Thus, the photocurrent from the CPGE and LPGE vanishes for arbitrary
angles of incidence.
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The surprising result that even for oblique incidence circularly polarized light
does not lead to a net photocurrent for orbital coupling, can be explained by the
symmetry of the problem. The symmetry analysis in Chap. 2 revealed that the
CPGE requires a nonzero z-component of the electric field, i.e.,

jCPGE = iγ
[
(EzE∗x − ExE∗z )x̂− (EyE∗z − EzE∗y)ŷ

]
. (4.12)

For the full rotational symmetry of the Dirac cone, the current from the LPGE
becomes [cf. Eq. (2.42)]

jLPGE = 2χyyz

(
ExE∗z + EzE∗x

)
x̂ + 2χyyz

(
EzE∗y + EyE∗z

)
ŷ, (4.13)

i.e., also requires a finite Ez. The interaction Hamiltonian in Eq. (4.5), H′ =
−evF(Axσy − Ayσx), however, does not contain any dependence on Az and by
E = −∂t A also no dependence on Ez.

Microscopically the Hamiltonian (4.1) is invariant under the unitary transforma-
tion

U = eiπ(L̂z+
1
2 σz), (4.14)

which describes a rotation of π about the z-axis in orbital and spin space. Under
this transformation we find

UHU † = H (4.15)

UH′U † = −H′ (4.16)

U ĵU † = U ∂H
∂p
U † = − ĵ. (4.17)

While the current changes sign, the right hand side of Eq. (4.10) remains invari-
ant under this transformation and we find j = −j. Thus the photocurrent has to
vanish.

4.3 perfect dirac cone with zeeman coupling

An electromagnetic wave, however, is not only described by an electric-field com-
ponent through E = −∂t A but also through a magnetic field given by ∇× A.
Considering the small Zeeman coupling between light and electron spin in ad-
dition to the minimal coupling, the interaction Hamiltonian becomes

H′ = −e
∂H
∂p
· A− gsµB(∇× A) · σ̂, (4.18)
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where gs is the spin g-factor, µB the Bohr magneton, σ̂ the vector of Pauli ma-
trices and H is given by Eq. (4.1). Usually one expects that the orbital coupling
is the dominant mechanism and that Zeeman coupling is strongly suppressed
with respect to the leading contribution. Quantitatively the relative magnitude
of Zeeman and orbital coupling can be estimated as ∼ h̄q/2mvF = h̄ω/2mvFc.
For a photon energy of h̄ω = 0.1 eV and a Fermi velocity of vF = 5 · 105 m/s [Liu
et al., 2010], this ratio is of order ∼ 10−5. Indeed orbital coupling is clearly the
dominant excitation process. As we have shown above, orbital coupling, how-
ever, leads to a vanishing photocurrent. We therefore include Zeeman coupling
into our analysis.

A straightforward evaluation of the photocurrent given by Eq. (4.10) with the
interaction Hamiltonian Eq. (4.18) leads to

jx ∝ ievF

(
B∗z Ay − Bz A∗y

)
− igsµB

(
BxB∗z − B∗x Bz

)
(4.19)

jy ∝ −ievF

(
B∗z Ax − Bz A∗x

)
− igsµB

(
ByB∗z − B∗y Bz

)
. (4.20)

Using the vector potential Eq. (4.3) we find a finite photocurrent that is given
by

j(0) =− Cv̄Z sin θ
(
ŷ′ − v̄Z x̂′

)
, (4.21)

where C =
e3E2

0vFτp

8ωh̄2 , v̄Z = gs h̄ω
2mcvF

, and x̂′, ŷ′ define a rotated coordinate system
such that A is incident in the y′z-plane [cf. Fig. 4.1 (c)]. Note that these two
contributions to the current along x̂′ and ŷ′, i.e., perpendicular and parallel to
the plane of incidence of the light, have very different polarization dependencies.
j(0)y′ is helicity independent and results from interference of orbital and Zeeman

coupling. j(0)x′ is purely induced by the Zeeman coupling, thus much smaller

than j(0)y′ , and helicity dependent. As we will see below, the helicity-independent

contribution j(0)y′ can also be generated by S-linearly polarized light, i.e., by light
which is linearly polarized perpendicular to the plane of incidence. The helicity-
dependent contribution j(0)x′ vanishes for linear polarization. Both contributions
to the current vanish for θ = 0, i.e., for normal incidence.

We can also estimate the currents given by Eq. (4.21) quantitatively. For a laser
power of 1 W/mm2 as well as the parameters g = gs = 1 and vZ = gs h̄ω

2mc =

29 m/s we find j(0)y′ ∼ 10 µA/m and j(0)x′ ∼ 1 nA/m for the current densities par-
allel and perpendicular to the plane of incidence, respectively. While for normal
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incidence the current completely vanishes, for oblique incidence the dominant
contribution is by far the helicity-independent current in the y′-direction since
v̄Z ∼ 10−5 [cf. Fig. 4.1].

4.3.1 Symmetry analysis

The photocurrent given by Eqs. (4.19)-(4.21) can be explained by the following
symmetry considerations. In Sec. 2.2 we discussed the symmetry properties of
the CPGE and LPGE which are quadratic in the electric field. The Zeeman cou-
pling is proportional to the photon momentum by B = ∇× A ∝ q and is thus
a photon drag contribution. Since we consider vertical transitions in momentum
space, we do not have to consider the full fourth-rank photon drag tensor (or
even fifth rank for terms of order ∼ q2) but can phenomenologically describe the
photocurrent response to the magnetic field analogously to the discussion of the
CPGE and LPGE in Sec. 2.2.1 Specifically the photocurrent response to first and
second order in the magnetic field can be written as

j(B)
λ = τ

(1)
λµν

(
EµB∗ν + E∗µBν

)
+ iτ(2)

λµν

(
EµB∗ν − E∗µBν

)
(4.22)

j(B2)
λ = γ

(B)
λµ i(B× B∗)µ + χ

(B)
λµν(BµB∗ν + B∗µBν), (4.23)

where τ(1,2) are real third-rank pseudotensors, γ(B) is a real second-rank pseu-
dotensor, and χ(B) is a real third-rank tensor. Under the surface crystal sym-
metry operations of Bi2Se3, i.e., three-fold rotational symmetry about the z-
axis and a mirror plane in the yz-plane, γ(B) and χ(B) transform exactly as
shown for the CPGE and LPGE in Sec. 2.2.1. For the pseudotensor τ(1,2) we
find four independent elements, τxxx = −τyyx = −τyxy = −τxyy, τxyz = −τyxz,
τxzy = −τyzx, and τzxy = −τzyx. Under full rotational symmetry we additionally
find τxxx = −τyyx = −τyxy = −τxyy = 0.

Thus under full rotational symmetry we find

j(B)
x =τ

(1)
xyz(EyB∗z + E∗y Bz) + iτ(2)

xyz(EyB∗z − E∗y Bz)

+ τ
(1)
xzy(EzB∗y + E∗z By) + iτ(2)

xzy(EzB∗y − E∗z By), (4.24)

j(B)
y =− τ

(1)
xyz (ExB∗z + E∗x Bz)− iτ(2)

xyz (ExB∗z − E∗x Bz)

− τ
(1)
xzy (EzB∗x + E∗z Bx)− iτ(2)

xzy (EzB∗x − E∗z Bx) (4.25)

1 Note that we also calculated the photon drag contribution from minimal coupling and transitions
|p,−〉 → |p + q,+〉 but find that the current is at least of cubic order in the photon momentum.
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and

j(B2)
x = iγ(B)(BzB∗x − BxB∗z ) + 2χ

(B)
yyz(BxB∗z + BzB∗x), (4.26)

j(B2)
y = iγ(B)(BzB∗y − ByB∗z ) + 2χ

(B)
yyz(ByB∗z + BzB∗y). (4.27)

One can see that for normal incidence, Bz = Ez = 0, the photocurrent vanishes.

Considering again the microscopic transformation given by Eq. (4.14), we find
that additional contributions to the current have to vanish. Under the transfor-
mation (4.14) the interaction Hamiltonian including Zeeman coupling behaves
as

UH′U † = −H′(−Bz), (4.28)

with Bz = (∇× A)z. The transformation of the interaction Hamiltonian is no
longer described by just an overall minus sign, but the z-component of the mag-
netic field also acquires a minus sign. Thus we find that non-vanishing currents
of the form j ∝ B2n+1

z with integer n are allowed. For the leading order photocur-
rent we obtain

j ∝ Bz, (4.29)

in agreement with our calculated result given by Eqs. (4.19) and (4.20). By this
symmetry, all currents in Eqs. (4.24) and (4.25) that are independent of Bz have
to vanish and the photocurrent response to the magnetic field simplifies to

j(B+B2)
x =τ

(1)
xyz(EyB∗z + E∗y Bz) + iγ(B)(BzB∗x − BxB∗z )

+ iτ(2)
xyz(EyB∗z − E∗y Bz) + 2χ

(B)
yyz(BxB∗z + BzB∗x) (4.30)

j(B+B2)
y =− τ

(1)
xyz (ExB∗z + E∗x Bz) + iγ(B)(BzB∗y − ByB∗z )

− iτ(2)
xyz (ExB∗z − E∗x Bz) + 2χ

(B)
yyz(ByB∗z + BzB∗y). (4.31)

The first lines in the Eqs. (4.30) and (4.31) exactly constitute our result presented
in Eqs. (4.19) and (4.20) when considering E = −∂t A. We find that the current
linear in the Zeeman coupling, i.e., linear in B, is helicity-independent, while the
contribution quadratic in the Zeeman coupling is helicity-dependent. One might
be able to explain the vanishing of the remaining terms in the second lines by
considering symmetries that affect the helicity of the light.

One could have anticipated the helicity-dependence of the result (4.21) by again
considering the symmetry of the problem. We know that the (111) surface of
Bi2Se3 has trigonal rotational symmetry (including warping) and a mirror axis
along the y-direction [Fu, 2009]. For oblique incidence, consider light that is
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incident in the yz-plane. Reflection about the mirror axis along y changes the
helicity. In addition, the reflection changes the sign of a current along the x-
direction while a current along the y-direction remains invariant. Thus, a helicity-
dependent current can only flow along the x-direction, i.e., perpendicular to the
plane of incidence, while a helicity-independent current can flow only in the
y-direction, i.e. parallel to the plane of incidence. Without warping, λ = 0, the
system has full rotational symmetry and the only directionality is provided by
the vector potential. Consequently, when the vector potential is rotated away
from the yz-plane, the current will rotate accordingly.

These results can also be deduced by studying the interaction Hamiltonian. For
a perfect Dirac spectrum and ϕ = 0, the relevant interaction Hamiltonian given
by Eq. (4.18) becomes

H′− ∼ vF
(
σy − i cos θσx

)
− vZ

(
σx + i cos θσy + i sin θσz

)
, (4.32)

where the first term describes the orbital coupling and the second the Zeeman
interaction. For normal incidence (θ = 0), both orbital and Zeeman coupling are
proportional to the spin raising operator the z-direction, σ+ = σx + iσy. Since
for λ = 0 all spins lie in plane, excitations take place isotropically around the
Dirac cone. We arrive at the expected result that for normal incidence no net
current is induced. For oblique incidence (θ 6= 0), the orbital coupling is propor-
tional to a sum of spin raising and lowering operators in the z-direction since
σy − i cos θσx = −i/2[σ+(1 + cos θ) − σ−(1 − cos θ)]. For an in-plane spin dis-
tribution this again excites electrons isotropically around the Dirac cone and
we see that the orbital coupling by itself cannot generate a finite photocur-
rent. The Zeeman coupling, however, includes for oblique incidence a term
σx + i sin θσz = i/2[(σz − iσx)(1 + sin θ)− (σz + iσx)(1− sin θ)], which is a sum
of spin raising and lowering operators in the y-direction. Since the spin low-
ering operator σz − iσx has the larger coefficient for θ > 0, the Zeeman cou-
pling preferably excites spins with momentum in the negative x-direction [cf.
Fig 4.1 (b)], generating a current in the x-direction in agreement with Eq. (4.21).
Analogously we can study the interplay between the orbital and Zeeman inter-
action. Here the dominant contribution is given by the spin lowering operator
in the x-direction, σy − iσz. The interplay between the orbital and Zeeman cou-
pling preferably excites electrons with momentum along the positive y-direction,
generating a current in the negative y-direction. Thus our result for the perfect
Dirac cone given by Eq. (4.21) can be understood by studying the interaction
Hamiltonian.
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4.4 corrections to the perfect dirac cone

So far we have shown that within the pure surface-state model a finite photocur-
rent response can be induced by including orbital as well as Zeeman coupling
between light and electrons. Since we would like to compare our results to ex-
isting literature [Hosur, 2011], we now turn to a full analysis that includes per-
turbations to the perfect Dirac cone and an in-plane external magnetic field as
studied by Hosur [2011].

We consider the model Hamiltonian

H = v(pxσy − pyσx) +
λ

2
(p3

+ + p3
−)σz − gµBBσx, (4.33)

where v = vF +Λp2 with the Fermi velocity vF, g denotes the g-factor, p± = px±
ipy = pe±iφ, and σ± = σx ± iσy. λ is the cubic warping [Fu, 2009; Zhang et al.,
2010a; Wang et al., 2011], Λ parametrizes a correction to the Fermi velocity [Fu,
2009; Basak et al., 2011], and B denotes the external magnetic field taken along
the x-direction. For quantitative estimates, we use λ = 50.1 eV Å

3
/h̄3 [Liu et al.,

2010], and Λ ∼ 10 eV Å
3
/h̄3, where we assumed that Λp3

F ∼ 1% of half the band
gap energy. This Hamiltonian is particle-hole symmetric, H|p,±〉 = ±E|p,±〉,
with

E =
√

p2v2 + p6λ2 cos2(3φ) + 2BgµB pv sin(φ) + B2g2µ2
B. (4.34)

As above, we consider circularly polarized light incident at an arbitrary angle
given by Eq. (4.3). The interaction Hamiltonian is still given by Eq. (4.18) where
H is now given by Eq. (4.33).

4.4.1 Calculation of the photocurrent

In order to calculate the photocurrent, we need to evaluate Eq. (4.10). Since we
now included various corrections to the linear dispersion, one has to be care-
ful when evaluating the current response and we will outline the calculation
in the following. We will start with the integrand vp,+|〈p,+|H′−|p,−〉|2 before
addressing the δ-function. We then proceed to the entire integral in Eq. (4.10).
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Calculating the integrand in Eq. (4.10) is expedited by using projection operators
P̂± onto the two bands given by

P̂± = |p,±〉〈p,±| = 1
2
± H

2E
, (4.35)

where E is the full energy with all corrections to the perfect Dirac spectrum
given by Eq. (4.34). With these projection operators, the integrand in Eq. (4.10)
becomes

−vp,+|〈p,+|H′−|p,−〉|2 = 〈p,−|H′+|p,+〉〈p,+|H′−|p,−〉〈p,−|∂H
∂p
|p,−〉

= tr
[

P̂−H′+P̂+H′−P̂−
∂H
∂p

]
. (4.36)

In the first step, we used that the transition |p,+〉 → |p,−〉 (|p,−〉 → |p,+〉)
happens via emission (absorption) of a photon and is therefore mediated by the
coupling involving A+ (A−). The minus sign is included by taking the expecta-
tion value with respect to the lower band, as vp,+ = −vp,−. In the second step,
we used that the expectation value of an operator can be written as

〈p,±|Ô|p,±〉 = tr[P̂±Ô] = tr
[(

1
2
± H

2E

)
Ô
]

. (4.37)

In order to calculate Eq. (4.36) explicitly, we need to write out the interaction
Hamiltonian given by Eq. (4.18). We would like to separate terms which cre-
ate/annihilate a photon and write the interaction Hamiltonian in terms of A±.
For clarity, we will present the calculation for ϕ = 0. The calculation for arbitrary
angle of incidence is relegated to App. B. The vector potential for left-circular po-
larization and q̂ = sin θ ŷ− cos θ ẑ is given by

A(t) = A0[cos(q · r−ωt)x̂− sin(q · r−ωt)(x̂× q̂)]

=
A−
2

eiq·r(x̂ + i cos θ ŷ + i sin θ ẑ) + c.c. (4.38)

with A∗− = A+. We can read off that Ax = 1
2(A+ + A−) and Ay = 1

2i cos θ(A+ −
A−). With these expressions and ∂H/∂px = vx as well as ∂H/∂py = vy, the
orbital part of the interaction Hamiltonian becomes

∂H
∂px

Ax(t) +
∂H
∂py

Ay(t) =
1
2
{

A+
[
vx − i cos θvy

]
+ A−

[
vx + i cos θvy

] }
. (4.39)
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4.4 corrections to the perfect dirac cone

In order to calculate the Zeeman term, we note that

∇× A =
1
2

A−
[
iq× (x̂ + i cos θ ŷ + i sin θ ẑ)

]
eiq·r + c.c.

=
q
2

A−
[
− x̂− i cos θ ŷ− i sin θ ẑ

]
eiq·r + c.c.

= −qA. (4.40)

For right-circularly polarized light we would obtain the opposite sign in the last
line of Eq. (4.40), i.e., ∇× ARCP = qARCP. With Eq. (4.40) the Zeeman coupling
becomes

(∇× A) · σ̂ =− q
2

A−(σx + i cos θσy + i sin θσz) + c.c. (4.41)

Inserting Eqs. (4.39) and (4.41) into the interaction Hamiltonian given by Eq. (4.18),
we find

H′ =− e
2

A−
{

vx + i cos θvy − vZ(σx + i cos θσy + i sin θσz)
}
+ c.c., (4.42)

where vZ = gs h̄ω
2mc is helicity dependent, i.e., changes sign under ω → −ω. The

integrand can now be explicitly written as

−vp,+|〈p,+|H′|p,−〉|2 =
e2

4
tr
{

P̂−A+
[
vx − i cos θvy − vZΣ−

]
P̂+A−

[
vx + i cos θvy − vZΣ+

]
P̂−vx

}
x̂

+
e2

4
tr
{

P̂−A+
[
vx − i cos θvy − vZΣ−

]
P̂+A−

[
vx + i cos θvy − vZΣ+

]
P̂−vy

}
ŷ (4.43)

where Σ± = σx ± i cos θσy± i sin θσz. Eq. (4.43) is exact and contains all perturba-
tions to the perfect Dirac spectrum arising from the interaction matrix element
and the velocity.

In addition to being careful with the definition of the velocity, we must also en-
sure that the argument of the δ-function in Eq. (4.10) contains the perturbations
of the pure Dirac spectrum.2 The energy E is angle dependent and we cannot
easily perform the angular integration. We thus express the δ-function as

δ(2E− h̄ω) = 4Eδ
(

4E2 − h̄2ω2
)
= 4E

∞∫
−∞

dη

2π
eiη(4E2−h̄2ω2), (4.44)

2 At this point, the calculation by Hosur [2011] was not carefully done, missing important contri-
butions to the current and leading to an incorrect final result.
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where we used that E and h̄ω are defined as positive. We expand the δ-function
to first order in λ and Λ and second order in B. The angular integration can now
be evaluated in a straightforward manner and we find

j '4πeτp

h̄

∫
dη
∫ dp p

(2πh̄)2

[
Ξ(0)(p) + ηΞ(1)(p) + η2Ξ(2)(p)

]
eiη[4(pvF)

2−(h̄ω)2],

(4.45)

where Ξ(i)(p) are functions of momentum and λ, Λ, and B. The expressions for
Ξ(i)(p) are long without providing much insight and will not be presented here.
The integral over η is simplified by writing η → −i ∂

∂(h̄ω)2 for the factors of η in
the brackets, and then first carrying out the η-integral for each term separately.
The remaining integrals can now be done since the angular dependence of the
eigenstates has been eliminated. The integration over η in combination with the
exponential factor can now be resubstituted by a δ-function. Using δ(4(pvF)

2 −
ξ) = 1

8v2
F p

δ
(

p−
√

ξ
2vF

)
with ξ = (h̄ω)2, Eq. (4.45) becomes

j ' 4eπτp

h̄
1

(2πh̄)2
1

8v2
F

{
Ξ(0)

(√
ξ

2vF

)
+ i

∂

∂ξ
Ξ(1)

(√
ξ

2vF

)
− ∂2

∂ξ2 Ξ(2)
(√

ξ

2vF

)}
, (4.46)

which can be easily evaluated.

4.4.2 Results

Above we have only studied the perfectly linear Dirac dispersion without exter-
nal fields. When we include perturbations to this simple model like the hexag-
onal warping λ, the correction to the Fermi velocity Λ, or an in-plane magnetic
field B, we find additional helicity-dependent as well as helicity-independent
contributions to the photocurrent, as listed in Tabs. 4.1 and 4.2. We introduce di-
mensionless constants v̄Z, λ̄, Λ̄, and B̄ to estimate the relative magnitude of the
various contributions (see caption of Tab. 4.1). For B = 0, there is only a single
additional contribution to the response given by j(Λ)

hd,x′ . This current results from
pure Zeeman coupling, is helicity-dependent, and flows in the x′-direction per-
pendicular to the plane of incidence of the light. For Λ estimated as 1% of half
the band gap energy, we find Λ̄ ∼ 10−3. Thus, j(Λ)

hd,x′/j(0)x′ ∼ Λ̄ ∼ 10−3, and the
leading contribution in x′-direction, i.e., perpendicular to the plane of incidence,
is helicity-dependent. The overall leading response, however, is still j(0)y′ , i.e., is
helicity-independent and flows parallel to the plane of incidence.
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4.4 corrections to the perfect dirac cone

j(X)
hd prefactor x′ y′

0 Cv̄2
Z sin θ 1 —

λ — — —

Λ −C
4 v̄2

ZΛ̄ sin θ 1 —

B1
9C
8 v̄Zλ̄B̄ sin(2θ) cos(2ϕ) sin(2ϕ)

B2 3Cv̄2
Zλ̄B̄2 cos θ cos ϕ sin ϕ

ΛB1 Cv̄ZB̄Λ̄ cos ϕ cos2 θ sin ϕ

ΛB2
15C

2 λ̄B̄2Λ̄ cos θ cos ϕ sin ϕ

ΛB3 −27C
16 v̄Zλ̄B̄Λ̄ sin(2θ) cos(2ϕ) sin(2ϕ)

ΛB4 −Cv̄2
ZB̄2Λ̄ sin θ 2 + cos(2ϕ) sin(2ϕ)

ΛB5 −27C
4 v̄2

Zλ̄B̄2Λ̄ cos θ cos ϕ sin ϕ

Table 4.1: Helicity-dependent corrections to the current induced by various perturba-
tions. v̄Z = vZ/vF ∼ 10−5, λ̄ = λ(h̄ω)2/(v3

F) ∼ 10−2, Λ̄ = Λ(h̄ω)2/(v3
F) ∼

10−3, and B̄ = gµBB/(h̄ω) ∼ 10−4B/T are dimensionless parameters and C is
given in the text below Eq. (4.21).

j(X)
hi prefactor x′ y′

0 −Cv̄Z sin θ — 1

λ — — —

Λ — — —

B1 3Cv̄Zλ̄B̄2 cos θ sin ϕ − cos ϕ

B2
3C
8 v̄2

Zλ̄B̄ sin(2θ) − sin(2ϕ) cos(2ϕ)

ΛB1
C
4 B̄Λ̄ −(3 + cos2 θ) sin ϕ (1 + 3 cos2 θ) cos ϕ

ΛB2
C
4 v̄2

ZB̄Λ̄ sin2 θ sin ϕ cos ϕ

ΛB3
33C

4 v̄Zλ̄B̄2Λ̄ cos θ − sin ϕ cos ϕ

ΛB4
17C
32 v̄2

Zλ̄B̄Λ̄ sin(2θ) sin(2ϕ) − cos(2ϕ)

Table 4.2: Helicity-independent corrections to the current induced by various perturba-
tions. Parameters as in Tab. 4.1. C is given in the text below Eq. (4.21).
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Figure 4.2: Current as a function of azimuthal angle of incidence ϕ of the vector potential.
hd (hi): helicity dependent (independent). We choose θ = 0.98 and the other
parameters are as given in the text. When a magnetic field is applied the
photocurrent response acquires strong angle dependences.

When we include an external magnetic field, we break the rotational symmetry
of the problem and other helicity-independent and dependent contributions to
the photocurrent emerge. An important results is, that symmetry no longer re-
quires that helicity-independent and -dependent currents have to flow parallel
and perpendicular to the plane of incidence, respectively. For a magnetic field
of strength B = 1 T, the leading helicity-dependent contribution is j(B1)

hd and in
general has components in the x′- and y′-direction. This contribution arises from
interference of orbital and Zeeman coupling and has a relative magnitude of
j(B1)
hd /j(0)x′ ∼ λ̄B̄/v̄Z ∼ 10−1. The leading helicity-independent contribution is

j(ΛB1)
hi and also has components parallel and perpendicular to the plane of in-

cidence. This current is induced by pure orbital coupling, i.e., it remains finite
when Zeeman coupling is neglected. If the plane of incidence does not coincide
with the yz-plane [cf. Fig. 4.1], the current j(ΛB1)

hi has finite components along the

x′- and the y′-direction with relative magnitude j(ΛB1)
hi /j(0)y′ ∼ B̄Λ̄/v̄Z ∼ 10−2 and

j(ΛB1)
hi,x′ /j(0)hd,x′ ∼ B̄Λ̄/v̄2

Z ∼ 103. In this case, the overall dominant response both

parallel and perpendicular to the plane of incidence is helicity-independent. /j(0)x′
remains the leading helicity-dependent contribution.
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4.5 arbitrary polarization

For normal incidence, i.e., θ = ϕ = 0, many contributions vanish and in the ab-
sence of an external magnetic field, there is no photocurrent response. Even
including B, the helicity-dependent photocurrent is greatly reduced with re-
spect to the case of oblique incidence since j(0)x′ vanishes for θ = 0. The lead-

ing helicity-dependent contributions are j(ΛB1)
hd,x and j(ΛB2)

hd,x which flow parallel to

the magnetic field with relative magnitude j(ΛB1)
hd,x /j(0)x′ ∼ B̄Λ̄/v̄Z ∼ 10−2 and

j(ΛB2)
hd,x /j(0)x′ ∼ λ̄B̄2Λ̄/v̄2

Z ∼ 10−3. j(ΛB2)
hd,x is the only helicity-dependent current

induced by pure orbital coupling. This result differs from the photocurrent ob-
tained by Hosur [2011] in the additional factor of Λ. As before, the leading
helicity-independent current is j(ΛB1)

hi which flows perpendicular to the mag-
netic field. Thus, for normal incidence including a magnetic field, the leading
response parallel to the magnetic field is helicity-dependent while the leading
response perpendicular to the magnetic field is helicity-independent.

The various contributions to the current as listed in Tabs. 4.1 and 4.2 depend
strongly on the angle of incidence of the laser. Changing the azimuthal angle ϕ

of the vector potential has significant effect on what is the leading contribution
in a given direction. Fig. 4.2 shows the dependence of the different contribu-
tions on ϕ for θ = 0.98. The current j(0) in independent of the azimuthal angle
of incidence but the corrections that depend on the magnetic field B have a
strong angular dependence. The dominant contribution parallel to the plane of
incidence, i.e, in the y′-direction, is j(0)y′ and is not affected by changes in ϕ. As
mentioned above, the dominant contribution perpendicular to the plane of inci-
dence, however, i.e., in the x′-direction, changes significantly with the azimuthal
angle. For light incident in the yz-plane, i.e, for ϕ = 0 or ϕ = π, the leading
current is helicity-dependent and given by j(0)x′ . For other values of ϕ the large

helicity-independent current j(ΛB1)
hi,x′ is the dominant contribution along x′.

4.5 arbitrary polarization

In this section we generalize our results and consider arbitrarily polarized light
incident onto the sample as illustrated in Fig. 4.1 (c),

A(t) =
A0

2
e−iωt+iqr

 sin 2α cos ϕ + (i + cos 2α) cos θ sin ϕ

− sin 2α sin ϕ + (i + cos 2α) cos θ cos ϕ

(i + cos 2α) sin θ

+ c.c, (4.47)
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with polar angle θ ε [0, π/2] and the azimuthal angle ϕ defined from the negative
y-axis, such that light is incident in the yz-plane for ϕ = 0, i.e., a mirror plane
of the sample. α varies the polarization state with period π [cf. App. A] (P-
polarized: α = 0; left-circular: α = π/4; P-polarized: α = π/2; right-circular:
α = 3π/4).

As we are interested in comparing the calculated photoresponse to the experi-
mental findings of McIver et al. [2012], we need to analyze the general polar-
ization dependence of the current. The calculation presented above can be per-
formed in an analogous way for arbitrary light polarization and the photocurrent
for the ideal Dirac spectrum takes the form

j(0) =− Cv̄Z

[
1
2
(1− cos 4α) sin θ ŷ′ +

(
1
4

sin 4α sin 2θ − v̄Z sin 2α sin θ

)
x̂′
]

.

(4.48)

For α = π/4 we recover the original result of Eq. (4.21) and see that current in
the y′-direction is helicity-independent whereas the current in the x′-direction
is helicity-dependent. For P-polarized light the current completely vanishes. In
addition to the helicity-independent contribution along the y′-direction and the
helicity-dependent contribution along x′, we find another helicity-independent
contribution to the current which flows perpendicular to the plane of incidence
of the light. This contribution is ∼ sin 4α and is only nonzero for elliptically po-
larized light. It results from interference of orbital and Zeeman coupling and is
thus of the same order of magnitude as the helicity-independent contribution
j(0)y′ ∼ 10 µA/m. Note that this helicity-independent contribution perpendicu-
lar to the plane of incidence does not violate the symmetry of the system as
discussed above since it vanishes for circularly polarization.

Using Eq. (4.47) we can calculate the total photocurrent response to P-polarized
light including the corrections to the ideal Dirac spectrum. For α = 0 the light
is P-linearly polarized in the direction x̂ × q̂ parallel to the plane of incidence.
The resulting contributions to the current are listed in in Tab. 4.3. The vector
potential for S-polarized light for q̂ = sin θ ŷ− cos θ ẑ and ϕ = 0, is given by

AS(t) = A0 cos(qr−ωt) x̂. (4.49)

and the resulting currents are listed in Tab. 4.4. The currents from S- and P-
linearly polarized light are, of course, helicity independent. As mentioned above,
the overall largest contribution to the photocurrent, which is helicity indepen-
dent and in the direction opposite to the direction of propagation of the incident
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4.6 particle-hole asymmetry

j(X)
P prefactor x′ y′

0 — — —

λ 3C
4 v̄Zλ̄ cos θ − sin(3ϕ) cos(3ϕ)

Λ 5C
8 v̄Zλ̄Λ̄ cos θ sin(3ϕ) − cos(3ϕ)

B 6Cv̄Zλ̄B̄2 cos θ sin ϕ —

ΛB1
C
2 B̄Λ̄ − cos2 θ sin ϕ 3 cos2 θ cos ϕ

ΛB2
C
2 v̄2

ZB̄Λ̄ sin ϕ cos ϕ

ΛB3
3C
2 v̄Zλ̄B̄2Λ̄ cos θ −9 sin ϕ + 5 sin(3ϕ) cos ϕ[7− 10 cos(2ϕ)]

Table 4.3: Photocurrent response for P-polarized light. As before, v̄Z = vZ/vF ∼ 10−5,
λ̄ = λ(h̄ω)2/(v3

F) ∼ 10−2, Λ̄ = Λ(h̄ω)2/(v3
F) ∼ 10−3, and B̄ = gµBB/(h̄ω) ∼

10−4B/T are dimensionless parameters and C is given in the main text.

light, can be induced by S-polarized light. Note that without an external mag-
netic field, also for linearly S- or P-polarized light a net photoresponse is only
induced when Zeeman coupling is included. Without the Zeeman coupling, the
leading response is linear in the external magnetic field B and the correction to
the Fermi velocity Λ for both S- and P-polarization.

For linearly polarized light and arbitrary angle of incidence we obtain helicity-
independent currents that are perpendicular to the plane of incidence even with-
out an external magnetic field, i.e., j(λ,Λ)

S,P,x′ . This does not violate the symmetry
of our problem since these contributions vanish when the plane of incidence co-
incides with one of the symmetry axes of the crystal, located at ϕ = nπ/3 for
integer n [cf. Fig. 2.1 (b)]. Indeed, since these are the leading order contributions
perpendicular the plane of incidence for linearly polarized light, the angle de-
pendence of the current reflects the crystal symmetry and could be used as a
probe of the underlying crystal structure.

4.6 particle-hole asymmetry

For completeness we still need to discuss the effect of particle-hole asymmetry
on the photocurrent response. One can show that in the present model particle-
hole asymmetry will have no effect on the current. In general, i.e., for electrons
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j(X)
S prefactor x′ y′

0 −Cv̄Z sin θ — 1

λ 3C
8 v̄Zλ̄ cos θ sin(3ϕ) − cos(3ϕ)

Λ 5C
16 v̄Zλ̄Λ̄ cos θ − sin(3ϕ) cos(3ϕ)

B1 3Cv̄Zλ̄B̄2 cos θ — − cos ϕ

B2
3C
8 v̄2

Zλ̄B̄ sin(2θ) − sin(2ϕ) cos(2ϕ)

ΛB1
C
4 B̄Λ̄ −3 sin ϕ cos ϕ

ΛB2 −C
4 v̄2

ZB̄Λ̄ cos2 θ sin ϕ cos ϕ

ΛB3
3C
4 v̄Zλ̄B̄2Λ̄ cos θ −[2 sin ϕ + 5 sin(3ϕ)] 9 cos ϕ + 5 cos(3ϕ)

ΛB4
17C
32 v̄2

Zλ̄B̄Λ̄ sin(2θ) sin(2ϕ) − cos(2ϕ)

Table 4.4: Photocurrent response for S-polarized light. Parameters as in Tab. 4.3.

and holes moving with different velocities, the expression for the photocurrent
given by Eq. (4.10) becomes

jPHA =
2πτp

h̄ ∑
p

(
−ev(e)

p + ev(h)
p

)
|〈p,+|H′−|p,−〉|2δ(E+ − E− − h̄ω)

= −2πeτp

h̄ ∑
p

(
∂E+

∂p
− ∂E−

∂p

)
|〈p,+|H′−|p,−〉|2δ(E+ − E− − h̄ω), (4.50)

where now the energy is given by

E± =
p2

2m
±
√

p2v2 + p6λ2 cos2(3φ) + 2BgµB pv sin(φ) + B2g2µ2
B, (4.51)

with v = vF + Λp2 as before. One can see that Eq. (4.50) is independent of the
particle-hole asymmetry. In the first parenthesis, the corrections to the velocities
for electrons and holes cancel each other because the particle-hole asymmetric
term enters both energies with the same sign. The same argument applies to the
δ-function. For the transition rate one can see that only the orbital interaction
depends on the particle-hole asymmetric term [cf. Eq. (4.18)]. Thus we can ne-
glect the Zeeman coupling. The term in the orbital interaction Hamiltonian that
results from the particle-hole asymmetry is proportional to the identity matrix.
For vertical transitions, however, the initial and final states |p,±〉 are orthogonal.
The interaction matrix element thus vanishes for the particle-hole asymmetric
contribution and the current response is not affected by particle-hole asymme-
try.
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4.7 summary

4.7 summary

Motivated by experiments [McIver et al., 2012; Duan et al., 2014], we studied the
photocurrent response in topological insulators. We focused on the photocurrent
response of the topological surface states and find that pure orbital coupling
between light and electrons does not induce a photocurrent in the absence of an
external magnetic field. The leading response for obliquely incident circularly
polarized light is induced by an interplay between orbital and Zeeman coupling.
This contribution is helicity-independent and in the plane of incidence. We find
that the helicity-dependent photocurrents are quadratic in the Zeeman coupling
and thus very small. Pure orbital coupling can only induce a net photogalvanic
charge current when both band curvature and in-plane external magnetic field
are included.

When studying the polarization dependence of the photocurrent response we
also find a helicity-independent contribution which flows perpendicular to the
plane of incidence of the light. Thus the contributions of the photocurrent that
flow perpendicular to the direction of propagation of the light, i.e., the contribu-
tions proportional to sin 2α and sin 4α, qualitatively agree with the two contri-
butions identified in the experiment to have surface origin, i.e., C and L1. Since
Zeeman coupling is required, the resulting currents are, however, very small
and especially the helicity-dependent contribution is several orders of magni-
tude smaller than the experimentally observed currents.

Our results suggest that in order to understand the experimental findings one
has to extend the theory to include the bulk bands, the photon drag effect,
or thermoelectric effects originating from inhomogeneous laser excitation. As
a photon energy of 1.5 eV was used in the experiment [McIver et al., 2012],
which exceeds the bulk band gap, it is natural to extend the model to include
the bulk states. As discussed in Chap. 2, photocurrents from the CPGE or LPGE
cannot originate from the inversion symmetric bulk. Transitions between spin-
degenerate bulk states can thus only contribute through higher order effects to
the measured photocurrent. The same is not true, however, for transitions be-
tween the helical surface states and the spin-degenerate bulk states, e.g., when
electrons from the Dirac cone are excited into the bulk conduction band. In the
following chapter, we therefore extend the surface model discussed above to in-
clude bulk states and calculate the photocurrent response when one considers
transitions between surface and bulk states.

63





5
B U L K C O N T R I B U T I O N S T O T H E P H O T O C U R R E N T I N
T O P O L O G I C A L I N S U L AT O R S 1

In the previous chapter we analyzed the photocurrent response of TIs within a
pure surface state model and found only a remarkably small photocurrent re-
sponse. In this chapter we will extend the analysis to include the low-energy
bulk states. This is especially relevant when photocurrents are induced using
photon energies that exceed the bulk band gap, as in the experiment discussed
in Chap. 3 [McIver et al., 2012]. Photon absorption can then, depending on the
Fermi level, lead to transitions from the bulk valence band (BVB) to the bulk
conduction band (BCB), from the bulk valence band (BVB) into the surface Dirac
cone, or from the surface Dirac cone into the BCB as illustrated in Fig. 5.1. While
the spin degeneracy and crystal inversion symmetry of the bulk prevent a pho-
tocurrent response due to the CPGE or LPGE [cf. Sec. 2.2], this is not the case for
transitions between the spin-split surface states and bulk states near the surface
where inversion symmetry is broken. Thus a full analysis of the photoresponse
of TIs has to take into account the photoexcitation between surface and bulk
states.

We include the low energy bulk states within a minimal four band model [Zhang
et al., 2009a; Liu et al., 2010] and find that indeed transitions between surface and
bulk states, e.g., transitions from the surface Dirac cone into the bulk conduction
band, can lead to a finite photocurrent. We find that circularly polarized light
leads to transitions between surface and bulk states that occur asymmetrically
in momentum space, inducing a net current. In the pure surface state model the
absorption of circularly polarized photons led to spin-flip transitions within the
Dirac cone. Here, we find that the transitions between surface and bulk states
that generate a net photocurrent are spin-conserving, i.e., they occur between

1 This chapter is based on joint work with Gil Refael and Felix von Oppen.
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Figure 5.1: Depending on the Fermi energy various transitions have to be taken into ac-
count. For a Fermi level inside the bulk conduction band (BCB), e.g., only
excitations from the surface states into the unoccupied bulk states are al-
lowed. Transitions from the bulk valence band (BVB) into the surface states
are blocked by Pauli’s principle. Transitions from the BVB into the BCB might
also be allowed for sufficiently energetic light. Due to the inversion symme-
try and spin degeneracy of the bulk these transitions will, however, only
contribute through higher order effects, e.g., the photon drag effect, not con-
sidered here.

states with the same spin orientation. The fact that we are considering transi-
tions into bulk states also implies that the photocurrent is not completely spin
polarized. In the pure surface state model excited carriers moving in the same di-
rection must have the same spin and the resulting photocurrent was necessarily
spin polarized. The bulk states, however, are spin degenerate hosting co-moving
electrons with opposite spin orientations.

5.1 model

We generalize the model of the previous section to include photoinduced transi-
tions between surface and bulk states. In order to do so we consider the full 3D
bulk model Hamiltonian given by Eq. (2.5). For simplicity, we restrict ourselves
to the essential parts and neglect particle-hole asymmetry, terms quadratic in
the in-plane momentum k‖, and cubic terms in the momentum kz perpendicular
to the surface. We will consider the 3D TI to be in the half space z > 0. An
obvious way to model the surface of the 3D TI would be to study the interface
between the TI and the vacuum at z > 0. This model, however, requires most of
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Figure 5.2: Schematic illustration of the finite step boundary condition for modeling the
surface. For z < 0 we have a normal insulator with M0 = ML

0 > 0 and for
z > 0 we have a TI with M0 = MR

0 < 0. The surface at z = 0 indicated in
red then exhibits gapless surface states. We consider the regime E < ML

0 , i.e.,
electrons are not photoemitted from the TI.

the parameters in the Hamiltonian given by Eq. (2.5) to jump at z = 0. This leads
to awkward boundary conditions for the wavefunction which make the analysis
analytically involved.

An alternative approach to model the surface, is to study the interface between
a TI and a trivial insulator, which is adiabatically connected to the vacuum. As
we have seen in Chap. 2, the band inversion condition for the 3D TI Bi2Se3 is
given by M0 < 0. For the interface between a TI and a normal insulator it is thus
sufficient to consider a jump in the mass M0, from the normal insulator with
M0 > 0 at z < 0 to the TI with M0 < 0 at z > 0.

The resulting Hamiltonian is given by [Zhang et al., 2009a; Liu et al., 2010]

H = (M0(z) + M1k2
z)1⊗ τz + B0kz1⊗ τy + A0(σxky − σykx)⊗ τx, (5.1)

with a position-dependent mass

M0(z) =

ML
0 > 0, z ≤ 0

MR
0 < 0, z > 0.

(5.2)

For M1, B0 > 0 [Liu et al., 2010] this describes a topological insulator in the
half space z > 0 and a trivial insulator in the half space z < 0, as illustrated in
Fig. 5.2.
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First, we need to determine the surface and bulk wavefunctions for this surface
model which we will do in the following sections. In Chap. 2 we showed that
the general form of the solution of

H(kz → −i∂z)ψ = Eψ (5.3)

is given by

ψ↑↓(z, λ) ∼
(
±ie−iφ

1

)
⊗ χ↑↓(λ)eλz, (5.4)

with

χ↑↓(λ) =

( ±A0k‖−B0λ

E−M0+λ2 M1

1

)
, (5.5)

where the upper sign corresponds to ψ↑, χ↑ and the lower sign to ψ↓, χ↓. The first
vector in the tensor product of Eq. (5.4) describes the spin degree of freedom.
Spin is locked perpendicular to momentum and rotates around the Dirac cone.
Spins of ψ↑↓ are orthogonal to each other. λ can take the four possible values

λ2
± =

2M0M1 + B2
0

2M2
1

±

√√√√4B2
0 M0M1 + B4

0

4M4
1

+
E2 − A2

0k2
‖

M2
1

. (5.6)

In the most general form, the wavefunction can then be written as a superposi-
tion of the four possible contributions,

Ψ↑↓(z) = ∑
α,β=±

γα,βψ↑↓(z, αλβ), (5.7)

where the coefficients γα,β are determined by boundary conditions and normal-
ization. The wavefunctions have to obey the boundary conditions

ΨL(z = 0) = ΨR(z = 0) (5.8)

dΨL

dz

∣∣∣∣
z=0

=
dΨR

dz

∣∣∣∣
z=0

, (5.9)

where ΨL/R describes the wavefunction for z < 0 and z > 0, respectively. The
wavefunctions also have to obey the orthonormality relations∫ ∞

−∞
dz |ΨS(z)|2 = 1 (5.10)

for the surface states and∫ ∞

−∞
dzΨ†

B(kz, z)ΨB(k′z, z) = δ(kz − k′z) (5.11)

for the bulk states.
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5.1.1 Surface states

For the surface states, λ± are complex with a finite real part. To ensure nor-
malizability the wavefunction has to vanish at ±∞, i.e., ΨL

S(z → −∞) = 0 and
ΨR

S (z→ ∞) = 0. The surface-state wavefunctions thus become

ΨL
S,↑↓ =

(
±ie−iφ

1

)
⊗ ΞL

S,↑↓ (5.12)

with
ΞL

S,↑↓ =
1√
NS

[
aL

S χL
S,↑↓(λ

L
S,+)e

λL
S,+z + bL

S χL
S,↑↓(λ

L
S,−)e

λL
S,−z
]

(5.13)

in the trivial insulator and

ΨR
S,↑↓ =

(
±ie−iφ

1

)
⊗ ΞR

S,↑↓, (5.14)

with

ΞR
S,↑↓ =

1√
NS

[
aR

S χR
S,↑↓(−λR

S,+)e
−λR

S,+z + bR
S χR

S,↑↓(−λR
S,−)e

−λR
S,−z
]

, (5.15)

in the TI. Here, Re[λL/R
S,± ] > 0, NS is a normalization constant, aL/R

S , bL/R
S are

complex coefficients, and

χL/R
S,↑↓(λ) =

 ±A0k‖−B0λ

ES−ML/R
0 +λ2 M1

1

 . (5.16)

Inserting Eqs. (5.12)-(5.16) into the boundary conditions given by Eqs. (5.8) and
(5.9), we find that these can only be fulfilled for

ES = ±A0k, (5.17)

where the upper sign corresponds to state ΨS,↑ and the lower sign to state ΨS,↓.
The boundary conditions Eqs. (5.8) and (5.9) together with the normalizability
thus give the expected linear surface-state dispersion with ΨS,↑ and ΨS,↓ rep-
resenting the positive- and negative-energy surface states, respectively. The ex-
pressions for the coefficients do not give any further insight and can be found in
App. C.1.
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As seen in Chap. 2, for ES = ±A0k the surface state in the TI simplifies to

ΞR
S = ΞR

S,↑↓ =
1√
NS

(
1
1

) [
aR

S e−λR
S,+z + bR

S e−λR
S,−z
]

(5.18)

with

λR
S,± =

B0

2M1
±
√

B2
0 + 4MR

0 M1

4M2
1

. (5.19)

The wavefunction in the trivial insulator cannot be simplified further and is still
given by Eqs. (5.12) and (5.13). The normalization constant NS can be determined
by using Eq. (5.10) and is given by

NS =2


∣∣∣aL

S ηL
S,↑↓(λ

L
S,+)

∣∣∣2
2Re[λL

S,+]
+

∣∣∣bL
S ηL

S,↑↓(λ
L
S,−)

∣∣∣2
2Re[λL

S,−]
+

∣∣aR
S

∣∣2
2Re[λR

S,+]
+

∣∣bR
S

∣∣2
2Re[λR

S,−]

+2Re


(

aL
S ηL

S,↑↓(λ
L
S,+)

)∗
bL

S ηL
S,↑↓(λ

L
S,−)(

λL
S,+

)∗
+ λL

S,−

+ 2Re

 (
aR

S
)∗ bR

S(
λR

S,+

)∗
+ λR

S,−



(5.20)

This result can be approximated when considering the following. In the limit
ML

0 → ∞ we recover open boundary conditions which require Ψ(z = 0) = 0,
and the wavefunction is localized near the surface completely inside the TI. For
finite ML

0 > E the wavefunction decays exponentially into the trivial insulator

with a decay length of ∼
√

M1/ML
0 . Thus also for finite ML

0 the wavefunction is
localized mainly inside the TI and we can write

NS =

∣∣aR
S

∣∣2
Re[λR

S,+]
+

∣∣bR
S

∣∣2
Re[λR

S,−]
+ 4Re

 (
aR

S
)∗ bR

S(
λR

S,+

)∗
+ λR

S,−

+O
(

B2
0

ML
0 M1

)
. (5.21)

5.1.2 Bulk states

For high energies E > MR
0 , i.e., for the bulk states, λ± given by Eq. (5.6) can

have complex solutions as well as purely real or purely imaginary solutions,
depending on the system parameters and the energy. Since we are not interested
in photoemission, we study the limit of ML

0 > E, i.e., the energy lies within the
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bulk gap of the normal insulator. Normalizability requires ΨL
B(z→ −∞) = 0 and

the wavefunction decays exponentially inside the trivial insulator. Two solutions
for λL have a positive real part and two solutions have a negative real part, such
that the bulk wavefunction in the trivial insulator takes the form

ΨL
B,↑↓ =

(
±ie−iφ

1

)
⊗ ΞL

B,↑↓ (5.22)

with
ΞL

B,↑↓ =
1√
NB

[
aL

B χL
B,↑↓(λ

L
B,+)e

λL
B,+z + bL

B χL
B,↑↓(λ

L
B,−)e

λL
B,−z
]

(5.23)

where Re[λL
B,±] > 0, NB is the normalization constant, and aL

B, bL
B are complex

coefficients.

In the topological insulator at z > 0, the wavefunction has two propagating
solutions for E > MR

0 corresponding to λR
B,− = ±ikz. The other two solutions are

in general complex with finite, positive and negative real part, respectively. These
solutions give exponentially decaying and increasing wavefunctions. Requiring
normalizability the bulk states in the TI become

ΨR
B,↑↓ =

(
±ie−iφ

1

)
⊗ ΞR

B,↑↓ (5.24)

with

ΞR
B,↑↓ =

1√
NB

[
aR

B χR
B,↑↓(−λR

B,+)e
−λR

B,+z + bR
B χR

B,↑↓(ikz)eikzz

+cR
B χR

B,↑↓(−ikz)e−ikzz
]

, (5.25)

where Re[λR
B,+] > 0, aR

B , bR
B , cR

B are complex coefficients, and

χL/R
B,↑↓(λ) =

 ±A0k‖−B0λ

EB−ML/R
0 +λ2 M1

1

 . (5.26)

In addition to the boundary conditions given by Eqs. (5.8) and (5.9) the bulk state
solution given by Eqs. (5.22)-(5.26) has to obey probability current conservation,
i.e., |bR

B |2 = |cR
B |2. Together with Eqs. (5.8) and (5.9), this leads to five equations

for the five unknown coefficients aL/R
B , bL/R

B , cR
B . Solving the resulting equations

yields

ΞR
B,↑↓ =

1√
NB

[
aR

B χR
B,↑↓(−λR

B,+)e
−λR

B,+z + bR
B χR

B,↑↓(ikz)eikzz

−(bR
B)
∗ χR

B,↑↓(−ikz)e−ikzz
]

(5.27)
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Figure 5.3: Light with wavevector q with an angle θ from the z-axis and azimuthal angle
ϕ from the x-axis shines onto a 3D TI which occupies the half space z < 0. A
photocurrent j is induced on the surface.

and ΞL
B,↑↓ is still given by Eq. (5.23). The expression for the coefficients aL/R

B , bL/R
B

do not give any further insight and can be found in App. C.2.

The bulk energy of the TI is given by

EB = ±
√

A2
0k2
‖ + B2

0k2
z + (MR

0 + M1k2
z)

2 (5.28)

and the states ΨB,↑↓ are degenerate.

In order to prove the orthogonality of the bulk states and determine the normal-
ization constant NB we have to evaluate Eq. (5.11), i.e.,∫ ∞

−∞
dzΨ†

B(kz, z)ΨB(k′z, z) = 2
[∫ 0

−∞
dz
(

ΞL
B,↑↓
)†

ΞL
B,↑↓ +

∫ ∞

0
dz
(

ΞR
B,↑↓
)†

ΞR
B,↑↓

]
,

(5.29)
where we already evaluated the spin overlaps. The first integral on the right hand
side can be calculated in a straightforward manner since ΞL

B,↑↓ only contains
exponentially decreasing functions. The second integral on the right hand side,
however, contains functions of the form e±ikzz which we need to treat carefully
since we are only integrating over a semi-infinite interval. Using the relation∫ ∞

0
dz e±iαz = lim

η→0

±i
α± iη

= ±iP
(

1
α

)
+ πδ(α), (5.30)

where P denotes the Cauchy principal value, the second integral on the right
hand side of Eq. (5.29) can be evaluated. After a lengthy but straightforward
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calculation, we find that the bulk states are indeed orthonormal and that the
normalization constant is given by

NB = 4π
∣∣∣bR

B ηR
B,↑↓(ikz)

∣∣∣2 . (5.31)

The norm of the bulk wavefunctions is determined by the contribution from
z > 0 only.

5.1.3 Vector potential and interaction Hamiltonian

As in the previous chapter, we are considering light incident onto the surface
which lies in the xy-plane as illustrated in Fig. 5.3. For a polarization generated
by a λ/4 wave plate rotated by an angle α and wavevector,

q = q

sin θ cos ϕ

sin θ sin ϕ

cos θ

 . (5.32)

the vector potential is given by

A(t) =
A
2

e−iωt+iqr

− sin 2α sin ϕ + (i + cos 2α) cos θ cos ϕ

sin 2α cos ϕ + (i + cos 2α) cos θ sin ϕ

(i + cos 2α) sin θ

+ c.c. (5.33)

Note that here we labeled the amplitude of the vector potential by A in contrast
to the notation in Chap. 4 in order to avoid confusion with the parameter A0 in
the TI Hamiltonian in Eq. (5.1). The λ/4 wave plate changes the polarization of
the light with a period of π from linearly P-polarized (α = 0), to left-circularly
polarized (α = π/4), to P-polarized (α = π/2), to right-circularly polarized
(α = 3π/4), and back to P-polarized (α = π).

The interaction Hamiltonian is obtained by minimal coupling, k → k− (e/h̄)A
in the Hamiltonian Eq. (5.1). The interaction Hamiltonian to first order in the
vector potential can then be written as

H′ =
e
h̄
[
−2M1Azkz1⊗ τz − B0Az1⊗ τy − A0(σx Ay − σy Ax)⊗ τx

]
. (5.34)

We only want to consider absorption processes and thus write the interaction
Hamiltonian in the form H′ = H′+ + H′−, where H′± ∝ A± = A0e±iωt describes
the emission and absorption of a photon, respectively.
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5.2 calculation of the photocurrent

In calculating the photocurrent density, we again neglect the photon momen-
tum and consider vertical transitions that conserve the in-plane momentum k‖.
The momentum perpendicular to the surface, kz, is naturally not conserved but
determined by energy conservation.

The allowed photoexcitation processes depend on the Fermi level. For a Fermi
energy inside the BCB, the only allowed transitions between surface and bulk
are from the surface states into the unoccupied BCB states [cf. Fig. 5.1]. For a
Fermi energy in the BVB, we have to consider transitions from the BVB into the
Dirac cone. In the following, we show the calculation of the photocurrent for
excitations from the Dirac cone into the BCB. The photocurrent response from
other processes can be calculated analogously.

The photocurrent density can be calculated analogously to the previous chapter
[cf. Eq. (4.10)] and we again assume that the current relaxes on the scale of the
momentum relaxation time τk,

j =− 2πeτk
h̄ ∑

α,β=↑↓
∑
k
(vB − vS,β)

×
∣∣∣〈ΨB,α(k‖, kz, z)|H′−(kz → −i∂z)|ΨS,β(k‖, z)〉

∣∣∣2 δ(EB − ES − h̄ω), (5.35)

where the sum is over occupied surface and unoccupied bulk states, k is the 3D
momentum, ES = A0k‖ for ΨS,↑ and ES = −A0k‖ for ΨS,↓. The velocities are
given by

vS,↑↓ = 〈ΨS,↑↓|
∂H
∂k‖
|ΨS,↑↓〉

= ±A0

h̄
k̂‖ (5.36)

and

vB,↑↓ = 〈ΨB,↑↓|
∂H
∂k
|ΨB,↑↓〉

=
A2

0k‖
h̄EB

k̂‖. (5.37)

The expectation value of the bulk velocity in the z-direction, i.e., perpendicular
to the surface, vanishes. The reason is that the bulk states near the surface given

74



5.2 calculation of the photocurrent

by Eq. (5.27) are a superposition of states that propagate in the ±z-direction. This
is a comforting results considering that we are interested in photocurrents on the
surface. If the electrons excited from the surface into the bulk acquired a finite
velocity perpendicular to the surface, they would quickly move into the bulk
and be lost to the surface photocurrent response. Once the current is generated
at the surface, electrons in the bulk states, of course, might drift or diffuse away
from the surface leading to the relaxation of the surface photocurrent.

5.2.1 φ-integration

In order to calculate the photocurrent density given by Eq. (5.35) we start with
the interaction matrix elements 〈ΨB|H′−|ΨS〉. For a transition between the surface
valence band (SVB) and the BCB we get

|〈ΨB,↑|H′−|ΨS,↓〉|2 =

(
2eA0

h̄

)2 ∣∣(A−,y cos φ− A−,x sin φ
)
〈ΞB,↑|τx|ΞS,↓〉

∣∣2 .

(5.38)
and

|〈ΨB,↓|H′−|ΨS,↓〉|2 =
∣∣∣− 2e

h̄
〈ΞB,↓| − 2iM1A−,zτz∂z + B0A−,zτy|ΞS,↓〉

+
2eA0

h̄
(

A−,y sin φ + A−,x cos φ
)
〈ΞB,↓|τx|ΞS,↓〉

∣∣∣2, (5.39)

where φ is the polar angle of the in-plane momentum with tan φ = ky/kx. A−,i
describes the i-th component of the vector potential ∝ e−iωt indicating that we
are only considering absorption processes. From now on we will neglect the
index ’−’ in the vector potential components for brevity.

The orbital overlaps 〈ΞB,↑↓|τx|ΞS,↓〉 in Eqs. (5.38) and (5.39) are independent of φ.
Through the summation over kx and ky, the photocurrent will eventually involve
an integration over φ and the only other term in the integrand of Eq. (5.35), which
depends on the polar angle, is the velocity (vB− vS) ∝ (cos φ x̂+ sin φ ŷ). We can
easily see that the induced photocurrent for transitions ΨS,↓ → ΨB,↑ vanishes
since the φ-integration yields zero. The photocurrent induced by transitions from
the SVB thus simplifies to

j↓ = −
2πeτk

h̄ ∑
k
(vB − vS,↓)

∣∣∣〈ΨB,↓(k‖, kz, z)|H′−(kz → −i∂z)|ΨS,↓(k‖, z)〉
∣∣∣2

× δ(EB + A0k‖ − h̄ω) (5.40)
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Analogously, one can see that for transitions from the surface conduction band
(SCB) to the BCB only the transition ΨS,↑ → ΨB,↑ will give a contribution to the
photocurrent, and we get

j↑ = −
2πeτk

h̄ ∑
k
(vB − vS,↑)

∣∣∣〈ΨB,↑(k‖, kz, z)|H′−(kz → −i∂z)|ΨS,↑(k‖, z)〉
∣∣∣2

× δ(EB − A0k‖ − h̄ω). (5.41)

Only transitions between surface and bulk states with equal spin orientations
contribute to the photocurrent response. The total photocurrent density is simply
given by j = j↑ + j↓. Looking at Eq. (5.39) and considering the φ-integration we
can further simplify the expression for the photocurrent. For brevity we write

|〈ΨB,↑↓|H′−|ΨS,↑↓〉|2 =

(
2e
h̄

)2 ∣∣AzO↑↓,yz +
(

Ay sin φ + Ax cos φ
)

O↑↓,x
∣∣2 (5.42)

with

O↑↓,yz = −〈ΞB,↑↓| − 2iM1τz∂z + B0τy|ΞS,↑↓〉 (5.43)

O↑↓,x = ∓A0〈ΞB,↑↓|τx|ΞS,↑↓〉, (5.44)

where in Eq. (5.44) the upper sign again corresponds to ’↑’, i.e., excitations from
the SCB, and the lower sign corresponds to ’↓’, i.e., excitations from the SVB.

For the transitions ΨS,↓ → ΨB,↓ and ΨS,↑ → ΨB,↑ only terms ∝ O∗↑↓,yzO↑↓,x + c.c.
can give a finite photocurrent. All other terms vanish when the φ-integration is
performed. The contributions to the photocurrent thus simplify to

j↑↓ = −
16πe3τk

h̄3 ∑
k

δ(EB ∓ A0k‖ − h̄ω)(vB − vS,↑↓)

×
{(

Re[O∗↑↓,yzO↑↓,x]Re[A∗z Ax]− Im[O∗↑↓,yzO↑↓,x]Im[A∗z Ax]
)

cos2 φ x̂

+
(

Re[O∗↑↓,yzO↑↓,x]Re[A∗z Ay]− Im[O∗↑↓,yzO↑↓x]Im[A∗z Ay]
)

sin2 φ ŷ

}
, (5.45)

where we used Eqs. (5.36) and (5.37). The upper sign in the δ-function corre-
sponds to j↑ and the lower sign to j↓.

Looking at Eq. (5.43) and (5.44) we can simplify the expression for the pho-
tocurrent even further. The bulk and surface wavefunctions can be chosen real
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which leads to O↑↓,yz being purely imaginary and O↑↓,x being purely real. Thus
Re[O∗↑↓,yzO↑↓,x] = 0 and the contributions to the photocurrent become

j↑↓ =
16πe3τk

h̄3 ∑
k

δ(EB ∓ A0k‖ − h̄ω)Im[O∗↑↓,yzO↑↓,x](vB − vS,↑↓)

×
{

Im[A∗z Ax] cos2 φ x̂ + Im[A∗z Ay] sin2 φ ŷ

}
. (5.46)

From this expression we can already gain insight into the polarization depen-
dence of the photocurrent. The vector potential components can be pulled in
front of the sum and we can write

j ∝

(
Im[A∗z Ax]

Im[A∗z Ay]

)
. (5.47)

With the vector potential given by Eq. (5.33) this becomes

j ∝ − sin(2α) sin θ

(
− sin ϕ

cos ϕ

)
. (5.48)

Thus, the current generated by optically induced transitions between surface
and bulk states changes sign when switching the helicity of the light between
left- (α = π/4) and right-circular (α = 3π/4) polarization, and vanishes for P-
linear polarization (α = 0, π/2, π). The photocurrent also vanishes for S-linearly
polarized light since then Az = 0. The current flows perpendicular to the plane of
incidence of the light [cf. Eq. (5.32)] and vanishes for normal incidence, i.e., θ = 0.
This qualitative behavior of the photocurrent is in agreement with the crystal
symmetry of Bi2Se3 and the symmetry analysis of the CPGE presented in Chap. 2

[cf. Eq. (2.45)]. We have seen in Chap. 2 that the crystal has a rotational symmetry
around the z-direction, i.e., perpendicular to the surface. Thus the photocurrent
has to vanish for normal incidence. Among others, the crystal surface also has
a mirror axis along the y-direction. For light incident in a plane parallel to the
mirror axis, reflection about the mirror axis changes the helicity of the light and
changes the sign of a current in the x-direction. A current along the y-direction
remains invariant. Thus, helicity-dependent currents have to flow perpendicular
to the plane of incidence of the light.
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5.2.2 k‖-integration

Having established the helicity dependence of the photocurrent, we now turn to
the explicit evaluation of Eq. (5.46). The φ-integration can be easily performed
leaving us with an integration over k‖ and kz. The integral over k‖ can be calcu-
lated using the δ-function. We are considering transitions into the bulk conduc-
tion band, i.e., EB > 0, and can write

δ(EB − ES − h̄ω) = 2EBδ
(

E2
B − (h̄ω + ES)

2
)

, (5.49)

such that we get

δ(EB − A0k‖ − h̄ω) =
EB

A0h̄ω
δ

(
B2

0k2
z + (MR

0 + M1k2
z)

2 − h̄2ω2

2A0h̄ω
− k‖

)
, (5.50)

δ(EB + A0k‖ − h̄ω) =
EB

A0h̄ω
δ

(
−B2

0k2
z − (MR

0 + M1k2
z)

2 + h̄2ω2

2A0h̄ω
− k‖

)
. (5.51)

These δ-functions give a restriction for the kz-integration interval because k‖ ≥
0.

Inserting the expression for the δ-function into Eq. (5.46) and performing the φ-
and k‖-integrations gives

j↑↓ =− D↑↓
e3E2

0 τk A0

2πh̄3ω
sin(2α) sin θ

(
− sin ϕ

cos ϕ

)
, (5.52)

where E0 is the electric field amplitude,

D↑ =−
1

A0h̄ω

∫ ∞

0
dkz k̃‖,↑,x Im[O∗↑,yzO↑,x]

∣∣∣
k‖=k̃‖,↑(kz)

Θ
(

k̃‖,↑(kz)
)

×Θ
(

kF − k̃‖,↑(kz)
)

(5.53)

and

D↓ =
1

A0h̄ω

∫ ∞

0
dkz k̃‖,↓(kz) Im[O∗↓,yzO↓,x]

∣∣∣
k‖=k̃‖,↓(kz)

Θ
(

k̃‖,↓(kz)
)

. (5.54)

The overlaps O↑↓,i are given by Eqs. (5.43) and (5.44), Θ(x) denotes the Heaviside
step function, and

k̃‖,↑↓(kz) = ±
B2

0k2
z + (MR

0 + M1k2
z)

2 − h̄2ω2

2A0h̄ω
. (5.55)

Eq. (5.52) is the final analytical expression for the photocurrent induced on the
surface of a 3D TI by excitations from surface into bulk states.
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5.2 calculation of the photocurrent

A0 (eV Å) B0 (eV Å) MR
0 (eV) M1 (eV Å2)

3.33 2.26 −0.28 6.86

Table 5.1: Numerical values for parameters of the bulk Hamiltonian given by Eq. (5.1)
[Liu et al., 2010]

5.2.3 kz-integration

In order to obtain a quantitative estimate of the magnitude of the photocurrent
and the dependence on system parameters such as the bulk gap inside the nor-
mal insulator ML

0 or the photon energy h̄ω, we need to evaluate the coefficients
D↑↓. These can be obtained by numerical integration and the Θ-functions impose
limits on the integration intervals. For transitions between the SCB and the BCB,
energy conservation sets a minimum value for kz, while the Fermi level gives
an upper bound to the integration. For transitions from the SVB to the BCB we
get a maximum value for kz. Using the Θ-functions to cut off the semi-infinite
integration intervals, we find

D↑ =−
1

A0h̄ω

∫ kz,max,↑

kz,min,↑
dkz k̃‖,↑,x Im[O∗↑,yzO↑,x]

∣∣∣
k‖=k̃‖,↑(kz)

(5.56)

and

D↓ =
1

A0h̄ω

∫ kz,max,↓

0
dkz k̃‖,↓(kz) Im[O∗↓,yzO↓,x]

∣∣∣
k‖=k̃‖,↓(kz)

(5.57)

with

kz,min,↑ =

√√√√√−B2
0 + 2MR

0 M1

2M2
1

+

√√√√(B2
0 + 2MR

0 M1

2M2
1

)2

+
h̄2ω2 − (MR

0 )
2

M2
1

= kz,max,↓ (5.58)

and

kz,max,↑ =

− B2
0 + 2MR

0 M1

2M2
1

+

√√√√(B2
0 + 2MR

0 M1

2M2
1

)2

+
h̄2ω2 + 2A0h̄ωkF − (MR

0 )
2

M2
1


1/2

. (5.59)
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Before we can finally calculate the factors D↑↓ we first need to evaluate the over-
lap integrals given by Eqs. (5.43) and (5.44), i.e.,

O↑↓,yz = −
{∫ 0

−∞
dz(ΞL

B,↑↓)
†(−2iM1τz∂z + B0τy)ΞL

S,↑↓

+
∫ ∞

0
dz(ΞR

B,↑↓)
†(−2iM1τz∂z + B0τy)ΞR

S,↑↓

}
(5.60)

O↑↓,x = ∓
{∫ 0

−∞
dz(ΞL

B,↑↓)
†(A0τx)ΞL

S,↑↓ +
∫ ∞

0
dz(ΞR

B,↑↓)
†(A0τx)ΞR

S,↑↓

}
(5.61)

with ΞL/R
S,↑↓ given by Eqs. (5.13) and (5.18) and ΞL/R

B,↑↓ given by Eqs. (5.23) and
(5.27). Although the calculation is lengthy, the integrals can be performed in a
straightforward way since the surface state wavefunctions decay exponentially
away from z = 0 and there is no problem with convergence. We find that to
leading order in 1/ML

0 the factors D↑↓ are solely determined by the overlap
matrix elements of the TI wavefunctions at z > 0. The reason is the same as for
the surface state norm above. For a large gap ML

0 the wavefunctions on side of
the normal insulator fall off rapidly and their contribution to the transitions can
be neglected. We can thus approximate

O↑↓,yz '
∫ ∞

0
dz(ΞR

B,↑↓)
†(−2iM1τz∂z + B0τy)ΞR

S,↑↓ (5.62)

O↑↓,x '
∫ ∞

0
dz(ΞR

B,↑↓)
†(A0τx)ΞR

S,↑↓. (5.63)

Using Eqs. (5.58), (5.59), (5.62), and (5.63) we can now evaluate the coefficients
D↑↓ given by Eqs. (5.56) and (5.57).

5.3 numerical results

In this section we turn to numerically evaluating the coefficients D↑↓ to obtain
a quantitative estimate for the photocurrent. For the numerical results discussed
we use the parameters obtained by Liu et al. [2010] and listed in Tab. 5.1. We,
however, still have to determine an appropriate value for ML

0 > 0, i.e., the size of
the band gap inside the trivial insulator. Considering transitions from the Dirac
cone into the BCB, an electron can only be photoexcited within the TI but not
photoemitted into the trivial insulator as long as ML

0 > h̄ω + ES, where ES is the
surface state energy. If ML

0 < h̄ω + ES electrons could be emitted into the trivial
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Figure 5.4: Photocurrent from transitions between the surface Dirac cone to the BCB as
a function of the insulating gap ML

0 .

insulator. Thus ML
0 is similar to a work function of the TI and we choose ML

0 = 6
eV [Sobota et al., 2013].

An interesting result is that the photocurrent vanishes in the limit ML
0 → ∞ as

illustrated in Fig. 5.4. This implies that the photocurrent response vanishes for
open boundary conditions, i.e., when the wavefunction is required to vanish at
the surface. For large ML

0 we find a functional dependence of j ∼
(

ML
0
)−3/2.

We would also like to understand the microscopic origin of the photocurrent in
more detail. That a finite photocurrent is indeed generated tells us that photoin-
duced transitions between surface and bulk states take place asymmetrically in
momentum space. We do not know, however, whether the photocurrent is dom-
inated by excitations near the Dirac point, i.e., at small in-plane momenta k‖, or
whether transitions at larger k‖ generate the main contribution to the photocur-
rent. We thus analyze the integrand of Eqs. (5.56) and (5.57) as a function of k‖
as illustrated in Figs. 5.5 (a) and (b). For both kinds of transitions, i.e., from SVB
to BCB and from SCB to BCB, we find significant contributions from large k‖.
For excitations from the SCB to the BCB the integrand increases linearly with
k‖ such that contributions from larger k‖ clearly dominate. For transitions from
the SVB to the BCB the integrand exhibits a maximum as a function of k‖. The
different behavior of the integrands for transitions from the SVB to the BCB and
from the SCB to the BCB for large k‖ reflect the different dependencies of the
available phase space of transitions. For the case SVB → BCB, the phase space
of allowed transitions vanishes once A0k‖ + EB > h̄ω, i.e., the photon does not
have enough energy to excite electrons into the bulk at such large k‖. For the
case SCB→ BCB, on the other hand, the only restriction is the chosen Fermi mo-
mentum, i.e., k‖ ≤ kF. Thus when calculating the photocurrent one has to take
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Figure 5.5: Integrands of (a) Eq. (5.56) and (b) Eq. (5.57). (a) Integrand for SVB → BCB
as a function of k‖ for h̄ω = 1.5 eV (blue), h̄ω = 1.0 eV (red), and h̄ω = 0.5 eV
(green). (b) Analogous plot for the integrand for SCB → BCB. In both cases
transitions at large k‖ contribute significantly to the photocurrent.

into account transitions at all in-plane momenta k‖ that are allowed by energy
conservation.

As a function of Fermi momentum, we find that the current decreases as the
Fermi level is lowered from inside the BCB towards the Dirac point and reverses
sign for negative Fermi energy as illustrated in Fig. 5.6. The decrease in the
photocurrent when lowering the Fermi level has two reasons. One, for smaller
kF the contribution to the photocurrent due to excitations from the SCB to the
BCB band obviously decreases [cf. Fig. 5.7 (a)]. Second, as the Fermi level is
lowered one also starts to allow transitions where an electron from the BVB is
excited into the SCB as illustrated in Fig. 5.7 (b). This process results in a current
that flows in the opposite direction as the current from transitions from the SVB
or the SCB to the BCB. Thus lowering the Fermi level results in a cancellation
between the photocurrent contributions due to transitions from the surface states
into the BCB and transitions from the BVB into the surface states. Once the Fermi
level is lowered below the Dirac point into the BVB, only transitions between the
BVB and the surface states are allowed. The resulting photocurrent is of the
same order of magnitude as the photocurrent for a Fermi level inside the BCB
but flows in the opposite direction. This is illustrated in Fig. 5.5. For small Fermi
momentum, we find that the photocurrent behaves as ∼ k2

F. That the current
vanishes for a Fermi level directly at the Dirac point is due to the particle-hole
symmetric model we are using. Fig. 5.7 (b) shows that for kF = 0 electron and
hole contributions to the current cancel exactly.
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Figure 5.6: Photocurrent as a function of Fermi momentum, where negative kF corre-
sponds to a negative Fermi energy. The current switches sign for positive
and negative Fermi level. For kF → 0 we find that the current vanishes as
∼ k2

F.

5.4 summary

We studied the surface photocurrent response of 3D TIs at large photon energies
that make it necessary to account for bulk states. We find that photoinduced
transitions between the Dirac surface states and the bulk states generate a finite
photocurrent. This photocurrent is helicity-dependent, i.e., reverses its direction
when the polarization of the light is switched between left- and right-circularly
polarized. The current vanishes for linear polarization and for normal incidence
of the light and flows perpendicular to the plane of incidence of the light. When
lowering the Fermi level from the BCB towards the Dirac point, the current
decreases, eventually flowing in the opposite direction when the Fermi level
resides in the BVB.

We find that the photocurrent has significant contributions from transitions at
large in-plane momenta k‖, k‖ ∼ 0.2 Å−1 for h̄ω = 1.5 eV. One should note
that such large values of k‖ strain the applicability of our model Hamiltonian,
given by Eq. (5.1), to the specific TI Bi2Se3. We neglected terms quadratic in
the in-plane momentum and the numerical values for the constant parameters
where obtained from k · p theory which is only valid near the Dirac point [Liu
et al., 2010]. Nevertheless, the model describes a 3D TI and thus our results give
valuable insight into photocurrent generation on TI surfaces.

Even though our model might not quantitatively describe the 3D TI Bi2Se3, it is
still interesting to compare our results to the experiment discussed in Chap. 3.
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Figure 5.7: Possible photoexcitation processes for a Fermi level (a) inside BCB (b) directly
at the Dirac point. Only excitations from the surface Dirac cone into the
BCB are allowed generating a finite photocurrent. (b) Due to the particle-hole
symmetry of our model, the electron and hole contributions to the current
cancel leading to a vanishing photocurrent.

McIver et al. [2012] measured helicity-dependent and helicity-independent con-
tributions to the photocurrent with a possible Dirac cone origin. Qualitatively,
we find a helicity-dependent photocurrent perpendicular to the plane of inci-
dence of the light as measured in the experiment. We do not, however, find any
helicity-independent contributions to the current. Quantitatively, with a Fermi
level near the bottom of the BCB, a laser power of 1 W/cm2, and a photon en-
ergy of h̄ω = 1.5 eV as in the experiment, we find a photocurrent of order ∼ 1
pA/(W/cm2) as measured by McIver et al. [2012], when we assume a momen-
tum relaxation time of τk = 10 ps. The latter seems quite large as momentum
relaxation times of the order of 0.01− 0.1 ps have been reported for the surface
states of Bi2Se3 [Butch et al., 2010; Zhang et al., 2013].

One should note that the photocurrent generated on the surface of a TI by transi-
tions between surface and bulk states is not necessarily protected against direct
backscattering since part of the current is carried by electrons (or holes) in bulk
states. Bulk states are spin degenerate and direct backscattering is not forbidden.
In addition, the resulting current is not completely spin polarized, even though
it is helicity-dependent. For a Fermi level inside the BCB at kF = 0.2 Å−1, ML

0 = 6
eV, and h̄ω = 1.5 eV, the degree of polarization is (j↓ − j↑)/(j↓ + j↑) ∼ 70 %.

After providing a detailed analysis of photocurrent generation in TIs we proceed
in the next chapter with the study of photocurrent relaxation in Dirac systems.
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6
C U R R E N T A M P L I F I C AT I O N A N D R E L A X AT I O N I N D I R A C
S Y S T E M S

In the previous chapters we gave a detailed analysis of photocurrent genera-
tion on TI surfaces but the magnitude of a photocurrent is, of course, not only
determined by the amount of current that is generated but also by how fast it
relaxes. The magnitude of the photoresponse is governed by a competition be-
tween optical excitation and subsequent relaxation of carriers and a complete
understanding of the photoresponse of TIs requires the study of both effects. In
this chapter, we extend our analysis of photocurrents and study the effect of
relaxation of excited carriers on the current response in TIs.

The content and results of this chapter were previously published as [Junck et al.,
2014].

6.1 introduction

In the simplest picture, photocurrents are carried by highly excited electron-hole
pairs with electron and hole moving in opposite directions. In principle, any
scattering event that changes the direction of motion of the particles can relax
the current. For a quadratic dispersion we know that any momentum conserving
scattering event will not affect the current. In this case velocity is proportional to
momentum and as the current is proportional to the velocity, the current is also
proportional to momentum. Thus momentum conserving scattering events do
not change the current. This argument breaks down when one considers linear
dispersions as exhibited by the surface states of TIs. Here velocity is no longer
proportional to momentum and even momentum conserving scattering events
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can change the current. In this chapter we focus on the limit of a perfectly linear
dispersion and our results can therefore also be applied to current relaxation in
other linearly dispersing system such as graphene.

Relaxation of current can, in general, occur through electron-phonon, disorder,
or electron-electron (e-e) scattering. In this chapter we consider a sufficiently
clean regime such that we can neglect disorder scattering. For sufficiently low
temperatures one expects that electron-electron scattering will dominate over
electron-phonon scattering. In graphene at low temperatures, e-e scattering can
be more effective than electron-phonon scattering in relaxing excited carriers
when particles are excited below the optical phonon frequencies with low pump
fluences [Winzer et al., 2010; Kim et al., 2011; Winzer and Malic, 2012; Song et al.,
2013, 2011; Tani et al., 2012]. We will thus assume that e-e scattering provides the
dominant relaxation mechanism.

Much work has already been done on energy relaxation of excited carriers in
Dirac systems both theoretically [Cheianov and Fal’ko, 2006; Butscher et al., 2007;
Stauber et al., 2007; Tse and Das Sarma, 2009; Winzer et al., 2010; Kim et al., 2011;
Winzer and Malic, 2012; Song et al., 2013; Tomadin et al., 2013] and experimen-
tally [Hsieh et al., 2011; Kumar et al., 2011; Breusing et al., 2011; Sobota et al.,
2012; Hajlaoui et al., 2012; Tani et al., 2012; Gierz et al., 2013; Brida et al., 2013].
Specifically it was predicted [Malic et al., 2011] and experimentally observed
[Mittendorff et al., 2014] that for an anisotropic photoexcited distribution in the
Dirac cone, which is, however, symmetric in momentum space and thus carries
no net current, e-e scattering tends to preserve the anisotropy over time scales
of the order of & 100 fs. Due to the helical spin structure of the Dirac electrons,
direct backscattering is forbidden and Coulomb interaction is dominant for scat-
tering events with small momentum transfer [Malic et al., 2011]. Another effect
that is based on e-e scattering in Dirac systems is carrier multiplication [Winzer
et al., 2010; Winzer and Malic, 2012; Song et al., 2013]. A highly excited elec-
tron relaxes in small energy steps, exciting a particle-hole pair in each step. This
’relaxation cascade’ [Song et al., 2013] can produce a large number of excited
carriers depending on the strength of the pump fluence. Experimentally, carrier
multiplication has been observed in pump-probe experiments with low pump
fluences [Tani et al., 2012; Tielrooij et al., 2013; Plötzing et al., 2014] but no evi-
dence was found in time- and angle-resolved photoemission experiments using
large pump fluences of the order of ∼ 1 mJ/cm2 [Gierz et al., 2013; Johannsen
et al., 2013]. The reason is that for a high density of excited electrons relaxation
processes that do not lead to carrier multiplication such as recombination of
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electrons and holes or phonon scattering become more important [Winzer and
Malic, 2012; Song et al., 2013].

While it has been studied that e-e interaction can lead to these interesting effects
in signatures of energy relaxation, the question remains how e-e scattering af-
fects the current in Dirac systems. Again, while e-e scattering cannot affect the
current in quadratically dispersing systems, due to its momentum conserving
character, the same is not true for systems with a linear dispersion. Velocity is
no longer proportional to momentum and e-e scattering can change and relax
the current [Müller and Sachdev, 2008]. In 2012, Sun et al. investigated the effect
of a hot carrier background on the photocurrent and found that it effectively
reduces the current, with the relaxation rate determined by the density of the
thermal carrier background.

In this chapter, we study the effect of e-e scattering on the current in a very
different regime. We consider a single excited electron, hole, or electron-hole
pair undergoing scattering processes as the ones illustrated in Fig. 6.1. We give a
detailed analysis of how these e-e scattering processes of highly excited particles
in Dirac materials can affect current relaxation and obtain surprising results. For
a photocurrent associated with a photoexcited electron-hole pair, the process of
current relaxation occurs in a highly anisotropic manner for electron and hole.
For a Fermi energy above the Dirac point, the current carried by a single electron
actually increases due to e-e scattering, while the current carried by a single
hole relaxes. In combination the current relaxation of zero-momentum electron-
hole pairs is strongly suppressed as the amplification of the ’electron current’
partially cancels the relaxation of the ’hole current’. Quantitatively we find that
in the limit of large excitation energies ε1 of the initially excited carriers, the
rate of change of the electron and hole currents varies linearly with εF/ε1, but
with opposite signs. For the photocurrent carried by an electron-hole pair these
two linear contributions cancel and the photocurrent relaxation is suppressed
relative to the individual currents. The photocurrent is dominated by subleading
contributions of the order of ∼ (εF/ε1)

3/2.

We will explain in detail the origin of the current amplification that occurs for
a single initially excited carrier in the limit of a single scattering event and after
full momentum-conserving equilibration, i.e., after many scattering events. We
find that the change in current due to e-e scattering strongly depends on the
position of the Fermi level. For a single excited electron, the current increases for
a positive Fermi energy εF > 0 and decreases for negative Fermi energy. For a
single excited hole the picture is reversed. Here the current increases for a Fermi
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Figure 6.1: Absorption of a photon creates an electron-hole pair within the Dirac cone.
The hot electron then relaxes by scattering off an electron in the Fermi sea and
exciting an electron-hole pair. The dashed circles indicate constant energy
contours and are a guide to the eye. (a) A possible relaxation process of the
excited electron for εF = 0 and (b) for εF > 0. (c) A possible relaxation
process of the excited hole for εF > 0.

level below the Dirac point and decreases for a Fermi energy above the Dirac
point. For a Fermi energy exactly at the Dirac point, the current is unaffected by
e-e scattering and no current relaxation occurs.

6.2 many scattering events

We will first consider the limit of many scattering events, when the system is
fully equilibrated under the constraint of momentum conservation. Although
this limit hides subtleties of the relaxation process it provides a platform to
clearly demonstrate the intricacies of current relaxation due to e-e scattering. As
explained above, assume that the sample is sufficiently clean and that temper-
atures are sufficiently low to neglect impurity and electron-phonon scattering.
Then e-e collisions provide the dominant relaxation mechanism and many scat-
tering events will lead to full equilibration of the system with the constraint that
total momentum remains conserved during the relaxation process. With this
information we can determine the final current that flows in the system after
relaxation.

The picture is simplest when considering the photocurrent associated with a
photoexcited electron-hole pair. Neglecting as usual the momentum change in
the photon absorption process, the initial photoexcited state consisting of elec-
tron and hole has zero total momentum. Due to momentum conservation the

88



6.2 many scattering events

systems has to relax to a Fermi distribution with is centered at zero momentum
which means that after many scattering events the photocurrent relaxes back to
zero. While this result may seem obvious, there is actually a subtle structure
underlying it that only becomes visible when considering the relaxation of the
individual electron and hole currents separately.

Now consider the case of a single excited electron with initial energy εi > 0.
When this electron has completely relaxed by e-e collisions, momentum con-
servation tell us that the electron’s initial momentum will be distributed over
the entire Fermi sea. Thus we can determine the final current after complete
momentum-conserving equilibration. For εF > 0 and an initial momentum of
the excited electron ki = ki x̂, the final current is given by

j f = −
eh̄v2

F
(2π)2 k̂i

∫
dk k

∫
dφ cos2 φ∆kδ(ε− εF) (6.1)

with ∆k = ki/N the momentum shift per electron, N = k2
FL2/(4π) the number

of electrons in the Fermi sea, kF the Fermi momentum, and L2 the system area.
For a system with linear dispersion, the initial current, i.e., the current before
any scattering events, is given by ji = −evFk̂i/L2. The final current given by
Eq. (6.1) can thus be written as

j f =
ki

kF
ji. (6.2)

We can see that the final current is larger by a factor of εi/εF > 1 than the initial
current carried by the single excited electron, i.e., the current is amplified by e-e
scattering.

An argument for a quadratic dispersion yields the expected result j f = ji, i.e.,
e-e scattering leaves the current unaffected since momentum conservation im-
plies current conservation for a quadratic dispersion. Indeed, this momentum-
conservation argument can be extended in a straight-forward way to systems
with arbitrary power-law dispersions. For a general dispersion ε ∼ kn the argu-
ment yields j f = ji(k1/kF)

2−n. For quadratic dispersions with n = 2 we recover
the expected result j f = ji, while the current increases for systems with n < 2
and decreases for systems with n > 2. This general results also shows that higher
order corrections to the perfectly linear Dirac dispersion will reduce the current
amplification. Hexagonal warping, e.g., is cubic in momentum with Hw ∼ λk3σz
for Bi2Se3. One can show, however, that in the case of warping, the resulting cor-
rection to the current amplification will be small as it is quadratic in the warping
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strength λ. We will thus continue to focus on the case of a perfectly linear dis-
persion in the remainder of this chapter.

So far we have studied the case of εF > 0 but this argument can also be applied
to the case of negative Fermi energy. We again consider a single excited elec-
tron with initial energy εi > 0 as before and assume that the Fermi energy is
sufficiently negative so that after relaxation of the initially excited electron the
conduction band of the Dirac system is completely empty. As the final carriers
are all in the valence band, momentum and velocity of the particles will be an-
tiparallel. Thus the final current is amplified in magnitude as before but actually
flows in the direction opposite to the initial current, i.e.,

j(εF<0)
f = − ki

kF
ji. (6.3)

As we will see below [cf. Eq. (6.26)], this amplification of the current in the
direction opposite to the initial current actually appears as a relaxation of the
current when considering only a single scattering event.

An analogous argument can be used to study the effect of e-e scattering on the
current carried by a single excited hole. Here the picture is just inverted and
the hole current is amplified in the direction of the initial current for a Fermi
energy below the Dirac point and opposite to the initial current for a Fermi
energy above the Dirac point. In combination, this means that for a photoexcited
electron-hole pair, the individual electron and hole currents are both amplified
in magnitude by e-e scattering. This amplification, however, occurs in opposite
directions leading to an overall photocurrent relaxation back to zero.

While this momentum conservation argument provides a simple way to demon-
strate the surprising result of a current amplification due to e-e scattering, it ac-
tually hides many subtleties that only become apparent when studying the limit
of a single scattering event. This is especially true for a photocurrent associated
with a photoexcited electron-hole pair. The above argument only shows that the
current will ultimately relax back to zero but the details of how this happens are
hidden. As we will see below, the photocurrent relaxation is actually governed
by a very subtle interplay between the electron and hole contributions and the
underlying processes can only be understood when considering the effect of a
single scattering process.

Also, even for relatively clean samples and low temperatures, electrons will not
exclusively relax by e-e scattering but there will be a combination of e-e scat-
tering with electron-phonon and electron-impurity scattering in the relaxation
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6.3 individual scattering events

Figure 6.2: The conditions of energy and momentum conservation for a Fermi energy at
the Dirac point given by Eqs. (6.6) and (6.7) require that scattering is collinear.

process. Considering the cascade picture of Song et al. [2013] a highly excited
electron might first relax by e-e scattering but will eventually also relax through
momentum non-conserving processes such as impurity or phonon scattering.
The above argument is no longer valid in this regime. Understanding what
happens in the single scattering event picture, however, provides a way of es-
timating the combined effects of various relaxation mechanisms of the current
relaxation.

In the next two sections we thus analyze in detail the effect of e-e scattering in
the limit of a single scattering event.

6.3 individual scattering events

The surprising result that e-e scattering can lead to an increase in the current
can also be seen for a single scattering process when analyzing the kinematic
constraints, given by energy and momentum conservation,

εk1 + εk2 = εk′1
+ εk′2

, (6.4)

k1 + k2 = k′1 + k′2. (6.5)

Here, ki (k′i) is the momentum of the initial (final) electrons and εk = ±vFk is the
energy for the upper (conduction) and lower (valence) band, respectively. While
the form of Eq. (6.5) is independent of the specific scattering process, Eq. (6.4)
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expressed in terms of momentum, actually depends on whether the specific scat-
tering process involves particles from the same band or from different band, i.e.,
whether the process is intraband or interband. Which scattering processes are
allowed depends, of course, on the Fermi energy.

For a Fermi energy at the Dirac point, εF = 0, the excited electron can only
relax by scattering off electrons in the Fermi sea which is completely in the
valence band. There is only a single kind of scattering process that is allowed
as illustrated in Fig. 6.1 (a). The excited electron relaxes by interacting with the
Fermi sea, creating a hole in the valence band and an additional electron in the
conduction band. Taking into account that the electron in the Fermi sea has a
negative energy, i.e, εk2 = −vFk2, the condition of energy conservation given
by Eq. (6.4) leads to k1 − k2 = k′1 + k′2. Written a little differently this becomes
together with Eq. (6.5)

k1 = k′1 + k′2 + k2 (6.6)
k1 = k′1 + k′2 − k2. (6.7)

Thus the length of the vector k1 has to be equal to the sum of the lengths of the
remaining three vectors k2, k′1, and k′2. This can only be satisfied for collinear
scattering, when k1 is parallel to k′1 and k′2 and antiparallel to k2 as illustrated
in Fig. 6.2. Thus the initial and final states must have the same velocities, i.e.,
v1 = v2 = v′1 = v′2, considering that velocity and momentum are antiparallel
for states in the valence band. If, however, the initial and final velocities of the
particles are all the same, the current is unaffected by the scattering event. For a
Fermi energy directly at the Dirac point, e-e scattering therefore does not relax
current in systems with linear dispersion.

When the Fermi energy lies above the Dirac point, i.e., εF > 0, there are two
kinds of allowed scattering processes. When the excited electron interacts with
the Fermi sea, it can either scatter off an electron in the valence band (−) or
off an electron in the conduction band (+) as illustrated in Fig. 6.1 (b). We will
denote these processes as (+,−) → (+,+) or (+,+) → (+,+) respectively.
We have seen above in the argument for the case of εF = 0, that processes
where the excited electron interacts with an electron in the valence band, i.e,
processes like (+,−) → (+,+), are collinear and do not relax current. For a
positive Fermi energy we therefore only need to consider intraband processes
like (+,+) → (+,+) [see Fig. 6.1 (b)]. In this case, the energy conservation
condition given by Eq. (6.4) becomes

k1 + k2 = k′1 + k′2. (6.8)
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6.3 individual scattering events

Figure 6.3: Ellipse illustrating the kinematic constraints on the electron scattering pro-
cess given by energy and momentum conservation for εi > 0. The momenta
k1 and k2 are drawn head-to-tail starting and ending at the left and right focal
points (red dots). The distance between the focal points is given by |k1 + k2|
and (k1 + k2)/2 defines the length of the semi-major axis. When drawn in
a similar fashion to k1 and k2, the allowed final momenta k′1 and k′2 have
to touch at points that lie on the ellipse to ensure energy and momentum
conservation. The Fermi momentum is indicated by the green dashed circle.
Due to Pauli’s principle we have k2 ≤ kF < k′2, k′1 and the point where k1 is
connected to k2 lies on the ellipse inside one of the green dashes circle. The
point of connection of k′1 and k′2 has to lie outside the green dashed circles
on the ellipse.

This condition together with momentum conservation as given by Eq. (6.5) can
be graphically interpreted by an ellipse. With the vectors drawn as illustrated
in Fig. 6.3, the points of connection of vectors k1 and k2 and of vectors k′1 and
k′2 that are allowed by momentum and energy conservation describe an ellipse.
The semi-major axis is defined by the energy k1 + k2 = k′1 + k′2 = const. and
|k1 + k2| = |k′1 + k′2| is the distance between the focal points.

In order to show how this construction leads to the results that the current in-
creases along the direction of the initial current k̂1, we will proceed in two steps.
In the first step, we assume that k2 is fixed in addition to k1. k1 itself is fixed
by the initial condition. Then we have one unique ellipse that is defined by the
axes µ̂‖(k2) and µ̂⊥(k2) [see Fig. 6.3]. To evaluate the effect of e-e scattering on
the current we have to sum over all possible scattering events. The only variable
factors are now k′1 and k′2 with the constraint that the point of connection of
k′1 and k′2 has to lie on the ellipse. We will show that a summation over all k′1
and k′2 under this constraint leads to an increase in the current along µ̂‖ and a
change in current along the perpendicular direction µ̂⊥. In the second step we
sum over all allowed k2, i.e., over all ellipses. Since the only directionality of the
problem is given by the initial momentum k1 the final current also has to flow
along the axis defined by k1. Indeed, the change in current along µ̂⊥ averages
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Figure 6.4: Each k2 parametrizes a different ellipse, i.e., summing over all allowed mo-
menta k2 means summing over all possible ellipses. The green dashed circle
again illustrates the Fermi momentum and the allowed values of k2 have to
lie inside this circle. For any k2 and corresponding ellipse (blue) there exists
a mirror image with respect to the axis defined by k1, k̃2 (blue ellipse). The
current increase along µ̂‖ thus averages to a current increase along k1. In
general there might also be a change of the current along the direction µ̂⊥.
As illustrated, the change of the component parallel to k1 averages to zero
when summing over all k2, and the symmetry of the problem forbids any
change of the current perpendicular to k1. We can thus neglect changes of
the current along µ̂⊥.

to zero due to the rotational symmetry when summing over k2. The increase of
the current along the direction µ̂‖ averages to an increase of the current along
the direction of the initial current k̂1 and we recover the remarkable results of a
current amplification discussed before.

Starting now with the first step we assume that k2 is fixed. The initial and final
currents before and after the scattering event along µ̂‖ are given by (vF = 1, e = 1
for brevity)

ji = (k̂1)µ‖ = cos φ1 (6.9)

jf = (k̂′1 + k̂′2 − k̂2)µ‖ = cos φ′1 + cos φ′2 − cos φ2, (6.10)

where the angles are defined as in Fig. 6.3. To analyze how the current changes
due to a single e-e scattering event we have to compare cos φ1 + cos φ2 to cos φ′1 +
cos φ′2. If cos φ1 + cos φ2 < cos φ′1 + cos φ′2, the current would decrease while for
cos φ1 + cos φ2 > cos φ′1 + cos φ′2, the current would increase. Using the law of
cosine we can write

cos φ1 + cos φ2 =
2a
e

(
1− a2 − e2

2ak1 − k2
1

)
, (6.11)
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6.4 quantitative analysis for a single scattering event

where e = |k1 + k2|/2 = const. is the linear eccentricity of the ellipse and
a = (k1 + k2)/2 = const. the semi-major axis. One can easily verify that the
expression given by Eq. (6.11) has a maximum for k1 = a and falls off monotoni-
cally away from k1 = a. Thus cos φ1 + cos φ2 has a maximum for the symmetric
case where k1 = k2 = a and the point of connection of k1 and k2 lies on the
axis µ̂⊥. From Pauli’s principle we know that k2 ≤ kF < k′1, k′2. This requires that
the point of connection of k1 and k2 has to lie inside the green dashed circle
describing kF as illustrated in Fig. 6.3. As k′1, k′2 > kF the point of connection of
k′1 and k′2 has to lie outside the green dashed circle. Then necessarily the point
of connection of k′1 and k2 is closer to the µ̂⊥-axis than the point of connection of
k1 and k2 leading to jf ≥ ji for any scattering event. The current increases along
the direction given by µ̂‖.

Now we proceed with the second step and sum over all possible k2. This means
that we have to sum over all ellipses, i.e., over all possible µ̂‖ and µ̂⊥. For any
given k2 there will also be a k̃2 which is the mirror image of k2 with respect to the
axis defined by k1 as illustrated in Fig. 6.4. Thus for any µ̂‖(k2) we also have a
µ̂‖(k̃2). We can now easily see that the current increase along µ̂‖ discussed in the
first step, averages to a current increase in the direction of k1 when summing
over all possible k2. So far we have neglected the component of the current
along µ̂⊥ for a fixed k2 but we can easily see that this omission was justified.
This contribution to the current has components parallel and perpendicular to
k1. When summing over k2 the component parallel to k1 averages to zero as
illustrated in Fig. 6.4 while the perpendicular component also vanishes since the
symmetry of the problem requires that the final current has to flow along the
axis defined by k1. Thus, we have shown by simple geometric considerations
that e-e scattering increases the current carried by a single excited electron when
the Fermi level lies above the Dirac point. A analogous argument showing that
the current decreases for a Fermi level below the Dirac point, i.e., for εF < 0, is
given in App. D.1. Note, however, that what might look like a current relaxation
for a single scattering event for εF < 0 actually results - in the limit of many
scattering events - in an increase in the current albeit in the direction opposite to
the initial current.

6.4 quantitative analysis for a single scattering event

Having established how e-e scattering qualitatively affects individual electron
and hole currents, we would now like to obtain quantitative estimates of the
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change in current and determine the combined effect of electron and hole when
considering photocurrents. The rate of change of the current can be obtained
within an approach based on Fermi’s golden rule. Specifically we consider the
surface states of the TI Bi2Se3, which are described by the second quantized
Dirac Hamiltonian

H = ∑
k

Ψ†
kHkΨk +

1
2 ∑

q,k1,k2

Ψ†
k1+qΨ†

k2−qV(q)Ψk2Ψk1 , (6.12)

where V(q) = e2/2ε0εq is the Coulomb interaction with dielectric constants ε0
and ε, and

Hk = vF(kyσx − kxσy) (6.13)

describes the single-particle Dirac dispersion with eigenenergies εk = ±vFk and
eigenstates |ki〉.

The rate of change of a current can in general be written as

dj
dt

= −e ∑
k1

vk1

d fk1

dt
. (6.14)

where f denotes the distribution function. In the absence of external fields, the
rate of change of the distribution function is given by the collision integral ac-
cording to the Boltzmann equation and we can write

d fk1

dt
= ∑

k2,k′1,k′2

Wk1,k2;k′1,k′2

[
fk′1

fk′2
(1− fk1)(1− fk2)− fk1 fk2(1− fk′1

)(1− fk′2
)
]

.

(6.15)

Assuming that we initially have a single photoexcited electron-hole pair with
fixed momentum k1 [see Fig. 6.1 (a)], Eq. (6.14) simplifies to

dj(e/h)

dt
= ∓evk1

d f (e/h)
k1

dt
(6.16)

for the individual electron and hole currents. Considering in addition that the
transition rate given by Eq. (6.15) is symmetric when interchanging either the
initial or final particles, the rate of change of the individual electron and hole
currents can be written as

dj(e/h)

dt
=∓ e ∑

k2,k′1,k′2

(v′1 + v′2 − v1 − v2)Wk1,k2;k′1,k′2

× f (e/h)(εk2)[1− f (e/h)(εk′1
)][1− f (e/h)(εk′2

)], (6.17)
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where the velocity is vi = vFsgn(εki)k̂i and f (e/h)(εki) denotes the Fermi distri-
bution function of electrons and holes, respectively. The transition rate is given
by

Wk1,k2;k′1,k′2
=

2π

h̄
|M|2δk1+k2,k′1+k′2

δ(ε1 + ε2 − ε′1 − ε′2), (6.18)

with εi = εki and interaction matrix element

M =
1

2L2 [〈k
′
1|k1〉〈k′2|k2〉u(|k1 − k′1|)− (k′1 ↔ k′2)]. (6.19)

Here, L2 is the surface area of the system and u(q) = (e2/2ε0ε)/(q + qTF) the
screened Coulomb interaction where qTF = αkF is the Thomas-Fermi wave vector
with α = e2/(4πh̄vFε0ε). As photoexcitation creates highly excited electron-hole
pairs, the corrections to the Fermi distribution due to finite temperature become
negligible and we can set T = 0.

In order to proceed we need to evaluate Eq. (6.17). At T = 0 the distribution
functions become Heaviside θ-functions and the integrand can be simplified by
introducing the momentum transfer q = k1− k′1 = k′2− k2. Using the identity

δ(ε1 + ε2 − ε′1 − ε′2) =
∫

dωδ(ε1 − ε′1 −ω)δ(ε′2 − ε2 −ω) (6.20)

the two δ-functions can be used to eliminate two angular integrals (see App. D.2).
This leaves us with a three-dimensional integral which can be solved numerically
for general parameters and analytically in limiting cases such as large excitation
energies, i.e., ε1/εF � 1.

Before studying in detail the rate of change of the current given by Eq. (6.17) we
want to estimate how much the current is changed by a single scattering event.
Specifically we determine the mean change of current per scattering event for
a single excited electron as illustrated in Fig. 6.5. The inset shows schematically
how an e-e collision changes the current. The mean change in current is defined
by

〈∆j〉
j0

=
1

j0Γ
dj
dt

, (6.21)

where Γ is the total scattering rate and j0 the initial current carried by the excited
electron. To make our results more realistic we include particle-hole asymmetry
to the dispersion through εk = ±vFk + ξk2. The total scattering rate Γ actually
diverges for a perfectly linear dispersion since the phase space for collinear scat-
tering becomes infinite. The physical particle-hole asymmetry regularizes this
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Figure 6.5: Mean change of the current per electron scattering event relative to the initial
current j0, 〈∆j〉/j0, as a function of Fermi energy εF for fixed initial energy
εk1 ≈ 0.15 eV. Regions of current amplification and relaxation are illustrated
by the blue and red shaded areas, respectively. The rate of change of the
current is normalized by the total scattering rate Γ [see Eq. (6.21)]. To obtain
these results we used realistic parameters for Bi2Se3, including particle-hole
asymmetry ξ = 23.7 eV Å

2
, vF = 5 · 105 m/s [Liu et al., 2010], and α = 0.1

(see text for definitions) where we assumed an average dielectric constant
of air and Bi2Se3 of ε ∼ 50 [Greenaway and Harbeke, 1965; Sandomirsky
et al., 2001]. The inset shows a schematic scattering process where the initially
excited electron excites an electron-hole pair, and the corresponding initial
and final currents.

divergence. Since collinear scattering does not affect the current as we have seen
above, the rate of change dj/dt would remain well defined even for a linear dis-
persion. There are also other ways to regularize Γ. For a perfectly linear disper-
sion the regularization can be done by dynamical screening within the random
phase approximation [Song et al., 2013; Tomadin et al., 2013]. Note that when
calculating the total scattering rate Γ one has to take into account all allowed
scattering processes including processes that do not change the current.

As illustrated in Fig. 6.5, we qualitatively recover the results we obtained by an-
alyzing the kinematic constraints. A single e-e collision decreases the current
for negative Fermi energy and increases the current for positive energy. For
zero energy the current remains unaffected by e-e scattering. For εF/ε1 → 1,
the phase space for scattering vanishes and the change in current goes to zero.
Quantitatively, we used an initial excitation energy of ε1 ≈ 0.15 eV, particle-hole
asymmetry ξ = 23.7 eV Å

2
, and vF = 5 · 105 m/s [Liu et al., 2010]. For the

Thomas-Fermi wave vector qTF = αkF we used α = 0.1 where we assumed an
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average dielectric constant of air and Bi2Se3 of ε ∼ 50 [Greenaway and Harbeke,
1965; Sandomirsky et al., 2001]. With these parameters we find that the maximal
current enhancement can be of the order of ∼ 10% per scattering event.

We now study in detail the rate of change of the current given by Eq. (6.17). From
now on we assume a perfectly linear dispersion, i.e., ξ = 0, because dj/dt is well
behaved in that limit as explained above. We also choose εF > 0 for definiteness,
the case of negative Fermi energy follows by electron-hole symmetry. Numeri-
cal integration of Eq. (6.17) gives the rates of change of the individual electron
and hole current and in combination also of the total current. The results are
illustrated in Fig. 6.6 where the red squares describe the electron current, the
green diamonds the hole current and the blue circles the total current. As we
know by now, e-e scattering increases the electron current for a positive Fermi
energy and decreases the hole current. For large Fermi energies εF/ε1 → 1 the
electron current goes to zero while the hole current remains finite. The reason
is the difference in the available phase space for scattering for the individual
carriers. Fig. 6.1 (b) and (c) show the relevant scattering processes for electron
and hole. For εF/ε1 → 1 the phase space for scattering of the electron clearly
vanishes [Fig. 6.1 (b)], the phase space for scattering of the hole remains finite
[Fig. 6.1 (c)]. Adding the two individual contributions, we see that the total cur-
rent (blue circles) also relaxes by e-e scattering but also that there are significant
cancellations between the electron and hole currents. The total current relaxes
much slower. To understand and quantify this cancellation effect we study the
asymptotic behavior of Eq. (6.17) in the limit of εF/ε1 � 1 analytically.

We can neglect any collinear processes since those do not change the current
as shown above. Remembering that we chose εF > 0, for the electron current
we thus only need to consider scattering processes within the conduction band,
i.e., (+,+) → (+,+), as the one illustrated in Fig. 6.1 (b). For the hole there
are two possible processes that can change the current. The hole can recombine
with an electron from the valence band, thereby exciting an electron from the
conduction band to above the Femi level, i.e, (−,+) → (−,+), as illustrated in
Fig. 6.1 (c). In the other process, the hole can recombine with an electron in the
conduction band, exciting an electron from the valence band to above the Fermi
level, i.e., (−,+) → (+,−) [consider k′1 ↔ k′2 in Fig. 6.1 (c)]. Other processes
will be collinear and can be neglected.
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Figure 6.6: Rates of change of the electron (red squares), hole (green diamonds), and
total (blue circles) currents obtained from Eqs. (6.22) and (6.23) and their sum.
We used the same parameters as in Fig. 6.5 without electron-hole asymmetry.
The relaxation of the total current (blue circles) is strongly suppressed due
to cancellations between the electron and hole contributions. The results for
εF < 0 follow by electron-hole symmetry.

The rate of change of the electron and hole current according to Eq. (6.17) be-
come

dje

dt
= −e

1
4L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(

k̂′1 + k̂′2 − k̂1 − k̂2

)

×
∣∣∣∣ 〈k1,+|k′1,+〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
− 〈k1,+|k′2,+〉〈k2,+|k′1,+〉

|k1 − k′2|+ qTF

∣∣∣∣2
× θ(εF − εk2)θ(εk′2

− εF)θ(εk′1
− εF) (6.22)

and

djh

dt
= 2e

1
4L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(
−k̂′1 + k̂′2 + k̂1 − k̂2

)

×
∣∣∣∣ 〈k1,−|k′1,−〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
− 〈k1,−|k′2,+〉〈k2,+|k′1,−〉

|k1 − k′2|+ qTF

∣∣∣∣2
× θ(εk2 − εF)θ(εF − εk′2

), (6.23)

where |k,±〉 describes a state in the conduction or valence band respectively. For
the hole current the sums are restricted to εk′1

< 0 and εk′2
> 0 and the additional

factor of 2 accounts for the case εk′1
> 0 and εk′2

< 0. To simplify the calculation
we introduce the momentum transfer q = k1 − k′1 = k′2 − k2. To leading or-
der, the rates of change of the electron and hole currents, will be dominated by
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scattering events with small momentum transfer q � k1, because the Coulomb
interaction scales as ∼ 1/(q + qTF). With this we can, e.g, approximate

k̂′1 − k̂1 =
k1 − q cos φq

|k1 − q| − 1 ≈ 0. (6.24)

and

|〈k1|k′1〉|2 =
k1 − q cos φq + |k1 − q|

2|k1 − q| ≈ 1. (6.25)

With the help of the identity (6.20), Eqs. (6.22) and (6.23) can now be evaluated
analytically for kF � k1. The details of the calculation can be found in App. D.4.
We find that the asymptotic behavior of the rate of change of the electron and
hole currents is given by

dj(e/h)

dt
≈ ±Cα2 εF

h̄
j0, (6.26)

where C ≈ 0.3 (see App. D.4), ± stands for the electron and hole current respec-
tively, and j0 is the initial current of magnitude j0 = evF of the photoexcited
carrier.

This results has several interesting aspects. First, we see that the rate of change
of the individual electron and hole currents is actually independent of the exci-
tation energy ε1 even though we are considering the limit of large ε1/εF � 1.
The reason is that Eq. (6.26) is solely determined by e-e scattering events with
small energy transfer of the order of ∼ εF independent of the excitation energy
[see Figs. 6.1 (b) and (c)]. Secondly, to this order the rates of change of the elec-
tron and hole currents only differ in their signs. Thus, this leading order exactly
cancels when considering the rate of change of the current associated with a
photoexcited electron-hole pair. In agreement with our numerical analysis [see.
Fig. 6.6] we indeed find that the rate of change of the total current of a photoex-
cited electron-hole pair is smaller than the individual contributions and must
scale with a higher power of εF/ε1. Calculating Eqs. (6.22) and (6.23) as outlined
above to higher order (see App. D.4), we find that

dj(tot)

dt
=

dj(e)

dt
+

dj(h)

dt
≈ −α2

9
εF

h̄

(
εF

ε1

)1/2

j0. (6.27)

In contrast to Eq. (6.26), we see that the rate of change of the total current de-
pends on the large excitation energy ε1 and even vanishes in the limit ε1 → ∞.
For small εF/ε1 the relaxation of the total current is suppressed. Fig. 6.7 (a)
shows the asymptotic behavior of the rate of change of the total current given by
Eq. (6.27) (red solid line) and the result determined by numerically integrating
Eq. (6.17) (blue circles),
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Figure 6.7: (a) Rate of change of the total current (blue circles) [from Eq. (6.17)] and the
asymptotic behavior ∼ (εF/ε1)

3/2 given by Eq. (6.27) (red). (b) To leading
order the relaxation of the total current current is governed by the illustrated
scattering process of the excited hole. These scattering processes involve a
large energy transfer explaining the observed suppression of the relaxation
rate.

The distinctly different relaxation behaviors of the total current and the individ-
ual electron and hole currents are rooted in the underlying scattering processes.
The amplification and relaxation of the electron and hole current respectively
are dominated by scattering processes with small momentum transfer, and thus
small energy transfer, of the order of the Fermi energy. This is not a surprising re-
sult as Coulomb interaction is inversely proportional to the momentum transfer
and will thus be dominant for small momentum transfer. For energy relaxation
of excited electrons in Dirac systems, it was found that the electron relaxation
occurs through a cascade of scattering processes losing in each step an energy of
the order of εF [Song et al., 2013].

For the relaxation of the total current the picture drastically changes. In the limit
ε1/εF � 1 the contributions from scattering with small energy transfer of the
individual electron and hole currents cancel exactly to the order considered. The
relaxation of the total current given by Eq. (6.27) is solely governed by scattering
processes with large energy transfer of the order of ε1. In addition scattering pro-
cesses of the excited electron actually only have a subleading effect. To leading
order, the relaxation of the total current is caused by scattering of the photoex-
cited hole, specifically the scattering processes (−,+) → (+,−) illustrated in
Fig. 6.7 (b). Here the photoexcited hole recombines with an electron from the
valence band, thereby exciting an electron from the conduction band to above
the Fermi sea. This collision involves a large energy transfer of the order of ε1

102



6.5 experimental signatures of the amplification effect

which also explains why the relaxation of the total current vanishes in the limit
of ε1 → ∞.

6.5 experimental signatures of the amplification effect

Naturally the amplification effect has important implications for photocurrent
measurements. Photocurrents are carried by electron-hole pairs and the amplifi-
cation effect for the electron current results in the strong suppression of the rate
of change of the photocurrents due to e-e scattering [see Eq. (6.27)], which is
indeed interesting for time-resolved photocurrent measurements.

One might also want search for a way to directly observe the amplification ef-
fect for a single excited electron, which could, however, prove difficult. First,
one needs to inject electrons of a certain energy and momentum into a Dirac
system. One possible way to achieve this is to let electrons tunnel from a nan-
otube to graphene such that momentum is conserved. Here, an advantage of
graphene over 3D TIs is that the 2D nature of graphene protects us from any un-
wanted bulk contributions which are often present in 3D TIs [Taskin and Ando,
2009; Checkelsky et al., 2009; Peng et al., 2010; Analytis et al., 2010]. In addi-
tion graphene can be made remarkably clean reducing the disturbing effect of
impurities.

Consider the setup illustrated in Fig. 6.8 (a), where an array of nanotubes is
placed above a graphene sheet such that the nanotubes are parallel to the di-
rection between the K and K′ points of graphene, i.e., parallel to a zigzag edge.
The graphene sheet and the nanotube array can be gated independently and
a bias applied between them such that in momentum space we will have two
Dirac cones (one 1D and one 2D) which are shifted in energy as illustrated
in Fig. 6.8 (b). In order to measure the amplification effect the graphene sheet
has to be gated to a small positive Fermi energy. We will apply an additional
source-drain voltage to the nanotube array that will give us a different chemical
potential for right and left movers inside the nanotubes. The idea is that the gate
and source-drain voltages applied to the nanotubes are adjusted such that, e.g.,
only left moving states in the nanotubes are occupied in the region where they
overlap with states in the graphene sheet, i.e., where momentum conserving tun-
neling is allowed, indicated by red color in Fig. 6.8 (b). The corresponding right
moving states are unoccupied, so only left movers can tunnel into graphene. Of
course this implies that the nanotubes are short enough that there is no equi-
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libration between left and right movers. It has been shown that in certain 1D
systems, equilibration between left and right movers can be remarkably slow
[Karzig et al., 2010]. The tunneling electrons conserve their energy and momen-
tum along the nanotubes (e.g. the x-direction), i.e., electrons with energies in the
interval [εc, εc + µL] can tunnel into graphene. Electrons with energy > εc will
acquire a finite ky-component to satisfy energy conservation. Because of symme-
try the final current injected into the graphene sheet, of course, flows along the
direction of the nanotubes.

Even in this straightforward setup, measuring the amplification of the current
turns out to be quite subtle. The advantage of the given setup is, that by mea-
suring the tunneling current one also directly determines the current that flows
in the graphene sheet before any scattering events occur. This is, however, not
the current one measures. The measurable quantity is the final current after e-e
relaxation [see Eq. (6.1)]. This final current is the same for linear, ε = vFk, or
quadratic, ε = k2/(2m), dispersion under the substitution vF = kF/m. The two
dispersions only differ in the way this final current develops after the injection of
the initial current. For a quadratic dispersion the final current is obtained imme-
diately after injection and e-e scattering does not affect the current. For a linear
dispersion, however, the final current consists of a contribution that exists im-
mediately after injection and the subsequent increase of this current (for εF > 0)
due to partial energy relaxation by e-e scattering. The current only assumes its fi-
nal value in two steps, namely tunneling and subsequent carrier relaxation, with
possibly very different time scales. Thus comparing the tunneling current to the
measured current in graphene should reveal the differences in the two disper-
sions and show the amplification effect for linear dispersion, when one neglects
any resistance or scattering effects due to the leads.

In addition to exploring the amplification effect by comparison with the initially
injected current, the proposed setup results in a current whose magnitude can
be controlled by tuning the bias and gate voltages applied to graphene. When
varying the chemical potential in graphene within the conduction band, a sample
with a quadratic dispersion would lead to a gate-independent current. Tuning
the gate voltage of graphene we can not only control the magnitude of the final
current but also its sign. While for a Fermi energy in the conduction band the
final current is flowing in the same direction as the initially injected current, for
a Fermi energy in the valence band (and fixed initial energy) e-e scattering leads
to a reversal of the direction of the current in addition to the amplification [see
Sec. 6.2]. Thus the ratio of injected to final measured current should change sign
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when the Fermi energy crosses the Dirac point. This is a distinct signature as no
equivalent effect exists for a quadratic dispersion.

Another even more direct signature of the proposed amplification effect might
be obtained by a time-resolved measurement. Taking into account that electrons
might be injected into the graphene sheet by a pulse that is short compared to
the time scale for relaxation, a time-resolved measurement might reveal how the
current is amplified over time. The necessary femtosecond time-resolution has
already been demonstrated in experiments on graphene [Breusing et al., 2011;
Sun et al., 2012; Brida et al., 2013].

Quantitatively, in order to compare a measured final current to the initially in-
jected current, we need to determine this initial current. An advantage of the
proposed setup is that we can theoretically determine the current flowing in the
graphene sheet immediately after injection. To calculate the initial current, we
first consider a small positive Fermi energy εF > 0 inside graphene and assume
that the Fermi velocity vF is the same for nanotubes and graphene. A single
electron of energy εi = 2εc − vFki and momentum ki = kik̂x in a nanotube with
εc < εi < µL can tunnel into graphene [cf. Fig. 6.8 (b)]. Conservation of energy
and momentum along the nanotubes require that electrons with εi > εc acquire
a finite ky-component with ky = ±[(2εc/vF)

2− 4εcki/vF]
1/2 when tunneling into

graphene with equal probability for ±|ky|. The initial current in graphene is then
the average of the currents produced by two particles at k± = (ki,±|ky|), i.e.,

ji = −
evF

A
k̂+ + k̂−

2
= − evF

A
vFki

εi
k̂x. (6.28)

Of course, there will be more than just a single electron tunneling from the
nanotubes into graphene. We can define a tunneling current jT = evFNTk̂x/A,
where NT is the number of tunneling electrons and A the area of the graphene
sheet, which can be measured experimentally. Assuming electrons within the en-
ergy interval [εc, εc + µL] tunnel with equal probability, the initial current inside
graphene is given by

ji = −
vF〈ki〉
〈εi〉

jT, (6.29)

where 〈ki〉 = (3εc − µL)/(2vF) and 〈εi〉 = 2εc − vF〈ki〉 are the average momen-
tum and energy of the tunneling electrons. This expression simplifies in the limit
µL → εc to ji = −jT. The current flowing from the nanotube onto the graphene
sheet is in total transformed into a current in graphene which moves in the op-
posite direction but is of the same magnitude. In general this is not true since
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Figure 6.8: (a) Schematic illustration of the proposed experimental setup with a nan-
otube array on top of a graphene sheet. The effect in principle would also
work for a single nanotube but using an array instead might be advantageous
in terms of gating. The nanotube array and the graphene sheet will be gated
independently with VG,graphene and VG,NT respectively, such that we have two
shifted Dirac cones in momentum space as illustrated in (b). A bias between
right and left movers in the nanotubes is induced by the source-drain voltage
Vsd. (b) Two shifted Dirac cones for the graphene sheet (bottom cone, 2D) and
for the nanotubes (top cone, 1D), assuming that graphene and the nanotubes
have the same Fermi velocity. Since we only want to have, e.g., left moving
electrons tunneling into graphene, the gate and source-drain voltages have
to be adjusted such that µL > εc > µR. Occupied states in the nanotubes are
indicated by red color.

tunneling does not necessarily result in electrons that all move in the same direc-
tion as for this limiting case. For a linear dispersion, the final measured current
is then amplified with respect to the initial current,

j f =
〈εi〉
εF

ji. (6.30)

So far we assumed that in the proposed experiment relaxation only occurs
through e-e scattering. Generally this might not be true and competing relax-
ation processes such as electron-phonon or impurity scattering might contribute.
We note that our calculation of the current increase per e-e scattering event (see
Fig. 6.5) can be used to estimate the final current produced in a tunneling ex-
periment when e-e scattering competes with other relaxation processes. Specif-
ically, e-e collisions relax a highly excited electron via a cascade of scattering
processes in each of which the electron loses an energy of the order of εF [Song
et al., 2013]. The mean change of the current per scattering event as a function
of Fermi energy illustrated in Fig. 6.5 describes the current increase (or decrease
for negative Fermi energy) for each of these scattering steps. If in a tunneling ex-
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periment as described above, the excited electron now relaxes not only through
e-e scattering but also through phonon or impurity scattering one can estimate
the current as follows. If the non-Coulomb relaxation processes do not allow full
relaxation through e-e scattering but only allow N < ε1/εF e-e scattering events,
then the measured current amplification would be proportional to the sum of
the amplification curve for electrons in Fig. 6.5 at values εF/ε = εF/(ε1 − nεF)
for 0 ≤ n < N.

6.6 summary

We performed a detailed analysis of the relaxation dynamics of photocurrents in
clean Dirac systems and uncovered surprising results. An excited electron-hole
pair associated with the photocurrent exhibits strongly asymmetric behavior of
the individual carriers. For a Fermi energy above the Dirac point, a single e-
e scattering event actually increases the ’electron current’, while the ’hole cur-
rent’ decreases. The behavior is reversed for negative Fermi energy. The current
is unaffected by e-e scattering for a Fermi energy directly at the Dirac point.
The highly asymmetric contributions of electron and hole partially cancel when
studying their combined effect, leading to a strong suppression of the relaxation
of the total photocurrent.

This suppression of photocurrent relaxation is rooted in the underlying scatter-
ing processes which reveal that there are distinct differences in the mechanisms
for energy and current relaxation. Energy relaxation of excited particles in Dirac
systems for positive Fermi energy is predicted to be dominated by scattering
events with small energy transfer. The relaxation then occurs through a cascade
of scattering events in each of which the excited particle loses a small energy of
the order of the Fermi energy [Song et al., 2013]. For a single excited electron or
hole, current relaxation is also dominated by scattering events with small energy
transfer of the order of the Fermi energy, similar to the case of energy relaxation.
For a photocurrent consisting of an excited electron-hole pair, however, the con-
tributions governed by scattering events with small energy transfer cancel to
leading order. The relaxation of the photocurrent is thus actually dominated by
scattering events with large energy transfer of the order of the initial excitation
energy which is quite different from the energy relaxation picture. Analyzing
the relaxation process in detail, we find that the initial relaxation rate of the
photocurrent scales as ∼ ε3/2

F . The amplification or relaxation of the individual
electron or hole currents on the other hand scales as ∼ εF.
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While we argued that e-e scattering provides the dominant relaxation mecha-
nism, there will be additional non-Coulomb mechanisms that become impor-
tant when studying the complete energy relaxation. Combing our results of the
change in current per e-e scattering event with the energy relaxation cascade-
picture [Song et al., 2013], our analysis also provides a way to estimate the pho-
tocurrent response when such non-Coulomb relaxation mechanisms are present.

Our calculation of the mean change in current per scattering event also shows
that the surprising increase in the electron current by a single collision for pos-
itive Fermi energy is quite substantial for realistic parameters. Once the excited
electron has fully relaxed, i.e., once partial equilibrium is reached, after many
scattering events, the current is even amplified by a factor of ε1/εF when other re-
laxation mechanisms are neglected. The amplification will, of course, be reduced
when additional non-Coulomb processes, like electron-phonon or impurity scat-
tering become important. A large density of excited electrons and phonons due
to a high radiation intensity will also lead to a reduction of the effect [Winzer
and Malic, 2012; Song et al., 2013; Song, 2014]. The amplification effect should
thus be strongest when the excited electrons have an energy below the optical
phonon frequencies (≈ 200 meV for graphene) and when low-intensity radiation
is used.

Our results provide important insights into the relaxation dynamics of photocur-
rents and we also discuss how the amplification effect might be measured in
experiment. We find that a direct observation of this effect in graphene requires
ultrafast femtosecond time-resolution which has already been achieved in opti-
cal measurements [Breusing et al., 2011; Sun et al., 2012; Brida et al., 2013]. In
addition we propose an experimental setup where the amplification effect can be
observed by comparing the final measured current after relaxation of carriers to
the theoretically calculated initial current. This setup could also probe the Fermi
energy dependence of the effect, i.e, the change in sign when the Fermi energy
crosses the Dirac point, by varying the applied gate voltage. There might also
be other ways to observe the amplification effect. Since highly excited electrons
lead to an increase in the current, the photoconductivity, i.e., the electron con-
ductivity in the presence of light, might also be enhanced. Increasing the energy
h̄ω of the irradiating light should increase the enhancement of the photocurrent.
Again, due to the strong increase in current a strong non-linear signature in the
IV characteristics might also be expected. Other types of systems might also be
promising candidates for studying the amplification effect as, e.g., cold atom
systems allow one to tune the interactions.

108



7
C O N C L U S I O N S A N D O U T L O O K

In this thesis we presented a theoretical study of the generation and relaxation
of photocurrents in TIs. Due to the helical spin structure of the surface states,
TIs are expected to show a unique response to the illumination by light. Moti-
vated by experimental observations of surface photocurrents in the 3D TI Bi2Se3
[McIver et al., 2012; Duan et al., 2014] we analyzed the surface photocurrent in
TIs generated by asymmetric excitations in momentum space. The surface Dirac
electrons in TIs are helical, i.e., electron spin and momentum are locked perpen-
dicular to each other such that each surface momentum corresponds to a unique
spin direction. Circularly polarized light preferably interacts with spins that are
either aligned or antialigned to the wavevector of the light. Obliquely incident
circularly polarized light, exciting electrons within the surface Dirac cone, is thus
expected to excite carriers asymmetrically in momentum space leading to a fi-
nite photocurrent. Changing the helicity of the light would change the sign of
the induced current.

Motivated by this intuitive picture, we first studied the photocurrent response
of TIs within a pure surface state model. We studied how photon absorption
can lead to an asymmetric excited carrier distribution and thus a photocurrent.
We surprisingly found that, within the pure surface model, minimal coupling
between light and electrons does not induce a photocurrent. Even though the
crystal symmetry of 3D TIs such as Bi2Se3 allows surface photocurrents, e.g.,
from the CPGE, a 2D surface model neglects the bulk and leads to a vanishing
photocurrent. A current can, however, be induced by considering the small Zee-
man coupling between light and electron spin and we analyzed the polarization
dependence of the resulting photocurrents for arbitrary angles of incidence of
the light. Since Zeeman coupling is required, these currents are very small and
especially the helicity-dependent contribution is unlikely to be measurable in ex-
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periment. Even including an external in-plane magnetic field, a finite photocur-
rent from pure orbital coupling requires various perturbations to the perfectly
linear Dirac dispersion, such as warping and a finite band curvature.

Since we found that either Zeeman coupling or an external magnetic field is
needed to induce a photocurrent within the pure surface state model, we also
took into account the low-energy bulk states. While the photocurrent response
of 3D TIs deep in the bulk is expected to vanish due to the crystal inversion
symmetry and the spin-degeneracy of the bulk states should preclude a helicity-
dependent current response, these arguments do not hold in the vicinity of the
surface where inversion symmetry is broken. Indeed, experimental measure-
ments of surface photocurrents used photon energies that exceeded the bulk
band gap [McIver et al., 2012; Duan et al., 2014]. We included the low-energy
bulk states within a four-band model [Liu et al., 2010; Zhang et al., 2009a] and
found that obliquely incident light can indeed lead to excitations between sur-
face and bulk states that occur asymmetrically in momentum space. An analysis
of the polarization dependence of the resulting photocurrent revealed that it is
helicity-dependent and vanishes for linearly polarized light. In the considered
particle-hole symmetric model, the photocurrent has opposite sign for positive
and negative Fermi energy and vanishes for a Fermi level directly at the Dirac
point.

In order to provide a full analysis of the the photocurrent response of TI surface
states we also studied current relaxation. In a clean system at very low tempera-
tures electron-electron scattering should be the dominant relaxation mechanism,
and we thus analyzed the effect of carrier-carrier scattering on the photocurrent
response in linearly dispersing systems. We considered a single excited electron-
hole pair and found remarkable results. For a positive Fermi energy a single
scattering event actually increases the electron contribution to the current while
the hole current decreases. The picture reverses for a negative Fermi energy and
current is independent of electron-electron scattering for a Fermi level directly
at the Dirac point. In the limit where the excited electron has completely relaxed
under the constraint of momentum conservation, the amplification factor for a
positive Fermi energy is as large as ε1/εF, where ε1 is the initial excitation en-
ergy. For small Fermi energies we found that the rate of change of the ’electron
current’ and the ’hole current’ both scale as ∼ εF but with opposite sign. This
leads to the result that the relaxation of the total current is actually suppressed
and the rate of change of the total current scales as ∼ ε3/2

F . Microscopically,
the current relaxation for a single excited electron or hole is governed by re-
laxation processes with small energy transfer. Due to the cancellation between
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electron and hole contributions, however, the relaxation of the total current is
dominated by scattering events with a large energy transfer ∼ ε1 which is quite
different from the case of energy relaxation of excited carriers [Song et al., 2013].
We also discussed how this surprising effect of current amplification might be
measured in experiment and found that a direct observation in systems like
graphene would require an ultrafast femtosecond time-resolution. Such a high
time-resolution has already been achieved in optical measurements [Breusing
et al., 2011; Sun et al., 2012; Brida et al., 2013] and observing the amplification
effect in experiments might thus be possible.

Our findings can also be compared to experiment. Photocurrents have been ob-
served on the surface of the 3D TI Bi2Se3 with laser energies larger than the bulk
band gap which lead to photoexcitation processes between surface and bulk
states [McIver et al., 2012; Duan et al., 2014]. While the experiments showed
helicity-dependent as well as helicity-independent photocurrents with surface
state origin, our analysis revealed only a helicity-dependent contribution. Quan-
titatively, this helicity-dependent current is several orders of magnitude larger
than the helicity-dependent current from the pure surface state model. Never-
theless, it is only consistent with the experimental observation if we assume a
momentum relaxation time of τk = 10 ps which seems quite large. Reported spin
relaxation times for Bi2Se3 are of the order of ∼ 0.1 ps [Hsieh et al., 2011; Zhang
and Wu, 2013].

We thus conclude that in order to fully explain the experimental observations
one has to take into account other processes that might generate a photocurrent
response. Bi2Se3 exhibits a second Dirac cone at around 1.8 eV [Sobota et al.,
2013]. For a Fermi level in the bulk conduction band and a laser energy of 1.5
eV as used in the experiment [McIver et al., 2012], one might thus also induce
transitions between the bulk conduction band and the second Dirac cone which
could contribute to the photocurrent. In addition, even if excitations occur sym-
metrically in momentum space, possible asymmetric scattering processes might
lead to a finite photocurrent. The linear photogalvanic effect occurs for symmet-
ric excitations due to asymmetric scattering of carriers on phonons or defects
[Ganichev and Prettl, 2003] and might be the origin for the helicity-independent
surface contribution observed in experiment.

Higher order effects such as the photon drag effect, where current is induced
by the transfer of momentum from photons to electrons, might also generate
a helicity-dependent and -independent response in TIs. The so-called circular
photon drag effect was observed in quantum well structures and attributed to an
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interplay between spin-dependent excitation and subsequent asymmetric spin
relaxation in spin-split bands that drives a current through the spin-galvanic
effect [Shalygin et al., 2006]. On the surface of Bi2Se3 the necessary spin-splitting
would be provided by the Dirac cone or possibly the spin-split bands of the
2DEG in the inversion layer. Recently, there have also been attempts to measure
the photon drag effect in TIs [Onishi et al., 2014].

The 3D TI Bi2Se3 is also a good thermoelectric material and thermoelectric effects
due to laser heating might be important. For graphene it was actually predicted
[Song et al., 2011] and experimentally observed [Gabor et al., 2011] that un-
der certain conditions thermoelectric currents can dominate the photoresponse.
Photoexcitation with low pump fluence and energies below the optical phonon
frequency can lead to efficient carrier multiplication and hot electrons.

Our analysis of how a single e-e scattering event affects the current also pro-
vides a way to combine the effect of e-e scattering with other processes such
as electron-phonon or electron-impurity scattering. This way it is also possible
to estimate the current relaxation dynamics in systems where other scattering
mechanisms compete with e-e interactions. As we have shown, a photocurrent
can also be generated by excitations from the Dirac cone into the bulk conduction
band. It would thus also be interesting to study the relaxation dynamics includ-
ing bulk contributions. While e-e scattering cannot relax current in quadratically
dispersing systems, experimental evidence suggests a strong coupling between
the bulk conduction band and the surface Dirac cone [Sobota et al., 2012]. Excit-
ing electrons into the bulk leads to a long-lived surface-state population (> 10
ps) by subsequent relaxation of carriers from the bulk conduction band into the
surface Dirac cone [Sobota et al., 2012]. It would be interesting to understand
how this strong surface-bulk coupling affects the photocurrent response.
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A
L I G H T P O L A R I Z AT I O N U S I N G A λ / 4 WAV E P L AT E

In this section we will determine the electric field that passes through a λ/4
waveplate rotated at an angle α as illustrated in Fig. A.1. Consider an electric
field that is linearly polarized along the x-axis. For simplicity we work with
complex amplitudes and take the real part in the end, i.e.,

E = E0eiωt x̂. (A.1)

When passing through the waveplate the electric field components acquire a
phase shift, described by a matrix

Wπ/4 =

(
ei π

4 0
0 e−i π

4

)
. (A.2)

Thus, after it has passed through the rotated quarter-wave plate, the complex
electric field is given by

Eα = R(−α)Wπ/4R(α)Eα

=
E0√

2
eiωt

(
1 + i cos 2α

−i sin 2α

)
, (A.3)

where we used

R(α) =

(
cos α − sin α

sin α cos α

)
. (A.4)

For light obliquely incident onto the xy-plane, the wavevector is given by

q = −q

sin θ cos ϕ

sin θ sin ϕ

cos θ

 (A.5)
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light polarization using a λ/4 waveplate

Figure A.1: Coordinate systems of the electric field and the waveplate rotated by an
angle α.

with polar angle θ from the z-axis and azimuthal angle ϕ from the x-axis. The
corresponding complex electric field is found by applying a rotation around the
y-axis followed by a rotation around the z-axis, i.e.,

E ′α = Rz(ϕ)Ry(−θ)Eα

=
E0√

2
eiωt

cos θ cos ϕ(1 + i cos 2α) + i sin ϕ sin 2α

cos θ sin ϕ(1 + i cos 2α)− i cos ϕ sin 2α

−(1 + i cos 2α) sin θ.

 , (A.6)

where we used

Ry(θ) =

cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

 , Rz(ϕ) =

cos ϕ − sin ϕ 0
sin ϕ cos ϕ 0

0 0 1

 . (A.7)

The real electric field is then given by

E ′′α = E0

− sin 2α sin ϕ sin(ωt) + cos θ cos ϕ [cos(ωt)− cos 2α sin(ωt)]
sin 2α cos ϕ sin(ωt) + cos θ sin ϕ [cos(ωt)− cos 2α sin(ωt)]

sin θ [− cos(ωt) + cos 2α sin(ωt)]

 .

(A.8)

The real vector potential can be obtained using E = −∂t A,

A =
A0

2
e−iωt

− sin 2α sin ϕ− (i + cos 2α) cos θ cos ϕ

sin 2α cos ϕ− (i + cos 2α) cos θ sin ϕ

(i + cos 2α) sin θ

+ c.c., (A.9)

where c.c. denotes complex conjugation.
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B
A P P E N D I X T O C H A P T E R 4

In the main text, we presented the calculation of the photocurrent given by
Eq. (4.10),

j = −4πeτp

h̄ ∑
p

vp,+|〈p,+|H′−|p,−〉|2δ(2E− h̄ω), (B.1)

for a specific angle of incidence of the light in the yz-plane. Here, we give the
details of the calculation for arbitrary angles of incidence.

As in the main text, we start by studying the integrand vp,+|〈p,+|H′−|p,−〉|2.
The velocity operator is independent of the specifics of the vector potential and
we only need to consider the interaction Hamiltonian H′ given by Eq. (4.18),

H′ = −e
∂H
∂p
· A− gsµB(∇× A) · σ̂. (B.2)

For the usual definitions of the azimuthal angle ϕ and the polar angle θ, the
vector potential in spherical coordinates can be written as

A(t) =
A0

2
e−iωt+iqr(ϕ̂− iθ̂) + c.c, (B.3)

with

ϕ̂ =

− sin ϕ

cos ϕ

0

 , θ̂ =

cos θ cos ϕ

cos θ sin ϕ

− sin θ

 . (B.4)

Note that for the results obtained in the main text, we redefined ϕ → 3π/2− ϕ

so the light is incident in the yz-plane for ϕ = 0.
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appendix to chapter 4

From this we can read off the orbital-coupling contribution to the interaction
Hamiltonian,

∂H
∂px

Ax(t) +
∂H
∂py

Ay(t) =
1
2
{

A−
[
vx(ϕ̂x − iθ̂x) + vy(ϕ̂y − iθ̂y)

]
+ c.c.

}
=

1
2
{

A− [vx(− sin ϕ− i cos θ cos ϕ)

+vy(cos ϕ− i cos θ sin ϕ)
]
+ c.c.

}
, (B.5)

where again vx = ∂H/∂px, vy = ∂H/∂py, and A± = A0e±iωt.

Next we proceed with the Zeeman coupling and evaluate

∇× A =
1
2

[
iA−q× (ϕ̂− iθ̂) + c.c.

]
=

1
2

[
− A−q(ϕ̂− iθ̂) + c.c.

]
= −qA, (B.6)

where in the second step we used that q = −qr̂ with r̂ the position vector in
spherical coordinates. Note that for right circularly polarized light we would
get the opposite sign in the last line of Eq. (B.6), i.e., ∇× ARCP = qARCP. With
Eq. (B.6) the Zeeman coupling can be written as

(∇× A) · σ̂ = −q
2

{
A−
[
(ϕ̂x − iθ̂x)σx + (ϕ̂y − iθ̂y)σy − iθ̂zσz

]
+ c.c.

}
= −q

2

{
A− [(− sin ϕ− i cos θ cos ϕ)σx

+(cos ϕ− i cos θ sin ϕ)σy + i sin θσz
]
+ c.c.

}
. (B.7)

Inserting Eqs. (B.5) and (B.7) into the interaction Hamiltonian given by Eq. (B.2),
we obtain

H′ =− e
2

A−
{ [

vx(− sin ϕ− i cos θ cos ϕ) + vy(cos ϕ− i cos θ sin ϕ)
]

− vZ
[
σx(− sin ϕ− i cos θ cos ϕ) + σy(cos ϕ− i cos θ sin ϕ) + i sin θσz)

]}
+ c.c., (B.8)

where vZ = gs h̄ω
2mc .

The calculation then proceeds as presented in the main text. The interaction
Hamiltonian given by Eq. (B.8) is inserted into the expression for the photocur-
rent given by Eq. (B.1) and the integral can be evaluated analogously to the
analysis given in the main text.
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A P P E N D I X T O C H A P T E R 5

c.1 coefficients of the surface wavefunction

The surface wavefunctions and bulk wavefunctions near the surface have to obey
the boundary conditions given by Eqs. (5.8) and (5.9) in the main text and rewrit-
ten here for convenience,

ΨL(z = 0) = ΨR(z = 0) and
dΨL

dz

∣∣∣∣
z=0

=
dΨR

dz

∣∣∣∣
z=0

. (C.1)

Inserting the general expression for the surface state wavefunction given by
Eqs. (5.12)-(5.16) into the boundary conditions, with the condition that ES =
±A0k, we find the following coefficients

aR
S = −ηL

S,↑↓(λ
L
S,+)

(
λL

S,− + λR
S,−
)
+ ηL

S,↑↓(λ
L
S,−)

(
λL

S,+ + λR
S,−
)
+ λL

S,− − λL
S,+

(C.2)

bR
S = ηL

S,↑↓(λ
L
S,+)

(
λL

S,− + λR
S,+

)
− ηL

S,↑↓(λ
L
S,−)

(
λL

S,+ + λR
S,+

)
+ λL

S,+ − λL
S,−

= −aR
S (λ

R
S,− ↔ λR

S,+) (C.3)

aL
S =

(
1− ηL

S,↑↓(λ
L
S,−)

) (
λR

S,+ − λR
S,−
)

(C.4)

bL
S = −

(
1− ηL

S,↑↓(λ
L
S,+)

) (
λR

S,+ − λR
S,−
)

= −aL
S(λ

L
S,− ↔ λL

S,+), (C.5)

where

ηL/R
S,↑↓ (λ) =

±A0k‖ − B0λ

ES −ML/R
0 + λ2M1

(C.6)

is the first component of the spinor χL/R
S,↑↓ given by Eq. (5.16) in the main text.
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c.2 coefficients of the bulk wavefunction

In order to obtain the coefficients of the bulk wavefunctions given by Eqs. (5.22)-
(5.26), we need to use that the wavefunction also obeys probability current con-
servation which requires |bR

B |2 = |cR
B |2. In combination with the boundary con-

ditions given by Eqs. (5.8) and (5.9) in the main text, we can solve for the coeffi-
cients and obtain

aR
B =

[
λL

S,+ηL
B,↑↓(λ

L
S,+)

(
λL

S,− − ikz

)
+ λL

S,−ηL
B,↑↓(λ

L
S,−)

(
ikz − λL

S,+

)
− ikzηR

B,↑↓(ikz)
(

λL
S,− − λL

S,+

)] [
−ηL

B,↑↓(λ
L
S,−)

(
λL

S,+ + ikz

)
+ηL

B,↑↓(λ
L
S,+)

(
λL

S,− + ikz

)
+ ηR

B,↑↓(−ikz)
(

λL
S,− − λL

S,+

)]
− (ikz ↔ −ikz) , (C.7)

bR
B =

[
−λL

S,−ηL
B,↑↓(λ

L
S,−)

(
λL

S,+ + ikz

)
+ λL

S,+ηL
B,↑↓(λ

L
S,+)

(
λL

S,− + ikz

)
+ikzηR

B,↑↓(−ikz)
(

λL
S,− − λL

S,+

)] [
−ηL

B,↑↓(λ
L
S,−)

(
λL

S,+ + λR
S,+

)
+ηL

B,↑↓(λ
L
S,+)

(
λL

S,− + λR
S,+

)
− ηR

B,↑↓(−λR
S,+)

(
λL

S,− − λL
S,+

)]
− (λR

S,+ ↔ ikz), (C.8)

and

aL
B =

aR
B

(
λL

S,− + λR
S,+

)
+ bR

B

(
λL

S,− − ikz

)
− (bR

B)
∗
(

λL
S,− + ikz

)
λL

S,− − λL
S,+

(C.9)

bL
B =
−aR

B

(
λL

S,+ + λR
S,+

)
− bR

B

(
λL

S,+ − ikz

)
+ (bR

B)
∗
(

λL
S,+ + ikz

)
λL

S,− − λL
S,+

(C.10)

where

ηL/R
B,↑↓(λ) =

±A0k‖ − B0λ

EB −ML/R
0 + λ2M1

. (C.11)

The bulk energy EB is given by Eq. (5.28) in the main text.
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A P P E N D I X T O C H A P T E R 6

d.1 analysis of kinematic constraints

Here, we present an analogous argument to the one in the main text, showing
that a single e-e scattering event leads to a current decrease in the case of εF < 0
for a single highly excited electron in the conduction band. For a negative Fermi
energy, the excited electron scatters off an electron in the Fermi sea in the valence
band. We have shown in the main text, that in this case scattering processes
only affect the current if the final electrons occupy states in different bands.
Otherwise the scattering event is collinear and the current remains unchanged.
The scattering process that we need to consider is illustrated in Fig. D.1 (a), i.e.,
(+,−)→ (+,−). Written in the following way

k1 + k′2 = k′1 + k2 (D.1)
k1 − k′2 = k′1 − k2, (D.2)

the energy and momentum conservation condition can again be interpreted by
an ellipse as illustrated in Fig. D.1 (b). Note that the position and orientation of
vectors k2 and k′2 are different from Fig. 6.3 in the main text. Pauli’s principle
requires k′2 < kF ≤ k2 such that the point of connection of k1 and k′2 has to lie
inside the green dashed circle while the point of connection of k′1 and k2 has to
lie outside the circle [see Fig. D.1 (b)]. The initial and final currents along µ̂‖(k′2)
that we need to compare are

ji = cos φ1 (D.3)
jf = cos φ′1 − cos φ′2 + cos φ2, (D.4)

such that we have to compare cos φ′1 + cos φ2 and cos φ1 + cos φ′2, to see whether
the current increases or decreases due to an e-e scattering event. Analogous to
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Figure D.1: (a) Schematic illustration of a scattering process where an excited electron
relaxes by creating an electron-hole pair for εF < 0. Scattering processes
where the final states k′1 and k′2 are both in the same band, i.e., both either
in the conduction or valence band, have to be collinear and do not change
the current. (b) As for the case of εF > 0, the allowed scattering processes
can be represented by an ellipse. Now, |k1 − k′2| is the distance between the
focal points and (k1 + k′2)/2 defines the length of the semi-major axis. The
green dashed circle again indicates the Fermi momentum. Because of Pauli’s
principle we have k′2 < kF ≤ k2.

the argument in the main text, it can be shown by simple geometry that for
this particular ellipse jf − ji ≤ 0 for any scattering event. Therefore the current
decreases along µ̂‖. Analogous to the argument for the case of εF > 0, averaging
over all ellipses, i.e., over all k′2, leads to a current decrease due to e-e scattering
for εF < 0.

d.2 evaluation of the energy conservation δ-function

We first introduce the momentum transfer q = k1 − k ′1 = k ′2 − k2. Then the
energy conservation δ-function can be written as

δ(εk1 + εk2 − εk1−q − εk2+q ) =
1

h̄v F

∫
d pδ(k1 − |k1 − q | − p)

× δ( |k2 + q | − k2 − p) , (D.5)
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where h̄v F p is the difference between the energy of the initial and final scattering
states. Using the relation δ(a − b) = 2aδ(a2 − b2 ) with a , b > 0, we can
write

δ(k1 − |k1 − q | − p) = 2(k1 − p)δ((k1 − p)2 − |k1 − q |2 )

=
(k1 − p)

k1 q
δ(cos φq −

q2 − p2 + 2k1 p
2k1 q

)

× θ

(
1 −

∣∣∣∣ q2 − p2 + 2k1 p
2k1 q

∣∣∣∣) (D.6)

where φq is the angle between k1 and q, such that∫ 2π

0
dφq f (cos φq)δ(k1 − |k1 − q| − p)

= 2(k1 − p)
∫ 2π

0
dφq f (cos φq)δ(−2k1p + p2 − q2 + 2k1q cos φq)

= 2
(k1 − p)

k1q

f
(

q2−p2+2k1 p
2k1q

)
√

1− ( q2−p2+2k1 p
2k1q )2

θ

(
1−

∣∣∣∣q2 − p2 + 2k1p
2k1q

∣∣∣∣) (D.7)

where the factor of 2 comes from the fact that cos φ − a has two zeroes in the
interval [0, 2π] with |a| ≤ 1. Analogously, the φ2-integration can be performed
evaluating δ(|k2 + q| − k2 − p).

d.3 identification of distinct scattering processes

In this section, we identify the scattering processes that dominate the amplifi-
cation or relaxation behavior of the current. We focus on the case of εF > 0
and start with scattering processes of the excited electron, where we only need
to consider processes like the one illustrated in Fig. D.2 (a). Here, the excited
electron scatters off an electron in the Fermi sea in the conduction band. Other
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Figure D.2: Possible scattering process of (a) the excited electron and (b) the excited hole
for the case of εF > 0. (a) Scattering processes where the state k2 is in the
valence band are collinear and will not change the current. (b) Scattering
processes where the states k′1 and k′2 are in the same band are also collinear.

allowed process will be collinear as shown in the main text and therefore do not
affect the current. The rate of change of the electron current is then given by

dje

dt
= −e

1
4L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(

k̂′1 + k̂′2 − k̂1 − k̂2

)

×
∣∣∣∣ 〈k1,+|k′1,+〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
− 〈k1,+|k′2,+〉〈k2,+|k′1,+〉

|k1 − k′2|+ qTF

∣∣∣∣2
× θ(εF − εk2)θ(εk′2

− εF)θ(εk′1
− εF)

= −e
1

4L4
2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(

k̂′1 + k̂′2 − k̂1 − k̂2

)
×
(
|Me

d −Me
ex|2
)

θ(εF − εk2)θ(εk′2
− εF)θ(εk′1

− εF), (D.8)

with

Me
d =
〈k1,+|k′1,+〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
, (D.9)

Me
ex =

〈k1,+|k′2,+〉〈k2,+|k′1,+〉
|k1 − k′2|+ qTF

, (D.10)

the ’direct’ and ’exchange’ part of the interaction matrix element, respectively.
The sum is over states with positive energy only. One can see that the contribu-
tions from |Me

d|2 and |Me
ex|2 are equal, when switching the labels k′1 ↔ k′2 in one

of the two terms. We name the contributions to the rate of change of the current
accordingly, i.e., dje

d/dt and dje
ex/dt, respectively, with dje

d/dt = dje
ex/dt. The re-

maining contribution from the interference term proportional to 2Re[Me
d(Me

ex)
∗],

we call dje
inter/dt.
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Studying the hole current, we only need to consider processes like the one il-
lustrated in Fig. D.2 (b). The excited hole can either recombine with an electron
in the valence band, exciting an electron from the conduction band to above the
Fermi energy, or the hole can recombine with an electron in the conduction band,
exciting an electron from the valence band to above the Fermi energy. Processes
where the states |k′1〉, |k′2〉 are in the same band are collinear and thus do not
change the current. The rate of change of the hole current can be written as

djh

dt
= 2e

1
4L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(
−k̂′1 + k̂′2 + k̂1 − k̂2

)

×
∣∣∣∣ 〈k1,−|k′1,−〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
− 〈k1,−|k′2,+〉〈k2,+|k′1,−〉

|k1 − k′2|+ qTF

∣∣∣∣2
× θ(εk2 − εF)θ(εF − εk′2

)

= 2e
1

4L4
2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk2 − εk′1
− εk′2

)
(
−k̂′1 + k̂′2 + k̂1 − k̂2

)
×
(
|Mh

d −Mh
ex|2
)

θ(εk2 − εF)θ(εF − εk′2
), (D.11)

with

Mh
d =
〈k1,−|k′1,−〉〈k2,+|k′2,+〉

|k1 − k′1|+ qTF
, (D.12)

Mh
ex =

〈k1,−|k′2,+〉〈k2,+|k′1,−〉
|k1 − k′2|+ qTF

. (D.13)

The sum is restricted to εk′1
< 0 and εk′2

> 0 and the additional factor of 2 in front
accounts for the other half of the sum. Analogous to the electron case we, name
the first part of the interaction matrix element ’direct’ and the second ’exchange’.
The contributions to the rate of change of the current are named accordingly,
i.e, djh

d/dt and djh
ex/dt, and djh

inter/dt for the interference term, analogous to
the electron case. Here the ’direct’ and ’exchange’ terms are not equal since the
states |k′1〉 and |k′2〉 are in different bands. Simply switching the labels does not
transform one term into the other.

In the next section, we analyze the asymptotic behavior of the rate of change
of the current, i.e., the behavior in the limit of large excitation energies, i.e.,
εF/ε1 � 1. To lowest order we find that

dje
d

dt
+

dje
ex

dt
≈ −djh

d
dt

, (D.14)

dje
inter
dt

≈ −djh
inter
dt

. (D.15)
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When combining the electron and hole contributions to study the current asso-
ciated with the excited electron-hole pair, there are significant cancellations. To
leading order the rate of the change of the total current is just given by

djtot

dt
=

dje

dt
+

djh

dt
≈ djh

ex
dt

. (D.16)

djh
ex/dt is governed by the interaction matrix element

|Mh
ex|2 =

∣∣∣∣ 〈k1,−|k′2,+〉〈k2,+|k′1,−〉
|k1 − k′2|+ qTF

∣∣∣∣2 , (D.17)

which describes processes in which the excited hole recombines with an electron
from the conduction band, exciting an electron from the valence band above
the Fermi energy [see Fig. D.2 (b)]. These scattering processes obviously involve
large energy transfers which are of the order of the initial excitation energy ε1. To
leading order, the rate of change of the photocurrent associated with an excited
electron-hole pair is therefore governed by scattering processes with large energy
transfer of the order of ε1.

d.4 asymptotic behavior of the rate of change of the current

In this section, we calculate the asymptotic behavior of the rate of change of the
current in the limit of large excitation energies ε1/εF � 1. We discuss the indi-
vidual electron and hole currents as well as the total current. We show in detail
the calculation for dje

d/dt [see App. D.3] while the calculation of the remaining
contributions follows analogously.

We thus need to evaluate dje
d/dt [see Eq. (D.8)]. As written in the main text, we

first introduce the momentum transfer q = k1 − k′1 = k′2 − k2. The Coulomb
interaction is is proportional to ∼ 1/(q + qTF) and the ’direct’ term will be dom-
inated by scattering processes with small momentum transfer q� k1. We fix the
initial momentum of the excited electron-hole pair k1 such that the initial current
is given by j0 = −2evFk̂1. As written in the main text, we can now approximate

k̂′1 − k̂1 =
k1 − q cos φq

|k1 − q| − 1 ≈ 0 (D.18)

and

|〈k1|k′1〉|2 =
k1 − q cos φq + |k1 − q|

2|k1 − q| ≈ 1. (D.19)
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Due to the rotational symmetry of the problem the initial and final currents flow
along the same axis defined by ĵ0. Thus the rate of change of the current also
points along this axis and we can write

dje
d

dt
+

dje
ex

dt
= −evF

1
2L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,q

1
h̄vF

δ(k1 + k2 − |k1 − q| − |k2 + q|)

×
(

k2 cos(φ2 + φq) + q cos φq

|k2 + q| − cos(φ2 + φq)

)
×
(

k2 + q cos φ2 + |k2 + q|
2|k2 + q|(q + αkF)2

)
θ(kF − k2)θ(|k2 + q| − kF), (D.20)

where α = e2/(4πh̄vFε0ε) is defined by qTF = αkF. The φ2 and φq integrals can
be evaluated using the identity

δ(k1 + k2 − |k1 − q| − |k2 + q|) =
∫

dpδ(k1 − |k1 − q| − p)δ(|k2 + q| − k2 − p)
(D.21)

as shown in Eqs. (D.6) and (D.7). In Eq. (D.20), however, in addition to terms
with cos φ2 and cos φq there are also terms that contain sin φ2 sin φq. Depending
on the values of φ2 and φq, we can write

sin φ2 sin φq = ±
√

1− cos2 φ2

√
1− cos2 φq. (D.22)

We have to integrate both φ2 and φq from 0 to 2π, and we see that the integration
of the terms proportional to sin φ2 sin φq gives zero. Thus, in the integrand of
Eq. (D.20) we can neglect the terms proportional to sin φ2 sin φq, leaving us with
a function that only depends on cos φ2 and cos φq. Evaluating the φ2 and φq
integrals using Eq. (D.7) and simplifying the result, yields

dje
d

dt
+

dje
ex

dt
= −evF

1
2

2π

h̄

(
e2

2ε0ε

)2 1
h̄vF

1
(2π)4

×
(∫ kF

0
dp
∫ kF

kF−p
dk2 +

∫ k1−kF

kF

dp
∫ kF

0
dk2

) ∫ 2k2+p

p
dq (k1 − p)

×
√
(2k2 + p)2 − q2√
(2k1 − p)2 − q2

(
q2 − p2 + 2k1p

k1q

)
1

(q + αkF)2
(2k2 + p)
k2(k2 + p)

= Ip�k1 + Ip∼k1 . (D.23)

Notice that we split the integral over p into a part for small p ≤ kF, Ip�k1 , and
a part for large p, Ip∼k1 . For the integral over small we have p � k1, and we
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can approximate the integrand further. Introducing dimensionless parameters
p̄ = p/kF, q̄ = q/kF, and k̄2 = k2/kF and shifting the integration variable k2 →
k2 + p/2, we obtain

Ip�k1 = −
D
4π

εF

ε1

∫ 1

0
dp̄
∫ 1+ p̄/2

1− p̄/2
dk̄2

∫ 2k̄2

p̄
dq̄
√
(2k̄2)2 − q̄2

(
p̄
q̄

)
1

(q̄ + α)2
2k̄2

k̄2
2 − p̄2

4

≈ −γ
D
4π

εF

ε1
. (D.24)

with γ ≈ 1.17 from numerical integration, D = evFα2ε1/h̄ and α = 0.1 as in the
main text.

The remaining integral over large p contains contributions with p ∼ k1. If this
integral converges, the integrand has to go to zero faster than 1/p. If this is true,
than we can neglect the contributions from large p and are still allowed to use
the approximation p� k1. With the same dimensionless parameters p̄, q̄, and k̄2
as above, the integral becomes

Ip∼k1 = −
D
4π

εF

ε1

∫ k1/kF−1

1
dp
∫ 1

0
dk̄2

∫ 2k̄2+ p̄

p̄
dq
√

2p
√

2k̄2 + p̄− q̄
(

p̄
q̄

)
× 1

(q̄ + α)2
(2k̄2 + p̄)
k̄2(k̄2 + p̄)

. (D.25)

Since we are studying the limit of large excitation energies, we are interested in
the limit k1/kF → ∞. We avoid numerical integration up to infinity by using that
for the region p� k2 we can approximate p ≈ q and get

I> = − D
4π

εF

ε1

∫ ∞

Λ
dp̄
∫ 1

0
dk̄2

∫ 2k̄2+ p̄

p̄
dq̄
√

2p̄
√

2k̄2 + p̄− q̄
1
p̄2

1
k̄2

= − D
4π

8
3

2
3

εF

ε1

∫ ∞

Λ
dp̄

1
p̄3/2 . (D.26)

Λ is a cutoff that ensures that the approximation p� k2 is valid. The remaining
part of the integral cannot be approximated further and we have to numerically
integrate

I< =− D
4π

εF

ε1

∫ Λ

1
dp̄
∫ 1

0
dk̄2

∫ 2k̄2+ p̄

p̄
dq̄
√

2p̄
√

2k̄2 + p̄− q̄
(

p̄
q̄

)
× 1

(q̄ + α)2
(2k̄2 + p̄)
k̄2(k̄2 + p̄)

. (D.27)
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Evaluating the remaining integrals for a cutoff Λ > 10, the result is independent
of Λ,

dje
d

dt
+

dje
ex

dt
≈ 4.2

D
4π

εF

ε1
ĵ0 ≈ 0.3evFα2 εF

h̄
ĵ0. (D.28)

The asymptotic behavior of the ’interference’ term can be obtained analogously
and we find dje

inter
dt ∼ −D/(4π)(εF/ε1)

3/2, which is of higher order. Similarly the
contributions for the hole can be determined.

To lowest order in εF/ε1, (dje
d/dt) + (dje

ex/dt) and (djh
d/dt) just differ by a sign.

This can easily be seen by the following argument. In Fig. D.2 (b), labeling the
initial states by k1, k′2 and the final states by k′1, k2, i.e., switching k2 ↔ k′2, and
making use of the approximations (D.18) and (D.19), the direct term of the hole
current can be written as

djh
d

dt
≈ 2e

1
4L4

2π

h̄

(
e2

2ε0ε

)2

∑
k2,k′2,k′1

δ(εk1 + εk′2
− εk′1

− εk2)
(

k̂2 − k̂′2
)

×
∣∣∣∣ 〈k′2,+|k2,+〉
|k1 − k′1|+ qTF

∣∣∣∣2 θ(εk′2
− εF)θ(εF − εk2), (D.29)

where k′2 = k2 − q. The transformation φ2 → φ2 + π, leads to k2 → −k2 and
k2− q→ −(k2 + q). With | − k,±〉 = |k,∓〉 and |〈k,+|k′,+〉|2 = |〈k,−|k′,−〉|2,
we find to lowest order that

djh
d

dt
= −

(
dje

d
dt

+
dje

ex
dt

)
. (D.30)

Analogous calculations to the one presented above for dje
d/dt lead to

dje
inter
dt

∼ D
4π

(
εF

ε1

)3/2

ĵ0

djh
inter
dt

∼ − D
4π

(
εF

ε1

)3/2

ĵ0

dje
inter
dt

+
djh

inter
dt

∼ − D
4π

(
εF

ε1

)2

ĵ0

dje
d

dt
+

dje
ex

dt
+

djh
d

dt
∼ − D

4π

(
εF

ε1

)5/2

ĵ0

djh
ex

dt
≈ −D

9

(
εF

ε1

)3/2

ĵ0. (D.31)
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For the rate of change of the total current, we thus find the asymptotic behavior
in the limit εF � ε1,

dj(tot)

dt
=

dje
d

dt
+

dje
ex

dt
+

djh
d

dt
−
(

dje
inter
dt

+
djh

inter
dt

)
+

djh
ex

dt

≈ djh
ex

dt
+O

[(
εF

ε1

)2
]

≈ −D
9

(
εF

ε1

)3/2

ĵ0 +O
[(

εF

ε1

)2
]

. (D.32)
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