
Chapter 8

Sectional category

8.1 Introduction

All of the topological spaces which we consider in this chapter are simply connected with
homology of finite type over Q.

Another LS-category-type invariant is the sectional category of a fibration. Since it
can also be defined in terms of the existence of a homotopy section for a kind of Ganea
space, its rationalization is likely to have a simple characterization in terms of the Sullivan
model of the fibration, just as the relative LS-category had. We show that this is true
in this chapter, and even more: that it is possible to define an invariant generalizing the
sectional category as well as the R-category and still find a satisfactory characterization
of its rational counterpart. Our main result in this section is therefore a generalization of
part of theorem 5.4.1.

We begin section 8.2 by giving a definition in terms of coverings of the sectional category
of a fibration and of the new invariant: the sectional category of a sequence of maps. Then
we introduce the fat wedges and the Ganea maps associated to a sequence of maps and
show that the classical definition of the new sectional category is equivalent to a definition
in terms of the existence of homotopy sections for the Ganea maps and to a definition
using the generalized fat wedges. We define the rational sectional category of a sequence
of morphisms in section 8.3 and we state a theorem giving an equivalent definition using the
Sullivan models of each of the morphisms involved. We prove the theorem in section 8.4:
first of all we model the generalized fat wedge and the diagonal map in order to build
a model Γm for the generalized m-th Ganea space. It is then possible to construct a
morphism Γm → Fm, where the target is described in terms of Sullivan models. To build
a morphism in the opposite direction we must construct inductively another model Hm

for the Ganea space Gm.

8.2 Classical sectional category

Originally sectional category is defined for a fibration p : E → B in [Sch66]. We introduce
the sectional category of E, where E is a sequence of maps E = (f0, f1, ...), with fi :
Ei → B, that reduces to secat(p) when E = (p, p, p, ...) and to Rcat(f : E → B) when
E = (f, ∗ → B, ∗ → B, ...).

Definitions.

• Let p : E → B be a fibration, then the sectional category of p, noted secat(p), is
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92 CHAPTER 8. SECTIONAL CATEGORY

m, where (m+ 1) is the minimum number of open subsets of B over which p has a
section, which are needed to cover B.

• Let E be a sequence of maps (f0, f1, ...) with fi : Ei → B for 0 ≤ i, then the
sectional category of E is the integer m, where m+ 1 is the minimum number of
open subsets Ui ⊂ B, 0 ≤ i ≤ m, such that B = ∪mi=0 Ui and for each 0 ≤ i ≤ m, fi
has a homotopy section over Ui.

• Let E be a sequence of maps E = (f0, f1, ...). Then we denote by Ei,j , with i ≤ j the
sequence (fi, fi+1, ..., fj , 0, 0, ...).

• Let E be a sequence of cofibrations E = (f0, f1, ...), fi : Ei → X. The m-
th fat wedge of Ei,j, with i, j,m ∈ N, i ≤ j is Tm(Ei,j) ≡ {(xi, xi+1, ..., xj) ∈
Xj−i+1 such that |{s|xs ∈ Es}| ≥ m}.

• In the following standard homotopy pull-back

Gi,j(E) //

gi,j(E)

��

T1(Ei,j
� _

��
X

∆ // Xj−i+1

the space Gi,j(E) is the (i, j)-th Ganea space associated to E and the map gi,j(E)
is the (i, j)-th Ganea map associated to E.

• The n-th Ganea map associated to E: gn(E), is the n+ 1 fold join

f0 1 f1 1 ... 1 fn : Gn(E) ≡ E0 1B E1 1B ... 1B En → B.

Gn(E) is called the n-th Ganea space associated to E.

• If E = (p, p, ...), we often write gn(p) : Gn(p)→ B instead of gn(E) : Gn(E)→ B.

We use Ganea spaces and maps to give a second definition of the sectional category.

Proposition 8.2.1 1. Let p : E → B be a fibration. Then secat(p) ≤ m if and only if
the mth Ganea map gm(p) admits a homotopy section.

2. Let E = (f0, f1, ...) be a sequence of maps fi : Ei → B, i ≥ 0, then secat(E) ≤ m if
and only if the mth Ganea map gm(E) admits a homotopy section.

Proof. A proof of the particular case 1 is given in [Jam78]. The second part of the
proposition can be proved in an analogous way. ut

Remark. It is now clear why Rcat(f : E → B) = secat(f, ∗ → B, ∗ → B, ...).

Notice however that our n-th Ganea spaces are defined only up to homotopy. We
would like to choose them without ambiguity, and we show therefore that Gn(E) is weakly
equivalent to G0,n(E). We then take this last space as standard Ganea space. This
allows us to give a third definition of secat in terms of fat wedges. We can moreover take
advantage of the construction of Ganea spaces in terms of fat wedges to rationalize the
concept of sectional category.



8.2. CLASSICAL SECTIONAL CATEGORY 93

Lemma 8.2.2 Let E = {f0, f1, ...}, fi : Ei → X be a sequence of cofibrations. Then the
join of the inclusions Xk+1 × T1(Ek+1,k+l) → Xk+l+1 and T1(E0,k) × X l → Xk+l+1 is
weakly equivalent to T1(E0,k+l).

Proof. We follow [Cuv98] by first constructing the standard homotopy pull-back of
the inclusions:

P = {(w0, w1, ..., wk+l) ∈ (XI)k+l+1|(w0(0), ..., wk(0)) ∈ T1(E0,k) ,

(wk+1(1), ..., wk+l(1)) ∈ T1(Ek+1,k+l)}.

We then define a map ϕ : P→ T1(E0,k)× T1(Ek+1,k+l) as

ϕ(w0, w1, ..., wk+l) = (w0(0), ..., wk(0), wk+1(1), ..., wk+l(1)).

It is actually an homotopy equivalence, since it is possible to contract each path wi to its
beginning or its endpoint. We therefore use the space T1(E0,k)×T1(Ek+1,k+l) to complete
the construction of the join. We must construct a homotopy push-out of the inclusion of
T1(E0,k)×T1(Ek+1,k+l) in T1(E0,k)×X

l and in Xk+1×T1(Ek+1,k+l). Since these inclusions
are cofibrations we obtain

(T1(E0,k)×X
l) ∪T1(E0,k)×T1(Ek+1,k+l) (Xk+1 × T1(Ek+1,k+l)) = T1(E0,k+l).

ut

The previous lemma allows us to prove a property of Ganea spaces.

Proposition 8.2.3 Let E = {f0, f1, ...}, fi : Ei → X be a sequence of cofibrations. Then

G0,k(E) 1X Gk+1,k+l(E) ' G0,k+l(E).

Proof. We again follow [Cuv98]. We apply the join theorem I [Doe98] to the following
two homotopy pull-backs:

G0,k(E) //

g0,k(E)

��

T1(E0,k)×X
l

� _

��
X

∆
// Xk+l+1

Gk+1,k+l(E) //

gk+1,k+l(E)

��

Xk+1 × T1(Ek+1,k+l)� _

��
X

∆
// Xk+l+1

We obtain another homotopy pull-back:

G0,k(E) 1X Gk+1,k+l(E) //

gk+1,k+l(E)

��

(T1(E0,k)×X
l) 1Xk+l+1 (Xk+1 × T1(Ek+1,k+l))� _

��
X

∆
// Xk+l+1
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Using lemma 8.2.2 we conclude. ut

Corollary 8.2.4 Let E = {f0, f1, ...}, fi : Ei → X be a sequence of cofibrations. Then

Gk(E) ' G0,k(E).

Proof. It is clear from the definition of Gk(E) that Gk(E) ' Gk−1 1X Ek and
gk(E) ' gk−1(E) 1 fk. Using proposition 8.2.3 we have also G0,k(E) ' G0,k−1 1X Gk,k(E)
and g0,k(E) ' g0,k−1 1 gk,k(E). Since on the other hand we have G0(E) = E0 = G0,0(E),
g0(E) = f0 = g0,0(E) and Gk,k(E) = Ek, gk,k(E) = fk, we can use induction and conclude.
ut

Since it can easily be verified that the n-th Ganea space of a sequence of maps E is
homotopy equivalent to the n-th Ganea space of the same sequence where any number of
maps have been replaced by their associated cofibration or fibration, we have:

Proposition 8.2.5 Let Ē be a sequence of maps. We construct a new sequence E, where
each map is replaced by its associated cofibration, then the sectional category of E is
smaller or equal to m if the (0,m)-Ganea map g0,m(E) associated to E admits a homotopy
section.

From now on we will restrict ourselves to sequences of cofibrations without loss of
generality. There is an equivalent definition in terms of the fat wedge:

Proposition 8.2.6 Let E be a sequence of cofibrations. Then secat(E) ≤ m if and only
if there exists a map θ : X → T1(E0,m) such that the following diagram commutes up to
homotopy

T1(E0,m)
� p

!!B
BB

BB
BB

BB
BB

BB
BB

B

X

θ

@@

∆ // Xm+1.

Proof. Simply follow the end of the proof of theorem 3.3.2. ut

8.3 Rational sectional category

We define the rational sectional category of a sequence of maps E by rationalizing the
classical definition in terms of the fat wedge.

Definition. Let E = (f0, f1, ...) be a sequence of cofibrations fi : Ei → X. Let
moreover (ΛX, d)→ (APL(X), d) be a Sullivan model forX, (ΛY, d)→ (APL(T1(E0,m)), d)
a Sullivan model for T1(E0,m) and α : ((ΛX)⊗m+1, d) → (ΛX, d), β : ((ΛX)⊗m+1, d) →
(ΛY, d) be representatives for the diagonal and the inclusion of the fat wedge respectively.
We say that the rational sectional category of E is smaller or equal to m if there
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exists a morphism γ : (ΛY, d)→ (ΛX, d) such that the following diagram commutes up to
homotopy

ΛY

γ

��
ΛX (ΛX)⊗m+1

β

``BBBBBBBBBBBBBBB
αoo

We write secato(E) ≤ m.

Let us recall that it is always possible to find a surjective model associated to a relative
Sullivan model (ΛX, d) → (ΛX ⊗ ΛY, d). It is called standard surjective model, and is
a morphism h : (ΛX ⊗ ΛZ, d) → (ΛX ⊗ ΛY, d), where Z = Y ⊕ Ỹ , d : Y ' Ỹ , dy = ỹ,
h|ΛX⊗ΛY = id, h(ỹ) = dy for all ỹ ∈ Ỹ . It makes the diagram

ΛX //

g

  B
BB

BB
BB

BB
BB

BB
BB

ΛX ⊗ ΛY

ΛX ⊗ ΛZ

h

;; ;;wwwwwwwwwwwwwwww

commute, where g is the inclusion of the base. We can now state our main theorem

Theorem 8.3.1 Let E = (f0, f1, ...) be a sequence of cofibrations fi : Ei → X. If f̄i :
(ΛX, d)→ (ΛX⊗ΛYi, d) is a Sullivan model for fi and hi : (ΛX⊗ΛZi, d)→ (ΛX⊗ΛY, d)
is a standard surjective model for fi, then secato(E) ≤ m if and only if the morphism

(ΛX, d) −→

(
ΛX ⊗

⊗m
i=0 ΛZi∏m

i=0 Ker (hi)
, d

)
≡ (Fm(E), d),

defined by the inclusion followed by the projection, admits a homotopy retract.

8.4 Proof of the Theorem

The first step to prove theorem 8.3.1 is to find a model for T1(E0,m) → Xm+1 and use
it to construct a cca (Γm(E), d) with the same rational homotopy type as G0,m(E). To
do so we follow [FH83], where an algebra of the same rational homotopy type as Gm(X)
is constructed. It is then possible to build a morphism (Γm(E), d) → (Fm(E), d) which,
given a homotopy retract for (ΛX, d)→ (Fm(E), d), allows the construction of a homotopy
retract for (ΛX, d) → (Γm(E), d).

Notation. We denote by S∗(X) the singular chain complex over the space X, and
by APL the Sullivan functor. Let T i1(E0,m) ≡ {(x0, x1, ...xm) ∈ Xm+1 such that xi ∈ Ei},
then by S̃∗(T1(E0,m)) we mean the singular simplexes whose image is included in T i1(E0,m)
for some i, and ÃPL(T1(E0,m)) ≡ APL(S̃∗(T1(E0,m))) .

Model of the fat wedge

Proposition 8.4.1 Let E = (f0, f1, ...) be a sequence of cofibrations fi : Ei → X. Then
both morphisms
(

APL(X)⊗m+1

Ker (APL(f0))⊗Ker (APL(f1))⊗ ...⊗Ker (APL(fm))
, d

)
φm+1
−→ (ÃPL(T1(E0,m)), d)
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(APL(T1(E0,m)), d)
res
−→ (ÃPL(T1(E0,m)), d)

are quasi-isomorphisms, where res is the restriction to simplices in S̃∗(T1(E0,m)), and
φm+1 is induced by the morphism λm+1 = λm+1

1 · ... · λm+1
m+1. Here λm+1

i is the composition

(APL(X), d)
APL(pri)
−→ (APL(Xm+1), d)

APL(incl)
−→ (APL(T1(E0,m)), d)

res
−→ (ÃPL(T1(E0,m)), d)

with pri the projection on the i-th component, incl the inclusion and res the restriction.

Proof. We follow the corresponding proof in [FH83].

• We begin by showing that res is a quasi-isomorphism. It is enough to prove that the
inclusion S̃∗(E0,m) → S∗(E0,m) is a quasi-isomorphism. For simplicity we restrict
ourselves to the case m = 1. It is easy to generalize the proof for any m. Since we
are dealing with CW-complexes and cofibrations, there exist open subsets Ui ⊂ X

such that Ei
ji
⊂ Ui and there exists a map ri : Ui → Ei such that ri ◦ ji = idEi

and

ji ◦ ri ' idUi
rel Ei, for i = 0, 1. Hence E0 ×X

'
⊂ U0 ×X, X × E1

'
⊂ X × U1 and

(E0×X)∪ (X ×E1)
'
⊂ (U0×X)∪ (X ×U1). therefore we can work with Ui instead

of Ei as far as homology is concerned.

Let S̃∗((U0×X)∪ (X ×U1)) denote the singular simplices whose image is contained
either in U0 × X or in X × U1. Then S̃∗((U0 × X) ∪ (X × U1)) = S∗(U0 × X) +
S∗(X×U1) ⊂ S∗((U0×X)∪ (X×U1)). Finally this inclusion is a quasi-isomorphism
([Rot88], proof of thm 6.17, p.117).

• Let us turn to φm+1. We show that it is well-defined: Let us choose any simplex
σ ∈ S̃∗(T1(E0,m)), i.e. such that there exists an i with σ(∆) ⊂ T i1(E0,m), which means
that pri◦ incl◦σ(∆) ⊂ Ei. If ψi ∈ Ker (APL(fi)) for a certain i, then for all elements
σ ∈ S∗(Ei) we have ψi(fi ◦ σ) = 0. Now λm+1

i (ψi)(σ) = ψi(fi ◦ pri ◦ incl ◦ σ). Since
pri ◦ incl ◦ σ ∈ S∗(Ei), then λm+1

i (ψi) = 0, and for ψj ∈ Ker (APL(fj)), 0 ≤ j ≤ m
it is obvious that λm(ψ0 ⊗ ψ1 ⊗ ...⊗ ψm) = 0.

It remains to show that φm+1 is a quasi-isomorphism. We proceed by induction. For
m = 0,

(
APL(X)

Ker (f0)
, d)

'
−→ (APL(E0), d) = (APL(T1(E0,0)), d) = (ÃPL(T1(E0,0)), d),

where the isomorphism is induced by APL(f0). We suppose the assumption is true for

all n ≤ (m−1) and show it for n = m. We write [F̃m, d) ≡
(

APL(X)⊗m+1

Ker (f0)⊗...⊗Ker (fm)
, d
)
.

Consider the following commutative diagram:

ÃPL(T1(E0,m))
� �F1,F2// ÃPL(T1(E0,m−1)×X)⊕APL(Xm ×Em)

G1−G2// // ÃPL(T1(E0,m−1)×Em)

F̃m
� �

(K1,K2)
//

φm+1

OO

F̃m−1 ⊗APL(X)⊕APL(X)⊗m ⊗APL(Em)
H1−H2

// //

φm·id⊕γm·idEm '

OO

F̃m−1 ⊗APL(Em).

φm·id '

OO

– The morphisms F1 , F2 , G1 , G2 are restrictions;
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– K2 is induced by idAPL(X)⊗m ⊗APL(fm); H1 = id
F̃m−1

⊗APL(fm);

– K1 is the projection

F̃m →
APL(X)⊗m+1

Ker (f0)⊗ ...Ker (fm−1)⊗APL(X)
=

APL(X)⊗m

Ker (f0)⊗ ...Ker (fm−1)
⊗APL(X);

– H2 = proj ⊗ idAPL(Em);

–
φm · id(ϕ ⊗ ψ) = (ÃPL(pr1) ◦ φm(ϕ)) · (res ◦ APL(pr2)(ψ));

– γm(ϕ1 ⊗ ...⊗ ϕm) =
∏m
i=1APL(pri)(ϕi);

– γm · idEm(ϕ⊗ ψ) = APL(pr1) ◦ γ
m(ϕ) · APL(pr2)(ψ);

– φm · idEm(ϕ⊗ ψ) = APL(pr1) ◦ φm(ϕ) · APL(pr2)(ψ).

It is easy but somewhat long to check that the diagram commutes, that its lines are
exact and that the two rightmost vertical arrows are quasi-isomorphisms. Therefore
the leftmost arrow is also a quasi-isomorphism.

ut

Our next step consists in replacing the algebras and ideals involved in the left hand
side of the formula appearing in proposition 8.4.1 by others that are weakly equivalent
and can be constructed starting directly with the fi’s Sullivan models.

Lemma 8.4.2 Let f : X → E be a continuous cofibration, and APL(f) : (APL(E), d) →
(APL(X), d) its associated algebra morphism under the Sullivan functor. There exists a
Sullivan model for APL(f) and its associated standard surjective model as in the following
commutative diagram:

APL(X)
APL(f) // // APL(E)

ΛX //

'

OO

� p

'

""D
DDD

DD
DD

DD
DDD

DD
D

ΛX ⊗ ΛY

'

OO

ΛX ⊗ ΛZ.

h

<< <<yyyyyyyyyyyyyyyyyy

Moreover there exists a quasi-isomorphism j : (ΛX⊗ΛZ, d)
'
→ (APL(X), d) which restricts

to a quasi-isomorphism Ker (h)→ Ker (APL(f)).

Proof. Using the properties of closed model categories, we deduce the existence of a

lift ΛX ⊗ ΛZ
j
→ APL(X) which is a quasi-isomorphism. Since f is a cofibration, APL(f)

is surjective and we have the following commutative diagram with exact lines:

0 // Ker (APL(f)) // APL(X)
APL(f) // APL(E) // 0

0 // Ker (h) //

j|ker(h)

OO

ΛX ⊗ ΛZ
h

//

' j

OO

ΛX ⊗ ΛY //

'

OO

0.
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Considering the long exact sequence in homology we infer that the leftmost morphism is
a quasi-isomorphism. ut

We can apply this lemma to all the cofibrations fi and we obtain a quasi-isomorphism

⊗m
i=0(ΛX ⊗ ΛZi)⊗m
i=0 Ker (hi)

'
−→

APL(X)⊗m+1

⊗m
i=0 Ker (APL(fi))

.

Notation. To simplify the notation, in the next proposition we let

(Λ, d) ≡

(
m⊗

i=0

(ΛX ⊗ ΛZi), d

)

and I ≡

m⊗

i=0

Ker (hi).

The next proposition shows that from now on we can use the projection (Λ, d) →

(Λ/I, d) instead of the morphism (APL(Xm+1), d)
APL(incl)
→ (APL(T1(E0,m)), d) because

any representative of the first morphism induces a representative of the second one.

Proposition 8.4.3 If (ΛW,d)→ (Λ/I, d) is a Sullivan model and λ : (Λ, d)→ (ΛW,d) is
a representative for the projection (Λ, d)→ (Λ/I, d) then there exists a quasi-isomorphism

(ΛW,d)
η
→ (APL(T1(E0,m)), d) such that the following diagram commutes up to homotopy:

APL(Xm+1)
APL(incl)// APL(T1(E0,m))

Λ

'

OO

λ // ΛW

η '

OO

Proof. Let us consider the diagram

⊗m
i=0APL(X)

'

**VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Λ

'

99ssssssssssssssssssss ' //

λ

����
��
��
��
��
��
��

��

APL(Xm+1)

��
ΛW

' // Λ/I
'

N

i ji// APL(X)⊗m+1

Ker (APL(f0))⊗...⊗Ker (APL(fm)) '

φm+1// ÃPL(T1(E0,m)) APL(T1(E0,m))
'
resoo

The ji’s are copies of the quasi-isomorphism j from lemma 8.4.2. It can easily be checked
that everything commutes at least up to homotopy, therefore, by the lifting property of
Sullivan models, there exists a morphism η : ΛW → APL(T1(E0,m)) which, when added
to the diagram, lets it commute up to homotopy. ut
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Model of the diagonal

The diagonal map ∆ : X → Xm+1 can be represented by the multiplication

µ : (ΛX⊗m+1, d)→ (ΛX, d).

The associated relative Sullivan model is (ΛX⊗m+1, d) → (ΛX⊗m+1 ⊗ ΛX̄⊗m, d), where
X̄p ∼= Xp+1, x̄ 7→ x. Since the algebras ΛZi in the standard surjective models for APL(fi)
are acyclic, it is actually possible to replace ΛX⊗m+1 by Λ and we obtain another model
for the diagonal:

Λ
ϕ //

� p

  A
AA

AA
AA

AA
AA

AA
AA

ΛX

Λ⊗ ΛX̄⊗m

'
Ξ

>>~~~~~~~~~~~~~~~~

where ϕ is the multiplication on ΛX⊗m+1 and sends Zi to 0 for all i.

Generalized Ganea algebra

We have now all necessary ingredients to construct a commutative algebra whose rational
homotopy type is the same as G0,m(E)’s.

Proposition 8.4.4 With notations as in the previous paragraph, we let

(Γm(E), d) ≡ (Λ/I ⊗ ΛX̄⊗m, d) ≡ (Λ/I ⊗Λ (Λ⊗ ΛX̄⊗m), d).

This algebra has the same rational homotopy type as G0,m(E).

Proof. It suffices to use the definition of G0,m(E) as the standard homotopy pull-back
of the fat-wedge along the diagonal. In rational homotopy this translates into taking the
following push-out:

Λ
� � //

��

Λ⊗ ΛX̄⊗m

��
Λ/I // Γm(E).

ut

Corollary 8.4.5 With the same notations as in the previous paragraph, we have that if

(ΛX, d) −→

(
ΛX ⊗

⊗m
i=0 ΛZi∏m

i=0 Ker (hi)
, d

)
≡ (Fm(E), d)

admits a homotopy retract, then secato(E) ≤ m.

Proof. We use the push-out from the preceding lemma to construct a morphism
α : (Γm(E), d)→ (Fm(E), d). It is induced by the following two morphisms:

(Λ/I, d) −→ (Fm(E), d),
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induced by the multiplication on the ΛX’s, and

(Λ⊗ ΛX̄⊗m, d) −→ (Fm(E), d),

equal to the morphism Ξ from the diagram in the previous subsection, followed by the
inclusion of (ΛX, d) in (ΛX ⊗

⊗m
i=0 ΛZi, d) and the projection on (Fm(E), d).

We can define a morphism (ΛX, d) → (Γm(E), d) as being the inclusion (ΛX, d) →
(ΛX⊗m+1, d) putting an element ξ ∈ ΛX in any factor ΛX of ΛX⊗m+1, say factor number
i. It is then straightforward to verify that the following diagram is commutative

ΛX

����
��

��
��

��
��

��

��>
>>

>>
>>

>>
>>

>>
>

Γm(E)
α // Fm(E).

Therefore any homotopy retract for the rightmost morphism induces an homotopy retract
for the leftmost one. ut

Opposite direction

To prove the second half of theorem 8.3.1 we use proposition 8.2.3 which states that

G0,m(E) ' G0,m−1(E) 1X Gm,m(E).

We then proceed by induction, with the induction hypothesis that for each n there exists
a morphism ϕn and a commutative diagram

ΛX

����
��

��
��

��
��

��

��:
::

::
::

::
::

::

Fn(E)
ϕn // Hn,

where Hn is an algebra of the same rational homotopy type as G0,n(E). This proves the
theorem.

In case n = 0, we have (F0(E), d) =
(

ΛX⊗ΛZ0

Ker (h0)
, d
)

and we can take

ϕ0 = h0 : (F0(E), d) → (ΛX ⊗ ΛY0, d) ≡ (H0, d).

For the induction step we suppose that the hypothesis is valid for n = m− 1 and show
that this is still true for n = m. If we take Z ≡

⊕m−1
i=0 Zi, it is clear that by taking the

rational cojoin with the relative Sullivan model i : (ΛX ⊗ ΛZ, d)→ (ΛX ⊗ ΛZ ⊗ ΛYm, d)



8.4. PROOF OF THE THEOREM 101

we obtain a diagram

ΛX
� _

'

��
ΛX ⊗ ΛZ

yyrrrrrrrrrrrrrrrrrrr

%%KKKKKKKKKKKKKKKKKK

Fm−1(E)
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗ ΛYm
ϕm−11i //

Hm−1
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗ ΛYm,

where (ΛX, d) → (ΛX ⊗ ΛZ, d) and (ΛX ⊗ ΛYm, d) → (ΛX ⊗ ΛZ ⊗ Ym, d) are quasi-

isomorphisms and, thanks to proposition 8.2.3, we notice that (Hm−1
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗
ΛYm, d) has the same rational homotopy type as G0,m(E) and can therefore be chosen as

(Hm, d). It therefore now suffices to find a morphism ξ : (Fm(E), d) → (Fm−1(E)
ΛX⊗ΛZ

1

ΛX ⊗ ΛZ ⊗ ΛYm, d) that preserves the maps from (ΛX, d). To do so we need an explicit

construction of (Fm−1(E)
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗ ΛYm, d). Let us therefore consider the
following commutative diagram:

ΛX ⊗ ΛZ
� � //

a

))
proj

��

ΛX ⊗ ΛZ ⊗ ΛYm

j

��

Fm−1(E)
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗ ΛYm

55kkkkkkkkkkkkkkkkkk

��

Fm−1(E)
i //

' **TTTTTTTTTTTTTTTT
Fm−1(E)⊗ ΛYm

Fm−1(E)⊗ ΛZm

fm

44 44iiiiiiiiiiiiiiiii

where fm is a surjective morphism constructed in the standard way, j is the projection on
ΛX ⊗ ΛZ and the identity on ΛYm, proj is the projection and i is the inclusion. Notice
that (Fm−1(E)⊗ΛYm, d) ' (Fm−1(E)⊗ΛX⊗ΛZ ΛX⊗ΛZ⊗ΛYm, d) is the algebra resulting
from the first part of the process to build a rational cojoin, i.e. from the push-out. The
morphism i is replaced by a surjective morphism fm and the rational cojoin we are looking
for is of the same rational homotopy type as the pull-back of fm and j. Moreover there
exists an obvious induced morphism a as in the diagram. Now to construct ξ it is necessary
to find maps α and β making the next diagram commute:

Fm(E)
α //

β

��

ΛX ⊗ ΛZ ⊗ ΛYm

j

��
Fm−1(E)⊗ ΛZm

fm

// // Fm−1(E)⊗ ΛYm.

They are defined in the following way:
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• The morphism α is induced by hm⊗id : (ΛX⊗ΛZm⊗ΛZ, d)→ (ΛX⊗ΛYm⊗ΛZ, d)
followed by the isomorphism switching ΛYm and ΛZ. It is well-defined because
(hm ⊗ id)(Ker (hm)⊗

⊗m−1
i=0 Ker (hi)) = 0.

• We can consider β as a morphism into
(

ΛX⊗ΛZ⊗ΛZm
Nm−1

i=0 Ker (hi)⊗ΛZm
, d
)

= (Fm−1(E) ⊗

ΛZm, d). Then it is induced by the morphism equal to the identity on ΛX⊗ΛZ⊗ΛZm
because

⊗m−1
i=0 Ker (hi)⊗Ker (hm) ⊂

⊗m−1
i=0 Ker (hi)⊗ ΛZm.

The diagram commutes:

• For γ ∈ ΛX ⊗ ΛZ, j ◦ α([γ]) = j(γ) = [γ]; for δ ∈ ΛZm, j ◦ α([δ]) = (j ◦ hm)(δ). If
hm(δ) =

∑
k xk ⊗ yk with xk ∈ ΛX and yk ∈ ΛYm, then j ◦ α([δ]) =

∑
k[xk]⊗ yk.

• On the other hand, for γ ∈ ΛX⊗ΛZ, fm ◦β([γ]) = fm([γ]) = [γ]; for δ ∈ ΛZm, with
hm(δ) =

∑
k xk ⊗ yk with xk ∈ ΛX andyk ∈ ΛYm, we have fm ◦ β([δ]) = fm(δ) =∑

k[xk]⊗ yk.

There is therefore an induced morphism ξ as wished. To verify that it preserves the
maps coming from (ΛX, d), we notice first of all that there exists a morphism (ΛX, d) →

(Fm−1(E)
ΛX⊗ΛZ

1 ΛX ⊗ ΛZ ⊗ ΛYm, d), which is the inclusion of (ΛX, d) in (ΛX ⊗ ΛZ, d)
followed by the morphism a. It is then easy to verify that the morphisms

(ΛX, d) −→ (ΛX ⊗ ΛZ, d)
a
−→ (Fm−1(E)

ΛX⊗ΛZ
1 ΛX ⊗ ΛZ ⊗ ΛYm, d)

and

(ΛX, d) −→ (Fm(E), d)
ξ
−→ (Fm−1(E)

ΛX⊗ΛZ
1 ΛX ⊗ ΛZ ⊗ ΛYm, d)

are induced by the same maps, and therefore they must be equal.


