
Chapter 5

Rational LS-category

5.1 Introduction

To enable us to use the powerful methods of rational homotopy, which were summarized in
chapter 2, we consider only spaces which are simply connected with homology of finite type
over Q. As we did in chapter 2, we use the term “cca” to denote a commutative cochain
algebra. To save space in diagrams we usually write down only the algebra without the
differential “d”, but unless otherwise stated all diagrams are diagrams of cca’s

We expose in section 5.2 how the absolute LS-category has been defined in the rational
context by Félix and Halperin [FH83]. We then state their fundamental theorems 5.2.2,
5.2.3, which allow computing the rational category of a space directly in the context of
commutative cochain algebras. In section 5.3 we give Félix and Halperin’s rationalization
of the F-category of maps, as well as a theorem 5.3.1 allowing its determination directly
in the category of cca’s, then we propose a way to rationalize the R-category and the
relative LS-category. We finish by stating our main theorem 5.4 in section 5.4, which is
actually an equivalent definition of the rational R-category and relative LS-category in the
cca setting.

5.2 Absolute case

All definitions and results in this section are taken from [FH83].

Definitions.

• Let (ΛX, d)
'
→ (APL(X), d) be a minimal model for X and µ : ((ΛX)⊗n+1, d) →

(ΛX, d) a representative for the diagonal map X → Xn+1. Take a minimal model

(ΛY, d)
'
→ (APL(T n+1), d) for the fat wedge T n+1 and a representative for the in-

clusion of the fat wedge into Xn+1, β : ((ΛX)⊗n+1, d) → (ΛY, d). The rational
LS-category of X, cato(X) is the smallest integer n, such that there exists a mor-
phism of cca’s θ : (ΛY, d) → (ΛX, d), letting the following diagram commute up to
homotopy:

ΛY

θ

!!
(ΛX)⊗n+1

µ
//

β

;;vvvvvvvvvvvvvvvvv

ΛX.
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• Let ΛX be a Sullivan model and φ : (ΛX, d) → (B, d) a morphism of cca’s. We
say that φ admits a homotopy retraction r if there exists a representative for φ:
ψ : (ΛX, d) → (ΛY, d) and morphism r : (ΛY, d) → (ΛX, d) such that r ◦ ψ ' idΛX .
Equivalently, for any representative ψ there exists a morphism r such that r ◦ ψ '
idΛX .

Remarks.

• Félix and Halperin chose to rationalize the definition of LS-category in terms of
the fat-wedge. The next results however show that one could have rationalized the
definition in terms of Ganea spaces and would have obtained an equivalent definition.

• Since we are considering only simple connected spaces,

cato(X) = cat(XQ),

where XQ is the rationalization of X, which explains why we are talking about the
“rationalization” of the LS-category.

Lemma 5.2.1 Let (ΛX, d)
'
→ (APL(X), d) be a minimal model for X. We define the cca

(Γm(X), d) as follows:

Γm(X) :=
(ΛX)⊗m+1

(Λ+X)⊗m+1
⊗ (ΛX̄)⊗m =

(ΛX)⊗m+1

(Λ+X)⊗m+1
⊗(ΛX)⊗m+1 (ΛX)⊗m+1 ⊗ (ΛX̄)⊗m,

i.e. as the tensor product of the projection ((ΛX)m+1, d)→ ((ΛX)m+1/(Λ+X)m+1, d) and
of ((ΛX)m+1 → (ΛX)m+1 ⊗ (ΛX̄)m, d), the cofibration associated to the multiplication
((ΛX)m+1, d) → (ΛX, d). Then (Γm(X), d) represents the same rational homotopy type
as the Ganea space Gm(X), and any morphism representing the inclusion ((ΛX)⊗m+1 ⊗
(ΛX̄)⊗m, d)→ (Γm(X), d) also represents gm(X).

We state now two theorems from [FH83] that provide a purely algebraic way to compute
the rational category of a space from its minimal Sullivan model.

Theorem 5.2.2 There exists a homotopy equivalence

(Γm(X), d) ∼= ([ΛX/Λ>mX]⊕ V, d)

where V =
∑

p≥1 V
p, the differential in V is zero, and

V · ([ΛX/Λ>mX]⊕ V )+ = 0.

Theorem 5.2.3 Using notations of Lemma 5.2.1, then the following assertions are equiv-
alent:

1. cato(X) ≤ m;

2. there exists a morphism ηm : (ΛX, d)→ (Γm(X), d) admitting a homotopy retraction;

3. the projection (ΛX, d) → (ΛX/Λ>mX, d) admits a homotopy retraction.
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Actually there exist morphisms in both directions between (Γm(X), d) and (ΛX/Λ>mX, d)
making the following diagram commute

ΛX

zztttttttttttttttttt

##GGGGGGGGGGGGGGGGG

ΛX/Λ>m−1X
// Γm−1(X),oo

which obviously induces the equivalence between points 2 and 3.

Remark. The equivalence between point (1) and point (2) represents the equivalence
between the fat-wedge definition and the Ganea definition. Point (3) is a major result that
allows an easier calculation of rational category. Our purpose is to give a corresponding
algebraic formula determining the LS-category of a map.

5.3 Relative case: definitions

In [Fél89] a relative rational category was already defined, it is a rationalization of what
we call the classical F-category (see section 3.3):

Definition. Let f̃ : (ΛX, d) → (ΛX ⊗ ΛZ, d) be a relative Sullivan model for a
cofibration f : E → X and µ : ((ΛX)⊗n+1, d)→ (ΛX, d) a representative for the diagonal
map X → Xn+1. Choose a minimal model (ΛY, d) → (APL(T n+1(X)), d) for the fat
wedge T n+1(X) and a representative β : ((ΛX)⊗n+1, d)→ (ΛY, d) for the inclusion of the
fat wedge into Xn+1. The rational G-category of X, Fcato(X) is the smallest integer
m, such that there exists a morphism of cca’s θ : (ΛY, d)→ (ΛX ⊗ΛZ, d), that makes the
following diagram commute up to homotopy:

ΛY

θ

##
(ΛX)⊗n+1

µ
//

β

;;vvvvvvvvvvvvvvvvv

ΛX
f̃

// ΛX ⊗ ΛZ.

An algebraic condition involving only the Sullivan model of f , and allowing to compute
Fcato(f) was given in [Fél89]:

Theorem 5.3.1 With notations as above, Fcato(f) ≤ n if and only if there exists a
morphism ρ such that the following diagram commutes up to homotopy:

ΛX
f̃ //

��

i

%%LLLLLLLLLLLLLLLLLLLL ΛX ⊗ ΛZ

ΛX/Λ>nX ΛX ⊗ ΛM,
'

λ
oo

ρ

OO

where λ is a Sullivan model, and i is a representative for the projection.
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Remark. As it is the case for the absolute LS-category, Fcato(f) = Fcat(fQ), where
fQ is the rationalization of the map f .

On the other hand it is also possible to rationalize the R-category or the LS-category
of a map. We choose to rationalize the definition involving Ganea spaces and do not
show that it is equivalent to a rational version of the fat-wedge definition, although this
is certainly true: using the spatial realization functor from cca’s to CW-complexes, it
certainly follows that

Rcato(f) = Rcat(fQ) and cato[f ] = cat(fQ).

On the other hand it was shown in section 3.3 that the definitions in terms of Ganea
spaces and fat wedges are equivalent in the category of topological spaces. Use of the APL

functor would then prove the assertion.

Definitions.

• Let f : E → X be a cofibration, (ΛX, d) and (ΛW,d) be Sullivan models of spaces
X, respectively Gm(f), and f̃ : (ΛX, d) → (ΛX ⊗ ΛY, d) a relative Sullivan model
of f . Moreover let γ : (ΛX, d) → (ΛW,d) represent the Ganea map gm(f), and
δ : (ΛW,d) → (ΛX ⊗ΛY, d) represent qn. Then δ ◦ γ represents f and therefore it is
homotopic to f̃ .

ΛX
γ //

f̃

$$HHHHHHHHHHHHHHHHH ΛW

δ

��
ΛX ⊗ ΛY

We say that the relative R-category of f (Rcato(f)) is equal to or smaller than m
if γ admits a homotopy retraction r : (ΛW,d)→ (ΛX, d).

• If in the definition of relative R-category we require moreover that f̃ ◦ r ' δ, we say
that the relative LS-category of f is equal to or smaller than m (cato(f) ≤ m).

• Let f : (ΛX, d) → (ΛX⊗ΛY, d) be a relative Sullivan model. We can then construct
the commuting diagram

ΛX
f

//

g

'

##HHHHHHHHHHHHHHHHH ΛX ⊗ ΛY

ΛX ⊗ ΛZ,

h

99sssssssssssssssssss

where g is the inclusion of the base, Z = Y ⊕ Ỹ , with d : Y p
∼=
→ Ỹ p+1, dy = ỹ, and

h is defined as follows:

h : ΛX ⊗ ΛZ −→ ΛX ⊗ ΛY
x ∈ X 7−→ x
y ∈ Y 7−→ y

ỹ ∈ Ỹ 7−→ dy.

It is easy to verify that h is surjective, and it is therefore called the standard
surjective model of f .
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• Any morphism h : (ΛX ⊗ ΛZ, d) → (ΛX ⊗ ΛY, d) that is surjective and such that
the diagram in the previous definition commutes is called a surjective model for
f .

Remark. If f is a Sullivan model for a cofibration f̄ : E → X, then the solid arrows
diagram

ΛX
' //

� _

'

��

APL(X)

APL(f̄)

����
ΛX ⊗ ΛZ

h
//

'

55

ΛX ⊗ ΛY
' // APL(E)

commutes, APL(f̄) is surjective, and there exists a lift, drawn as a pointed arrow, which
makes the whole diagram commute. Here APL denotes the Sullivan functor. This shows
that h also represents f̄ . Notice however that (ΛX ⊗ΛZ, d)→ APL(X) is generally not a
minimal model even if (ΛX, d)→ APL(X) is.

5.4 Main theorem

Theorem 5.4.1 Let f : E → X be a cofibration, (ΛX, d) → APL(X) a Sullivan model
for X, and f̃ : (ΛX, d) → (ΛX ⊗ ΛY, d) a Sullivan model for it. Let h : (ΛX ⊗ ΛZ, d) →
(ΛX ⊗ ΛY, d) be any surjective model for f̃ . Define

πm : (ΛX, d)→

(
ΛX ⊗ ΛZ

Λ≥mX ·Kerh
, d

)

as the map induced by the inclusion of the base. Then

ΛX

f̃

))

πm

// ΛX⊗ΛZ
Λ≥mX·Ker(h) km

// ΛX ⊗ ΛY,

where km is induced by h, commutes. Let us choose a Sullivan model (ΛM,d)
'
→
(

ΛX⊗ΛZ
Λ≥mX·Ker(h)

, d
)

and representatives π̃m and k̃m for πm and km respectively. They let the diagram

ΛX

f̃

''

π̃m

// ΛM
k̃m

// ΛX ⊗ ΛY

commute up to homotopy. Then

• Rcato(f) ≤ m if and only if π̃m admits a homotopy retraction;

• cato(f) ≤ m if and only if π̃m admits a homotopy retraction r, such that f̃ ◦ r ' k̃m.

Chapter 6 is devoted to the proof of this theorem.
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