
Chapter 4

Product formulas

4.1 Introduction

As was said in chapter 3 there exist formulas giving upper bounds for the LS-category and
the cone-length of a product of spaces. We derive formulas for the cone-length of a product
of maps in section 4.2 by constructing new cones out of the spaces involved in the cone
decomposition of the two original maps. As a remark we check that the obtained formula
is also valid when working with the a-cone-length which was introduced by Scheerer and
Tanré [ST99] as long as the class of spaces a satisfies certain conditions. We then use the
decomposition for the cone-length of a product of maps to obtain bounds for its F-category,
its R-category and its LS-category in section 4.3. To do so we first prove a “quasi-lifting”
lemma to allow some of the diagrams involved in the adjunction of a cone to a space to
commute up to homotopy.

In this chapter we work in the category of pointed CW-complexes.

4.2 Product formula for relative cone-length

We derive an inequality formula for the cone-length of the product of two maps, depending
only on the cone-length of the maps and the cone-length of their source spaces. We use
the “bullet construction” which was introduced by Stanley in [Sta98] to construct new
cofibration sequences out of the cofibration sequences involved in determining the cone-
length of each map and source space.

Definition. Let B
i
−→ C and B′ i′

−→ C ′ be cofibrations, and the following commutative
diagram

B ×B′ id×i′ //

i×id

��

B × C ′

��
C ×B′ // X

be a pushout. Then we write (C × C ′)• ≡ X.

47
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Lemma 4.2.1 Let E
f
−→ F be a cofibration and

E //

f

��

G

��
F // H

be a pushout. Then for every cofibration A
i
−→ X there exists a pushout:

(F ×X)• //

��

(H ×X)•

��
F ×X // H ×X.

Proof. We first notice that the product with a space X and pushout commute. This
is an easy consequence of

ZX×Y ∼= (ZY )X .

Considering the definition of (F ×X)• and (H×X)•, we can therefore build the following
commutative diagram,

E ×A //

vvllllll

��

E ×X

��

uujjjjjj

��>
>>

>>
>>

>>
>>

F ×A //

��

//

(F ×X)•

��

,,
F ×X

��

G×A //

vvllllll
G×X

uujjjjjj

��>
>>

>>
>>

>>
>>

H ×A //

//

(H ×X)•

,,
H ×X

where the top, the bottom and the left faces of the cube are pushouts, and the broken
arrows are induced by pushouts. By lemma 1.2.4 the right face is then also a pushout.
Since the right face of the prism E ×X

''PPP

��

vvlll

(F ×X)• //

��

F ×X

��
G×X

vvlll ''PPP

(H ×X)• // H ×X

is a pushout, we have again

by lemma 1.2.4 that the front face of the prism is a pushout. ut

Lemma 4.2.2 Let A −→ B −→ C and A′ −→ B′ −→ C ′ be cofibration sequences. Then
there exists a cofibration sequence of the form:

(CA× CA′)• −→ (C × C ′)• −→ C × C ′.



4.2. PRODUCT FORMULA FOR RELATIVE CONE-LENGTH 49

Remark. Notice that (CA× CA′)• ∼= A ∗ A′, the join of A and A′.

Proof. Apply lemma 4.2.1 to the following pushout

A //

��

B

��
CA // C

and to the cofibration A′ −→ CA′ to obtain the pushout

(CA× CA′)• //

��

(C × CA′)•

��
CA× CA′ // C × CA′.

Apply again lemma 4.2.1, this time to the pushout

A′ //

��

B′

��
CA′ // C ′

and to the cofibration B −→ C to obtain the pushout

(C × CA′)• //

��

(C × C ′)•

��
C × CA′ // C × C ′.

Composing the two pushouts we obtain

(CA× CA′)• //

��

(C × C ′)•

��
CA×CA′ // C ×C ′

which is also a pushout. Since C(A ∗ A′) ∼= CA× CA′, the result follows. ut

We have now enough cofibration sequences to prove our

Theorem 4.2.3 Let f : A→ X, f ′ : A′ → X ′ be maps such that Cl(A), Cl(A′), Cl(X,A),
Cl(X ′, A′) are finite. Then we have for the map f × f ′:

Cl(X ×X ′, A×A′) ≤ max{Cl(A), Cl(A′)}+Cl(X,A) + Cl(X ′, A′).
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Proof. Suppose there exist two sequences of cofibration sequences

W (i) −→ A(i− 1) −→ A(i) U(j) −→ A′(j − 1) −→ A′(j) ,

with

• 1 ≤ i ≤ s+ p, A(0) ' {∗}, A(s) ' A (Cl(A) ≤ s), A(s+ p) ' X and A→ A(i)→ X
is homotopic to f for all s ≤ i ≤ s+ p (Cl(X,A) ≤ p);

• 1 ≤ j ≤ k+n, A′(0) ' {∗}, A′(k) ' A′ (Cl(A′) ≤ k), A′(k+n) ' X ′ (Cl(X ′, A′) ≤ n)
and A′ → A(j)→ X ′ is homotopic to f ′ for all k ≤ j ≤ k + n.

The inclusions A(i) ⊂ A(s + p), A′(j) ⊂ A′(k + n) are cofibrations. Let us suppose,
without loss of generality, that s ≥ k. We can then define the following subspaces of
A(s+ p)×A′(k + n), for 0 ≤ g ≤ p+ s+ n:

M(g) ≡ (A(s)×A′(k)) ∪
⋃

θ(g)≤i≤p

0≤j≤k+n

i+j=g

(A(s+ i)×A′(j)) ∪
⋃

0≤i≤s+p

0≤j≤n

i+j=g

(A(i) ×A′(k + j))

where θ(g) = 0 for 0 ≤ g ≤ k, and θ(g) = g − k for k + 1 ≤ g ≤ s+ p+ n, and the unions
are taken over subspaces of A(s+p)×A′(k+n). We claim that for each 1 ≤ g ≤ s+p+n
there exist a space V (g) and a cofibre sequence V (g) −→ M(g − 1) −→ M(g), and that
moreover we have M(0) ' A×A′, M(s+p+n) ' X×X ′, and A×A′ →M(g)→ X×X ′

is homotopic to f × f ′, which proves the proposition under our assumptions.
We define:

V (g) ≡ (W (s+g)×∗)∨
∨

θ(g)≤i≤g

1≤j≤g−1

i+j=g

(W (s+i)∗U(j)) ∨
∨

1≤i≤g−1

0≤j≤g

i+j=g

(W (i)∗U(k+j)) ∨ (∗×U(k+g)).

Using lemma 4.2.2 and the cone decompositions of X and X ′ we obtain the following
pushouts:

W (s+ g)× ∗

��

// A(s+ g − 1)× ∗

��
CW (s+ g)× ∗ // A(s+ g) × ∗,

W (s+ i) ∗ U(j)

��

// (A(s+ i)×A′(j))•

��
CW (s+ i)× CU(j) // A(s+ i)×A′(j),

∗ × U(k + g)

��

// ∗ ×A′(k + g − 1)

��
∗ ×CU(k + g) // ∗ ×A′(k + g),

W (i) ∗ U(k + j)

��

// (A(i) ×A′(k + j))•

��
CW (i)× CU(k + j) // A(i) ×A′(k + j),

with the obvious associated cofibre sequences. We now only have to check that the spaces
we are attaching a cone to are subspaces of M(g− 1) for all i and j that we are concerned
with.

1. For all g such that θ(g) ≤ g ≤ p we have θ(g − 1) ≤ g − 1 ≤ p, therefore

(A(s+ g− 1)×∗) ⊂M(g− 1). Analogously we find (∗×A′(k+ g− 1)) ⊂M(g− 1).
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2. To build (A(s+i)×A′(j))• we need spaces A(s+i)×A′(j−1) and A(s+i−1)×A′(j).
Remember that θ(g) ≤ i ≤ p, 1 ≤ j ≤ k+ n, i+ j = g. Then obviously i ≥ θ(g− 1),
0 ≤ j − 1 ≤ k+ n and A(s+ i)×A′(j − 1) ⊂M(g − 1). For A(s+ i− 1)×A′(j) we
must consider two cases:

g ≤ k: We have either i ≥ 1 and therefore A(s+ i− 1)× A′(j) ⊂M(g − 1), or i = 0.
In the second case the space we consider is

A(s− 1)×A′(g) ⊂ A(s)×A′(k) ' A×A′ ⊂M(g − 1).

g > k: Then θ(g) = g−k > 0 and i−1 ≥ g−1−k = θ(g−1). Hence A(s+i−1)×A′(j) ⊂
M(g − 1).

3. To build (A(i)×A′(k+j))• we need spaces A(i)×A′(k+j−1) and A(i−1)×A′(k+j).
Here 1 ≤ i ≤ s+ p, 0 ≤ j ≤ n, i+ j = g. Obviously A(i− 1)×A′(k+ j) ⊂M(g− 1).
If j 6= 0, we also see easily that A(i)×A′(k+ j− 1) ⊂M(g− 1). Otherwise we must
consider A(g) ×A′(k − 1).

g ≤ k: Then g ≤ s and A(g) ×A′(k − 1) ⊂ A(s)×A′(k) ⊂M(g − 1).

g > k: Then g = k + r with r > 0 and therefore s+ r ≥ g. This shows that

A(g)×A′(k− 1) ⊂ A(s+ r)×A′(k− 1). Now r = g− k ≥ g− 1− k = θ(g− 1),
then A(s+ r)×A′(k − 1) ⊂M(g − 1).

It is now obvious that M(0) ' A×A′ and X×X ′ ' A(s+ p)×A′(k+n) = M(s+ p+n),

and that A × A′ → M(g) → X × X ′ is equal to A × A′
∼=
→ A(s) × A′(k) ⊂ M(g) ⊂

A(s+ p)×A′(k + n)
∼=
→ X ×X ′ which is homotopic to f × f ′. ut

Remark. In [ST99] Scheerer and Tanré introduced the new absolute invariant a−Cl,
which is defined like the normal cone-length with the difference that in any cofibration
sequence A→ X(i)→ X(i+ 1) involved in determing it the space A must be an element
of a fixed class of spaces a. We can obviously extend this definition to the a-cone-length
of a map by making the same modification. For certain types of classes of maps a our
product formula remains valid.

Corollary 4.2.4 Let a be a class of spaces, such that, for all U, V ∈ a then

• if a space W is homeomorphic to U , then W ∈ a,

• U ∗ V ∈ a,

• U ∨ V ∈ a.

Let f : A −→ X, f ′ : A′ −→ X ′ be two maps with a − Cl(A), a − Cl(A′), a − Cl(f),
a− Cl(f ′) finite. Then

a− Cl(f × f ′) ≤ max{a− Cl(A), a− Cl(A′)}+ a− Cl(f) + a− Cl(f ′).

Proof. It suffices to notice that in the definition of V (g) in the proof of the previous
proposition there only appear wedges of joins of spaces in a. ut

We can now relate to the properties of closed classes as demonstrated in [Far95] to
show:
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Corollary 4.2.5 If a is a closed class, and f, f ′, A,A′, X,X ′ are like in the previous
corollary, then

a− Cl(f × f ′) ≤ max{a− Cl(A), a− Cl(A′)}+ a− Cl(f) + a− Cl(f ′).

4.3 Product formulas for relative categories

If their source spaces have finite cone-length, it is also possible to find upper bounds for the
F-category, the R-category and the LS-category of maps: we build maps from the product
of two Ganea spaces for different maps f , f ′ into the Ganea space of the product f × f ′

using the cone-decomposition of the latter which was used to prove theorem 4.2.3. We
show that such maps let some diagrams (homotopy) commute, which allows us to define
a section for the Ganea map of the product f × f ′ using sections for the Ganea maps of
f and f ′.

In the proof of proposition 4.3.2 we will use several times the following lemma, which
constructs a map between the homotopy cofibres of two maps while keeping some diagram
commuting. It can be seen as a “quasi-lifting lemma”.

Lemma 4.3.1 Let

A
i
−→ X

k
−→ X ∪i CA,

F
j
−→ E

p
−→ B

be respectively a cofibration sequence and a fibration, such that there exist maps f and g
like in the following diagram, letting it commute exactly

X
f //

��

k

��

E

p

����
X ∪i CA g

// B.

If l : E → E ∪F CF denotes the obvious inclusion in the homotopy cofibre of j, and
q : E ∪F CF → B is defined as equal to p on E and to ∗ on CF , then there exists a map
Φ : X ∪i CA→ E ∪F CF such that Φ ◦ k = l ◦ f and q ◦ Φ ' g relX

X
f //

��

k

��

E

p

����

l // E ∪F CF

q

||yy
yyyy

yyyy
yyyy

yyy

X ∪i CA g
//

Φ

66

B.

Moreover, if we consider the fibration p′ associated to q:

E ∪F CF
λ
'

//

q

##F
FF

FF
FF

FF
FF

FF
FF

FF
E′

p′

~~~~~~
~~

~~
~~

~~
~~

~~

B,

then there exists a map Ψ : X ∪i CA→ E′ such that
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• Ψ ' λ ◦ Φ,

• Ψ ◦ k = λ ◦ l ◦ f and

• p′ ◦Ψ = g.

Proof. We begin by defining an injection α : A → A× I as α(a) = (a, 0) and a map
γ : A× I → X ∪i CA, the obvious projection, which make diagram

A

α

��

i // X
��

k

��

f // E

p

����
A× I γ

// X ∪i CA g
// B

commute. By the homotopy lifting property of fibrations, there exists a homotopy H :
A × I → E such that H(a, 0) = (f ◦ i)(a) for all a ∈ A and p ◦H = g ◦ γ. We therefore
notice that for all a ∈ A we have

p ◦H(a, 1) = (g ◦ γ)(a, 1) = g(∗) = ∗,

which means that H(A× {1}) ⊂ F . We are now ready to define

Φ : X ∪i CA −→ E ∪F CF

Φ([x]) = [f(x)] ∀x ∈ X

Φ([a, t]) =

{
[H(a, 2t)] 0 ≤ t ≤ 1/2, a ∈ A
[H(a, 1), 2t − 1] 1/2 ≤ t ≤ 1, a ∈ A.

It is easy to check that Φ is well-defined by using [H(a, 1)] = [H(a, 1), 0] and

Φ([i(a)]) = [f(i(a))] = [H(a, 0)] = Φ([a, 0]).

It therefore remains to show that g ' q ◦ Φ. We define explicitely the homotopy between
these two maps:

G : (X ∪i CA)× I −→ B

G([x], s) = g([x]) = (p ◦ f)(x) x ∈ X, s ∈ I

G([a, t], s) =

{
g([a, (s + 1)t]) 0 ≤ (s+ 1)t ≤ 1, a ∈ A

∗ (s+ 1)t ≥ 1, a ∈ A.

It is a well-defined map because, when (s + 1)t = 1, we have g([a, 1]) = g(∗) = ∗, and
G([a, 0], s) = g([a, 0]) = g([i(a)]) = G([i(a)], s). It is easy to check that G is an homotopy
between g and q ◦ Φ which is constant on X.

Let us now consider the inclusion Y ≡ (X× I)∪i×id (CA×{0})
γ
→ (X ∪iCA)× I ≡ Z.

It is actually a cofibration, because CA→ CA× I is a cofibration, and it is easy to check
that it is a homotopy equivalence. We therefore obtain the following commutative solid
diagram:

Y
(λ◦l◦f◦prX )∪(λ◦Φ) //

��

' γ

��

E′

p′

����
Z

F

;;

−G
// B,
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where prX : X × I → X is the projection on the first component. Since Y is closed in Z,
(Z, Y ) is an NDR-pair and according to section 2.7 there exists then a map F : Z → E ′

such that

F ◦ γ = (λ ◦ l ◦ f ◦ prX) ∪ (λ ◦ Φ)

and

p′ ◦ F = −G.

We define now Ψ : X ∪ CA→ E ′ by Ψ(z) ≡ F (z, 1), and we verify

• λ ◦Φ ' Ψ, because F ([x], t) = (λ ◦ l ◦ f)(x) = λ ◦Φ([x]) for x ∈ X, and F ([a, s], 0) =
λ◦Φ([a, s]), where a ∈ A and s ∈ I. Therefore F (−, 0) = λ◦Φ and F is a homotopy
between λ ◦ Φ and Ψ.

• (Ψ ◦ k)(x) = Ψ([x]) = F ([x], 1) = (λ ◦ l ◦ f)(x), where x ∈ X.

• (p′ ◦Ψ)(z) = (p′ ◦ F (z, 1)) = −G(z, 1) = G(z, 0) = g(z), where z ∈ Z.

ut

We can apply this procedure to Ganea spaces and maps:

Proposition 4.3.2 Let f : E → B and f ′ : E′ → B′ be two continuous maps and let

denote by Fn → Gn
gn
→ B, F ′

n → G′
n

g′n→ B′ and F̃n → G̃n
g̃n
→ B × B′ the n-th Ganea

fibration of f, f ′ and f × f ′ respectively. Let also denote by qn : E → Gn, q
′
n : E′ → G′

n

and q̃n : E ×E′ → G̃n the respective injections.

If p ≡ max{Cl(E), Cl(E ′)} is finite, then for all n,m ∈ N there exists a map Φ(n,m) :
Gn ×G

′
m → G̃n+m+p such that the diagram

Gn ×G
′
m

Φ(n,m) //

gn×g′m

$$I
IIIIIIIIIIIIIIII

G̃n+m+p

g̃n+m+p

{{vvvvvvvvvvvvvvvvv

B ×B′

commutes exactly, and Φ(n,m) ◦ (qn × q
′
m) ' q̃n+m+p.

Proof. We recall that for any Ganea fibration Gk(g)
gk(g)
−→ Y of a map g : X → Y ,

qk has relative cone length Cl(qk) ≤ k, which allows us to construct an (n+m+p)-relative
cone decomposition of gn× g

′
m by using 4.2.3. We therefore consider a sequence of cofibre

sequences

V (1) −→M(0) −→M(1)
...

V (n+m+ p) −→M(n+m+ p− 1) −→M(n+m+ p)

with

E ×E′ θ
'M(0) ⊂M(1) ⊂ ... ⊂M(n+m+ p)

ν
' Gn ×G

′
m

and E ×E′ ik−→M(k)
pk−→ Gn ×G

′
m ' qn × q

′
m.

We denote by incl any inclusion such as M(k) ⊂M(j) where j ≥ k.
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There exists therefore a diagram

V (1) //M(0)
incl //M(1)

incl //M(n+m+ p)
ν
'

// Gn ×G
′
m

gn×g′m

��
F̃0

//

j

��;
;;

;;
;;

;;
;;

;;
E ×E′

' θ

OO

q̃0'

��

f×f ′ // B ×B′

G̃0

g̃0

44hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

commuting up to homotopy, because (gn×g
′
m)◦pn+m+p◦ in+m+p ' (gn×g

′
m)◦(qn×q

′
m) '

f × f ′.
We prove now by induction that for each n + m + p ≥ k ≥ 0 there exists a map

β(k) : M(k)→ G̃k such that the following diagram commutes:

M(k)
β(k) //

(gn×g′m)◦pk

��=
==

==
==

==
==

==
=

G̃k

g̃k

����
��

��
��

��
��

�

B ×B′,

while β(k) ◦ incl ◦ θ ' q̃k.
We begin by defining β̄(0) : M(0) → G̃0 as being q̃0 ◦ η, with η the homotopy inverse

of θ. We have (gn × g′m) ◦ p0 ' g̃0 ◦ β̄(0). Since g̃0 is a fibration, there exists a map
β(0) ' β̄(0) such that (gn × g

′
m) ◦ p0 = g̃0 ◦ β(0). We have moreover that

β̄(0) ◦ θ = q̃0 ◦ η ◦ θ ' q̃0

and therefore β(0) ◦ θ ' q̃0.
We proceed now with the induction step: let us suppose that there exists a map

β(k) : M(k)→ G̃k such that
g̃k ◦ β(k) = (gn × g

′
m) ◦ pk and β(k) ◦ incl ◦ θ ' q̃k.

Since pk+1 ◦ incl = pk, the following diagram commutes:

V (k + 1) //M(k)
incl //

β(k)

��

M(k + 1)

(gn×g′m)◦pk+1

��
F̃k

// G̃k g̃k

// B ×B′.

Using lemma 4.3.1 we build a map

β(k + 1) : M(k + 1) −→ G̃k+1

such that β(k+ 1) ◦ incl = δk ◦ ˜inclk ◦ β(k) and g̃k+1 ◦ β(k + 1) = (gn × g
′
m) ◦ pk+1, where

˜inclk : G̃k → G̃k ∪CF̃f is the obvious inclusion, and δk : G̃k ∪CF̃k
'
→ G̃k+1 an homotopy

equivalence.
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On the other hand, we check that

β(k + 1) ◦ incl ◦ θ = δk ◦ ˜inclk ◦ β(k) ◦ incl ◦ θ ' δk ◦ ˜inclk ◦ q̃k,

and it is easy to see that this last term is actually q̃k+1. The induction step is then over.
We can now define Φ̄(n,m) = β(n +m + p) ◦ µ, where µ is the homotopy inverse of

ν : M(n+m+ p)→ Gn ×G
′
m. From the above induction process we infer that

g̃n+m+p ◦ Φ̄(n,m) = g̃n+m+p ◦ β(n+m+ p) ◦ µ =

(gn × g
′
m) ◦ pn+m+p ◦ µ = (gn × g

′
m) ◦ ν ◦ µ ' gn × g

′
m,

and we can then find a map Φ(n,m) ' Φ̄(n,m) such that g̃n+m+p ◦Φ(n,m) = gn× g
′
m, as

desired.
Moreover, we can see that

Φ(n,m) ◦ (qn × q
′
m) ' Φ̄(n,m) ◦ (qn × q

′
m) '

Φ̄(n,m) ◦ ν ◦ incl ◦ θ ' β(n+m+ p) ◦ incl ◦ θ ' q̃n+m+p.

ut

Using proposition 4.3.2 we give here upper bounds for the three possible categories,
Fcat, Rcat, cat, of a product of maps.

Theorem 4.3.3 Let f, f ′ be maps like in proposition 4.3.2. If p ≡ max{Cl(E), Cl(E ′)}
is finite, then

Rcat(f × f ′) ≤ Rcat(f) + Rcat(f ′) + max{cat(E), cat(E ′)}.

Proof. Let Rcat(f) = n, Rcat(f ′) = m and s, s′ denote sections of gn and g′m
respectively. We define a map s̃ : B ×B ′ → G̃n+m+p by

s̃ = Φ(n,m) ◦ (s× s′),

where Φ(n,m) is the map of proposition 4.3.2. Then

g̃n+m+p ◦ s̃ = g̃n+m+p ◦ Φ(n,m) ◦ (s× s′) =

(gn × g
′
m) ◦ (s× s′) = idB × idB′ = idB×B′ .

This means that

Rcat(f × f ′) ≤ Rcat(f) + Rcat(f ′) + max{Cl(E), Cl(E ′)}.

Recall now from [Cor95] that there exist suspensions ΣX, ΣX ′ such that Cl(E∨ΣX) =
cat(E) and Cl(E ′ ∨ ΣX ′) = cat(E′). Define a map g : E ∨ΣX → B as being f on E and
∗ on ΣX, and a map g′ analogously. We now show that

Rcat(g) = Rcat(f).

We define maps u : E ∨ ΣX → E as the projection and v : E → E ∨ ΣX as the
inclusion. We therefore have a commutative diagram:

Ḡ0

ḡ0

))RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR E ∨ ΣX
u //

g

""E
EEEEEEEEEEEEEEE

'
ω

oo E

f

����
��

��
��

��
��

��
�v

oo
'

λ
// G0

g0

wwooooooooooooooooooooooooo

B,
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where g0 and ḡ0 are the 0-th Ganea fibrations of f and g respectively. Defining ω̄, λ̄
as being the homotopy inverses of ω, λ respectively, we have g0 ◦ λ ◦ v ◦ ω̄ ' ḡ0 and
ḡ0 ◦ ω ◦ u ◦ λ̄ ' g0 which according to [ST97] means that ḡ0 is a 0-LS-fibration for g0.
Always according to [ST97] we see that the k-th Ganea fibration for g, ḡk : Ḡk → B, is
a k-LS-fibration for g0, which means that there exist maps uk, vk such that the following
diagram commutes up to homotopy

Ḡk
uk //

ḡk

  @
@@

@@
@@

@@
@@

@@
@

Gk

gk

~~~~
~~

~~
~~

~~
~~

~~
~vk

oo

B

and therefore the existence of a section for gk is equivalent to the existence of a section
for ḡk.

Analogously, we define g′ : E′ ∨ΣX ′ → B′, and we show that Rcat(g× g′) = Rcat(f ×
f ′). It suffices to check that the product u×u′ of the projections and v×v′ of the inclusions
make the following diagram commute:

¯̃G0

¯̃g0

**UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU (E ∨ΣX)× (E ′ ∨ ΣX ′)
u×u′ //

g×g′

&&LLLLLLLLLLLLLLLLLLLL

'
ω

oo E ×E′

f×f ′

}}||
||

||
||

||
||

||
||v×v′

oo
'

λ
// G̃0

g̃0

wwooooooooooooooooooooooooo

B ×B′,

and then proceed as in the previous case.
We now have

Rcat(f × f ′) = Rcat(g × g′) ≤ Rcat(g) + Rcat(g′) + max{Cl(E ∨ ΣX), Cl(E ′ ∨ ΣX ′)}

= Rcat(f) + Rcat(f ′) + max{cat(E), cat(E ′)}.

ut

Theorem 4.3.4 Let f, f ′ be maps like in proposition 4.3.2. If p ≡ max{Cl(E), Cl(E ′)}
is finite, then

cat(f × f ′) ≤ cat(f) + cat(f ′) + max{Cl(E), Cl(E ′)}.

Proof. We begin like in proof of theorem 4.3.3 by defining a section for g̃n+m+p as
s̃ = Φ(n,m) ◦ (s× s′), with s ◦ f ' qn and s′ ◦ f ′ ' q′m. We can then check that s̃ fulfills
Cornea’s requirement by using proposition 4.3.2:

s̃ ◦ (f × f ′) = Φ(n,m) ◦ (s× s′) ◦ (f × f ′) ' Φ(n,m) ◦ (qn × q
′
m) ' q̃n+m+p.

ut

In the case of the F-category we obtain a well-known result:

Theorem 4.3.5 Let f, f ′ be maps like in proposition 4.3.2, then

Fcat(f × f ′) ≤ Fcat(f) + Fcat(f ′).
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Proof. Notice that here we work with the Ganea spaces and maps corresponding
to the maps ∗ → B, ∗ → B ′ and ∗ → B × B ′, instead of f , f ′ and f × f ′. To avoid
confusion we therefore use standard indexation. Let s, s′ be maps such that gn(B) ◦ s ' f
and gm(B′) ◦ s′ ' f ′. Since PB ' PB ′ ' ∗, we have Cl(PB) = Cl(PB ′) = 0. We can
therefore define s̃ : B ×B ′ → Gn+m(B ×B′) as being

s̃ ≡ Φ(n,m) ◦ (s× s′)

where Φ(n,m) is the map built in proposition 4.3.2. We then see that

gn+m(B×B′)◦ s̃ = gn+m(B×B′)◦Φ(n,m)◦ (s×s′) = (gn(B)×gm(B′))◦ (s×s′) ' f×f ′.

ut


