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Introduction

Among the numerous homotopy invariants the category of Lusternik-Schnirelmann, or LS-
category, of a topological space has aroused much interest since its definition in 1934 [LS34].
For example it was shown that it is related to another invariant: the cone-length of a
space [Fox41], [Gan67], [Cor95]. Moreover LS-category can be extended to continuous
maps in three different ways [Fox41], [Fad85], thus generating the F-category, the R-
category and the LS-category of a map, which are analogous to the sectional category
of a fibration [Sch66]. Finally Félix and Halperin [FH83] gave a new dimension to the
LS-category by transferring it into the context of rational homotopy theory: they gave
a method to compute its rationalization directly in the category of commutative cochain
algebras (in short: cca’s). They also rationalized the F-category of a map.

In this thesis we are particularly interested in relative invariants of the type of the
LS-category, such as F-category, R-category, LS-category, sectional category and cone-
length of a map. In chapter 1 we introduce a few tools which are very useful to define the
various relative categories: homotopy push-outs, homotopy pull-backs and joins. Then we
give a brief description of rational homotopy theory in chapter 2: we state the equivalence
of categories underlying it which links topological spaces and commutative cochain alge-
bras (in short: cca’s). We also define (relative) Sullivan algebras, which are particularly
nice to deal with, and can be used as building blocks when modelizing some topological
constructions such as joins.

Chapter 3 is devoted on the one hand to a description of the original LS-category
and cone-length. In particular we give three equivalent definitions of the LS-category: in
terms of coverings, of fat wedges and of Ganea maps, constructed by taking consecutive
joins. We also give bounds for the LS-category and the cone-length of a product of spaces.
On the other hand we introduce the F-category, the R-category and the LS-category of
maps, giving for each of them three equivalent definitions, as well as the cone-length of a
map [Mar98].

In chapter 4 we find a bound for the cone-length of a product of maps and use it to
obtain bounds for the F-category, the R-category and the LS-category of a product of
maps.

Chapter 5 contains a summary of part of Félix and Halperin’s paper [FH83] giving a
rationalization of the absolute LS-category and of the F-category and their characterization
directly in the rational context. We then introduce a rationalization of the R-category
and the relative LS-category and we state our main theorem, allowing to compute them
directly in the cca setting: we use any Sullivan model of the morphism f to construct new
morphisms πm with target space Fm , m ≥ 0. The category of f depends then on the
existence of a homotopy retract for some πm. We give a proof of this assertion in chapter 6
by defining Ganea algebras Gm and Ganea morphisms gm, m ≥ 0 modelling Ganea spaces
and maps, and then by building (homotopy) commutative diagrams involving πm and gm,
m ≥ 0, which relate the existence of a homotopy retract for πm to the existence of a
homotopy retract for gm.
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Some applications of the main theorem are given in chapter 7: we show that the R-
category can take up any value, and we simplify our main result in case the map being
considered is the inclusion of a fibre. Moreover we prove that the rational relative category
of a spherical fibration does not depend only on the order of its Euler class as it is the
case for its rational sectional category.

Finally we devote our last chapter to the study of a new homotopy invariant: the
sectional category of a sequence of maps, which generalizes both the sectional category of
a fibration and the R-category. In this case as for the classical LS-category we give three
equivalent definitions in terms of coverings, of generalized fat wedges and of generalized
Ganea spaces. Moreover we rationalize the new invariant and prove a theorem allowing
its direct computation in the rational setting.


