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4Dipartimento di Fisica and Icra, Università di Roma ‘‘La Sapienza’’, Piazzale Aldo Moro 5, I-00185 Roma, Italy
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We use cosmography to present constraints on the kinematics of the Universe, without postulating any

underlying theoretical model. To this end, we use a Monte Carlo Markov chain analysis to perform

comparisons to the supernova Ia Union 2 compilation, combined with the Hubble Space Telescope

measurements of the Hubble constant, and the Hubble parameter data sets. We introduce a sixth order

cosmographic parameter and show that it does not enlarge considerably the posterior distribution when

comparing to the fifth order results. We also propose a way to construct viable parameter variables to be

used as alternatives of the redshift z. These can overcome both the problems of divergence and lack of

accuracy associated with the use of z. Moreover, we show that it is possible to improve the numerical fits

by reparametrizing the cosmological distances. In addition, we constrain the equation of state of the

Universe as a whole by the use of cosmography. Thus, we derive expressions which can be directly used to

fit the equation of state and the pressure derivatives up to fourth order. To this end, it is necessary to depart

from a pure cosmographic analysis and to assume the Friedmann equations as valid. All our results are

consistent with the �CDM model, although alternative fluid models, with nearly constant pressure and no

cosmological constant, match the results accurately as well.
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I. INTRODUCTION

Ever since the pioneering works of two separate groups
in 1998 [1], cosmological observations indicate a late time
accelerated Universe. More recently, additional evidence
coming from other experiments [2,3] confirms that the
Universe is going through an accelerated expansion.
Thus, the existence of the acceleration is assumed to be a
consolidated feature of cosmology [4]. Unfortunately, the
physical mechanism from which this cosmic speed-up
originates is still unclear; the common way to deal with
this is to assume, in addition to the standard matter term,
the existence of a further exotic fluid which influences the
dynamics of the Universe [5–8]. Because of the lack of
knowledge on the physical nature of this fluid, we usually
refer to it as dark energy (DE). So far, DE is only obser-
vationally witnessed, while the microphysics behind it
remains totally undisclosed [9–13]. One of the most dubi-
ous properties of DE is that it exhibits a negative equation
of state (EoS) parameter, counteracting the attractive ac-
tion of gravity [14]. The need of a negative pressure hints at
the nonbaryonic nature of DE, since no common matter is
expected to show such a property. Besides that, the total
amount of cosmological matter in the Universe appears to

be dominated by a nonbaryonic (cold) dark matter (DM)
component, which accounts for about 23% of the total
energy content of the Universe. On the other hand, the
common baryonic matter in the Universe only accounts for
4% of the whole energy content. This shows that the
standard visible matter is actually not enough to guarantee
the stability of structure observed at different astrophysical
and cosmological scales, and DM cannot be ignored for the
dynamics of the whole Universe [15,16].
Consequently, our knowledge of the correct cosmologi-

cal model seems to be lacking some ingredients. However,

in order to investigate the effects of DE and DM in

Einstein’s equations, one introduces a common energy

momentum tensor with a pressureless term, i.e., Pm ¼ 0,
describing the total visible and nonvisible matter content,

and an additional term with a negative pressure to represent

DE [17]. Together with these assumptions, one generally

considers a homogeneous and isotropic Universe, depicted

by the Friedmann-Robertson-Walker (FRW) metric, ds2 ¼
�c2dt2 þ aðtÞ2ðdr2=ð1� kr2Þ þ r2sin2�d�2 þ r2d�2Þ. In
addition, observations of the large scale geometry of the

Universe suggest a spatially quite flat Universe, so here-

after we will assume k ¼ 0. To account for the effects of

DE, the simplest and most tested assumption deals with

the introduction of a cosmological constant term� into the

Einstein equations. According to quantum field theory, the

constant is interpreted as a vacuum energy contribution,

and naturally leads to a negative EoS parameter with
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a positive energy density and negative pressure. The corre-

sponding model, which is straightforwardly derived by solv-

ing the Einstein equations with the cosmological constant, is
known as�CDM [18], a model which by now achieved the
status of the standard cosmologicalmodel. The reasonwhich
induces cosmologists to assume this particular model to be
the standard one is that it excellently fits all observational
data with high precision [19,20]. Moreover, it is only relying
on a remarkably small number of cosmological parameters,
without any ad hoc additional terms [21]. Unexpectedly,
observations show that both the magnitudes of matter and
� are comparable at our time. Indicating with �m and ��

the magnitudes of matter and DE respectively, observational
bounds show that ��=�m � 2:7. This feature implies a
strange and unexpected coincidence problem—because DE
is expected to evolve separately from matter, it is quite
astonishing to imagine that near the present time the two
magnitudes should be so close to each other.

On the other hand, another uncomfortable shortcoming
plagues the standard model. The observational limits on
the magnitude of the cosmological constant disagree with
the predicted value for about 10123 orders of magnitude,
leading to a serious fine-tuning problem [22]. This deeply
disturbs the otherwise appealing picture of a cosmological
constant and, together with the coincidence problem, dra-
matically afflicts the standard cosmological paradigm.
Despite its success in explaining the observational data,
the�CDMmodel is therefore theoretically incomplete,1 or
at least not well understood. Motivated by these defects, a
mare magnum of different models has been proposed dur-
ing the past decades; as a short sample see Ref. [25] and
references therein. In this work we wonder whether the
cosmological constant must be considered as the real
unique explanation of DE, or if there exists a hidden
mechanism behind the nature of the cosmic speed-up. An
enticing way to understand if �CDM is the favorite can-
didate for DE is represented by the analyses through model
independent tests. Such procedures should be able to dis-
close the fundamental nature of DE without postulating a
certain model a priori. In this way, it would be possible to
analyze the dynamics of the Universe without imposing
a cosmological constant from the beginning. If � really
exists, no significant deviations from a constant EoS must
be found bymodel-independent tests. As a consequence, it is
necessary to inquire how much of modern cosmology is
really independent of the Friedmann equations [26,27]. In
other words, distinguishing between kinematics and dynam-
ics is viewed as a tool to discriminate fairly amongmodels, in
order to reveal the correct cosmological paradigm.

Surely one of the most powerful model independent
approaches is represented by cosmography [28].

Cosmography, sometimes also referred to as cosmo-
kinetics, was first discussed by Weinberg in Ref. [19] and
then extended by Visser in Ref. [26]. The underlying
philosophy of cosmography is to involve the cosmological
principle only. So, the FRW metric is the only ingredient
that cosmography uses for obtaining bounds on the observ-
able Universe. Cosmography permits us to infer how much
DE or alternative components are required in regard to
satisfy the Einstein equations. The idea is to expand some
observables such as the cosmological distances or the
Hubble parameter, into power series, and relating cosmo-
logical parameters directly to these observable quantities. In
doing so, it is possible to appraise which models behave
fairly well and which ones should be discarded as a con-
sequence of not satisfying the basic demands introduced by
cosmography. So cosmography strives for the development
of a procedure able to constrain the kinematics of the
Universe.
In this paper, we present an extension of the promising

approach debated in Visser et al. [28]; we devote our
efforts both to constraining �CDM and investigating
whether it is the only possibility to explain the cosmologi-
cal acceleration, or whether there are prominent alterna-
tives [29]. In particular, we adopt the idea of cosmography
developed in Refs. [26,28,30–33] and we improve it, by
assuming an extended class of fitting quantities, assembled
by a number of different cosmological distances. For theo-
retical reasons, which we will discuss in the next sections,
we introduce new parametrizations of the redshift variable
besides z, in order to improve the fitting procedure. These
parametrizations are designed to reduce the problems
associated to the experimental analysis at redshift z > 1.
Thence, we make use of the most recent data of the Union 2
supernovae Ia (SNeIa), of the Hubble Space Telescope
(HST) measurements of the Hubble factor, and of the
HðzÞ compilations [34], through a Markov chain
Monte Carlo (MCMC) method, by modifying the publicly
available code COSMOMC [35]. Afterwards, we also include
a parametrization of the cosmological distances in terms of
the EoS of the Universe as a whole and of their pressure
derivatives. This allows us to directly fit the EoS of the
Universe without having to undergo disadvantageous error
propagation. In doing this, we assume the validity of the
cosmological principle, and of general relativity, since
for this analysis it is necessary to invoke the Friedmann
equations. This gives us certain constraints on the EoS and
on the pressure derivatives in the framework of general
relativity.
The paper is organized as follows. In Sec. II we discuss

the physics behind the concept of cosmography and its
implications for modern cosmology in more detail; we
introduce the new cosmographic coefficientm, and discuss
how to build up a viable alternative parametrization to the
redshift z. We then propose three new parametrizations and
we study their properties, in view of the fitting procedure.

1Moreover, nearly all the extensions of it appear to fail as well.
For a recent and mentionable alternative, which naturally ex-
tends �CDM in general relativity, conforming to all the experi-
mental bounds, see Refs. [23,24].
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In Sec. III we apply these recipes and present the results of
the cosmographic fits by a numerical MCMC analysis.
Section IV deals with the concept of the EoS; in particular
we relate the EoS and the derivatives of pressure to the
luminosity distance, in order to carry out a direct fit to
cosmological data. We use these results to derive constraints
on �CDM and the most generic DE model, characterized
by the function GðzÞ, reducing to Gðz ¼ 0Þ ¼ 1��m at
z ¼ 0. In Sec. V finally we draw conclusions and give an
outlook to further paths of investigations.

II. THE ROLE OF COSMOGRAPHY

In this section we focus on the role of cosmography in
modern cosmology. Its aim is the study of the kinematic
quantities, characterizing the cosmological scenario. For
this reason, cosmography is also called cosmo-kinetics, or
kinematics of the Universe. We therefore limit ourselves to
the smallest number of assumptions possible. First, we
presume the validity of the cosmological principle.
Second, we suppose that the EoS of the Universe is deter-
mined by a nonspecified number of different cosmological
fluids.2 We assume that the total pressure of these fluids,
namely P, can be written as P ¼ P

iPi, and its total EoS
parameter ! ¼ P

iPi=
P

i�i. Here the index i runs over all
the involved cosmological fluids. Following these assump-
tions, the paradigm of cosmography was first developed by
Weinberg [19], who proposed to expand the scale factor in
terms of a Taylor series around the present time t0.

3

Following these recipes, it is natural to expect that many
other physical quantities of interest, apart from aðtÞ, can be
expanded as well. The power series coefficients in the
expansion of the scale factor are known in the literature as
cosmographic series (CS), when evaluated at our time t0;
these quantities are related to the scale factor derivatives.

A feasible consequence of this prescription is that cos-
mography does not depend on the choice of a cosmological
model. As a matter of fact, almost all cosmological tests
assume a priori that the model under consideration is
statistically favored; however, this creates a degeneracy
among models and often it remains difficult to understand
which model is really favored. Cosmography is, among
various cosmological tests, one of the ways to alleviate that
degeneracy. However, although cosmography is reviewed
as a model independent procedure, a few words should be
spent regarding the role of the spatial curvature, k. In
particular, modern cosmological data are not enough at
present to fix stringent convergence limits on the CS and k.
It is possible to show that the term proportional to the

(present) ’’variation of acceleration,’’ i.e., j0, cannot be
measured alone. Defining the curvature density as �k �
�0 � 1, where �0 represents the total density of the
Universe, then one measures j0 þ�0 [36]. Motivated by
WMAP 7 results [20], we propose here to restrict the
analysis to the spatially flat case, in which k ¼ 0. This
naturally overcomes the dependence of j0 on �0, letting
cosmography be independent of any particular cosmologi-
cal framework.
Now we have all the ingredients to expand the scale

factor into a series, yielding

aðtÞ ¼ a0 �
�
1þ da

dt

��������t0

ðt� t0Þ þ 1

2!

d2a

dt2

��������t0

ðt� t0Þ2

þ 1

3!

d3a

dt3

��������t0

ðt� t0Þ3 þ 1

4!

d4a

dt4

��������t0

ðt� t0Þ4

þ 1

5!

d5a

dt5

��������t0

ðt� t0Þ5 þ 1

6!

d6a

dt6

��������t0

ðt� t0Þ6

þOððt� t0Þ7Þ
�
; (1)

where we truncated the series at the sixth order in �t �
t� t0. Here, we assume that t� t0 > 0. Moreover, the
constant a0 is the scale factor evaluated today. Without
loss of generality, it is licit to identify hereafter a0 ¼ 1.
Equation (1) can be recast as

aðtÞ ¼ 1�H0�t� q0
2
H2

0�t
2 � j0

6
H3

0�t
3 þ s0

24
H4

0�t
4

� l0
120

H5
0�t

5 þ m0

720
H6

0�t
6 þOð�t7Þ; (2)

with the definition of the cosmographic coefficients as

H�1

a

da

dt
; q�� 1

aH2

d2a

dt2
; j� 1

aH3

d3a

dt3
;

s� 1

aH4

d4a

dt4
; l� 1

aH5

d5a

dt5
; m� 1

aH6

d6a

dt6
: (3)

Having an expansion for aðtÞ is equivalent to having
an expansion of the redshift z, in terms of H0�t (see
Ref. [37]).
As previously stressed, Eqs. (3), if evaluated at our time,

are referred to as the CS. The subscript ‘‘0’’ in Eq. (2)
indicates that the coefficients are evaluated at t ¼ t0.
In particular, each term has its own specific physical
interpretation. For example, q, the so-called acceleration
parameter, specifies whether the Universe is accelerating or
decelerating, depending on the sign. An accelerating
Universe leads to�1 � q0 < 0. On the contrary, a positive
j0 implies that q changes sign as the Universe expands, and
so forth for all the rest of the parameters. We usually
attribute the names of jerk and snap to j and s respectively;
so far, no universal name is associated to l. Here, we
additionally introduce m as a further higher order term. It

2These fluids include matter, radiation, curvature, dark energy
and so forth.

3Instead of the scale factor, also the Hubble parameter or the
luminosity distance could be expanded. In addition, as will be
clarified later, we superimpose a spatially flat geometry, in
accordance with the most recent observations.
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is useful to combine the CS among themselves and express
them in terms of each other, yielding

q ¼ � _H

H2
� 1; j ¼ €H

H3
� 3q� 2;

s ¼ Hð3Þ

H4
þ 4jþ 3qðqþ 4Þ þ 6;

l ¼ Hð4Þ

H5
� 24� 60q� 30q2 � 10jðqþ 2Þ þ 5s;

m ¼ Hð5Þ

H6
þ 10j2 þ 120jðqþ 1Þ þ 3½2lþ 5ð24qþ 18q2

þ 2q3 � 2s� qsþ 8Þ�: (4)

Here, the dots and the numbers in brackets indicate the
derivatives with respect to the cosmic time. By converting
the derivatives in Eq. (4) from time to redshift, and invert-
ing the relations, we can obtain the Hubble parameter as an
expansion in terms of redshift, HðzÞ (the results can be
found in Appendix B). Analogously, we can also expand
other observable physical quantities in order to fit the
cosmological data with the obtained functions.

It would be interesting to expand commonly used
notions of cosmological distances to the same order of
the Taylor expansion as the scale factor before. To this
end, let us now introduce several examples of distances
between two objects in cosmology, following the prescrip-
tions given in Ref. [30]. Here, we state the luminosity
distance dL and other four alternative distances, namely
the photon flux distance dF, the photon count distance dP,
the deceleration distance dQ, and the angular diameter

distance dA. These distances are defined as

dL ¼ a0r0ð1þ zÞ ¼ r0 � 1

aðtÞ ;

dF ¼ dL

ð1þ zÞ1=2 ¼ r0 � 1ffiffiffiffiffiffiffiffi
aðtÞp ;

dP ¼ dL
ð1þ zÞ ¼ r0;

dQ ¼ dL

ð1þ zÞ3=2 ¼ r0 �
ffiffiffiffiffiffiffiffi
aðtÞ

p
;

dA ¼ dL
ð1þ zÞ2 ¼ r0 � aðtÞ:

(5)

The last four notions of distances are less commonly
used in literature. Besides the luminosity distance dL,
which gives the ratio of the apparent and the absolute
luminosity of an astrophysical object, we consider the
photon flux distance dF, which is not calculated from the
energy flux in the detector, but from the photon flux, which
is experimentally easier to measure. The photon count
distance dP is based on the total number of photons arriv-
ing at the detector as opposed to the photon rate. The
so-called deceleration distance dQ has been introduced in

Ref. [26] without having an immediate physical meaning,

but in return a very simple and practical dependence on the
deceleration parameter q0. Finally, the angular diameter
distance dA was defined in Ref. [19] as the ratio of the
physical size of the object at the time of light emission and
its angular diameter observed today. To completely deter-
mine the distance expansions, we still need to calculate r0.
It is defined as the distance r a photon travels from a light
source at r ¼ r0 to our position at r ¼ 0. It is defined as4

r0 ¼
Z t0

t

dt0

aðt0Þ : (6)

We can calculate this quantity by inserting the power
series expansion for the inverse of the scale factor and
integrating each term in the sum separately. Finally, the
results are used to complete the calculations of the cosmo-
logical distances in terms of the redshift z. We report in
Appendix A 1 the expansions of all the distances in Eqs. (5)
in terms of z. These results can be compared with those of
Ref. [28], in which the authors truncated the series at a
lower order. In particular, they claimed the need of using
all the distances for a cosmographic test. In principle, this
may be true, because all the various cosmological distances
rely on the fundamental assumption that the total number
of photons is conserved on cosmic scales. Hence, there is
no reason to discard one distance for another one, since all
of them fulfill this condition. Unfortunately, there exists a
duality problem plaguing such distances [38]. This prob-
lem is so far an open question of observational cosmology
[39]. On the other hand, it has been suggested that the
luminosity distance dL is fairly well adapted to the cosmo-
logical data used in combined tests with supernovae Ia and
HST [40–42]. Even though this topic is still an object of
debate [43], unlike Cattoen and Visser [28] we limit our
attention to dL only. We motivate this choice with the
above considerations on the good adaptation of dL to the
data, and with its general use in literature [44].
There are two main problems arising in the context of

cosmography. In principle, the Taylor series is expected to
diverge at z � 1. This is a consequence of the fact that we
are expanding around z� 0 and so when z > 1, we get
problems with convergence. Moreover, the finite trunca-
tions we made represent only an approximation of the
exact function, giving therefore possibly misleading
results. Thus, while the second problem can be alleviated
by expanding to higher orders in adding more coefficients,
this measure can introduce divergences into the analysis.
These issues are intimately connected to the problem of
systematic errors. In fact, if errors are large enough, it is
possible that bad convergence may afflict the numerical
results.

4Here we have omitted a factor of c in the numerator; for now
and for the rest of the theoretical calculations in this paper, we
will assume c ¼ 1.
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We improve the accuracy of our work by using the
Union 2 compilation, which reduces the problem of sys-
tematics, easing the second problem. On the other hand, in
order to overcome the first issue, different parametrizations
of the fitting functions can be taken into account. The idea
is to carry out the expansion with a different variable which
is used ad interim and is constructed to be limited in a more
stringent interval. While z 2 ½0;1�, a new variable should
for example be restricted to the interval ½0; 1�.

A fairly well-known possibility is represented by the
variable

y1 ¼ z

1þ z
; (7)

frequently used in literature [26]. The limits in the past
Universe, i.e., z 2 ½0;1�, read y1 2 ½0; 1�, while in the
future, i.e., z 2 ½�1; 0�: y1 2 ½�1; 0�. Immediately we
notice that y1 can be expanded as z before as y1 ¼
y1ðH0�tÞ; then, it is feasible to invert it, having H0�t in
terms of y1. Then, we can express the distances as func-
tions of y1 (for the results, see Appendix A 2).

Furthermore, we propose a way to construct other viable
parametrizations of the redshift variable. To this end, we
introduce below three new propositions, namely y2, y3,
and y4, as

y2 ¼ arctan

�
z

zþ 1

�
¼ arctanð1� aÞ;

y3 ¼ z

1þ z2
; y4 ¼ arctanz;

(8)

whose limits are, for z 2 ½0;1�: y2 2 ½0; �4�, y3 2 ½0; 0�,
y4 2 ½0; �2� and z 2 ½�1; 0�: y2 2 ½�2 ; 0� , y3 2 ½� 1

2 ; 0�,
y4 2 ½� �

4 ; 0� and in which we used the definition of the

scale factor, i.e., a � ð1þ zÞ�1.
We adopted the arctan in the parametrizations of y2;4

because it behaves smoothly and it is suited to give well-
defined limits at z ! 1. On the contrary, y3 is a polyno-
mial in z; so apparently, we would not expect it to lead to
significantly different fitting behavior, but just to represent
an alternative worth investigating.

Equations (8) can be expanded into Taylor series for
z 	 1, and then be inverted for y2;3;4 in order to give an

expression for H0�tðy2;3;4Þ, up to sixth order. Then the

distances as functions of y1;2;3;4 can be calculated as well

(for results see Appendices A 3–A 5).
By definition, all these parametrizations are built up to

avoid divergences at z > 1. Thus, one can wonder whether
all of them turn out to be equally suitable for constraining
the CS. The answer can be partly predicted by comparing
the supernova data of the luminosity distance, as in Fig. 1,
for z and y1;2;3;4. The worst example is clearly the redshift

y3. Its definition suggests that it scales down more quickly,
compared to the redshift z, as can also be seen in Fig. 1.
This means that a region of z 2 ½0; 1:5� is reduced to a
much smaller interval y3 2 ½0; 0:5�. Thereafter, we expect

that, when the curve bends too quickly, the fits become
more difficult. It follows that, as the curve trends become
more extreme, a suppression of lower redshifts to the
advantage of higher ones can occur. In other words, z 2
½0; 0:5� weighs less than z � 0:5; therefore, we guess that
y3 would work better if all the cosmological data were for
z 
 1.
As it can be seen in Fig. 1, the luminosity distance

curves of data points over redshift are slightly flexed,
becoming steeper towards higher redshifts. Also the red-
shifts y1, y2, and y4 lead to steeper curves than z, however,
redshift y3 behaves the most extreme. According to the
cited criteria, y3 is the least suitable of redshift notions.
This conjecture is also backed by the fitting results, which
confirm that y3 does not work well in the application to
SNeIa data. Another disadvantage of y3 is that it does not
have a uniquely defined inverse. For these reasons, we
decided to take it out of the analysis. Through similar
arguments, we remove the second-worst redshift, y2,
as well. Summing up, in order to contrive a viable red-
shift parametrization, the following conditions must be
satisfied:
(1) The luminosity distance curve should not behave too

steeply in the interval z < 1.
(2) The luminosity distance curve should not exhibit

sudden flexes.
(3) The curve should be one-to-one invertible.

From Fig. 1, we notice that the last introduced redshift y4,
although still producing a steeper curve than z, is expected
to work better than y1. Thus, the rest of the analysis,
including further calculations and fittings, is carried out
for the redshifts z, y1, and y4.

III. THE FITTING PROCEDURE AND THE
COSMOGRAPHIC RESULTS

In Sec. II, we explained how to construct viable
cosmological parametrizations to alleviate the problems

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

redshift

d L

y4

y3

y2

y1

z

FIG. 1 (color online). Luminosity distance (in units of
1026 m), over different redshifts z (red), y1 (green), y2 (orange),
y3 (blue), and y4 (black).
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associated to cosmography. To this end, we introduced y4
and we investigated its theoretical viability to fit the cos-
mological data. We now have all the ingredients to develop
a MCMC procedure to find cosmographic constraints for
the CS, using the three redshifts z, y1, and y4 for the fitting
analysis. We will include the sixth order of the CS, i.e.,m0,
and particularly focus on the following aspects:

(i) We investigate whether redshift y4 is actually suit-
able to obtain accurate values of the CS, as theoreti-
cally predicted, and we explore the ranges of low and
higher redshifts.

(ii) We analyze how well the introduced CS parameter
m0 can be constrained, in particular, we examine
whether its introduction significantly enlarges the
dispersion of the estimation of the other parameters.

(iii) We find out if the concordance model, i.e.,�CDM,
is in agreement with the cosmographically found
numerical results.

For our purposes, we use the data of the SNeIa Union 2
compilation by the supernovae cosmology project [41]. We
also adopt the HST measurements on 600 Cepheides,
which impose a Gaussian prior on the Hubble parameter
today of H0 ¼ 74:0� 3:6 km=s=Mpc [45], and the mea-
surements of the Hubble parameterHðzÞ at twelve different
redshifts ranging from z ¼ 0:1 to z ¼ 1:75 [46]. We divide
our analysis into two sets of observations, namely set 1,
which comprises Union 2 together with HST, and set 2,
being the Union 2 data set with both HST and HðzÞ
measurements. For the sake of completeness, it is in order
to cite recent works using gamma ray bursts (GRBs) as
possible distance indicators [31,32,47]. However, consid-
ering GRBs in such analyses is mere speculation, since
GRBs are not standard candles [48]. This approach seems
to result in wrong estimations, or at least inadequate
results. It will be shown that our results differ from those
obtained by using GRBs; we will show a set of results in
better agreement with�CDM than those obtained by using
GRBs, which points to an inadequacy of the use of GRBs
in cosmography. We also exclude observation data from
baryon acoustic oscillations from our analysis; we deem

that introducing baryonic acoustic oscillation means reduc-
ing the model independence of the whole analysis [49].
In the following, we will use the CS combined together

in three sets with different maximum order of parameters:

A ¼ fH0; q0; j0; s0g;
B ¼ fH0; q0; j0; s0; l0g;
C ¼ fH0; q0; j0; s0; l0; m0g:

(9)

We expect a slower convergence of the last data set,
since the introduction of m0 can decrease the accuracy of
convergence. To constrain the parameters, we use a
Bayesian technique in which the best fits are those max-
imizing the likelihood function L / expð��2=2Þ. Since
the different observations are not correlated, the function
�2 is simply given by the sum �2 ¼ �2

Union2 þ �2
HST þ

�2
HðzÞ. We explore the space of parameters with a MCMC

approach, modifying the publicly available code COSMOMC

[35]. We do the analysis for the three sets’ parameter space,
for the two sets of observations, and for each of the three
considered redshifts. Accordingly, we perform 18 different
constraint parameter analyses. To obtain the posterior
samples we assume flat priors over the intervals �6<
q0 < 6, �20< j0 < 20, �200< s0 < 200, �500< l0 <
500, and �3000<m0 < 3000.
In Tables I, II, and III, we show the best fits and their 1�

likelihoods for the redshifts z, y1, and y4, respectively.
In Fig. 2 we compare the one-dimensional marginalized

posterior distributions for each parameter and each redshift
for set 2 of observations. We note that the parameters l0 and
m0 are not well constrained when using the redshift y1. By
introducing y4 it is possible to overcome this issue, obtain-
ing good results on l0 and m0 as well. As expected, the
redshift z appears to be statistically more favored than y4.
We confirm what we conjectured in Sec. II: the sixth
order of the Hubble expansion in z works better than any
other parametrization, if z � 1. Nonetheless, y4 should
be taken seriously as a possible alternative to y1, when
z � 1. Similar conclusions have been drawn for set 1; see

TABLE I. Table of best fits and their likelihoods (1�) for redshift z, for the three sets of parameters A, B, and C. Set 1 of
observations is Union 2þ HST. Set 2 of observations is Union 2þ HSTþHðzÞ.

A, Set 1 A, Set 2 B, Set 1 B, Set 2 C, Set 1 C, Set 2
Parameter �2

min ¼ 530:1 545.6 530.1 544.5 530.0 544.3

H0
a 74:35þ7:39

�7:50 74:22þ5:23
�5:08 73:77þ8:36

�7:35 74:20þ5:01
�5:49 73:72þ8:47

�7:12 73:65þ5:92
�5:35

q0 �0:7085þ0:6074
�0:5952 �0:6149þ0:2716

�0:4953 �0:6250þ0:5580
�0:4953 �0:6361þ0:3720

�0:3645 �0:6208þ0:4849
�0:6773 �0:5856þ0:3884

�0:3445

j0 1:605þ6:738
�4:481 1:030þ0:722

�1:001 0:392þ4:585
�4:511 0:994þ1:904

�2:665 �1:083þ8:359
�2:218 �0:117þ3:621

�1:257

s0 2:53þ60:61
�10:45 0:16þ1:45

�1:03 �5:59þ33:74
�34:55 �1:47þ4:20

�10:72 �25:52þ65:60
�10:90 �7:71þ14:77�7:83

l0 . . . . . . �3:50þ196:09
�89:19 4:47þ41:53

�8:47 N:C:b 8:55þ23:39
�27:86

m0 . . . . . . . . . . . . N:C:b 71:93þ382:17
�315:76

aH0 is given in Km=s=Mpc.
bN:C: means the results are not conclusive. The data do not constrain the parameters sufficiently.
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Tables I, II, and III. The only caveat is that for set 1 the
results appear to be less accurate as in the previous case.

We proceed to determine if the introduction of the
parameters l0 and m0 is convenient. To this end, in Fig. 3
we plot the first four CS parameters’ posterior distributions
for the three parameter sets, comparing their statistical
widths. We note that the dispersions are enlarged consid-
erably when we add the l0 parameter; however, introducing
m0 does not substantially broaden the posterior distribu-
tions; besides, the standard deviations of the posteriors are
in a proportion 1:2:28:1:92 for j0 and 1:5:66:8:38 for s0.

In Fig. 4 we present the summary of the results for the
redshift y4 and parameter set C by plotting the two-
dimensional contours and the likelihood samples.

IV. THE CONNECTION BETWEEN THE CS AND
THE EOS OF THE UNIVERSE

In Sec. I, we outlined that an expression for the EoS is
naturally associated to each cosmological fluid in a given
cosmological model; in particular, in thermodynamics the
EoS characterizes the properties of such a fluid. Under the
assumption of a specific gravitational model, the quest of
understanding the expansion history of the Universe is

equivalent to reproducing the correct EoS during different
phases. Many physical mechanisms are hidden in the
EoS parameter !. Finding the correct EoS has thus high
importance in cosmology, because it offers a key to under-
standing the microphysics associated to DE and/or DM.
In this section we will assume that general relativity
gives a correct description of gravity at the scales under
consideration.
Under the hypotheses of cosmography, we cannot

a priori assume an EoS of the Universe, because we were
not specifying any particular cosmological model at the
beginning. We recall that the EoS of the Universe is given
by ! ¼ P

iPi=
P

i�i, where the subindex i refers to the
different fluids that the Universe comprises. Hence, to
evaluate !, one needs to know the total pressure, P ¼P

iPi, and the total density, � ¼ P
i�i. Even though we

do not assume any EoS explicitly, it is possible to expand
the pressure in terms of the cosmic time or redshift varia-
bles, i.e., z, y1, y4. By expanding the pressure into a series,
it is possible to predict the values of its derivatives with
respect to the cosmic time or the redshift variables. In fact,
one can relate the derivatives of P to the CS; therefore, by
substituting the values of CS in terms of these derivatives
into the luminosity distances we are able to directly fit the

TABLE II. Table of best fits and their likelihoods (1�) for redshift y1, for the three sets of parameters A, B and C. Set 1 of
observations is Union 2þ HST. Set 2 of observations is Union 2þ HSTþHðzÞ.

A, Set 1 A, Set 2 B, Set 1 B, Set 2 C, Set 1 C, Set 2
Parameter �2

min ¼ 530:1 550.1 529.9 544.5 530.0 545.1

H0
a 74:05þ7:90

�7:19 75:25þ4:72�4:87 73:68þ7:77
�6:94 73:30þ5:59

�5:22 73:91þ7:60
�6:97 74:49þ5:07

�5:59

q0 �0:6633þ0:5753
�0:6580 �0:4106þ0:2919

�0:5774 �0:0004þ0:2513
�1:6617 �0:2652þ0:5071

�0:7977 �0:5360þ0:8468
�0:8965 �0:4624þ0:5804

�0:8391

j0 1:268þ6:986
�4:273 �7:746þ15:526

�2:252 �13:695þ30:901
�1:703 �7:959þ13:529

�5:228 �1:646þ11:637
�8:345 �1:862þ11:021

�5:397

s0 1:21þ61:24
�9:24 �88:91þ57:62

�11:08 �180:95þ331:75
�18:93 �112:63þ156:60

�82:53 �30:97þ90:96
�43:47 �16:95þ73:68

�38:79

l0 . . . . . . N:C:b N:C:b N:C:b N:C:b

m0 . . . . . . . . . . . . N:C:b N:C:b

aH0 is given in Km=s=Mpc.
bN:C: means the results are not conclusive. The data do not constrain the parameters sufficiently.

TABLE III. Table of best fits and their likelihoods (1�) for redshift y4, for the three sets of parameters A, B, and C. Set 1 of
observations is Union 2þ HST. Set 2 of observations is Union 2þ HSTþHðzÞ.

A, Set 1 A, Set 2 B, Set 1 B, Set 2 C, Set 1 C, Set 2
Parameter �2

min ¼ 530:3 544.8 529.7 544.6 529.9 544.5

H0
a 74:55þ7:54

�7:53 73:71þ5:20
�5:24 73:95þ7:99

�7:22 73:43þ6:05
�5:74 74:12þ8:27

�7:78 73:27þ6:86
�5:91

q0 �0:7492þ0:5899
�0:6228 �0:6504þ0:4275

�0:3303 �0:4611þ0:5422
�0:6710 �0:7230þ0:5851

�0:4585 �0:4842þ2:7126
�0:9280 �0:7284þ6:86

�5:91

j0 2:558þ7:441�8:913 1:342þ1:391
�1:780 �3:381þ10:613

�2:149 2:017þ3:149
�3:022 �1:940þ8:041

�2:148 2:148þ3:414
�4:036

s0 9:85þ74:69
�26:69 3:151þ3:920

�1:771 �37:67þ89:51
�60:10 5:278þ13:076

�14:732 �13:48þ71:65
�31:28 2:179þ42:126

�35:919

l0 . . . . . . N:C:b �0:13þ96:75
�65:87 N:C:b �11:60þ193:88

�187:96

m0 . . . . . . . . . . . . N:C:b 70:9þ2497:8
�2254:5

aH0 is given in Km=s=Mpc.
bN:C: means the results are not conclusive. The data do not constrain the parameters sufficiently.
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parameters of the EoS of the Universe from luminosity
distance data.
The reason of constraining the pressure derivatives lies

in the possibility of discriminating among models; in prin-
ciple, a model which does not satisfy such bounds can be
easily discarded. The expansion of P in terms of the cosmic
time is formally given by

P ¼ X1
k¼0

1

k!

dkP

dtk

��������t0

ðt� t0Þk ¼
X1
k¼0

1

k!

dkP

dyki

��������0
yki ; (10)

where yi ¼ z, y1, y4. By truncating the series at the fourth
order, and the continuity equation

d�

dt
þ 3HðPþ �Þ ¼ 0; (11)

 64  66  68  70  72  74  76  78  80  82
H0

Model A
Model B
Model C

-1.1 -1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1  0
q0

Model A
Model B
Model C

-3 -2 -1  0  1  2  3  4
j0

Model A
Model B
Model C

-20 -15 -10 -5  0  5  10
s0

Model A
Model B
Model C

FIG. 3 (color online). One-dimensional marginalized posteri-
ors for H0, q0, j0, and s0, using set 2 of observations [Union
2þ HSTþHðzÞ]. Solid (red) line is parameter set A, dotted
(green) line is parameter set B, and dashed (black) line is
parameter set C.

 64  66  68  70  72  74  76  78  80  82  84
H0

y4
z

y1

-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6
q0

y4
z

y1

-10 -8 -6 -4 -2  0  2  4  6  8  10  12
j0

y4
z

y1

-80 -60 -40 -20  0  20  40  60  80
s0

y4
z

y1

-150 -100 -50  0  50  100  150
l0

y4
z

y1

-1000 -500  0  500  1000
m0

y4
z

y1

FIG. 2 (color online). One-dimensional marginalized posteri-
ors for the complete CS (parameter set C), using set 2 of
observations [Union 2þ HSTþHðzÞ]. Dotted (green) line is
redshift z, dashed (black) line is y1, and solid (red) line is y4.
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and the Friedmann equation H2 ¼ 1
3�, we can write down

an explicit dependence of the pressure and the coefficients
dkP
dtk

on the CS as follows5

P¼ 1

3
H2ð2q� 1Þ; (12a)

dP

dt
¼ 2

3
H3ð1� jÞ; (12b)

d2P

dt2
¼ 2

3
H4ðj� 3q� s� 3Þ; (12c)

d3P

dt3
¼ 2

3
H5½ð2sþ j� lþ qð21� jÞ þ 6q2 þ 12�; (12d)

d4P

dt4
¼ 2

3
H6½j2 þ 3l�m� 144q� 81q2 (12e)

� 6q3 � 12jð2þ qÞ � 3s� 3qs� 60�; (12f)

where we evaluated the derivatives up to the order of m0.

We list the coefficients dkP
dzk

, d
kP
dyk

1

, and dkP
dyk

4

in Appendix C.

For completeness, we write down the transformation laws
between z, y1, y4 and the cosmic time t, i.e.,

@

@t
! �ð1þ zÞH � @

@z

! �ð1þ y1ÞH @

@y1

! � cosy4ðcosy4 þ siny4ÞH @

@y4
: (13)

In addition, by using Eqs. (11) and (12), and the Friedmann
equation H2 ¼ 1

3�, we find the expression for the EoS

parameter of the Universe as

! ¼ 2q� 1

3
: (14)

A. Fitting the EoS

In this subsection, our goal is to obtain constraints
on the EoS and the pressure derivatives by inverting
Eqs. (12b)–(12f) and by rewriting the luminosity distance
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FIG. 4 (color online). Marginalized posterior constraints for redshift y4 and parameter set C, using set 2 of observations [Union
2þ HSTþHðzÞ]. The shaded region and the dotted lines show the likelihoods of the samples.

5Here in Eqs. (12) we are considering 8�G
3 ¼ c ¼ 1 for brevity.

These factors are considered again in the numerical simulations.
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as a function of!0,
dP
dyi

j0, d2Pdy2i
j0, d3Pdy3i

j0, d4Pdy4i
j0. In other words,

we use Eqs. (12b)–(12f) and (14), indicated henceforth by

D ¼
�
!;P1 :¼ dP

dyi
; P2 :¼ d2P

dy2i
; P3 :¼ d3P

dy3i
; P4 :¼ d4P

dy4i

�
;

to express the vector CS � fq0; j0; s0; l0; m0g as a function of
the EoS parameter and the pressure derivatives, CS ¼
CSð!0; P1; P2; P3; P4Þ. The purpose is to plug those results
into the expressions for the luminosity distance in order tofind
numerical best fit values of the new set of parameters, using
dL ¼ dLð!0; P1; P2; P3; P4Þ in the numerical analysis.

In principle, there exists also an alternative
procedure, which consists in taking the results already
obtained for the CS and to propagate the errors through
Eqs. (12b)–(12f), without performing another fitting

procedure. But in choosing this way, we would face an
unacceptable increase in the errors, as opposed to the direct
fit of f!0; P1; P2; P3; P4g. Thus, in order to reduce the error
propagation, the simplest and most straightforward way is
to evaluate the coefficients by a direct fit of the luminosity
distance. The search for the best-fit values for the new set
of parameters is performed by using the procedure of
MCMC simulations developed in Sec. III.
For statistical reasons, we choose set 2 of observations,

which is more complete and suitable for this kind of fit.
The explicit expressions for the luminosity distance in

terms of the different redshift parameters are reported for
completeness in Appendix D. As in Sec. III we limit our
analysis to dL.
Figure 5 shows the obtained marginalized posteriors

and in Table IV we present the summary of the results.

 66  70  74  78  82
H0

z
y1
y4

-1.4 -1 -0.6 -0.2
w0

z
y1
y4

-60000 -30000  0  30000  60000
P1

z
y1
y4

-300000  0  300000
P2

z
y1
y4

-6e+06 -4e+06 -2e+06  0  2e+06  4e+06  6e+06
P3

z
y1
y4

-4e+07 -3e+07 -2e+07 -1e+07  0  1e+07
P4

z
y1
y4

FIG. 5 (color online). One-dimensional marginalized posteriors for the complete set of parameters of the EoS analysis, using set 2 of
observations [Union 2þ HSTþHðzÞ]. Dotted (blue) lines are used for z, dashed (black) lines for y1, and solid (red) lines are for
redshift y4.

TABLE IV. Table of mean values of the posteriors and their likelihoods (1�) for the three
redshifts, using set 2 of observations [Union 2þ HSTþHðzÞ]. P1ðzÞ, P1ðy1Þ, P1ðy4Þ, P2ðzÞ,
P2ðy4Þ, and P3ðzÞ are in units of 104c2=�, P2ðy1Þ and P4ðy4Þ in units of 105c2=�, P3ðy4Þ and
P4ðzÞ in units of 106c2=�, P3ðy1Þ in units of 107 c2

� , and P4ðy1Þ in units of 108c2=�.

Parameter Redshift z Redshift y1 Redshift y4

H0
a 74:23þ2:31

�2:36 74:20þ2:37
�2:36 75:70þ2:68

�2:66

!0 �0:7174þ0:0922
�0:0964 �0:7439þ0:3085

�0:3222 �0:7315þ0:1193
�0:1373

P1 �0:209þ0:347
�0:261 �0:991þ2:393

�2:213 �0:228þ0:506
�0:528

P2 0:988þ2:012
�1:539 �0:134þ1:623

�1:729 �0:246þ4:133
�3:927

P3 0:630þ4:010
�4:932 0:205þ0:294

�0:257 0:217þ0:625
�0:400

P4 �0:107þ0:099
�0:170 �0:150þ0:209

�0:187 �0:289þ4:690
�6:112

aH0 is given in Km=s=Mpc.
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We observe the same hierarchy of redshifts as in analysis of
Sec. III; meaning that our new ‘‘redshift’’ introduction, y4,
appears to be statistically favored with respect to y1.

B. Comparison with models

The results found by fitting the EoS show no conclusive
evidence for a pressure varying in time, as shown by the
1� confidence levels in Table IV. This means that a nega-
tive constant pressure model is favored for depicting the
cosmic speed-up. Thus, the only two models accounting
our results appear to be the concordance model and the
vanishing speed of sound model (VSSM), proposed in
Refs. [24,29]. Their EoS parameters (neglecting radiation
components at late times) are ! ¼ �1=ð1þ�m=��a

�3Þ
and ! ¼ �1=ð1� ð���m=�XÞa�3Þ, for �CDM and
VSSM, respectively. They imply w0 ’ �0:73 nowadays,
by using the values of �m ’ 0:27 and �X ’ 0:78, � ’
�0:025. These results have been confirmed by the present
analysis.

Using set 2 of observations we worked out the
�CDM model, which is for our purposes and the redshifts
involved sufficiently described by the two parameters
f�mh

2; �g. The philosophy is to estimate �mh
2 and �

by the Monte Carlo simulation and then substitute it into
the CS in the�CDMmodel. To evaluate the CS for�CDM

we use Eqs. (4) with H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þ 1��m

p
,

yielding

q0 ¼ �1þ 3

2
�m; j0 ¼ 1;

s0 ¼ 1� 9

2
�m; l0 ¼ 1þ 3�m � 27

2
�2

m;

m0 ¼ 1� 27

2
�2

m � 81�2
m � 81

2
�3

m: (15)

Any significative tension between the CS values obtained
in this way and the values derived before using cosmog-
raphy would be an indication of the validity of a different
theory, other than the concordance model. Table V gives
the summary of the likelihoods of the estimated and de-
rived parameters. Comparing these values with the ones
obtained for models A, B, and C we note that all our
results are compatible with the �CDM model within the
limits of error.
Now, we want to factorize the effects of DE by assuming

a cold dark matter model, for which the Friedmann equa-
tion is given by

H ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�mð1þ zÞ3 þGðzÞ

q
;

whereGðzÞmodels the corresponding DE term.Wewant to
obtain constraints on GðzÞ and its derivatives with respect
to redshifts for the present time z ¼ 0. To this purpose we
calculate the derivatives of the Hubble parameter as stated
above with respect to the redshift and equate the results to
the derivatives of the Hubble parameter in terms of the CS.
Thus, we obtained the derivatives of GðzÞ with respect to z

TABLE V. Table of best fits and their likelihoods (1�) for the
estimated (top panel) and derived (lower panel) parameters for
the �CDM model, using set 2 of observations [Union 2þ
HSTþHðzÞ].
Parameter Best fit (1�)

�mh
2 0:1447þ0:0181

�0:0174

� 1:060þ0:020
�0:022

H0
a 74:05þ7:90

�7:19

q0 �0:6633þ0:5753
�0:6580

j0 1

s0 �0:2061þ0:1772
�0:2015

l0 2:774þ0:485
�0:382

m0 �8:827þ2:263
�2:941

aH0 is given in Km=s=Mpc. Here h is defined through the
relation H0 ¼ 100 hkm=s=Mpc, and � is the ratio of the sound
horizon to the angular diameter distance at recombination.

TABLE VI. Table of derived values and their likelihoods (1�) for the derivatives of GðyiÞ for
the three redshifts z, y1, y4, evaluated at t ¼ t0, using set C of parameters and set 2 of
observations [Union 2þ HSTþHðzÞ].
Parameter Best fit for z (1�) Best fit for y1 (1�) Best fit for y4 (1�)

Gð1Þ
0 0:0068þ1:299

�1:23 0:25þ1:57
�1:87 �0:2788þ1:59994

�1:43882

Gð2Þ
0 �2:22þ4:61

�3:33 �4:71þ9:13
�8:8 1:7384þ4:88827

�4:94215

Gð3Þ
0 13:65þ8:04

�5:8 0:7476þ55:73
�49:34 �3:43039þ13:3403

�12:4275

Gð4Þ
0 �17:24þ35:27

�31:89 N:C:a �16:2906þ50:8794
�47:602

Gð5Þ
0 �129:74þ174:29

�130:39 N:C:a �8:74593þ332:408
�323:676

aN:C: means the results are not available because no conclusive results for the corresponding CS
parameters l0 and m0 have been found for this case.
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(for results see Appendix E). The same has been done for
the redshifts y1 and y4.

We can now use the numerically obtained values for
the CS and the value �m ¼ 0:274þ0:015

�0:015 obtained by the

WMAP7 collaboration [20] to calculate the GðkÞðyiÞ and,
by error propagation, their 1� error bars. The results can be
found in Table VI. With these values it is possible to
investigate the compatibility of a model of dark energy
characterized by the function GðzÞ with the observational
data at the present time. The value of GðzÞ evaluated today
can be estimated by the flat space condition, which implies
G0 ¼ Gðz ¼ 0Þ ¼ 1��m or, assuming Gaussian distri-
butions, G0 ¼ 0:726þ0:015

�0:015.

From Table VI, we conclude that our results are consis-
tent with a constant functionGðzÞ ¼ ��, which is the case
of the �CDM model, or the case of an emergent constant
as shown in Refs. [24,29].

V. CONCLUSIONS

In this work we emphasized the importance of constrain-
ing the Universe dynamics through the use of a model-
independent procedure, which does not a priori assume the
validity of a particular cosmological model. In other words,
we used the so-called cosmography, sometimes also
referred to as cosmokinetics, to investigate the kinematics
of the Universe. By following Ref. [28], we performed an
analysis combining theoretical derivations of cosmological
distances and numerical data fitting, using the Union 2
compilation, together with the HST and the HðzÞ samples.
For the fitting, we introduced new parametrizations in
addition to the conventional redshift z to express the cos-
mological distances, underlining their importance to avoid
divergences at high redshifts and to increase the accuracy
of the analysis. Moreover, we proposed prescriptions to
build up new viable parametrizations, able to overcome
these issues.

We considered three further parametrizations, predicting
that only one is really a viable option for fitting. By using
the luminosity distance, i.e., dL, in terms of the standard
redshift z, of the alternative parametrization y1 � z

1þz and

of the newly introduced y4 ¼ arctanðzÞ, we obtained
bounds on the cosmographic series. We moreover showed
that there was no physical reason to use other notions of
cosmological distances than the luminosity distance for
evaluating bounds to the CS, as instead previously reported
in Ref. [28]. The reason for this lies in the fact that dL is
adapted the best to the cosmological data under considera-
tion. Then, we also showed that the most successful pa-
rametrization, apart from z, is represented by y4, as
theoretically predicted in Sec. II.

We carried out our fits up to the sixth order in
the CS, introducing a further cosmographic parameter,
namely m0. In addition, we showed that fitting m0 together
with q0, j0, s0, and l0, is quite feasible to improve the
accuracy of the analysis by fixing more stringent limits on

the CS, as opposed to the expectation that an additional
fitting parameter would significantly broaden the posterior
distributions.
The analysis was done for three different sets of

parameters (including parameters of the CS with different
maximum order) and two different sets of observational
data. We essentially found that our numerical results
appear to be fairly well in agreement with a constant
pressure associated to the fluid driving the cosmic accel-
eration. At first sight, this fluid could be obviously thought
to originate from a cosmological constant, as depicted
in the standard concordance model. Meanwhile, our con-
straints would be able, in future developments, to discard
different classes of models, which do not satisfy the nu-
merical bounds.
In addition to the numerical fits for the CS, we proposed

a way to constrain both the EoS of the Universe as a whole
and the derivatives of pressure, by fitting them directly
from the luminosity distance, up to the order of the m0

coefficient. In other words, we rewrote dL in terms of the
EoS parameter and the pressure derivatives and performed
another MCMC analysis. To achieve this, it is necessary
to depart from model independent cosmography by assum-
ing a specific gravitational theory. We choose general
relativity as valid, and make use of the Friedmann
equations. The corresponding results lead to a set of
pressure derivatives compatible with zero within the 1�
error propagation. Moreover, the EoS parameter ! is com-
patible with the one predicted by �CDM, i.e., ! ¼
�1=ð1þ�m=��a

�3Þ, obtaining !0 ’ �0:73. Even
through the pressure derivative results seemed to confirm
�CDM, they also left open the possibility that the viable
model does not necessarily feature a cosmological con-
stant, but dark energy with constant pressure and a varying
barotropic factor, i.e., the VSSM model (as proposed in
Refs. [24,29]). In this model, which does not involve a
cosmological constant, the predicted bounds are in agree-
ment with our fitting results. Unfortunately, the strong
degeneracy with �CDM in fitting data leaves open the
question of which model is theoretically the favored one.
Future perspectives in this direction include using

more accurate data sets and constraining the analysis
at higher redshifts, in order to obtain limits able to
discriminate among the two paradigms. We expect that
this could give further insight into the issue of inferring
the correct cosmological paradigm, employing a model-
independent procedure, which does not need to specify a
model a priori.
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APPENDIX A: FIVE DISTANCES IN TERMS OF REDSHIFTS

1. Redshift z

We begin with the results for the cosmological distances for the conventional redshift z, starting with luminosity
distance,

dL ¼ 1

H0

�
�
zþ z2 �

�
1

2
� q0

2

�
þ z3 �

�
� 1

6
� j0

6
þ q0

6
þ q20

2

�
þ z4 �

�
1

12
þ 5j0

24
� q0

12
þ 5j0q0

12
� 5q20

8
� 5q30

8
þ s0

24

�

þ z5 �
�
� 1

20
� 9j0

40
þ j20

12
� l0

120
þ q0

20
� 11j0q0

12
þ 27q20

40
� 7j0q

2
0

8
þ 11q30

8
þ 7q40

8
� 11s0

120
� q0s0

8

�

þ z6 �
�
1

30
þ 7j0

30
� 19j20

72
þ 19l0

720
þ m0

720
� q0

30
þ 13j0q0

9
� 7j20q0

18
þ 7l0q0

240
� 7q20

10
þ 133j0q

2
0

48
� 13q30

6

þ 7j0q
3
0

4
� 133q40

48
� 21q50

16
þ 13s0

90
� 7j0s0

144
þ 19q0s0

48
þ 7q20s0

24

��
;

the photon flux distance,

dF ¼ 1

H0

�
�
z� z2 � q0

2
þ z3 �

�
� 1

24
� j0

6
þ 5q0

12
þ q20

2

�
þ z4 �

�
1

24
þ 7j0

24
� 17q0

48
þ 5j0q0

12
� 7q20

8
� 5q30

8
þ s0

24

�

þ z5 �
�
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1920
� 47j0

120
þ j20

12
� l0

120
þ 149q0

480
� 9j0q0

8
þ 47q20

40
� 7j0q

2
0

8
þ 27q30

16
þ 7q40

8
� 9s0

80
� q0s0

8

�

þ z6 �
�
31
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þ 457j0

960
� 11j20

36
þ 11l0

360
þ m0

720
� 1069q0

3840
þ 593j0q0

288
� 7j20q0

18
þ 7l0q0

240
� 457q20

320
þ 77j0q

2
0

24

þ� 593q30
192

þ 7j0q
3
0

4
� 77q40

24
� 21q50

16
þ 593s0

2880
� 7j0s0

144
þ 11q0s0

24
þ 7q20s0

24

��
;

the photon count distance,

dP ¼ 1

H0

�
�
zþ z2 �

�
� 1

2
� q0

2

�
þ z3 �

�
1

3
� j0

6
þ 2q0

3
þ q20

2

�
þ z4 �

�
� 1

4
þ 3j0

8
� 3q0

4
þ 5j0q0
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� 9q20

8
� 5q30

8
þ s0

24

�

þ z5 �
�
1

5
� 3j0

5
þ j20

12
� l0

120
þ 4q0

5
� 4j0q0

3
þ 9q20

5
� 7j0q

2
0

8
þ 2q30 þ

7q40
8

� 2s0
15

� q0s0
8

�

þ z6 �
�
� 1

6
þ 5j0

6
� 25j20

72
þ 5l0

144
þ m0

720
� 5q0

6
þ 25j0q0

9
� 7j20q0

18
þ 7l0q0
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� 5q20

2
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2
0

48
� 25q30

6

þ 7j0q
3
0

4
� 175q40

48
� 21q50

16
þ 5s0

18
� 7j0s0

144
þ 25q0s0

48
þ 7q20s0

24

��
;

the deceleration distance,

dQ ¼ 1

H0

�
�
zþ z2 �

�
�1� q0

2

�
þ z3 �

�
23

24
� j0

6
þ 11q0

12
þ q20

2

�
þ z4 �

�
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þ 11j0
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48
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8
� 5q30

8
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þ z5 �
�
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þ j20
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120
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24
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20
� 7j0q

2
0

8
þ 37q30

16
þ 7q40

8
� 37s0

240
� q0s0

8

�

þ z6 �
�
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þ 1273j0

960
� 7j20

18
þ 7l0

180
þ m0

720
� 7141q0
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þ 1037j0q0

288
� 7j20q0

18
þ 7l0q0

240
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320

þ 49j0q
2
0

12
� 1037q30
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þ 7j0q

3
0

4
� 49q40

12
� 21q50

16
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� 7j0s0

144
þ 7q0s0

12
þ 7q20s0

24

��
;

and the angular diameter distance,
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dA ¼ 1

H0

�
�
zþ z2 �

�
�3

2
� q0

2

�
þ z3 �

�
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� j0
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þ 5j0q0

12
� 13q20

8
� 5q30

8
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8
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� 7j0s0

144
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þ 7q20s0

24

��
:

2. Redshift y1

Here we give the results for the distances in terms of y1, first for the luminosity distance,

dL ¼ 1

H0

�
�
y1 þ y21 �

�
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2
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þ y31 �

�
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��
;

the photon flux distance,

dF ¼ 1

H0

�
�
y1 þ y21 �

�
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�
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��
;

the photon count distance,

dP ¼ 1

H0
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��
;

the deceleration distance,
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dQ ¼ 1

H0
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;

and the angular diameter distance,

dA ¼ 1
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:

3. Redshift y2

The cosmological distances are given in terms of y2—luminosity distance,

dL ¼ 1

H0

�
�
y2 þ y22 �

�
3

2
� q0

2

�
þ y32 �

�
13

6
� j0

6
� 5q0

6
þ q20

2

�
þ y42 �

�
37

12
� 7j0

24
� 17q0

12
þ 5j0q0

12
� 7q20

8
� 5q30

8
þ s

24

�

þ y52 �
�
17

4
� 67j0

120
þ j20

12
� l0

120
� 127q0

60
þ 3j0q0

4
þ 67q20

40
� 7j0q

2
0

8
� 9q30

8
þ 7q40

8
þ 3s0

40
� q0s0

8

�

þ y62 �
�
1043

180
� 311j0

360
þ 11j20

72
� 11l0

720
þ m0

720
� 37q0

12
þ 37j0q0

9
� 7j20q0

36
� 7l0q0

240
� 89q20

120
þ 21j0q

2
0

16

þ 19q30
8

þ 7j0q
3
0

4
þ 77q40

48
� 21q50

16
þ 19s0

120
� 7j0s0

144
� 11q0s0

48
þ 7q20s0

24

��
;

the photon flux distance,

dF ¼ 1
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;

the photon count distance,
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dP ¼ 1
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the deceleration distance,

dQ ¼ 1
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7

128
� 11j0

60
þ j20

12
� l0

120
� 41q0

480
þ j0q0

8
þ 11q20

20
� 7j0q

2
0

8
� 3q30

16
þ 7q40

8
þ s0

80
� q0s0

8

�

þ y62 �
�
� 253

2880
� 181j0

2880
þ j20

36
� l0

360
þ m0

720
� 271q0

1280
þ 59j0q0

96
� 7j20q0

18
þ 7l0q0

240
þ 181q20

960
� 7j0q

2
0

24

þ� 59q30
64

þ 7j0q
3
0

4
þ 7q40

24
� 21q50

16
þ 59s0

960
� 7j0s0

144
� q0s0

24
þ 7q20s0

24

��
;

and the angular diameter distance,

dA ¼ 1

H0

�
�
y2 þ y22 �

�
� 1

2
� q0

2

�
þ y32 �

�
1

6
� j0

6
þ q0

6
þ q20

2

�
þ y42 �

�
� 5

12
þ j0

24
� q0

4
þ 5j0q0

12
� q20

8
� 5q30

8
þ s0

24

�

þ y52 �
�
� 1

12
� 17j0

120
þ j20

12
� l0

120
þ 13q0

60
� j0q0

12
þ 17q20

40
� 7j0q

2
0

8
þ q30

8
þ 7q40

8
� s0

120
� q0s0

8

�

þ y62 �
�
� 1

3
þ 13j0

180
� j20

72
þ l0

720
þ m0

720
� 2q0

45
þ j0q0

2
� 7j20q0

18
þ 7l0q0

240
� 13q20

60
þ 7j0q

2
0

48
� 3q30

4

þ 7j0q
3
0

4
� 7q40

48
� 21q50

16
þ s0

20
� 7j0s0

144
þ q0s0

48
þ 7q20s0

24

��
:

4. Redshift y3

These are the results for the cosmological distances in terms of the third redshift, y3, beginning with the luminosity
distance,

dL ¼ 1

H0

�
�
y3 þ y23 �

�
1

2
� q0

2

�
þ y33 �

�
5

6
� j0

6
þ q0

6
þ q20

2

�
þ y43 �

�
13

12
þ 5j0

24
� 13q0

12
þ 5j0q0

12
� 5q20

8
� 5q30

8
þ s

24

�

þ y53 �
�
29

20
� 29j0

40
þ j20

12
� l0

120
þ 11q0

20
� 11j0q0

12
� 87q20

40
� 7j0q

2
0

8
þ 11q30

8
þ 7q40

8
� 11s0

120
� q0s0

8

�

þ y63 �
�
43

15
þ 16j0

15
� 19j20

72
þ 19l0

720
þ m0

720
� 43q0

15
þ 28j0q0

9
� 7j20q0

18
þ 7l0q0

240
� 16q20

5
þ 133j0q

2
0

48

� 14q30
3

þ 7j0q
3
0

4
� 133q40

48
� 21q50

16
þ 14s0

45
� 7j0s0

144
þ 19q0s0

48
þ 7q20s0

24

��
;

the photon flux distance,
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dF ¼ 1

H0

�
�
y3 � y23 �

q0
2
þ y33 �

�
23

24
� j0

6
þ 5q0

12
þ q20

2

�
þ y43 �

�
1

24
þ 7j0

24
� 65q0

48
þ 5j0q0

12
� 7q20

8
� 5q30

8
þ s0

24

�

þ y53 �
�
3529

1920
� 107j0

120
þ j20

12
� l0

120
þ 749q0

480
� 9j0q0

8
þ 107q20

40
� 7j0q

2
0

8
þ 27q30

16
þ 7q40

8
� 9s0

80
� q0s0

8

�

þ y63 �
�
191

960
þ 1577j0

960
� 11j20

36
þ 11l0

360
þ m0

720
� 16109q0

3840
þ 1073j0q0

288
� 7j20q0

18
þ 7l0q0

240
� 1577q20

320

þ 77j0q
2
0

24
� 1073q30

192
þ 7j0q

3
0

4
� 77q40

24
� 21q50

16
þ 1073s0

2880
� 7j0s0

144
þ 11q0s0

24
þ 7q20s0

24

��
;

the photon count distance,

dP ¼ 1

H0

�
�
y3 þ y23 �

�
� 1

2
� q0

2

�
þ y33 �

�
4

3
� j0

6
þ 2q0

3
þ q20

2

�
þ y43 �

�
� 5

4
þ 3j0

8
� 7q0

4
þ 5j0q0

12
� 9q20

8
� 5q30

8
þ s0

24

�

þ y53 �
�
16

5
� 11j0

10
þ j20

12
� l0

120
þ 14q0

5
� 4j0q0

3
þ 33q20

10
� 7j0q

2
0

8
þ 2q30 þ

7q40
8

� 2s0
15

� q0s0
8

�

þ y63 �
�
� 11

3
þ 7j0

3
� 25j20

72
þ 5l0

144
þ m0

720
� 19q0

3
þ 40j0q0

9
� 7j20q0

18
þ 7l0q0

240
� 7q20 þ

175j0q
2
0

48

� 20q30
3

þ 7j0q
3
0

4
� 175q40

48
� 21q50

16
þ 4s0

9
� 7j0s0

144
þ 25q0s0

48
þ 7q20s0

24

��
;

the deceleration distance,

dQ ¼ 1

H0

�
�
y3 þ y23 �

�
�1�q0

2

�
þ y33 �

�
47

24
� j0

6
þ 11q0

12
þq20

2

�
þ y43 �

�
�35

12
þ 11j0

24
� 109q0

48
þ 5j0q0

12
� 11q20

8
� 5q30

8
þ s0

24

�

þ y53 �
�
3683

640
� 27j0

20
þ j20
12

� l0
120

þ 693q0
160

� 37j0q0
24

þ 81q20
20

� 7j0q
2
0

8
þ 37q30

16
þ 7q40

8
� 37s0

240
�q0s0

8

�

þ y63 �
�
�6089

640
þ 1011j0

320
� 7j20

18
þ 7l0

18
þ m0

720
� 12087q0

1280
þ 1517j0q0

288
� 7j20q0

18
þ 7l0q0

240
� 3033q20

320

þ 49j0q
2
0

12
� 1517q30

192
þ 7j0q

3
0

4
� 49q40

12
� 21q50

16
þ 1517s0

2880
� 7j0s0

144
þ 7q0s0

12
þ 7q20s0

24

��
;

and the angular diameter distance,

dA ¼ 1

H0

�
�
y3 þ y23 �

�
�3

2
�q0

2

�
þ y33 �

�
17

6
� j0

6
þ 7q0

6
þq20

2

�
þ y43 �

�
�61

12
þ 13j0

24
� 35q0

12
þ 5j0q0

12
� 13q20

8
� 5q30

8
þ s0
24

�

þ y53 �
�
587

60
� 197j0

120
þ j20
12

� l0
120

þ 373q0
60

� 7j0q0
4

þ 197q20
40

� 7j0q
2
0

8
þ 21q30

8
þ 7q40

8
� 7s0

40
�q0s0

8

�

þ y63 �
�
�1097

60
þ 497j0

120
� 31j20

72
þ 31l0

720
þ m0

720
� 823q0

60
þ 223j0q0

36
� 7j20q0

18
þ 7l0q0

240
� 497q20

40

þ 217j0q
2
0

48
� 223q30

24
þ 7j0q

3
0

4
� 217q40

48
� 21q50

16
þ 223s0

360
� 7j0s0

144
þ 31q0s0

48
þ 7q20s0

24

��
:
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5. Redshift y4

Finally, for the last redshift y4 the cosmological distances are given, starting with the luminosity distance,

dL ¼ 1

H0

�
�
y4 þ y24 �

�
1

2
� q0

2

�
þ y34 �

�
1

6
� j0

6
þ q0

6
þ q20

2

�
þ y44 �

�
5

12
þ 5j0

24
� 5q0

12
þ 5j0q0

12
� 5q20

8
� 5q30

8
þ s

24

�

þ y54 �
�
� 1

12
� 47j0

120
þ j20

12
� l0

120
þ 13q0

60
� 11j0q0

12
þ 47q20

40
� 7j0q

2
0

8
þ 11q30

8
þ 7q40

8
� 11s0

120
� q0s0

8

�

þ y64 �
�
1

3
þ 23j0

45
� 19j20

72
þ 19l0

720
þ m0

720
� q0

3
þ 2j0q0 � 7j20q0

18
þ 7l0q0

240
� 23q20

15
þ 133j0q

2
0

48

� 3q30 þ
7j0q

3
0

4
� 133q40

48
� 21q50

16
þ s0

5
� 7j0s0

144
þ 19q0s0

48
þ 7q20s0

24

��
;

the photon flux distance,

dF ¼ 1

H0

�
�
y4 � y24 �

q0
2
þ y34 �

�
7

24
� j0

6
þ 5q0

12
þ q20

2

�
þ y44 �

�
1

24
þ 7j0

24
� 11q0

16
þ 5j0q0

12
� 7q20

8
� 5q30

8
þ s0

24

�

þ y54 �
�
7

128
� 67j0

120
þ j20

12
� l0

120
þ 349q0

480
� 9j0q0

8
þ 67q20

40
� 7j0q

2
0

8
þ 27q30

16
þ 7q40

8
� 9s0

80
� q0s0

8

�

þ y64 �
�
253

2880
þ 2491j0

2880
� 11j20

36
þ 11l0

360
þ m0

720
� 10823q0

11520
þ 251j0q0

96
� 7j20q0

18
þ 7l0q0

240
� 2491q20

960

þ 77j0q
2
0

24
� 251q30

64
þ 7j0q

3
0

4
� 77q40

24
� 21q50

16
þ 251s0

960
� 7j0s0

144
þ 11q0s0

24
þ 7q20s0

24

��
;

the photon count distance,

dP ¼ 1

H0

�
�
y4 þ y24 �

�
� 1

2
� q0

2

�
þ y34 �

�
2

3
� j0

6
þ 2q0

3
þ q20

2

�
þ y44 �

�
� 7

12
þ 3j0

8
� 13q0

12
þ 5j0q0

12
� 9q20

8
� 5q30

8
þ s0

24

�

þ y54 �
�
2

3
� 23j0

30
þ j20

12
� l0

120
þ 22q0

15
� 4j0q0

3
þ 23q20

10
� 7j0q

2
0

8
þ 2q30 þ

7q40
8

� 2s0
15

� q0s0
8

�

þ y64 �
�
� 31

45
þ 4j0

3
� 25j20

72
þ 5l0

144
þ m0

720
� 91q0

45
þ 10j0q0

3
� 7j20q0

18
þ 7l0q0

240
� 4q20 þ

175j0q
2
0

48

� 5q30 þ
7j0q

3
0

4
� 175q40

48
� 21q50

16
þ s0

3
� 7j0s0

144
þ 25q0s0

48
þ 7q20s0

24

��
;

the deceleration distance,

dQ ¼ 1

H0

�
�
y4 þ y24 �

�
�1� q0

2

�
þ y34 �

�
31

24
� j0

6
þ 11q0

12
þ q20

2

�
þ y44 �

�
�19

12
þ 11j0

24
� 77q0

48
þ 5j0q0

12
� 11q20

8
� 5q30

8
þ s0

24

�

þ y54 �
�
757

384
� 61j0

60
þ j20

12
� l0

120
þ 1199q0

480
� 37j0q0

24
þ 61q20

20
� 7j0q

2
0

8
þ 37q30

16
þ 7q40

8
� 37s0

240
� q0s0

8

�

þ y64 �
�
�4699

1920
þ 5579j0

2880
� 7j20

18
þ 7l0

180
þ m0

720
� 4791q0

1280
þ 133j0q0

32
� 7j20q0

18
þ 7l0q0

240
� 5579q20

960

þ 49j0q
2
0

12
� 399q30

64
þ 7j0q

3
0

4
� 49q40

12
� 21q50

16
þ 133s0

320
� 7j0s0

144
þ 7q0s0

12
þ 7q20s0

24

��
;

and the angular diameter distance,
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dA ¼ 1

H0

�
�
y4 þ y24 �

�
�3

2
� q0

2

�
þ y34 �

�
13

6
� j0

6
þ 7q0

6
þ q20

2

�
þ y44 �

�
�37

12
þ 13j0

24
� 9q0

4
þ 5j0q0

12
� 13q20

8
� 5q30

8
þ s0

24

�

þ y54 �
�
17

4
� 157j0

120
þ j20

12
� l0

120
þ 233q0

60
� 7j0q0

4
þ 157q20

40
� 7j0q

2
0

8
þ 21q30

8
þ 7q40

8
� 7s0

40
� q0s0

8

�

þ y64 �
�
� 1043

180
þ 971j0

360
� 31j20

72
þ 31l0

720
þ m0

720
� 1133q0

180
þ 61j0q0

12
� 7j20q0

18
þ 7l0q0

240
� 971q20

120

þ 217j0q
2
0

48
� 61q30

8
þ 7j0q

3
0

4
� 217q40

48
� 21q50

16
þ 61s0

120
� 7j0s0

144
þ 31q0s0

48
þ 7q20s0

24

��
:

APPENDIX B: THE HUBBLE PARAMETER AS A FUNCTION OF REDSHIFTS

We start with the parametrization of the Hubble parameter in terms of the commonly used redshift z, given by

HðzÞ ¼ H0 �
�
1þ z � ð1þ q0Þ þ z2

2
� ðj0 � q20Þ þ

z3

6
� ð�3q20 � 3q30 þ j0ð3þ 4q0Þ þ s0Þ þ z4

24
� ð�4j20 þ l0 � 12q20

� 24q30 � 15q40 þ j0ð12þ 32q0 þ 25q20Þ þ 8s0 þ 7q0s0Þ þ z5

120
� ðm0 � 60q20 � 180q30 � 225q40 � 105q50

� 10j20ð6þ 7q0Þ þ l0ð15þ 11q0Þ þ 15j0ð4þ 16q0 þ 25q20 þ 14q30 � s0Þ þ 60s0 þ 105q0s0 þ 60q20s0Þ
�
:

Further we calculated the expression Hðy1Þ as

Hðy1Þ ¼ H0 �
�
1þ y1 � ð1þ q0Þ þ y21

2
� ð2þ j0 þ 2q0 � q20Þ þ

y31
6
� ð�6� 6q0 þ 3q20 � 3q30 þ j0ð�3þ 4q0Þ þ s0Þ

þ y41
24

� ð24� 4j20 þ l0 þ 24q0 � 12q20 þ 12q30 � 15q40 þ j0ð12� 16q0 þ 25q20Þ � 4s0 þ 7q0s0Þ

þ y51
120

� ð�120þm0 þ j20ð20� 70q0Þ � 120q0 þ 60q20 � 60q30 þ 75q40 � 105q50 þ l0ð�5þ 11q0Þ

þ 20s0 � 35q0s0 þ 60q20s0 þ 5j0ð16q0 � 25q20 þ 42q30 � 3ð4þ s0ÞÞÞ
�
;

and in terms of the third redshift, Hðy4Þ,

Hðy4Þ ¼H0 �
�
1þ y4 � ð1þq0Þþ y24

2
� ðj0�q20Þþ

y34
6
� ð�2þ 3j0� 2q0þ 4j0q0� 3q20� 3q30þ s0Þ

þ y44
48

� ð8þ 32j0� 8j20þ 2l0þ 8q0þ 16j0q0� 40q20þ 50j0q
2
0� 48q30� 30q40� 8ð1þq0Þþ 8j0ð1þ 6q0Þ

þ 16s0þ 14q0s0Þþ y54
240

� ð�222� 15j0� 40j20þ 10l0þ 2m0� 222q0þ 400j0q0� 140j20q0þ 22l0q0

þ 15q20þ 250j0q
2
0� 300q30þ 420j0q

3
0� 150q40� 210q50þ 60ð1þ j0þq0�q20Þþ 100s0� 30j0s0þ 70q0s0

þ 120q20s0� 5ð�26þ 16j20� 4l0� 26q0þ 39q20þ 36q30þ 60q40� j0ð39þ 48q0þ 100q20Þþ�12s0� 28q0s0ÞÞ
�
:

APPENDIX C: PRESSURE AND DERIVATIVES AS FUNCTION OF REDSHIFTS

In this section we give the expressions for the pressure in terms of the three redshifts, and also its derivatives with respect
to these redshifts, evaluated at present cosmic time t0, which is equivalent to z ¼ y1 ¼ y4 ¼ 0. The result for the pressure
in terms of z reads

COSMOGRAPHYAND CONSTRAINTS ON THE EQUATION . . . PHYSICAL REVIEW D 86, 123516 (2012)

123516-19



Pðz ¼ 0Þ ¼ 1

3
H2

0ð�1þ 2q0Þ; dP

dz

��������z¼0
¼ 2

3
H2

0ð�1þ j0Þ;
d2P

dz2

��������z¼0
¼ � 2

3
H2

0ð1þ j0 þ 2q0 þ j0q0 þ s0Þ; d3P

dz3

��������z¼0
¼ 2

3
H2

0ð�j20 þ l0 þ j0q0ð4þ 3q0Þ þ ð4þ 3q0Þs0Þ;
d4P

dz4

��������z¼0
¼ 2

3
H2

0ð9j20 � 9l0 �m0 � 16j0q0 þ 10j20q0 � 6l0q0 � 27j0q
2
0 � 15j0q

3
0 � 16s0 þ 5j0s0 � 27q0s0 � 15q20s0Þ;

expressed in terms of y1 we have

Pðy1 ¼ 0Þ ¼ 1

3
H2

0ð�1þ 2q0Þ; dP

dy1

��������y1¼0
¼ 2

3
H2

0ð�1þ j0Þ;

d2P

dy21

��������y1¼0
¼ � 2

3
H2

0ð3þ j0ð�1þ q0Þ þ 2q0 þ s0Þ;

d3P

dy31

��������y1¼0
¼ � 2

3
H2

0ð12þ j20 � l0 þ 12q0 þ j0ð2� 3q0Þq0 þ 2s0 � 3q0s0Þ;

d4P

dy41

��������y1¼0
¼ � 2

3
H2

0ð60þm0 þ j20ð3� 10q0Þ þ 72q0 þ l0ð�3þ 6q0Þ þ j0ð12þ 4q0 � 9q20 þ 15q30 � 5s0Þ

þ 4s0 � 9q0s0 þ 15q20s0Þ;
and finally with respect to y4, the results for the pressure and its derivatives are

Pðy4 ¼ 0Þ ¼ 1

3
H2

0ð�1þ 2q0Þ; dP

dy4

��������y4¼0
¼ 2

3
H2

0ð�1þ j0Þ; d2P

dy24

��������y4¼0
¼ � 2

3
H2

0ð1þ j0 þ 2q0 þ j0q0 þ s0Þ;

d3P

dy34

��������y4¼0
¼ � 2

3
H2

0ð2� 2j0 þ j20 � l0 � 4j0q0 � 3j0q
2
0 � 4s0 � 3q0s0Þ;

d4P

dy44

��������y4¼0
¼ 1

3
H2

0ð�24� 8ð�1þ j0Þ � 11j0 þ 18j20 � 18l0 � 2m0 � 32q0 � 28j0q0 þ 20j20q0 � 12l0q0 � 18j0q
2
0

� 30j0q
3
0 þ j0ð3� 20q0 � 36q20Þ � 48s0 þ 10j0s0 � 54q0s0 � 30q20s0Þ:

APPENDIX D: LUMINOSITY DISTANCE AS FUNCTION OF THE EOS PARAMETRIZATION

These are the expressions for the luminosity distance dL in terms not of the CS, but in terms of the pressure and its

derivatives with respect to redshift. To make the equations more readable, we introduce the notionsP1 ¼ dP
dyi

, P2 ¼ d2P
dy2i

etc.,

where yi ¼ z, y1, y4.
For redshift z we have

dLðzÞ ¼ 1

H0

�
�
zþ z2

4
� ð1� 3!Þ þ z3 �

�
� 1

8
� P1

4H2
0

þ!þ 9!2

8

�
þ z4

64H2
0

� ð�4P2 þ P1 � ð34þ 54!Þ

� 5H2
0ð�1þ 17!þ 45!2 þ 27!3ÞÞ þ z5

640H4
0

� ð108P2
1 þ 5H4

0ð�7þ 218!þ 1008!2 þ 1350!3 þ 567!4Þ

þ �4H2
0ð�26P2 þ 2P3 � 36P2!þ P1ð136þ 531!þ 405!2ÞÞÞ þ z6

7680H4
0

� ð�45H4
0ð1þ!Þ2ð�7þ 375!

þ 1827!2 þ 1701!3Þ þ 4H2
0 � 9P1ð257þ 1817!þ 3135!2 þ 1575!3Þ � 36P1ð�20P2 þ P1ð169þ 225!ÞÞ

� 8H2
0½2P4 � 5P3ð7þ 9!Þ þ 9P2ð31þ 106!þ 75!2Þ�Þ

�
;

for redshift y1 the luminosity distance is given by
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dLðy1Þ ¼ 1

H0

�
�
y1 þ y21

4
� ð5� 3!Þ þ y31

8
�
�
11� 2P1

H2
0

� 4!þ 9!2

�
þ� y41

64H2
0

� ð4P2 þ P1ð6� 54!Þ

þH2
0ð�93þ 37!þ 9!2 þ 135!3ÞÞ þ y51

640H4
0

� ð108P2
1 þ 5H4

0ð193� 78!þ 72!2 þ 270!3 þ 567!4Þ

� 4H2
0ð2ðP2 þ P3 � 18P2!Þ þ P1ð20þ 63!þ 405!2ÞÞÞ þ y61

7680H4
0

� ð�15H4
0ð�793þ 323!� 210!2

þ 990!3 þ 4347!4 þ 5103!5Þ þ 36P1ð�20P2 þ P1ð29þ 225!ÞÞ þ 4H2
0ð3P1ð�85þ 243!þ 2205!2

þ 4725!3Þ � 2ðP3 þ 2P4 � 45P3!þ 3P2ð7þ 48!þ 225!2ÞÞÞÞ
�
;

and for the last redshift y4 the result reads

dLðy4Þ ¼ 1

H0

�
�
y4 þ y24

4
� ð1� 3!Þ þ y34 �

�
5

24
� P1

4H2
0

þ!þ 9!2

8

�
þ y44

192H2
0

� ð�H2
0ð�47þ 351!þ 675!2 þ 405!3Þ

þ 6ð�2P2 þ P1ð17þ 27!ÞÞÞ þ y54
1920H4

0

� ð324P2
1 þH4

0ð�89þ 5190!þ 17280!2 þ 20250!3 þ 8505!4Þ

þ �12H2
0ð�26P2 þ 2P3 � 36P2!þ P1ð172þ 531!þ 405!2ÞÞÞ þ y64

23040H4
0

� ðH4
0ð�5521þ 96063!

þ 454950!2 þ 838350!3 þ 705915!4 þ 229635!5Þ þ �12H2
0½P1ð3533þ 18333!þ 28215!2 þ 14175!3Þ

� 2ð2P4 � 5P3ð7þ 9!Þ þ P2ð343þ 954!þ 675!2ÞÞ� þ 108P1ð�20P2 þ P1ð169þ 225!ÞÞÞ
�
:

APPENDIX E: DERIVATIVES OF GðZÞ
Here we report the results for the derivatives of the function GðzÞ, which characterizes the equation of state of dark

energy in a specific model, evaluated at present time, for the three redshifts under consideration. The derivatives with
respect to redshift z at z ¼ 0 read

dG

dz

��������z¼0
¼ 2� 3�m þ 2q0;

d2G

dz2

��������z¼0
¼ �2ð�1� j0 þ 3�m � 2q0Þ; d3G

dz3

��������z¼0
¼ �2ð3�m þ j0q0 þ s0Þ;

d4G

dz4

��������z¼0
¼ 2ð�12j0 þ 3j20 þ 12j0�m � 4j20�m þ l0�m � 28j0q0 þ 32j0�mq0 þ 12q20 � 22j0q

2
0

þ�12�mq
2
0 þ 25j0�mq

2
0 þ 24q30 � 24�mq

3
0 þ 15q40 � 15�mq

4
0 � 4s0 þ 8�ms0 � 4q0s0

þ 7�mq0s0 þ ð1��mÞð�4j20 þ l0 � 12q20 � 24q30 � 15q40 þ j0ð12þ 32q0 þ 25q20Þ þ 8s0 þ 7q0s0ÞÞ;
d5G

dz5

��������z¼0
¼ �2ð10l0 þm0 þ 6l0q0 � 10j20ð1þ q0Þ þ 5j0ð4q0 þ 6q20 þ 3q30 � s0Þ þ 20s0 þ 30q0s0 þ 15q20s0Þ;

expressed in terms of y1 we have at y1 ¼ 0

dG

dy1

��������y1¼0
¼ 2� 3�m þ 2q0;

d2G

dy21

��������y1¼0
¼ �2ð�2� j0 þ 6�m � 2q0 þ q20 � ð1þ q0Þ2Þ;

d3G

dy31
jy1¼0 ¼ �2ð�6þ 30�m � 6q0 þ 3q20 � 3q30 þ j0ð�3þ 4q0Þ � 3ð1þ q0Þð2þ j0 þ 2q0 � q20Þ þ s0Þ;

and finally with respect to y4, the results for the derivatives at present time y4 ¼ 0 are
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dG

dy4

��������y4¼0
¼ 2� 3�m þ 2q0;

d2G

dy24

��������y4¼0
¼ 2ð1þ j0 � 3�m þ 2q0Þ;

d3G

dy34

��������y4¼0
¼ �2ð�2þ 6�m þ ð�2þ j0Þq0 þ s0Þ;

d4G

dy44

��������y4¼0
¼ 2ð8� j20 þ l0 � 24�m þ 16q0 þ j0ð8þ 4q0 þ 3q20Þ þ 4s0 þ 3q0s0Þ;

d5G

dy54

��������y4¼0
¼ �2ð�16þm0 þ 84�m � 16q0 � 10j20ð1þ q0Þ þ 2l0ð5þ 3q0Þ

þ 5j0ð8q0 þ 6q20 þ 3q30 � s0Þ þ 40s0 þ 30q0s0 þ 15q20s0Þ:
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