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Currents and pseudomagnetic fields in strained graphene rings
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We study the effects of strain on the electronic properties and persistent current characteristics of a graphene ring
using the Dirac representation. For a slightly deformed graphene ring flake, one obtains sizable pseudomagnetic
(gauge) fields that may effectively reduce or enhance locally the applied magnetic flux through the ring. Flux-
induced persistent currents in a flat ring have full rotational symmetry throughout the structure; in contrast,
we show that currents in the presence of a circularly symmetric deformation are strongly inhomogeneous, due
to the underlying symmetries of graphene. This result illustrates the inherent competition between the “real”
magnetic field and the “pseudo” field arising from strains, and suggests an alternative way to probe the strength
and symmetries of pseudomagnetic fields on graphene systems.
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The appearance of gauge fields in graphene is a beautiful
and experimentally accessible example of a situation where
concepts of condensed matter and quantum field theory
converge on a physical system.1,2 Experimental evidence of
“bubble” formation on particular graphene growth processes3

and controllable routes to manipulate graphene bubble
morphology4–6 have motivated numerous works addressing
different aspects of these effects. In particular, the theoretical
description of strained graphene has been developed signif-
icantly, exploring how its electronic properties are affected
on curved and strained surfaces. It is known that elastically
deformed graphene can be mapped onto the Dirac formalism in
the continuum limit by including pseudomagnetic fields7–9 and
Fermi velocity renormalization,10 giving rise to local quanti-
ties that depend on strain but do not break time-reversal sym-
metry. A recent contribution reported a space-dependent Fermi
velocity leading to interesting experimental consequences.11

Lattice-corrected strain induced vector potentials in graphene
have also been discussed within a tight-binding scenario,12,13

although these corrections do not contribute to the pseudo-
magnetic field distribution.13–16 Interesting possibilities for
observing the pseudomagnetic fields arise from breaking
time-reversal symmetry in the system via an external magnetic
field. This promotes a most interesting interplay, some of
which has been explored in the context of the quantum Hall
regime.17,18

Similar to other confined systems with periodic boundary
conditions, magnetic flux dependent persistent currents and
conductance oscillations are expected for graphene rings in
an Aharonov-Bohm (AB) geometry.19–21 Several experiments
have verified the presence of AB conductance oscillations
with different visibility for different device geometries.22–26

A recent review of quantum interference in graphene rings
discusses open questions in the field.27 Interestingly, the
“infinite mass” confinement28–31 that requires null current
density across the boundaries results in persistent currents
that are “valley polarized” in the presence of magnetic flux,19

suggesting that graphene quantum rings would be an excellent
system to analyze the effects of induced curvature. The
main result of the present Rapid Communication is indeed
to show that while a flat (unstrained) graphene ring in the

AB geometry sustains persistent currents with full rotational
symmetry, unavoidable strains in typical systems would result
in inhomogeneous distributions of currents. In other words,
while the strains alone would result in zero net persistent
current (since time-reversal symmetry is not broken by the
pseudomagnetic fields), the competition with the AB flux
induces spatially inhomogeneous current distributions on the
system. This effect can be seen to arise both from a local
rescaling of the Fermi velocity as well as by the appearance
of gauge fields that result from the elastic deformations.
As such, the persistent currents originated by the magnetic
AB flux acquire a local character that follows the strain
fields.

Moreover, as the corresponding length scales of the current
inhomogeneities are given by the strain fields, one can imagine
using this effect to measure the strain distribution via a
scanning magnetometer that would be sensitive to the induced
currents. Alternatively, properly designed strain fields would
be used to produce desired current patterns.

Strained graphene. Within a tight-binding model, the ef-
fects of lattice deformations may be incorporated into the hop-
ping integrals tn between nearest neighbors,32 so that tn = t0 +
δtn = t0(1 − βεij δ

i
nδ

j
n/a

2), where β = |∂ log10 t0/∂ log10 a| ≈
3 in graphene, �δn are the nearest-neighbor vectors of a given
atom at lattice site n, and t0 and a are the nearest-neighbor
hopping integral and distance in the unstrained system,
respectively. Indices i and j represent directions on the 2D
plane, with repeated index summation convention throughout.
The strain tensor, εij = 1

2 (∂jui + ∂iuj + ∂ih∂jh), is charac-
terized by ui and h, the in- and out-of-plane deformations,
respectively.33

The resulting Hamiltonian in the presence of inhomo-
geneous strain and external magnetic field given by �B =
�∇ × �Aext, can be written in a generalized Dirac form (in the K

valley) as

H = −ivkjσk

(
∂j + i

e

h̄
Aext

j

)
− iv0σj�j + v0

e

h̄
σjA

δt
j , (1)

where σj are Pauli matrices, and the vector potential
with trigonal symmetry arising from strains is given
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by32

�Aδt
i (�r) = �0

2π

(−β

2a

)
(εxx − εyy, − 2εxy), (2)

with �0 = h/e. The renormalized Fermi velocity tensor in
Eq. (1) is position dependent,11

vij (�r) = v0

(
Iij − β

4
(2εij + ηij εkk)

)
, (3)

where I is the 2 × 2 identity matrix and v0 = 3at0/2 ≈
106 m/s (with h̄ = 1). Inhomogeneous strains also yield an
effective geometric vector potential

�i(�r) = −β

4

(
∂j εij + 1

2
∂iεjj

)
. (4)

At the K ′ valley, both vij (�r) and �i(�r) are the same,
while the vector potential Aδt

j (�r) changes sign, preserving
overall time-reversal symmetry of the system in the absence
of �Aext.

Diagonalization of the Hamiltonian in a ring geometry
results in interesting eigenstates and persistent current patterns
for states at and near the Dirac point (charge neutrality point).
We first summarize the results for a flat graphene ring in a
magnetic flux,19 to provide a suitable framework for the ring
with deformation.

Unstrained graphene ring. We consider a “flat” ring
threaded by a magnetic flux �, with �Aext = (�/2πr)θ̂ , so
that the Hamiltonian is given by

H0 = −iv0

[
�1(θ )∂r + �2(θ )

1

r

(
∂θ + i

�

�0

)]
, (5)

with �1(θ ) = σx cos θ + σy sin θ and �2(θ ) = −σx sin θ +
σy cos θ . The wave functions for energy E are19

ψm̄,s(r,θ ) = eimθ

(
φm̄(r)

iseiθφm̄+1(r)

)
, (6)

with φm̄(r) = Am̄Jm̄(kr) + Bm̄Ym̄(kr), where m̄ = m +
�/�0, m = 0,±1,±2, . . . is the orbital angular momentum,
Jm̄ and Ym̄ are Bessel functions of first and second kind,
respectively, k = |E|/h̄v0, and s = sgn(E). The upper (lower)
component of the spinor corresponds to ψA (ψB) in Eq. (6) for
the K valley.

The energy spectrum is obtained from the transcendental
equation that arises after imposing infinite-mass bound-
ary conditions,19,29 given by ψB(r,θ )/ψA(r,θ ) = iτ n̂ · r̂eiτθ ,
where the normal to the boundaries is n̂ = ±r̂ for the inner
(−) and outer radius (+) of the ring. The K and K ′ valley
eigenstates for a given m have also a total angular momentum
j , defined for the operator Jz = −i∂φ + σzτ/2, where τ =
±1 identifies the valleys; K and K ′ states with opposite
momentum j ′ = −j are related by m′ = −(m + 1). Notice
that the boundary conditions do not mix the valleys and in fact
break the valley degeneracy for nonzero flux.19,29

Figure 1(a) shows the energy spectrum of a graphene ring vs
magnetic flux; dashed and continuous (blue) lines (upper part

(a)

(b)

(c) (e)

(d)

FIG. 1. (Color online) Unstrained graphene ring. (a) Energy
spectra vs magnetic flux for ring with internal and external radii
given by r1 = 50 and r2 = 100 nm, for different quantum states:
m [m′ = −(m + 1)] integer denotes results for K (K ′) valley given
by dashed (continuous) lines. [Thicker (red) lines near E ≈ 17 meV
show lower levels for the same ring, but with a Gaussian deformation.]
(b) Flat ring eigenstate with m = 0 (K valley); electronic probability
distribution along the ring for � = 0, and (c) �/�0 = 6. Main
panels show the two spinor components separately; insets show total
distribution, |ψA|2 + |ψB |2. On right column, corresponding current
densities for K valley. (d) Notice counterpropagating edge currents
for � = 0, indicated by red arrows, evolve to a current distribution
mostly on the outer radius for large � in (e).

of the graph) indicate results for K and K ′ valleys with m and
m′ values, respectively. Notice the quadratic dependence on �

of these levels, which breaks valley degeneracies in general.
The figure also shows the lowest energy levels for a deformed
ring (thicker red lines, lower part of graph), to be discussed
later.

The charge and current densities that satisfy the continuity
equation for unstrained graphene are given by ρ = ψ†ψ
and Jj = (v0/h̄)ψ†τσjψ .29 Typical results for the spinor
components |�A|2 and |�B |2 for m = 0 are depicted in Fig. 1
along the radial direction, for both (b) �/�0 = 0 and (c) 6. As
expected, increasing flux causes the charge density to be driven
to the outer edge of the ring as the energy of the state increases.
(Notice the m = 0 state is not in general the lowest state as �

increases.) Also shown in Figs. 1(d) and 1(e) are the current
probability densities, highlighting the strong dependence on
the magnetic flux. Notice that the current for valley K at
zero flux is given by nearly compensated counterpropagating
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edges, while as the flux increases, the current in the inner
edge disappears. As we will see below, the interaction with the
pseudomagnetic field generated by the deformation gives rise
to an intricate current pattern.

Strained graphene rings. We now consider an out-of-
plane deformation given by a circularly symmetric Gaussian
shape34 described by h = Ae−r2/b2

. The strain tensor is
then

ε = αf (r)

(
cos2 θ sin θ cos θ

sin θ cos θ sin2 θ

)
, (7)

where f (r) = 2(r2/b2)e−2r2/b2
, with α = A2/b2 character-

izing the strength of the strain perturbation. The strain is
inhomogeneous and, as a consequence, the geometric gauge
field � is nonzero and the renormalized Fermi velocity
changes along the ring. The space-dependent velocity is given
by

v = v0

(−βα

2

)
f (r)

[
I + 1

2
R (2θ ) σz

]
, (8)

where R (θ ) = I cos θ − iσy sin θ is the rotation matrix
through an angle θ in the counterclockwise direction. The
resulting Dirac cone becomes elliptical, with radial and angular
components

vr = v0

(−3βα

4

)
f (r) and vθ = v0

(−βα

4

)
f (r), (9)

while the gauge fields are

�r =
(−βα

2

)
f (r)

(
2

r
− 3r

b2

)
and �θ = 0. (10)

These changes can be seen as perturbations of the Hamiltonian
in Eq. (5) given by

V1 = −iv0

(−βα

2

)
f (r)

[
�1(θ )dr + �2(θ )

dθ

r

]
, (11)

with dr = 3
2∂r + 2

r
− 3r

b2 and dθ = 1
2 (∂θ + i �

�0
). The vector po-

tential perturbation V2 = v0(−βα

2a
)f (r)�1(−2θ ) is associated

with a pseudomagnetic field �Bδt , given by

�Bδt = ẑ
�0

2π

(−βα

2a

)
f (r)

4r

b2
sin (3θ ) . (12)

The eigenvalue problem with H = H0 + V1 + V2 can be
solved using perturbation theory on the parameter α up
to second order, keeping sufficient states to achieve full
convergence of the results.

We now present our main results for strained rings
considering the Gaussian perturbation with characteristic
system parameters: A = 7 nm and b = 70 nm, with a relative
deformation α = 1%, and the ring radii used in Fig. 1(a).
The two lowest states of the spectrum corrected by the
Gaussian deformation are shown in Fig. 1(a) in thick (red)
curves near the bottom of the panel, both for solutions
near K (dashed lines) and K ′ (solid) valleys. We find that
the main correction comes from the V2 perturbation which

(a) (b)

(d)(c)

FIG. 2. (Color online) Deformed graphene ring. Contour plot of
the local density |ψA|2 + |ψB |2 for m = 0 state at (a) �/�0 = 0, and
(b) � = −0.5. A negative flux, as shown, pushes density towards
the inner ring, while a positive flux would shift weights to the outer
radius. (c) Current distribution for � = 0 and m = 0, for the K valley.
(d) Current variation, � �J = �J − �Jflat (K-valley), where �Jflat is
the current for a flat ring—shown in Fig. 1(d)—can be seen as
the net effect produced by the deformation. Notice six vortices
with alternating circulation and cores near maxima/minima of the
pseudomagnetic field [see Fig. 3(a)].

contains the effects of the strain-induced pseudomagnetic field,
and produces energy shifts for the ground state as high as
10%.

The pseudomagnetic field produced by the Gaussian de-
formation in this system [see Fig. 3(a)] has the underlying
trigonal symmetry of the graphene lattice.7,9 In this case, the
field amplitudes reach �1.2 T, and, as expected, when averaged
over the entire ring, the net pseudofield vanishes.

When both the external magnetic flux and deformation
strains are considered, the superposition of fields with different
symmetry strongly affects the electronic states and induces in-
homogeneities in the probability density distribution. Typical
changes in the spatial pattern of electron density are shown in
Figs. 2(a) and 2(b), where zero and finite fluxes are considered.
The local density is shown by colored projections along the
ring. A finite flux, either positive or negative, enhances the
amplitude modulations of the local probability density seen
for zero flux: A negative flux shifts the maxima towards the
inner radius of the ring, while a positive flux pushes the density
towards the outer radius, as one would expect from classical
Lorentz force considerations.

The current density �J over the strained graphene ring
is displayed in Fig. 2(c), for the lowest state in the K

valley. The current density trends are represented by a set of
small (red) arrows, revealing intricate current configurations.

241403-3



RAPID COMMUNICATIONS
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(a) (b)

(c)

FIG. 3. (Color online) (a) Map of pseudomagnetic field in
Eq. (12). Traces show polar plots of the current with �/�0 = −0.5
for ring without (circular) and with (star) strain. (b) Angular profiles
of current density through the ring for the lowest K valley state
and different fluxes (��/�0 = 0.1), from � = 0 to �/�0 = −0.5,
as indicated by the arrow. Dashed flat line near bottom shows
current density for unstrained ring at � = 0. Notice mean value of
current increases with strain and flux. (c) Flux dependence of the
current through the ring for the lowest state: m = 0, K valley from
�/�0 = −0.5 to 0, and m = −1 for K ′ valley from �/�0 = 0 to
0.5, at different angles along the ring. Curves for strained rings are
shifted up for clarity; dashed lines indicate zero current in each case.
Bottom traces show angle-integrated current for both strained (solid)
and unstrained (dotted) rings; notice similar slopes, although much
smaller discontinuity near � = 0 with strain.

The current density exhibits local maxima with trigonal
symmetry, centered near regions of largest variation in the
local density. The last panel, Fig. 2(d), shows the probability
current variation, � �J = �J − �Jflat, where �Jflat is the persistent
current in the flat or unstrained ring. Notice that � �J exhibits
six vortices with alternating circulation and cores centered
on regions of extremal values (positive or negative) of the
pseudomagnetic field in Eq. (12), Fig. 3(a).

The spatial modulation of the persistent current in the
ring can also be seen from the angular profiles shown in
Fig. 3(b) for different flux values. The current density achieves
maximal values along nodal lines of the pseudomagnetic field
distribution. Similarly, local minima are related to regions of
maximum pseudofield amplitude, both in positive and negative
directions—see also polar plots in Fig. 3(a). As the pseudofield
does not break time-reversal symmetry, the net current must
be zero in the absence of external magnetic flux. This indeed
happens when considering the contribution of the other valley
(K ′, coming from the state with m′ = −1), which has fully
inverted symmetry in θ .

We analyze the role of the pseudomagnetic field contribu-
tion to the total current (taking both valleys into account)

by looking at different angular values along the ring.
Figure 3(c) shows the total current at θ = π/6, π/3, and
π/2, in comparison with the (angle integrated) current for
both the unstrained and deformed graphene ring. All curves
present the expected sawtooth behavior with flux. However,
the slope of the curve and the value near zero flux are clearly
angle and strain dependent. Notice in particular the jump
reversal near � = 0 for θ = π/6 and π/3, associated with
the circulation around the vortex at θ � π/6. The competition
between the external magnetic field and the pseudofield not
only results in inhomogeneous current distributions with
vortices, but also in very different total current dependence
with flux �. Notice that the strain changes in the total
persistent current, near � = 0, are of the same order of
magnitude as the current in the unstrained system. As such,
the strain decreases the current discontinuity for positive
and negative magnetic fluxes. The total current variation
dependence on strain is found to be proportional to α2 (not
shown).

Conclusions. We have shown that the strain effects arising
from a Gaussian “bubble” deformation of the graphene ring
result in a distribution of pseudomagnetic (gauge) fields that
have trigonal symmetry, in agreement with the underlying
symmetries of graphene. While the currents induced by these
pseudofields would identically vanish, an external magnetic
flux makes possible the observation of the full spatial distribu-
tion of currents due to strain. As a result, strain fields change
the nature of the ground state and modify the amount of current
present in the device.

Our discussion has focused on the infinite-mass boundary
condition. We find also that the zigzag boundary condition,
which does not mix valleys either and shows a completely
different spectrum, yields qualitatively similar results to
those presented here. It is clear that an experiment would
typically exhibit a more complex edge.35 However, because
the effects are produced by strains fields, there will always be
inhomogeneous current distributions upon the application of a
flux.

Furthermore, other geometric structures with strong strain
fields would also produce complex patterns of induced currents
reflecting the pseudomagnetic field distribution. These could
be explored locally by applying a weak magnetic field, to
play the role of the external flux, assuming that the scanning
current measurement device has spatial resolution better than
the characteristic length scales of the gauge field distribution. A
scanning magnetometer appears as one of the ideal instruments
to reveal these effects. Although strong sample disorder may
increase scan noise, the trigonal symmetry of the strain signal
would uniquely identify its source.
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10J. González, F. Guinea, and M. A. H. Vozmediano, Nucl. Phys. B
424, 595 (1994).

11F. de Juan, M. Sturla, and M. A. H. Vozmediano, Phys. Rev. Lett.
108, 227205 (2012).

12V. M. Pereira, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B
80, 045401 (2009).

13A. L. Kitt, V. M. Pereira, A. K. Swan, and B. B. Goldberg, Phys.
Rev. B 85, 115432 (2012); 87, 159909(E) (2013).

14F. de Juan, J. L. Mañes, and M. A. H. Vozmediano, Phys. Rev. B
87, 165131 (2013).

15M. R. Masir, D. Moldovan, and F. M. Peeters, arXiv:1304.0629.
16J. V. Sloan, Alejandro A. Pacheco Sanjuan, Z. Wang, C. Horvath,

and S. Barraza-Lopez, Phys. Rev. B 87, 155436 (2013).

17B. Roy, Phys. Rev. B 84, 035458 (2011).
18B. Roy, Z. X. Hu, and K. Yang, Phys. Rev. B 87, 121408(R)

(2013).
19P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J.

Beenakker, and A. F. Morpurgo, Phys. Rev. B 76, 235404 (2007).
20C.-H. Yan and L.-F. Wei, J. Phys.: Condens. Matter 22, 295503

(2010).
21J. Wurm, M. Wimmer, H. U. Baranger, and K. Richter, Semicond.

Sci. Technol. 25, 034003 (2010).
22S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S.

Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Phys. Rev. B
77, 085413 (2008).

23M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, K. Ensslin, and
T. Ihn, Phys. Status Solidi B 246, 2756 (2009).

24M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer,
K. Ensslin, and T. Ihn, New J. Phys. 12, 043054 (2010).

25D. Smirnov, H. Schmidt, and R. J. Haug, Appl. Phys. Lett. 100,
203114 (2012).

26A. Rahman, J. W. Guikema, S. H. Lee, and N. Marković, Phys. Rev.
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