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Chapter 1

Introduction

In this dissertation we will extend and apply the concept of noninvasive
time-delayed feedback control to partial differential equations. More
specifically, we introduce new spatio-temporal control terms and apply
them to scalar reaction-diffusion equations.

The aim of the introductory chapter is to introduce the main concepts of
the dissertation: In Section 1.1 we give a brief exposition of noninvasive
time-delayed feedback control, better known as Pyragas control, as well
as some of its extensions. In Section 1.2 we formulate the main goal of this
dissertation and introduce the notion of control triples to describe the
structure of the new control terms. Section 1.3 is devoted to the study of
scalar reaction-diffusion equations. We focus on the symmetry-properties
of equilibria and periodic orbits. In Section 1.4 we introduce the new
spatio-temporal control terms, by establishing the relation between the
abstract control triple and the properties of the equilibria and periodic
orbits. In Section 1.5 we briefly introduce Hill’s equation as the funda-
mental tool of the proofs. In the last section of this chapter we present
a grasshopper’s guide and give an outline of this thesis.

1.1. Noninvasive time-delayed feedback control

In their ground-breaking work from 1990 on chaos control [55], Ott, Gre-
bogi and Yorke consider the following question: “. . . how can one obtain
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1. Introduction

improved performance and a desired time-periodic motion by making only
small time-dependent pertubations in an accessible system parameter?”

A particularly successful answer to this question was given by Kestutis
Pyragas in his work from 1992 [58], using time delay to introduce a
continuous control term which vanishes on the desired periodic orbit.
We call such a control term noninvasive. For a dynamical system which
is given by the ordinary differential equation ż(t) = f(z(t)), z 2 Rn, the
controlled system is then described by

ż(t) = f(z(t)) + k
�
z(t)� z(t� ⌧)

�
. (1.1)

Here ⌧ > 0 is the time delay, and k 2 R is the weight of the control term,
which is usually called the feedback gain. Sometimes, the feedback gain
is given by a matrix k 2 Rn⇥n.

The control term introduced by Pyragas uses the difference between the
delayed state z(t�⌧) and the current state z(t) of the system. Frequently,
the time delay ⌧ is chosen to be an integer multiple of the period p of the
periodic orbit z⇤(t) of the uncontrolled system ż(t) = f(z(t)). In this
case, the control vanishes on the orbit itself, and z⇤(t) is also a solution
of the controlled system. Thus, the control does not change the periodic
orbit itself, it only changes its stability properties, i.e., it is noninvasive.
Pyragas control can therefore be used to make unstable objects visible
without changing them. It is normally used to stabilize unstable periodic
orbits as well as unstable steady states [12, 34, 80]. In the latter case,
the time delay ⌧ can be chosen arbitrarily.

The Pyragas control method is one of the most used feedback control
schemes today. The original paper from 1992 [58] has been cited more
then 3300 times (June 2016). The main advantage, also for experimen-
talists, is given by the fact that one does not need to know anything
about the periodic orbit besides its period. In particular, it is a model-
independent control scheme and no expensive calculations are needed for
its implementation.

As a consequence, Pyragas control has been applied effectively to atomic
force microscopes, for which it increases the resolution of an image that
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1. Introduction

would otherwise be reduced by irregular cantilever oscillations [79], and
to helicopters carrying heavy suspended loads, for which it has been
patented in 2012 [54]. Time-delayed feedback control has also been suc-
cessfully applied to walking control of robots [73]. Further experimen-
tal realizations include optical control of semiconductor lasers [62, 63],
chaos control in the enzymatic peroxidase-oxidase reaction [42] and the
Belousov-Zhabotinsky reaction [65]. See the survey paper by Pyragas [59]
and the references therein for an overview of experimental realizations.

The success of Pyragas control has been verified for a large number of
theoretical models as well. Examples include spiral break-up in cardiac
tissues [60], flow alignment in sheared liquid crystals [71], stabilization
of synchrony in networks of coupled Stuart-Landau oscillators [10, 11],
stabilization of periodic orbits in delay equations [17], control of quan-
tum systems [38], entanglement control in quantum networks [29], and
synchronization in neural systems [33].

Besides the original control scheme, various extensions and modifications
have been proposed. A widely implemented modification was introduced
by Socolar, Sukow and Gauthier in 1994 [70] and it is now called extended
time-delayed feedback control. In contrast to the original control scheme
(1.1), the authors use not only one, but multiple delayed feedback sig-
nals weighted by a memory parameter. They are then able to stabilize
periodic orbits with arbitrarily large Floquet multipliers, which is not
possible with standard Pyragas control. Another modification was pro-
posed by Kittel, Parisi and Pyragas in 1995 [39], where a self-adaptive
time delay is introduced. For this control scheme, no preliminary in-
formation of the unstable periodic orbit is necessary, since its period is
determined during the experiment. This adaptive method also has the
advantage of being robust under drifts of system parameters.

So far, rigorous mathematical conditions for the success of Pyragas con-
trol are mostly limited to ordinary differential equations. For example,
stabilization has been proven to be successful for a subcritical Stuart-
Landau oscillator, i.e., near Hopf bifurcation, by Fiedler et al. in 2007
[15]. An experimental confirmation was achieved by optical feedback
control of a semiconductor laser [63]. This last example has refuted
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1. Introduction

the so-called “odd-number limitation”, which was correctly proven for
non-autonomous systems in 1997 [52], see also Chapter 2 for a short
discussion. In a footnote, Nakajima formulated the conjecture that the
odd-number limitation also holds in the autonomous case and this was
subsequently often wrongly cited as a proven fact. A corrected version of
the odd-number limitation for autonomous equations has been presented
by Hooton and Amann in 2012 [32].

In an attempt to overcome the odd-number limitation, Nakajima and
Ueda introduced in 1998 what they called half-period delayed feedback
control [53]. See Fiedler et al. [16] from 2010 for a more detailed analyt-
ical investigation of a half-period feedback scheme. The main idea is to
use only a fraction of the period as time delay, and not the full period. In
2011 this idea has been extended to include equivariance of the system
in the control scheme, see for example Schneider for a case study of three
coupled oscillators [66, 67]. For the more general results see Schneider
[68] or Postlethwaite et al. [56]. The equivariant approach is successful
for periodic orbits with a prescribed spatio-temporal pattern, which is
reflected in the control scheme. Accordingly, it is particularly useful for a
selective stabilization of periodic orbits. Equivariant Pyragas control can
also be used to stabilize unstable periodic orbits in networks, where it is
usually difficult to target specific periodic orbits. For a detailed study
of a system with dihedral group symmetry, see Schneider and Bosewitz
[69]. Furthermore, the equivariant control scheme does not suffer from
any general upper limit on the unstable Floquet multiplier, as Bosewitz
has shown in 2014 [7]. This is in contrast to the original method by
Pyragas, for which Fiedler [14] has proved an upper bound in 2008.

Even though many applications and extensions of Pyragas control have
been proposed since 1992, surprisingly few publications consider the spa-
tial properties of partial differential equations for control. Many exam-
ples where only time delay is used can be found in [3–5, 23, 26, 40, 64,
76]. A first attempt to use space as well as time was proposed by Lu et
al. in 1996 [43], but there and in subsequent publications [50, 57] spatial
modifications and time delay are only used separately.

4



1. Introduction

Combinations of spatial and temporal delay have not been used so far,
and thus, the possibilities of feedback control for partial differential equa-
tions are far from exhausted. One could even say that we have not even
started to appreciate fully the power of delayed feedback control for spa-
tially extended systems.

The spirit of Pyragas control guides us through this thesis. We keep in
mind the main concept – namely that the control is noninvasive. We set
out to explore the concept of noninvasive control in the domain of partial
differential equations, using both space and time for control. In Section
1.2 we state the main goal of this thesis and also explain the general
structure of the new spatio-temporal control terms, before applying this
concept to scalar reaction-diffusion equations.

1.2. Main goal and introduction
of the control triple

It is the main goal of this dissertation to introduce
a new concept of spatio-temporal feedback control

for partial differential equations.

For this new concept, which employs both time and space for control, we
also want to offer the first systematic investigation in the context of scalar
reaction-diffusion equations. More precisely, we want to selectively sta-
bilize unstable equilibria and periodic orbits of scalar reaction-diffusion
equations by using new types of spatio-temporal feedback control.

The new control terms satisfy one condition: They are noninvasive on
the desired equilibrium or periodic orbit in the sense of Pyragas control.
In other words, the control vanishes when the target orbit is reached.

We might be tempted to use the method by Pyragas directly, as it has
been done previously [3–5, 23, 26, 40, 64, 76]. We claim, however, that
this is impossible for our scalar reaction-diffusion equations, see Theorem
2.2. We therefore need to develop a more successful strategy to control
spatio-temporal patterns in partial differential equations.

5



1. Introduction

In this section we explain the general structure of our new feedback con-
trol terms. This control structure should be applicable to many partial
differential equations, and in particular to those with symmetry.

The general idea, as already used by Pyragas [58], is to use differences
between output signals and “transformed” output signals. These differ-
ences vanish on the desired orbit, that is, they are noninvasive. In the
case of Pyragas control, “transformed” means “time-delayed”. In our case,
we use a more general concept which we explain below.

Before we describe the new control terms let us ask the following ques-
tion: Which accessible system parameters can be modified and used for
stabilization?

Following in the footsteps of Pyragas, who addresses the system parame-
ter time, we can, in the context of partial differential equations use both
system parameters, space x and time t, for the construction of the new
control terms.

Also the output signal u of the system can be seen as an accessible
system parameter, as it has been used previously in the context of equi-
variant Pyragas control [56, 67–69]. See also Chapter 3 for a comparison
of our results and those of equivariant Pyragas control.

In total, we propose to introduce the notion of control triples to de-
scribe the transformation of the output signal:

�
output signal, space, time

�

We then construct the feedback control as follows: We consider noninva-
sive differences of the current output signal u(x, t) and the transformed
output signal ũ

�
x̃, ˜t

�
, where the control triple indicates the transforma-

tion in each of the three system parameters: output signal u 7! ũ, space
x 7! x̃, and time t 7! ˜t.

A control term is then defined by a fixed control triple and a variable
feedback gain k, where k is either a scalar or a matrix. For simplicity,
we consider constant feedback gains throughout this thesis.

6



1. Introduction

As a first example, let us consider an equilibrium of some arbitrary partial
differential equation, that is, a time-independent solution. In this case,
it is feasible to use differences of output signals at different moments
of time. The transformations in the output signal u and the space x
simplify to the identity. Then

k
�
u(x, t)� u(x, t� ⌧)

�
, (1.2)

k 2 R, is a noninvasive control term for all time delays ⌧ > 0. However,
we are not limited to a fixed time delay ⌧ ; any transformation of time
can be used for noninvasive control if it can be experimentally realized.

In the case of time periodic orbits with minimal period p, the time delay
is fixed to an integer multiple of the period p.

While control terms of this type are the obvious application of Pyragas
control to partial differential equations, we will prove in this thesis that
they do not succeed in the case of scalar-reaction diffusion equations.

Similarly, for any spatially periodic equilibrium with period �, we are
permitted to construct control triples where the non-identity transfor-
mation is in space (fixed “spatial delay” � or integer multiples of �) as
well as in time (arbitrary “temporal delay” ⌧ � 0). Thus, a noninvasive
control term takes the form

k
�
u(x, t)� u(x� �, t� ⌧)

�
. (1.3)

To the authors knowledge, such feedback control terms mixing spatial
and temporal delay have not been investigated before. We apply such
control terms to frozen waves in the context of scalar reaction-diffusion
equations.

Consider next plane waves of the form u(x, t) = A exp(i ·x� ict), where
x 2 Rn, A 2 R is the amplitude,  2 Rn is the wave vector and c 2 R is
the wave speed. Then

k
�
u(x, t)� exp(i · a� ic⌧)u(x� a, t� ⌧)

�
, (1.4)

a 2 Rn, is a noninvasive control term. In addition to the transformations
in space and time, we also transform the output by a multiplication with
exp(i · a� ic⌧).
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1. Introduction

In equivariant systems we find more elaborate spatio-temporal patterns.
Equivariance is usually described in terms of groups, and, as a first step
towards the construction of suitable control terms, we can find a de-
scription of the pattern in terms of group theory [13, 21, 22]. In the
equivariant setting we interpret the transformations of the output sig-
nal, space, and time as (linear) group actions.

We emphasize that all the described constructions of the control triple do
not depend on specific equations. Therefore, the control triple method is
easily applicable to many partial differential equations. In the following
we construct explicit control terms for equilibria and periodic orbits in
the case of scalar reaction-diffusion equations. We use simple properties
of the respective orbits as well as their description in terms of symmetry
groups. Having constructed the new control terms, it is of interest to
know which control terms stabilize the target orbit successfully and which
limitations of spatio-temporal feedback control can occur.

1.3. Scalar reaction-diffusion equations

In this dissertation the main area of application of the new control terms
are scalar reaction-diffusion equations. We therefore give a brief intro-
duction to the subject and state the specific conditions on the equations
we consider in this thesis. We then search for equilibria and periodic
orbits, and also discuss their symmetry properties. This allows us to
state specific new control terms in Section 1.4.

A large variety of physical and biological concepts can be modeled by
reaction-diffusion systems. Most prominently, many model systems de-
scribing pattern formation fall into the category of reaction-diffusion sys-
tems. Examples are the equations studied by Turing [74], the Belousov-
Zhabotinsky reaction [77, 81], or systems which describe patterns of
animal skin [51].

Reaction-diffusion systems are semilinear parabolic partial differential
equations, see for example the book by Henry [30] as a standard ref-

8



1. Introduction

erence.

In this thesis we consider scalar reaction-diffusion equations including a
linear advection term cu

x

,

u
t

= u
xx

+ f(u)� cu
x

, (1.5)

u 2 R, x 2 S1 ⇠
=

R/2⇡Z, t > 0, with periodic boundary conditions:

u(0, t) = u(2⇡, t), u
x

(0, t) = u
x

(2⇡, t) for all t > 0. (1.6)

The function f : R ! R is real analytic. This assumption on f is not
essential for control, but we restrict f to be analytic in order not to lose
ourselves in technical difficulties. The real parameter c is called the wave
speed.

The initial-value problem associated to (1.5) generates a local semiflow
on the Sobolev space X = Hs

(S1

) for s > 3/2,

�

t

: Hs

(S1

) �! Hs

(S1

),

u
0

7�! �

t

(u
0

) := u(t, ·),
(1.7)

where t � 0, and u(t, x) denotes the maximal solution of (1.5) with
initial condition u(0, ·) = u

0

[2, 19]. By the Sobolev embedding theorem,
X embeds into C1

(S1

) [1]. The Sobolev norm of Hs

(S1

) is given by

kukX =

X

k�0

(1 + k2)s
�
a2
k

+ b2
k

�
, (1.8)

where
u(x) =

X

k�0

(a
k

cos(kx) + b
k

sin(kx)) , (1.9)

using Fourier expansion and the periodic boundary conditions (1.6). We
assume that f is dissipative, i.e., that there exists a large fixed ball in
X such that any solution eventually enters this ball and stays there for
all later times. Then solutions of equation (1.5) exist globally and we
can even study its global attractor, which consists of equilibria, periodic
orbits and the heteroclinic connections between those orbits [2, 18]. A

9



1. Introduction

sufficient condition for f to be dissipative is the following: f is bounded
from above and f(u) · u < 0 for all large |u|, [18]. Note however that
this condition is not necessary for our results. For instance, we consider
linear examples in Chapters 2 and 3.

In order to establish successful control schemes of scalar reaction-diffusion
equations, we take a specific point of view: We investigate the equivari-
ance of equation (1.5).

Equation (1.5) is rotationally symmetric, more precisely, it is S1-equiva-
riant with respect to a shift R

✓

in the x-variable,

R
✓

: X ! X, (R
✓

u
0

)(x) := u
0

(x+ ✓), (1.10)

✓ 2 S1. The S1-equivariance holds, since the nonlinearity f does not
depend explicitly on the space variable x.

Let us first search for solutions which are time-independent, i.e., equilib-
ria. Equilibria U(x, t) of (1.5) are characterized by U

t

⌘ 0, and hence,
they are 2⇡-periodic solutions of the ordinary differential equation

0 = U
xx

+ f(U)� cU
x

. (1.11)

An equilibrium which additionally fulfills R
✓

U = U for all ✓ 2 S1 is
called homogeneous. Homogeneous equilibria fulfill additionally U

x

⌘ 0

and consequently f(U) = 0.

All other equilibria U are called non-homogeneous equilibria or frozen
waves. Such equilibria can only occur for c = 0. In the special case of
the additional symmetry U(�x, t) ⌘ U(x, t) and U

x

(0, t) ⌘ 0, t � 0, we
call the frozen wave a standing wave. Alternatively, we call a frozen wave
a twisted standing wave if the additional symmetry U(�x, t) ⌘ �U(x, t)
and U(0, t) ⌘ 0, t � 0, holds.

Furthermore, we find relative equilibria U(x, t) with respect to the group
action of the equivariance group S1. We call these relative equilibria
rotating waves of speed c 6= 0 if

(�

t

U)(x) = U(x� ct) = (R�ct

U)(x). (1.12)

10



1. Introduction

Rotating waves U(x � ct) are 2⇡-periodic solutions of the ordinary dif-
ferential equation

0 = U
zz

+ f(U), (1.13)

where z = x � ct are co-rotating coordinates. The same equation also
holds in the case c = 0, i.e., for frozen waves. Equation (1.13) is Hamil-
tonian, and we can therefore describe U as the motion of a point in
a potential field with energy conservation. In theory, we can find the
solutions with fixed energy E analytically via the relation

U
z

= ±
p
2(E � F (U)), (1.14)

where F is the potential, F 0
(U) = f(U). Only for certain energy values

E we find indeed periodic solutions with period 2⇡ (where 2⇡ is not
necessarily the minimal period). A well known exception is the harmonic
oscillator, which is given by F (U) =

1

2

U2. Here we find 2⇡-periodic
solutions for all E > 0. A sketch of an arbitrary potential F and energy
values which yield 2⇡/n-periodic solutions, and hence rotating or frozen
waves, can be found in Figure 1.1. For simplicity, the higher order terms
ensuring that f is dissipative are not included in the sketch.

The rotating waves are periodic orbits unless the wave speed is c = 0, in
which case they correspond to frozen waves, i.e., to a non-homogeneous
equilibrium. Both rotating and frozen waves occur in circles given by
the group orbits {R

✓

U | ✓ 2 S1}.

It was proven by Angenent and Fiedler [2] and by Matano [47] that all
periodic orbits of (1.5) are indeed rotating waves. In other words, no
other periodic orbits besides rotating waves occur.

In Chapter 4 we consider the stability properties of rotating and frozen
waves. In particular, we review a result by Angenent and Fiedler [2]
which tells us that all waves are unstable. Therefore, rotating and frozen
waves are ideal candidates for the application of our new spatio-temporal
control terms.

11



1. Introduction

(a)

- 4 - 2 0 2 4
- 10

0

10

20

30

40

50

solutionu

po
te
nt
ia
lF

(b)

- 4 - 2 0 2 4

- 10

- 5

0

5

10

solutionu

de
riv
at
iv
eu

z

Figure 1.1.: (a) Hamiltonian potential F (U) (black) for an odd nonlin-
earity f(U) = �f(�U) with energy levels corresponding to a
2⇡-periodic solution (red), a ⇡-periodic solution (blue), and
a 2⇡/3-periodic solution (dashed violet). (b) Correspond-
ing solutions in the phase-space (U ,U

z

). This is a zoom-in
to the interesting region of the hamiltonian potential; the
higher order terms yielding dissipativity cannot be seen.
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Figure 1.2.: Solutions U(z) from Fig. 1.1 (b), same color scheme. Note
the rotational shift-symmetry for 2⇡/n-periodic solutions,
n = 1, 2, 3: U(z) = �U(z � ⇡/n), as well as the twisted
reflection symmetry: U(⇡/n + z) = �U(⇡/n � z) and the
reflection U(0 + z) = U(0� z).

Throughout, except for the linear case, we assume that homogeneous
equilibria are hyperbolic. Furthermore, we assume that the frozen and
rotating waves are hyperbolic in the following sense: The trivial char-
acteristic multiplier is also the only one on the unit circle. Again, we
exclude only the linear examples from this assumption.

Depending on the nonlinearity f(U), there are further symmetries of
the rotating and frozen waves. Let us consider odd f , i.e., f(U) =

�f(�U). Then the potential F (U), with F 0
(U) = f(U), is an even

function. Consequently, if U(z) is a solution of equation (1.13), then
�U(z) is also a solution. These solutions, U(z) and �U(z), may coincide
as sets. If so, the solutions are phase-shifted by half the period, i.e., we
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1. Introduction

find solutions of the form U(z) = �U(z � ⇡/n).

Additionally, frozen waves with this symmetry are also reflection sym-
metric, in the sense that they are standing or twisted standing waves,
depending of the reference point. Let us first consider a reference point
z⇤ with U(z⇤) = 0. We then obtain a twisted standing wave U(z⇤+ z) =
�U(z⇤ � z). Note that z⇤ = l⇡/n, l 2 Z, l odd, for periodic orbits with
minimal period 2⇡/n. Let us now consider reference points ẑ such that
U(ẑ) is a global maximum (or minimum) of the wave. In this case, we
obtain a standing wave of the form U(ẑ + z) = U(ẑ � z). Note that
ẑ = 2l⇡/n, l 2 Z, for periodic orbits with minimal period 2⇡/n.

See Figure 1.2 for example solutions with all these properties. In the
following section we find new noninvasive control terms using this know-
ledge of scalar reaction-diffusion equations and their periodic or station-
ary solutions.

1.4. Using the control triple to find noninvasive
control terms

Let us now find specific control terms for our model equation

u
t

= u
xx

+ f(u)� cu
x

. (1.15)

Applying control terms of Pyragas type yields the following controlled
equation

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x, t� ⌧)

�
, (1.16)

where k 2 R is the feedback gain and ⌧ > 0 is the time delay. Here ⌧
is arbitrary for equilibria, and ⌧ = np, n 2 N, for periodic orbits with
minimal period p.

Our new, more general control terms follow the control triple structure
�
output signal, space, time

�
.

Note that we also allow transformations in space and in the output signal
in contrast to Pyragas control.

14



1. Introduction

For our scalar reaction-diffusion equations on the circle, we propose two
different types of control.

The control schemes of rotation type combine a scalar multiplication

of the output signal, rotations in space, which we interpret as a
spatial delay, and a time delay. In general, the controlled equation
takes the following form:

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
, (1.17)

where k, ,2 R, ⇠ 2 S1, and ⌧ � 0. Here, and throughout the thesis, k is
the feedback gain, which decides the sign as well as the amplitude of the
control. In most cases, the parameter  (transformation of the output)
only takes the values  = ±1. An exception is the homogeneous zero
equilibrium, where  can take any value  2 R. We call the parameter
⇠ the spatial delay, and ⌧ the temporal delay. All three parameters  , ⇠
and ⌧ are fixed parameters, which should be chosen a priori. The feed-
back gain is a variable parameter, it is chosen a posteriori to guarantee
stabilization for a fixed control triple ( , ⇠, ⌧).

Let us discuss a few special cases: We saw in the previous section that all
periodic orbits are indeed rotating waves of the form u(x, t) = U(x� ct).
A time shift by �⌧ has then the same effect on the wave as a spatial
rotation by +c⌧ , and the controlled equation is of the form

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� c⌧, t� ⌧)

�
. (1.18)

Here we use a temporal delay ⌧ > 0, and, if the speed c of the wave is
nonzero, also a spatial delay c⌧ . Furthermore, no transformation of the
output is needed, i.e.,  = 1. The control term is clearly noninvasive
on rotating waves of speed c. We consider this control term in detail
in Chapter 2, and it turns out that this control term is not suitable for
stabilization.

Remark. The control term proposed in equation (1.18) in fact contains
the control of Pyragas type as a special case: Equations (1.1) and (1.18)
coincide for c = 0. For c 6= 0, the control terms are the same only for
c⌧ = 2⇡n, n 2 N, since x 2 S1. In all other cases, equation (1.18) is
more general than equation (1.1).
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1. Introduction

Consider next f odd and rotating or frozen waves with odd symmetry
U(z) = �U(z �m⇡/n), m 2 Z is odd, and where 2⇡/n is the minimal
spatial period. For such odd waves, the controlled equation can take the
form

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� (�1)u(x� ⇠, t� ⌧)

�
, (1.19)

with the following condition relating the spatial delay ⇠ and the temporal
delay ⌧ :

⇠ � c⌧ = m⇡/n, m 2 Z odd. (1.20)

Note that both the spatial delay ⇠ and the temporal delay ⌧ can be
chosen zero, independently. Thus, we can construct control terms which
use only temporal delay or use only spatial delay. However, the case
⇠ = ⌧ = 0 is not allowed, since m is odd. It is important to note that
 = �1: It is the reason that the proposed control scheme successfully
stabilizes rotating and frozen waves. We will discuss the corresponding
results in Chapter 3.

Last, consider the case of homogeneous equilibria. Here we have to dis-
tinguish between those equilibria which take a fixed, non-zero value and
those equilibria which take the value zero. In the case of homogeneous
non-zero equilibria, controlled equations are of the form

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
. (1.21)

It is obvious that the control-term is noninvasive on any homogeneous
equilibrium for any spatial delay ⇠ and any temporal delay ⌧ . The pa-
rameter  is 1, similar to the case of the rotating waves. It turns out
that we cannot stabilize homogeneous equilibria with control terms of
this form; see Chapter 2 for further discussion.

In the case of the homogeneous zero equilibrium, any real parameter  
can be chosen:

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
. (1.22)

In particular  = 0 is also an acceptable choice, and we can always find
control terms which guarantee stabilization, see Chapter 3.
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1. Introduction

The control schemes of reflection type combine a scalar multiplication

of the output signal and reflections in space with time delay. For
such control terms, we only stabilize equilibria and we therefore restrict
to the case c = 0.

Consider both homogeneous and non-homogeneous equilibria with the
even reflection-symmetry U(x) = U(�x) around a reference point x̂
(standing waves). Without loss of generality, x̂ = 0. Then the controlled
equation is of the general form

u
t

= u
xx

+ f(u) + k
�
u� u(�x, t� ⌧)

�
. (1.23)

Here the transformation of the output signal is again a multiplication
by  = 1. Transformation of space is a reflection around the reference
point x̂ = 0. Transformation in time is an arbitrary time delay ⌧ � 0.

Finally, consider twisted standing waves, i.e., equilibria with odd reflec-
tion symmetry U(x) = �U(�x), and the homogeneous zero equilibrium.
In these two cases, the controlled equation is of the form

u
t

= u
xx

+ f(u) + k
�
u� u(�x, t� ⌧)

�
, (1.24)

where the transformation of the output signal  2 R can take any real
value for the homogeneous zero equilibrium, and  = �1 for any other
twisted standing wave. We will discuss the corresponding results in
Chapter 3.

For control schemes of reflection type, we do not consider rotating waves,
since they would imply controls which combine rotations and reflections
in space. Such control schemes of mixed type are beyond the scope of
this thesis. See Section 8.3 for a short outlook.

In the remaining chapters of the thesis, we either demonstrate the suc-
cess of the control terms introduced in this chapter, or we find general
limitations on the control terms.
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1. Introduction

1.5. Main tool of the proofs: Hill’s equation

In this section we introduce the main tool of the proofs in this thesis:
Hill’s equation. It is our goal to prove that our new spatio-temporal con-
trol terms, as stated in the previous section, indeed successfully stabilize
equilibria and periodic orbits. We now explain briefly how the question
of successful stabilization leads us to Hill’s equation. A detailed plan of
the proofs follows in Chapter 4.

To determine whether stabilization by our new spatio-temporal control
terms is successful or not, we need to answer the following question:
Which local stability do the equilibria and periodic orbits have in the
controlled system?

To prove local asymptotic stability, it suffices to prove linear stability
[78]. We therefore consider the linear variational equation, where we
linearize around the respective equilibrium or periodic orbit and solve
this linearized equation by an exponential Ansatz.

We obtain linear ordinary differential equations with a periodic coef-
ficient, possibly with delay. We call the delay a spatio-temporal delay,
since it is neither the temporal nor the spatial delay of the control terms,
but a mixture of them. The eigenvalues �, which we need to prove sta-
bilization, correspond to a parameter in the ordinary (delay) differential
equation.

For linear stability, it is a necessary and sufficient condition that all
eigenvalues are found in the left half of the complex plane, i.e., that
all eigenvalues have negative real part. The eigenfunctions correspond-
ing to the eigenvalues are 2⇡-periodic solutions of the ordinary (delay)
differential equations.

Therefore, we enter the field of Floquet analysis, searching for periodic
solutions of homogeneous linear ordinary (delay) differential equations
of second order with real periodic coefficients. These equations are a
delayed form of Hill’s equation (0 = g

xx

+(��+Q(x))g, where g : R ! R,
x 2 R, � 2 C, and Q(x) is a 2⇡-periodic coefficient).
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1. Introduction

We can therefore rephrase our original question of stability of equilibria
and periodic orbits in the controlled system to the following question:

For which parameter values do there exist periodic solutions
of the modified Hill’s equation with spatio-temporal delay?

In this way, and combined with symmetry aspects, Hill’s equation be-
comes the main tool of the proofs. In light of its central role in this
thesis, it seems appropriate to introduce Hill’s equation shortly.

Hill’s equation is named after George W. Hill who considered this equa-
tion in 1877 in an investigation on lunar stability [31]. The equations
of Hill’s type are closely related to the more widely known equations of
Sturm-Liouville type, first investigated by Sturm in 1836 [72].

For a broad introduction to Hill’s equation, see for example the book
by Magnus and Winkler [45]. Important special cases of Hill’s equation
are Mathieu’s equation [48] and Meissner’s equation [49], which only
consider special periodic coefficients.

Many applications of Hill’s equation besides lunar motion have been dis-
covered since Lyapunov first established its general importance for stabil-
ity problems in 1907 [44]. Most notably, the one-dimensional Schrödinger
equation of an electron in a crystal is of Hill’s type [8]. Furthermore,
Hill’s equation also features prominently in the study of periodic solu-
tions of the Korteweg-deVries equation [41]. Applications of the more
special Mathieu equation include vibrations in an elliptic drum, the in-
verted pendulum, the radio frequency quadruple, particle traps and many
more. See for example the review paper by Ruby [61] for an overview.

So far, there exist few results for Hill’s equation with delay. First inter-
esting results were established by Insperger in 2002 [35], and by Insperger
and Stépán [36], who consider Hill’s equation with delay in the context
of mechanical applications. In this context, the proofs in Chapters 5 and
6 can also be read solely in light of new results on the delayed Hill’s
equation.
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1. Introduction

1.6. Grasshopper’s guide and
outline of the thesis

We begin with a grasshopper’s guide: Carefully and completely reading
Chapter 1 is indispensable for the understanding of this thesis. The
main new results can be found in Chapters 2 and 3. Readers who do not
want to dwell on the proofs (Chapters 4, 5, and 6) may continue directly
with the application of the control triple method in Chapter 7 and the
conclusion in Chapter 8.

In the following we give a short outline of each of the remaining chapters
of this thesis.

In Chapter 2 we attempt to stabilize equilibria and periodic orbits by
Pyragas control and slight generalizations. However, Pyragas control
fails its stabilization task. We illustrate the failure of the control mecha-
nism with a simple linear example. Furthermore, we compare these new
results on the control of partial differential equations to the odd-number
limitation, a well-known control limitation for ordinary differential equa-
tions.

In Chapter 3 we state the main new results on control terms using the
control triple method, for control schemes of both rotation and reflec-
tion type. We point out the difference in the stabilization mechanisms
using the same example equation as in Chapter 2 for illustration. We
also compare our new results to results for ordinary differential equa-
tions, including the stabilization of an unstable focus and stabilization
via equivariant Pyragas control.

Preliminaries of the proofs are discussed in Chapter 4. We first analyze
the stability of rotating and frozen waves in the uncontrolled equation.
Next, we collect useful properties of Hill’s equation in the special case
that it derives from a scalar reaction-diffusion equation. We also give
a short introduction to Floquet theory for the delayed Hill’s equation
and to partial delay differential equations. Finally, we calculate the
linear variational equations for our controlled equation and explain the
procedure of the proofs.
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In Chapter 5 we prove stabilization for control schemes of rotation
type. Note that this proof includes the success of the control triple
method (Chapter 3) as well as the failure of Pyragas control (Chapter
2). The proof is divided into four steps, depending on the form of the
linear variational equation. The main tool of the proof is Hill’s equation.
It is combined with symmetry properties of the frozen or rotating waves.

In Chapter 6 we prove stabilization for control schemes of reflection
type. Here we can re-use many of the results from Chapter 5 concerning
Hill’s equation, and we therefore lay more importance on the symmetry
aspects.

In Chapter 7 we apply the control triple method to a specific reaction-
diffusion equation, namely the Chafee-Infante equation. To achieve sta-
bilization, we first introduce the Chafee-Infante equation with some key
properties. First, we treat the homogeneous equilibria where we include a
short bifurcation analysis. Second, we discuss the stabilization of frozen
waves where we compare the control types of rotation and reflection type.

Finally, in Chapter 8, we conclude this thesis. First, we give an
overview of the aims, methods, and results. Second, we discuss our
results in the general framework of time-delayed feedback control. Last,
we give an outlook on further research on the control triple method.
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Chapter 2

Failure of Pyragas control

In this chapter we study time-delayed feedback control of equilibria and
waves in scalar reaction-diffusion equations. We focus on Pyragas control
with generalizations and discuss why these control schemes fail in the case
of scalar reaction-diffusion equations. The limitation of Pyragas control
is the main result of this chapter.

In Section 2.1 we state the corresponding theorems: Noninvasive con-
trol schemes similar to Pyragas control fail to stabilize rotating waves,
see Theorem 2.1. As a corollary and as the main result of this chapter,
we find that Pyragas control fails to stabilize periodic orbits in scalar
reaction-diffusion equations, see Corollary 2.2. Moreover, the stabiliza-
tion of equilibria, both homogeneous and non-homogeneous, fails. We
attempt to use Pyragas control or slightly more general control terms,
see Corollary 2.3 and Theorem 2.4. Theorem 2.5 tells us under which
conditions Pyragas control destabilizes homogeneous equilibria which are
stable in the uncontrolled equation.

In Section 2.2 we illustrate why Pyragas control fails using a simple linear
example for which we can calculate the spectrum explicitly.

Finally, in Section 2.3 we compare our results to well-known restrictions
of Pyragas control from the theory of ordinary differential equations.
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2. Failure of Pyragas control

2.1. Results

In this section we consider scalar reaction-diffusion equations of the form

u
t

= u
xx

+ f(u)� cu
x

, (2.1)

with all the assumptions stated in Section 1.3. Remember that all peri-
odic orbits of minimal period p > 0 are also rotating waves of the form
U(x � ct) with speed c 2 R. For this type of equation it is known that
all rotating and frozen waves are unstable.

The instability persists if noninvasive control terms of the form k
�
u �

u(x� c⌧, t� ⌧)
�

are added:

Theorem 2.1 (Failure of control for rotating waves). Consider a peri-
odic orbit, i.e., a rotating wave U(x� ct), of the scalar reaction-diffusion
equation u

t

= u
xx

+ f(u) � cu
x

, with periodic boundary conditions and
the assumptions from Section 1.3.

Then the rotating wave U(x�ct) is also unstable in the equation including
noninvasive control,

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� c⌧, t� ⌧)

�
, (2.2)

for any feedback gain k 2 R and any time delay ⌧ > 0.

As the most important consequence and main result of this chapter, we
conclude that Pyragas control fails to stabilize periodic orbits in scalar
reaction-diffusion equations:

Corollary 2.2 (Failure of Pyragas control for periodic orbits). Con-
sider a time-periodic orbit with minimal period p of the scalar reaction-
diffusion equation u

t

= u
xx

+ f(u)� cu
x

, with periodic boundary condi-
tions and the assumptions from Section 1.3.

Then the periodic orbit is also unstable in the equation including Pyragas
control,

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x, t� np)

�
, (2.3)

for any feedback gain k 2 R and any n 2 N.
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2. Failure of Pyragas control

Note that Corollary 2.2 is included in Theorem 2.1 for a time delay
⌧ = 2⇡n/c, n 2 N.

As a further corollary of Theorem 2.1, we find that Pyragas control also
fails to stabilize unstable equilibria which occur in the case c = 0:

Corollary 2.3 (Failure of Pyragas control for equilibria). Consider an
unstable equilibrium U(x), homogeneous or non-homogeneous, of the sca-
lar reaction-diffusion equation u

t

= u
xx

+ f(u), with periodic boundary
conditions and the assumptions from Section 1.3.

Then the equilibrium U(x) is also unstable in the equation including Pyra-
gas control,

u
t

= u
xx

+ f(u) + k
�
u� u(x, t� ⌧)

�
, (2.4)

for any feedback gain k 2 R and any time delay ⌧ > 0.

Let us now consider unstable homogeneous equilibria, only. In analogy
to Theorem 2.1, the failure of Pyragas control persists also for control
terms using arbitrary spatial delay for homogeneous equilibria:

Theorem 2.4 (Failure of control for homogeneous equilibria). Consider
an unstable homogeneous equilibrium U of the scalar reaction-diffusion
equation u

t

= u
xx

+ f(u) � cu
x

, with periodic boundary conditions and
the assumptions from Section 1.3.

Then the homogeneous equilibrium U is also unstable in the equation
including Pyragas control,

u
t

= u
xx

+ f(u) + k
�
u� u(x� ⇠, t� ⌧)

�
, (2.5)

for any feedback gain k 2 R, any spatial delay ⇠ 2 S1, and any time
delay ⌧ > 0.

The only stable objects in scalar reaction-diffusion equations are homo-
geneous equilibria. Pyragas control destabilizes those objects for large
enough feedback gains:
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2. Failure of Pyragas control

Theorem 2.5 (Pyragas destabilization of homogeneous equilibria). Con-
sider a stable homogeneous equilibrium U of the scalar reaction-diffusion
equation u

t

= u
xx

+ f(u) � cu
x

, with periodic boundary conditions and
the assumptions from Section 1.3. Fix a time delay ⌧ > 0 and a spatial
delay ⇠ 2 S1.

Then there exists a feedback gain k⇤(⌧) 2 R, such that for all k > k⇤(⌧)
the homogeneous equilibrium U is unstable in the equation including
Pyragas control,

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
. (2.6)

All theorems from this section are proven in Chapter 5.

The failure of Pyragas control in the stabilization of equilibria and waves
provides us with information of two kinds: First, any experimental or
numerical stabilization is bound to fail and therefore, we do not need
to try. Second, as we will see in the following section, there is a simple
reason for the failure of Pyragas control. We can therefore try to circum-
vent this problem, once recognized, and create new, successful control
terms. In this thesis the new control terms are constructed using the
control triple as introduced in Section 1.2. They stabilize the equilibria
and waves successfully, see the results in Chapter 3.

2.2. An example of Pyragas control

In this section we illustrate with a simple linear example why Pyragas
control does not stabilize the target equilibria and rotating waves. This is
only an illustration and no proof. The general proof of Theorems 2.1–2.5
follows in Chapter 5.

As an example, consider the following linear reaction-diffusion equation:

u
t

= u
xx

+ u. (2.7)

Before we apply Pyragas control, let us shortly analyze equation (2.7).
No periodic orbits exist, since no advection term is present. We therefore
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2. Failure of Pyragas control

search for equilibria, which are characterized by u
t

⌘ 0. Equilibria are
hence 2⇡-periodic solutions of the ordinary differential equation 0 =

u
xx

+ u. We conclude that all equilibria are frozen waves of the form
A sin(x+ ✓), ✓ 2 S1, where A 2 R is the amplitude of the frozen wave.

We introduce a control term of the form k
�
u � u(x, t � ⌧)

�
. Then the

equation including Pyragas control takes the form

u
t

= u
xx

+ u+ k
�
u� u(x, t� ⌧)

�
, (2.8)

with variable feedback gain k 2 R, and arbitrary but fixed time delay
⌧ > 0.

From Corollary 2.3 it is known that we cannot find any feedback gain
k 2 R such that the control stabilizes the frozen waves of the form
A sin(x+ ✓), for all time delays ⌧ > 0.

In this section we calculate explicitly the eigenvalues of the frozen waves
to determine their stability. We will see that there is always at least one
real positive eigenvalue, hence stabilization is impossible.

Having chosen a linear system, no linearization is necessary, and we can
solve equation (2.8) directly via the Ansatz u(x, t) = g(x)e�t. A formal
justification of the exponential Ansatz can be found in Chapter 4. The
� 2 C are the eigenvalues (for simplicity, we calculate with complex �, it
should be clear, however, that all solutions are real). We then obtain the
following ordinary differential equation, which includes the eigenvalues
� as a parameter:

�g = g
xx

+ g + k
⇣
g � ge��⌧

⌘
. (2.9)

The eigenfunctions are the 2⇡-periodic solutions of equation (2.9). To
find the 2⇡-periodic solutions and hence the eigenvalues �, it is useful to
rearrange equation (2.9) in the following way:

0 = g
xx

+

⇣
��+ 1 + k � ke��⌧

⌘
g. (2.10)

This is the well known pendulum equation with parameters �, ⌧ , and
k. Furthermore, it is also an equation of Hill’s type, where the periodic
coefficient ��+ 1 + k � ke��⌧ is a constant.
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2. Failure of Pyragas control

The 2⇡-periodic solutions of equation (2.10) are given explicitly by the
trigonometric functions sin(Nx) and cos(Nx), N = 0, 1, 2, . . . We there-
fore obtain the following set of characteristic equations:

0 = �N2 � �+ 1 + k � ke��⌧ , N = 0, 1, 2, . . . (2.11)

We next split equation (2.11) into real and imaginary part, where we use
the notation � = µ+ i⌫:

µ = �N2

+ 1 + k
�
1� e�µ⌧

cos(⌫⌧)
�
, N = 0, 1, 2, . . . , (2.12)

⌫ = �ke�µ⌧

sin(⌫⌧). (2.13)

At this point we simplify our illustration to real eigenvalues � = µ. This
is justified, since the second equation (2.13) is always fulfilled if we choose
⌫ = 0. (Note, however, that complex conjugated eigenvalues do exist!)
To prove instability, it suffices to show the existence of at least one real
and strictly positive eigenvalue.

Therefore, we search for the corresponding real eigenvalues µ determined
by equation (2.12) where we have simplified cos(⌫⌧) = 1:

µ = �N2

+ 1 + k
�
1� e�µ⌧

�
, N = 0, 1, 2, . . . (2.14)

Using this equation, we can calculate directly which feedback gain k has
to be applied to obtain a given real eigenvalue µ:

k
N

(µ) =
µ� 1 +N2

1� e�µ⌧

, N = 0, 1, 2, . . . (2.15)

Now we are almost done: It is sufficient to consider the case N = 0,
which is depicted in red in Figure 2.1.

For N = 0 we find a pole at µ = 0 because the denominator 1� e�µ⌧ is
zero. Therefore, it is impossible for the real eigenvalues µ to cross zero
for a finite feedback gain k.

Moreover, we can indeed find real positive eigenvalues µ for every feed-
back gain k 2 R. Observe that for µ & 0, k

0

approaches �1, while in the
limit µ ! +1, we find that k

0

approaches +1. In between, k
0

(µ) is con-
tinuous and strictly monotonically increasing. Hence, k

0

: (0,1) ! R
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Figure 2.1.: The feedback gain k (vertical axis) plotted versus the real
eigenvalues µ (horizontal axis). The time delay is ⌧ = 0.5.
Note that for every feedback gain k 2 R we obtain strictly
positive eigenvalues for N = 0 (red curve), which excludes
stabilization. The curves for N � 1 are blue.

is a bijective function. We can conclude that there exists a positive real
eigenvalue µ for all feedback gains k 2 R.

Therefore, stabilization is indeed impossible and it must be our topmost
priority to avoid poles at µ = 0 as in equation (2.15).

Remark. For N = 1 we find a trivial eigenvalue µ = 0 of multiplicity
two for all feedback gains k: All eigenfunctions are frozen waves of the
form A sin(x+✓), A 2 R, ✓ 2 [0, 2⇡]. These eigenvalues µ = 0 reflect both
the S1-equivariance (as in the parameter ✓) and the linearity (as in the
parameter A) of equation (2.7). In nonlinear equations generally only one
trivial eigenvalue at µ = 0 persists, which reflects the S1-equivariance.
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2.3. Comparison with ordinary differential
equations

In this section we compare the limitations that we have just discovered
to well-known restrictions of Pyragas control for ordinary differential
equations.

This is important for two reasons: First, we want to put our results
in perspective with well-known results on Pyragas control to emphasize
their importance in the general context of feedback control. Our results
are not stand-alone results, they fit into the larger framework of the few
analytical results on Pyragas control which exist up to date. Second,
we want to see the close connection between the odd-number limitation
and our results – the reason of failure of Pyragas control is the same
in both cases, even though the odd-number limitation has been formu-
lated for non-autonomous ordinary differential equations and we consider
reaction-diffusion equations. This is an important step on the path to
the ultimate goal to find conditions for the success and failure of Pyragas
control for general dynamical systems.

Before we turn our discussion to the odd-number limitation, which is the
main objective of this section, let us briefly mention that there exists an
interesting approach by Just et al. [37]. They discuss under which con-
ditions periodic orbits in non-autonomous ordinary differential equations
can be stabilized by Pyragas control. Their results may be summarized
as “only orbits with a finite torsion can be stabilized” [37]. “Finite tor-
sion” can be translated to complex, non-real eigenvalues. In our case, we
have at least one real, positive eigenvalue, excluding stabilization from
the point of view taken by Just et al. However, since no precise formula-
tion is presented by Just et al., a detailed comparison of our results with
theirs is difficult.

Similar restrictions on eigenvalues are known for non-autonomous or-
dinary differential equations, subject to control of Pyragas type. This
restriction is called the odd-number limitation. It is not our purpose
to enter the interesting historical discussion related to the odd-number
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2. Failure of Pyragas control

limitation. For a short summary and some remarks, see Section 1.1.

For the purpose of comparison, let us cite the odd-number limitation
for non-autonomous equations, as it was correctly stated and proven by
Nakajima in [52]. We assume that f(u, t) is p-periodic with respect to t,
and that there exists a time t⇤ < p such that f(u, 0) 6= f(u, t⇤).

Theorem 2.6 (Odd-number limitation, Nakajima [52]). If the linear
variational equation of the non-autonomous ordinary differential equa-
tion

u̇(t) = f(u(t), t), (u 2 Rn

) (2.16)

about the target hyperbolic unstable periodic orbit U(t) with period p,

v̇(t) = Df
�
U(t), t

�
v(t), (2.17)

has an odd number of real Floquet multipliers greater than unity, then
the unstable periodic orbit U(t) can never be stabilized by the delayed
feedback control

u̇(t) = f(u(t), t) + k
�
u(t)� u(t� p)

�
(2.18)

for any value of the feedback gain k, where k 2 Rn⇥n.

Most importantly, the characteristic equation of hyperbolic orbits in non-
autonomous systems does not possess any Floquet multiplier on the unit
circle. Furthermore, it is assumed that the number of real Floquet multi-
pliers greater than unity is odd, hence the name “odd-number limitation”.

Let us relate our simple example to the odd-number limitation. For the
Floquet exponents these conditions mean that the characteristic equation
does not possess any purely imaginary eigenvalues and that the number
of real, strictly positive Floquet exponents is odd. The Floquet expo-
nents correspond to the eigenvalues � which we have calculated explicitly
in the previous section for our simple example.

In the example from Section 2.2, we have an infinite number of indepen-
dent characteristic equations of the form (without control)

� = �N2

+ 1, N = 0, 1, 2, . . . , (2.19)
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2. Failure of Pyragas control

which are simple for N = 0 and double for N � 1. If only one of
these equations fulfills the conditions of the odd-number limitation, then
stabilization is ruled out by the odd-number limitation.

Since the eigenvalue for N = 0 is simple, real, and positive (� = 1), the
conditions of the odd-number limitation are indeed fulfilled. Therefore,
we cannot hope to stabilize the frozen waves from the example in Section
2.2. This is in accordance with our general Theorems 2.1 – 2.4.

We will see in Chapter 4 that scalar reaction-diffusion equations of the
form u

t

= u
xx

+f(u)�cu
x

indeed always possess exactly one isolated real
and positive eigenvalue. Furthermore, we will prove in Chapter 5 that
stabilization by Pyragas control is indeed always impossible, as already
suggested (but not rigorously proven) by the odd-number limitation.

32



Chapter 3

Success of the

control triple method

In this chapter we control equilibria and waves in scalar reaction-diffu-
sion equations. We present results for two new types of spatio-temporal
control terms, which have been introduced in Section 1.4 using the con-
trol triple method. We distinguish between control schemes of rotation
and reflection type. Both control types successfully stabilize equilibria
and waves.

In Section 3.1 we state the main result of this thesis – the success of
the control triple method. In Theorem 3.1 we state the conditions under
which a control term of rotation type successfully stabilizes frozen and
rotating waves in scalar reaction-diffusion equations. We find that a sign
change in the output signal successfully stabilizes the frozen and rotating
waves. This is achieved by a spatio-temporal delay corresponding to
half the spatial period. In contrast, those control terms which use full
spatial periods and consequently no sign change of the output signal fail
to stabilize equilibria and waves, see Theorem 3.2. In Theorem 3.3 we
state conditions under which a control term of rotation type successfully
stabilizes the homogeneous zero equilibrium.

We then turn to control terms of reflection control type. Here we distin-
guish between even and odd waves. We can stabilize odd waves (twisted
standing waves), since the reflection in space implies a sign change of the
output signal, see Theorem 3.4. However, even waves (standing waves)
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3. Success of the control triple method

cannot be stabilized, since the reflection in space gives no sign change
of the output signal, see Theorem 3.5. In Theorem 3.6 we stabilize the
homogeneous zero equilibrium using reflections in space.

In Section 3.2 we use the same linear example as in Chapter 2 to illustrate
the successful control mechanisms for both control types.

Finally, in Section 3.3 we compare our control mechanism to the mech-
anism of Pyragas control applied to an unstable focus. Here we find
a surprising analogy between the time delay of Pyragas control and
the spatio-temporal delay of the control triple method. Furthermore,
we compare the concept of control triples to the concept of equivariant
Pyragas control which has been successfully used for ordinary differential
equations with a similar outcome.

3.1. Results

In this section we consider scalar reaction-diffusion equations of the form

u
t

= u
xx

+ f(u)� cu
x

, (3.1)

with all the assumptions stated in Section 1.3. We remember that all
periodic orbits are rotating waves. The equilibria are either homogeneous
equilibria or frozen waves. Both the rotating and frozen waves are always
unstable.

We present our results in two subsections, depending on their control
type: Results on controls of rotation type are stated in Subsection 3.1.1,
while results on controls of reflection type can be found in Subsection
3.1.2.

3.1.1. Control schemes of rotation type

Control schemes of rotation type combine a sign change in the output
signal, a rotation in space, and a time delay. The following theorems
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3. Success of the control triple method

state the conditions under which the new control terms of rotation type
are successful. In particular a transformation  6= 1 of the output signal
is crucial for the success of a particular control term.

Theorem 3.1 (Successful stabilization of odd rotating and frozen waves).
Consider a rotating or frozen wave U(x�ct) = U(z) with minimal spatial
period 2⇡/n of the scalar reaction-diffusion equation u

t

= u
xx

+ f(u) �
cu

x

, with periodic boundary conditions and the assumptions from Section
1.3. Additionally, assume f(u) = �f(�u) and suppose that the rotating
or frozen wave is odd, U(z) = �U(z � ⇡/n), with unstable dimension
2n� 1.

Then there exists a feedback gain k⇤ 2 R such that the following holds:

For all k < k⇤, there exists a time delay ⌧⇤ = ⌧⇤(k) such that the rotating
or frozen wave U(x� ct) = U(z) is stable in the controlled equation

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� (�1)u(x� ⇠, t� ⌧)

�
, (3.2)

where the spatial delay ⇠ and the temporal delay ⌧ < ⌧⇤ are related via

⇠ � c⌧ = m⇡/n, (3.3)

where m is odd and co-prime to n.

In some special cases such as for linear systems or if all eigenvalues of
the uncontrolled equation are known a priori, we can state more precise
conditions, on the feedback gain k⇤ as well as on the time delay ⌧⇤. We
will discuss these cases during the proof in Chapter 5.

We have seen in the previous theorem that stabilization is possible when-
ever the spatial delay ⇠ and the temporal delay ⌧ are related via ⇠�c⌧ =

m⇡/n, where m is odd and co-prime to n. However, control fails when-
ever m is even:

Theorem 3.2 (Failure of control for rotating and frozen waves). Con-
sider a rotating or frozen wave U(x�ct) = U(z) with minimal spatial pe-
riod 2⇡/n of the scalar reaction-diffusion equation u

t

= u
xx

+f(u)�cu
x

,
with periodic boundary conditions and the assumptions from Section 1.3.
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3. Success of the control triple method

Then the rotating or frozen wave U(x � ct) = U(z) is also unstable in
the equation including noninvasive control,

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
, (3.4)

for any feedback gain k 2 R, where the spatial delay ⇠ and the temporal
delay ⌧ are related via

⇠ � c⌧ = m⇡/n, m 2 Z, m even. (3.5)

Remark. Theorem 3.2 also contains Pyragas control (⌧ = p) as a special
case.

Using the full control triple, stabilization of the homogeneous zero equi-
librium can be successfully achieved. In this rather special case the
transformation of the output signal is not just limited to a sign change,
but can be a multiplication with any real number.

Theorem 3.3 (Successful stabilization of the zero equilibrium). Con-
sider the homogeneous zero equilibrium of the scalar reaction-diffusion
equation u

t

= u
xx

+ f(u) � cu
x

, with periodic boundary conditions and
the assumptions from Section 1.3.

Choose some real number  6= 1 and a spatial delay ⇠ � 0. If the feedback
gain k 2 R fulfills the condition

k
�
1� cos(⇠N)

�
< N2 � f 0

(0) for all N 2 N, (3.6)

and if the time delay ⌧ � 0 is small enough, then the homogeneous zero
equilibrium is stable in the equation including control,

u
t

= u
xx

+ f(u) + k
�
u� u(x� ⇠, t� ⌧)

�
. (3.7)

In particular, if  = 0, then the zero equilibrium is stable for k < �f 0
(0).

Remark. In principle, it is possible to stabilize every homogeneous equi-
librium U , because we can shift it to be the zero equilibrium. To see this,
we define U := u� U and apply control as follows:

U
t

= U
xx

+ f(U + U) + k
�
U � U(x� ⇠, t� ⌧)

�
. (3.8)
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3. Success of the control triple method

Retransforming u = U + U , and using  6= 1, we obtain

u
t

= u
xx

+ f(u) + k
�
u� u(x� ⇠, t� ⌧)� (1� )U

�
. (3.9)

To summarize, the control triple method of rotation type stabilizes equi-
libria and waves successfully if a transformation of the output signal is
included. This can be achieved for a half-period feedback scheme or in
the case of the homogeneous zero equilibrium where we use additional
information on the equilibrium. A full-period feedback scheme fails sta-
bilization, as already indicated by the limitations of Pyragas control
discussed in Chapter 2.

3.1.2. Control schemes of reflection type

Control terms of reflection type combine a sign change in the output
signal, a reflection in space and a time delay. Because of the reflection in
space, we only consider frozen waves here. A moving reference point and
hence a mixture of rotation and reflection would be necessary to tackle
rotating waves. See Chapter 8 for a short discussion. The conditions for
successful control are stated in the following theorem.

Theorem 3.4 (Successful stabilization of twisted standing waves). Con-
sider a twisted standing wave U(x) = �U(�x) of the scalar reaction-
diffusion equation u

t

= u
xx

+f(u), with f(u) = �f(�u), periodic bound-
ary conditions and the assumptions from Section 1.3.

Suppose that the unstable dimension of the twisted standing wave is ex-
actly one.

If the feedback gain k fulfills

k < �
✓

max

x2[0,2⇡]
f 0
(U(x))

◆�
2, (3.10)

then there exists a time delay ⌧⇤ = ⌧⇤(k) such that the following holds:
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3. Success of the control triple method

The twisted standing wave U(x) = �U(�x) is stable in the equation
including control,

u
t

= u
xx

+ f(u) + k
�
u� (�1)u(�x, t� ⌧)

�
. (3.11)

for all 0  ⌧ < ⌧⇤(k).

Roughly speaking, Theorem 3.4 asserts that twisted standing waves can
be stabilized under certain assumptions. Frozen waves with an even
symmetry, i.e., standing waves, however, behave differently and they
cannot be stabilized by the same method:

Theorem 3.5 (Failure of stabilization of standing waves). Consider a
standing wave U(x) = U(�x) of the scalar reaction-diffusion equation
u
t

= u
xx

+ f(u), with periodic boundary conditions and the assumptions
from Section 1.3.

Then the standing wave U(x) is also unstable in the equation including
control,

u
t

= u
xx

+ f(u) + k
�
u� u(�x, t� ⌧)

�
, (3.12)

for any feedback gain k 2 R and any time delay ⌧ � 0.

The homogeneous zero equilibrium can be interpreted as a twisted stand-
ing wave. This already indicates that stabilization is possible. We can
now state the analog of Theorem 3.3.

Theorem 3.6 (Successful stabilization of the zero equilibrium). Con-
sider the homogeneous zero equilibrium of the scalar reaction-diffusion
equation u

t

= u
xx

+ f(u), with periodic boundary conditions and the
assumptions from Section 1.3.

Choose some real number  6= 1 and a time delay ⌧ � 0.

If the feedback gain k 2 R fulfills the condition

k
�
1� e�µ⌧

�
< µ� f 0

(0) for all µ > 0, (3.13)
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3. Success of the control triple method

as well as the condition
|k ⌧ | < 1, (3.14)

and if the unstable dimension of the zero equilibrium is exactly one, then
the homogeneous zero equilibrium is stable in the equation including con-
trol,

u
t

= u
xx

+ f(u) + k
�
u� u(�x, t� ⌧)

�
. (3.15)

In particular, if  = 0, then the zero equilibrium is stable for k < �f 0
(0).

Summarizing Theorems 3.1–3.6, we note that a transformation of the
output signal is essential for a successful control. In our scalar case
transformation is mostly a sign change achieved by an odd symmetry,
either by rotations in space or by reflections in space. In the rather
special case of the zero equilibrium, more choices are possible.

Note that Pyragas control does not include any transformation of the
output signal and only the control triple method introduced in this dis-
sertation takes such a general viewpoint.

3.2. Two examples of the control triple method

In this section we present two examples to illustrate why the control
triple method succeeds. Both examples are only illustrations without
proofs. We emphasize the crucial difference between the two new control
schemes and Pyragas control in Chapter 2. The proof for control schemes
of rotation type follows in Chapter 5, and the proof for control schemes
of reflection type follows in Chapter 6.

3.2.1. Control schemes of rotation type

As in Chapter 2, consider the following linear equation as an example:

u
t

= u
xx

+ u. (3.16)
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3. Success of the control triple method

Previously, we have already analyzed equation (3.16). We found that
there do not exist any periodic orbits which are not equilibria and that
all equilibria are frozen waves of the form U(x) = A sin(x + ✓), ✓ 2 S1,
A 2 R. See Chapter 2 for a detailed discussion.

Let us now investigate the stability of the frozen waves U(x) in the
following equation including control:

u
t

= u
xx

+ u+ k
�
u� (�1)u(x� ⇡, t� ⌧)

�
. (3.17)

We use a sign change of the output signal “(�1)”, a spatial delay ⇡, and
an arbitrary time delay ⌧ � 0. It is straightforward to check that this
control term is indeed noninvasive on all frozen waves.

Again, since the equation is linear, no linearization is needed, and we
can solve equation (3.17) directly via the Ansatz u(x, t) = g(x)e�t. We
then obtain the following equation:

�g = g
xx

+ g + k
⇣
g + e��⌧g(x� ⇡)

⌘
. (3.18)

Note that the spatial and the temporal delay behave differently: The
temporal delay gives an exponential term in �. In contrast, the spatial
delay results in a delay in equation (3.18), making it a delay differential
equation. Again, we obtain an equation of Hill’s type with a constant
coefficient, but this time with an additional delay.

Since the delay differential equation (3.18) is linear, we solve it via an
exponential Ansatz, g(x) = e⌘x, ⌘ 2 C. For a detailed discussion of the
mathematical details at this step see Chapter 5.

Similarly to Chapter 2, we only search for periodic solutions of (not
necessarily minimal) period 2⇡. These solutions are the eigenfunctions
and we are interested in the question for which � there exist such so-
lutions. Solutions of period 2⇡ can only be expected for ⌘ = ±iN . As
characteristic equations we obtain

� = �N2

+ 1 + k
⇣
1 + e��⌧±i⇡N

⌘
, N = 0, 1, 2, . . . (3.19)
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3. Success of the control triple method

We can split equation (3.19) into real and imaginary part, where we use
again the convenient notation � = µ+ i⌫:

µ = �N2

+ 1 + k
�
1 + e�µ⌧

cos(⌫⌧ ± ⇡N)

�
, N = 0, 1, 2, . . . (3.20)

⌫ = ke�µ⌧

sin(⌫⌧ ± ⇡N), N = 0, 1, 2, . . . (3.21)

Now two cases occur, one for N even and one for N odd, respectively:
If N is even, equations (3.20) and (3.21) simplify to

µ = �N2

+ 1 + k
�
1 + e�µ⌧

cos(⌫⌧)
�
, N = 0, 2, 4, . . . (3.22)

⌫ = ke�µ⌧

sin(⌫⌧), (3.23)

and if N is odd, equations (3.20) and (3.21) simplify to

µ = �N2

+ 1 + k
�
1� e�µ⌧

cos(⌫⌧)
�
, N = 1, 3, 5, . . . (3.24)

⌫ = �ke�µ⌧

sin(⌫⌧). (3.25)

In both cases the second equation is fulfilled for ⌫ = 0. In analogy
to Chapter 2, it is therefore justified to search for the corresponding
real eigenvalues µ determined by the first equations. No proof could
be finished by only regarding real eigenvalues. However, since the cru-
cial difference to Pyragas control lies only in the real eigenvalues, and
not in the complex eigenvalues, we leave the discussion of the complex
eigenvalues to the general proof in Chapter 5.

The simplified equations for the real eigenvalues µ read

µ = �N2

+ 1 + k
�
1 + e�µ⌧

�
, N = 0, 2, 4, . . . (3.26)

for N even, and

µ = �N2

+ 1 + k
�
1� e�µ⌧

�
, N = 1, 3, 5, . . . (3.27)

for N odd. From these equations we directly calculate which feedback
gain k 2 R has to be applied to reach a specific real eigenvalue µ. We
obtain the two functions

k
N

(µ) =
µ� 1 +N2

1 + e�µ⌧

, N = 0, 2, 4, . . . (3.28)
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Figure 3.1.: Control of rotation type: The values of the feedback gain k
(vertical axis), plotted versus the real eigenvalues µ (horizon-
tal axis). The time delay is ⌧ = 0.5. Note that for k < �0.5
all nontrivial real eigenvalues are strictly negative. This is a
strong indication that the control is indeed successful. The
curve for N = 0 is red, while all curves for N � 1 are blue.
Curves corresponding to even N are dashed.

for N even, and

k
N

(µ) =
µ� 1 +N2

1� e�µ⌧

, N = 1, 3, 5, . . . (3.29)

for N odd. Note that the “+”-sign in the denominator occurs for N even,
and the “�”-sign (as known from Pyragas control) occurs for N odd.

In particular – and this is the crucial difference to the control scheme of
Pyragas – the “+”-sign in the denominator occurs for N = 0, which was
problematic in the Pyragas case.
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3. Success of the control triple method

For the control triple method, the eigenvalue curve for N = 0 indeed
crosses zero for k = �0.5. This curve is red and dashed in Figure 3.1.
For k < �0.5 all real eigenvalues (except the trivial one) are strictly
negative.

Assuming that all complex conjugated eigenvalues also have strictly neg-
ative real part (we postpone this to the proof in Chapter 5), we have
shown that, indeed, our new control scheme, which uses the full control
triple, successfully stabilizes the frozen waves in our example.

Remark. In contrast to Pyragas control, the control is also successful
for ⌧ = 0. All eigenvalues are then real and the eigenvalues only cross
zero if N is even, simplifying the calculations to

k
N,N even

(µ) = 1

2

�
µ� 1 +N2

�
. (3.30)

We can conclude that for ⌧ = 0, control is indeed always possible for
k < �0.5.

3.2.2. Control schemes of reflection type

In this section we consider again the example reaction-diffusion equation

u
t

= u
xx

+ u. (3.31)

Remember that only frozen waves exist and that they are all of the form
U(x) = A sin(x + ✓), ✓ 2 S1, A 2 R. See Chapter 2 for a detailed
discussion.

In this section let us select the frozen wave with ✓ = 0. Then U(x) =

A sin(x) = �A sin(�x) = �U(�x), i.e., the frozen wave is odd with
respect to the reference point at x = 0.

For such an odd wave, we consider the following equation including
spatio-temporal feedback control of reflection type,

u
t

= u
xx

+ u+ k
�
u� (�1)u(�x, t� ⌧)

�
. (3.32)
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Again, we have used a sign change in the output signal “(�1)”. Further-
more, we have used a reflection in the space coordinate “(�x)” and an ar-
bitrary time delay ⌧ � 0. Note that the control term k

�
u�(�1)u(�x, t�

⌧)
�

is noninvasive only on waves which are odd functions with respect
to the reference point x = 0. The respective waves are U(x) = A sin(x)
and U(x) = A sin(x+ ⇡).

To calculate the eigenvalues and eigenfunctions, let us solve equation
(3.32) by the Ansatz u(x, t) = g(x)e�t. We then obtain the following
differential equation:

�g = g
xx

+ g + k
⇣
g + g(�x)e��⌧

⌘
. (3.33)

The eigenfunctions are the 2⇡-periodic solutions of equation (3.33). In
Chapter 6 we prove the following: If there exist nontrivial 2⇡-periodic
solutions of equation (3.33), then there also exist nontrivial periodic so-
lutions which are either even or odd. Therefore, we can reduce our search
for periodic solutions to the search for odd or even periodic solutions.

Let us first search for even eigenfunctions g(x) = g(�x). We then obtain
the ordinary differential equation

�g = g
xx

+ g + k
⇣
g + ge��⌧

⌘
, (3.34)

which is a pendulum equation. It is also an equation of Hill’s type with
the constant coefficient �� + 1 + k + ke��⌧ . The 2⇡-periodic solutions
of equation (3.34) are given explicitly by sin(Nx) and cos(Nx), N 2
N. However, only solutions of the form cos(Nx) matter for the Ansatz
g(x) = g(�x). As characteristic equations we obtain

� = �N2

+ 1 + k
⇣
1 + e��⌧

⌘
, N = 0, 1, 2, . . . (3.35)

Characteristic equations of this form are already known from the previ-
ous section. In the same way as before, we calculate the feedback gain
k 2 R necessary to obtain a given real eigenvalue µ,

k
N

(µ) =
µ� 1 +N2

1 + e�µ⌧

, N = 0, 1, 2, . . . (3.36)
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Figure 3.2.: Control of reflection type: The values of the feedback gain
k
N

(vertical axis), plotted versus the real eigenvalues µ (hor-
izontal axis). The time delay is ⌧ = 0.5. Note that for
k < �0.5 all real eigenvalues are strictly negative. This is a
strong indication that the control is indeed successful. The
curve for N = 0 is red, while all curves for N � 1 are blue.
The solid lines are eigenvalues belonging to odd eigenfunc-
tions, while the dashed lines give eigenvalues corresponding
to even eigenfunctions.

The corresponding curves cross zero for k
N

(0) = (N2 � 1)/2. In Figure
3.2 the curves corresponding to even eigenfunctions are dashed. The
curve for N = 0 is red, the curves for N � 1 are blue.

We next consider odd eigenfunctions g(x) = �g(�x). In this case, we
can simplify equation (3.33) as follows:

�g = g
xx

+ g + k
⇣
g � ge��⌧

⌘
. (3.37)
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Again, we have obtained a pendulum equation and the periodic solutions
are given explicitly by sin(Nx) and cos(Nx), N 2 N. Here only solutions
of the type sin(Nx) for N � 1 matter, since we search for odd solutions.

Plugging in the explicit solutions, we obtain the characteristic equations

� = �N2

+ 1 + k
⇣
1� e��⌧

⌘
, N = 1, 2, 3, . . . (3.38)

Note that the difference between equation (3.35) and equation (3.38) lies
only in the sign of the exponential term ±e��⌧ . Again, we calculate for
real eigenvalues µ:

k
N

(µ) =
µ� 1 +N2

1� e�µ⌧

, N = 1, 2, 3, . . . (3.39)

In Figure 3.2 the corresponding curves for N � 1 are blue and solid. Most
importantly, there does not exist any curve with denominator 1 � e�µ⌧

for N = 0. Therefore, stabilization is indeed successful for k < �0.5.
The proof, including information on the complex eigenvalues, will be
finished in Chapter 6.

3.3. Comparison with ordinary differential
equations

In this section we compare the control triple method to variations of
Pyragas control which have been applied in the context of ordinary dif-
ferential equations. Again, it is possible to see our results in the larger
framework of delayed feedback control.

There are close connections between our work and Pyragas control and
its variations – the reasons for success and failure of control are the same
in the context of equivariant Pyragas control and in the context of Pyra-
gas control of an unstable focus. Therefore, our results add to the few
analytical results on Pyragas control, bringing us closer to understanding
the control mechanisms and ultimately finding general successful delayed
feedback control schemes for all dynamical systems.
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3.3.1. Pyragas control of an unstable focus

It may be a surprise that we now compare the control triple method to
standard Pyragas control of an unstable focus: The control triple method
uses transformations in the output signal, space, and time, while stan-
dard Pyragas control only uses time delay. However, there are interesting
parallels and the symmetry of the unstable focus combined with a spe-
cific time delay achieves the same effect as our control triple. It seems
therefore appropriate to discuss shortly the mechanism of Pyragas con-
trol of an unstable focus. Here we follow the approach by Hövel and
Schöll [34].

Let us consider the equilibrium u
1

⌘ u
2

⌘ 0 of the dynamical system

u̇
1

= au
1

+ bu
2

, (3.40)
u̇
2

= �bu
1

+ au
2

, (3.41)

where a and b 6= 0 are real parameters, u
1

, u
2

2 R. If a < 0 the trivial
equilibrium is a stable focus. We do not consider this case here. If a = 0,
the equilibrium is a center with an eigenfrequency 1/T

0

determined by
the parameter b 6= 0 via the period T

0

= 2⇡/b. The equilibrium is an
unstable focus if a > 0, which we assume throughout this section. The
eigenfrequency is again determined by b/(2⇡), even though the focus has
no closed periodic orbits.

To stabilize the unstable focus, feedback control of Pyragas type is ap-
plied as follows:

u̇
1

= au
1

+ bu
2

+ k
�
u
1

(t)� u
1

(t� ⌧)
�
, (3.42)

u̇
2

= �bu
1

+ au
2

+ k
�
u
1

(t)� u
2

(t� ⌧)
�
. (3.43)

The feedback gain k is real, and the time delay ⌧ > 0 can be chosen
arbitrarily. The control is then noninvasive on the trivial equilibrium
u
1

⌘ u
2

⌘ 0. In the following, we want to determine for which time
delays ⌧ > 0 there exist feedback gains k 2 R such that Pyragas control
stabilizes the unstable focus.

47



3. Success of the control triple method

Using an exponential Ansatz to determine the stability of the equilibrium
u
1

⌘ u
2

⌘ 0 in the coupled equations (3.42) and (3.43) including control,
we find the characteristic equation

� = a± ib+ k
⇣
1� e�⌧

⌘
. (3.44)

Let us split the characteristic equation into real and imaginary part.
Using again the notation � = µ+ i⌫ we find

µ = a+ k
�
1� e�µ⌧

cos(⌫⌧)
�

(3.45)
⌫ = ±b� ke�µ⌧

sin(⌫⌧). (3.46)

These equations are very familiar to us, compare with equations (2.12)
and (2.13) as well as with equations (3.20) and (3.21). The main dif-
ference is given by the parameter b. Since b 6= 0, we do not find real
eigenvalues for ⌫ = 0. However, we find complex conjugate eigenvalues
with ⌫ = ±b if sin(⌫⌧) = 0. This is the case if ⌫⌧ = b⌧ = n⇡, n 2 N. It
follows that ⌧ = n⇡/b.

Let us first assume that n is even, for simplicity assume that n = 2.
Then ⌧ = T

0

, i.e., the “period”. In this case, cos(⌫⌧) = 1. The equation
for the real part µ simplifies to

µ = a+ k
�
1� e�µ⌧

�
, (3.47)

with ⌧ = T
0

. This equation is already known from Pyragas control
in Chapter 2, equation (2.14), if we define a := 1 � N2. Therefore,
stabilization of the focus is impossible. The same holds for all time
delays which are integer multiples of T

0

.

Now assume that n is odd, more specifically, assume n = 1. In this case,
⌧ = T

0

/2, i.e., half the “period”, and cos(⌫⌧) = �1. The equation for the
real part µ simplifies to

µ = a+ k
�
1 + e�µ⌧

�
, (3.48)

with ⌧ = T
0

/2. This equation is known from the control schemes of
rotation type, where we have used a spatial delay of half the period,
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3. Success of the control triple method

see Section 3.2.1, equation (3.26). We have seen that stabilization is
successful for such characteristic equations.

In Figures 3.3 and 3.4 the green curves give the real parts of the complex
eigenvalues � from the characteristic equation (3.44). The plots are
calculated using the well-known Lambert W function. As in [34] we have
plotted the eigenvalues for varying time delay but for a fixed feedback
gain k 2 R. This is a very interesting point of view:

In Figure 3.3 we compare these eigenvalue curves from the controlled
focus (green curves) with the curves (2.11) obtained in Chapter 2, i.e.,
Pyragas control applied to a scalar reaction-diffusion equation (red and
orange curves for N = 0). To compare, we need to choose a = 1.
Furthermore, we have chosen b = ⇡ and therefore T

0

= 2. We see that a
time delay of a full “period” T

0

is not successful, and the integer multiples
⌧ = nT

0

, n 2 N, correspond to the local maxima of the eigenvalue curves.
Note that the red curve, indicating the failure of Pyragas control for
scalar reaction-diffusion equations, and the green curve meet exactly in
those local maxima at ⌧ = nT

0

.

In Figure 3.4 we compare the eigenvalue curves from the controlled focus
to the eigenvalue curves from the example in Section 3.2.1 with a spatial
delay of half a spatial period (red and orange curves for N = 0). We
see that Pyragas control of an unstable focus is successful for a time
delay ⌧ which is half the “period” T

0

. The eigenvalue curve even reaches
a global minimum for this specific half-period time delay. Note that
this minimum eigenvalue coincides with the eigenvalue obtained by the
control triple method with a spatial delay of half a spatial period (red
curve).

Furthermore, note that the red curve, corresponding to the control triple
method, always yields smaller or at least equal eigenvalues. The red curve
and the green curve meet exactly in the local minima at ⌧ =

2n+1

2

T
0

.
In a certain sense, minimizing the eigenvalues, the control triple method
can be seen as an optimum control method for this type of characteristic
equations.
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Figure 3.3.: Real parts µ of the eigenvalues � versus time delay ⌧ for a
feedback gain k = �0.6, and parameters a = 1, b = ⇡. The
green curves are the eigenvalues of a controlled focus with
“period” T

0

= 2 (dark green: main branch of the Lambert W
function, light green: second branch). We compare with the
control triple method from Section 3.2.1: The red and orange
curves give the eigenvalues of the waves in u

t

= u
xx

+ u
(only the curves corresponding to N = 0). The blue dots at
⌧ = 0, 2, 4, 6, 8 denote the local maxima of µ of the controlled
focus. Exactly at these points, the control triple method
gives the same eigenvalues.

As an interesting byproduct, Hövel and Schöll [34] found numerically
that, after some time, the output signal and the delayed output signal of
the focus are in anti-phase if the time delay is chosen to be half the “pe-
riod” ⌧ = T

0

/2. Remarkably, the symmetry which we have constructed in
space with spatio-temporal control terms can therefore also occur using
only Pyragas control with a very specific time delay!

We have also learned that the important term for stabilization is the
term in front of the exponential e��⌧ .
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Figure 3.4.: Real parts µ of the eigenvalues � versus time delay ⌧ for a
feedback gain k = �0.6, and parameters a = 1, b = ⇡. The
green curves are the eigenvalues of a controlled focus with
“period” T

0

= 2 (dark green: main branch of the Lambert W
function, light green: second branch). We compare with the
control triple method from Section 3.2.1: The red and orange
curves give the eigenvalues of the waves in u

t

= u
xx

+ u
(only the curves corresponding to N = 0). The blue dots at
⌧ = 1, 3, 5, 7 denote the local minima of µ of the controlled
focus. Exactly at these points, the control triple method
gives the same eigenvalues.

In conclusion, choosing a spatial delay of half the spatial period in scalar
reaction-diffusion equations has the same effect as choosing a time delay
which is half the “period” T

0

of the unstable focus.

In summary, we have found a surprising analogy between the spatial de-
lay in reaction-diffusion equations and the eigenfrequency of an unstable
focus in ordinary differential equations.
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3. Success of the control triple method

3.3.2. Equivariant Pyragas control

In this section we want to compare the new control triple method for par-
tial differential equations with equivariant Pyragas control for ordinary
differential equations. No space is present in ordinary differential equa-
tions, therefore equivariant Pyragas control only transforms the output
signal and time.

The half-period feedback scheme, introduced by Nakajima and Ueda in
[53], was the first step in the direction of equivariant Pyragas control.
It was explored in more detail by Fiedler et al. in [16]. Originally, the
purpose of the half-period feedback scheme was to overcome the odd-
number limitation [52].

In this section let us concentrate on the half-period feedback scheme
by Fiedler et al. [16]. Their scheme is designed for the stabilization of
two coupled Stuart-Landau oscillators in anti-phase. We will see that
stabilization with the equivariant scheme is successful, while standard
Pyragas control fails.

Consider the coupled oscillator system

u̇
1

= F (u
1

) + a (u
2

� u
1

) (3.49)
u̇
2

= F (u
2

) + a (u
1

� u
2

) , (3.50)

where u
1

, u
2

2 R2 ⇠
=

C, with diffusive coupling constant 0 < a < 1/⇡,
and dynamics

F (u) =
�
⇤+ i + �|u|2

�
u, (3.51)

where ⇤ 2 R is a bifurcation parameter and � 2 C is the spring constant.
For all parameter values, there is a trivial zero equilibrium u

1

⌘ u
2

⌘
0. In-phase Hopf bifurcation occurs at ⇤ = 0, and anti-phase Hopf
bifurcation occurs at ⇤ = 2a. To see this, it is convenient to use the
coordinates

u
+

=

1

2

(u
1

+ u
2

) (average) (3.52)
u� =

1

2

(u
1

� u
2

) (asynchrony). (3.53)
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3. Success of the control triple method

Then the dynamics in the in-phase subspace U
+

:= {(u
+

, u�) |u� = 0}
reduces to

u̇
+

= F (u
+

) =

�
⇤+ i + �|u

+

|2
�
u
+

, (3.54)

i.e., the normal form of an Hopf bifurcation. The Hopf bifurcation is
subcritical for Re � > 0, and supercritical for Re � < 0. The period p

+

of the bifurcating in-phase orbit is given explicitly by

p
+

=

2⇡

1� ⇤ Im �/Re �
. (3.55)

Conversely, in the anti-phase subspace U� := {(u
+

, u�) |u+ = 0} the
dynamics reduces to

u̇� = F (u�)� 2au� =

�
⇤+ i + �|u�|2

�
u� � 2au�, (3.56)

where the normal form of an Hopf bifurcation is shifted by 2a. Again,
the Hopf bifurcation is subcritical for Re � > 0, and supercritical for
Re � < 0. The period p� of the bifurcating anti-phase orbit is given
explicitly by

p� =

2⇡

1� (⇤� 2a) Im �/Re �
. (3.57)

Both the in-phase and the anti-phase subspace are dynamically invariant
subspaces.

Let us now introduce half-period feedback control as in [16] with the aim
of stabilizing the anti-phase periodic orbit bifurcating at ⇤ = 2a:

u̇
1

= F (u
1

) + a (u
2

� u
1

) + k
�
u
2

(t� ⌧)� u
1

�
(3.58)

u̇
2

= F (u
2

) + a (u
1

� u
2

) + k
�
u
1

(t� ⌧)� u
2

�
, (3.59)

with half period delay ⌧ = p�/2, and variable feedback gain k 2 C.

Instead of discussing in detail the theorems in [16], which establish the
existence of stabilization regions, let us shortly explain the stabilization
mechanism.

Stabilization near Hopf bifurcation is established as follows: First, we
determine a region of feedback gains k 2 C where the zero equilibrium
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3. Success of the control triple method

u
1

⌘ u
2

⌘ 0 is stable at the anti-phase Hopf bifurcation point ⇤ =

2a. For the purpose of comparing equivariant Pyragas control with the
control triple method, this is already sufficient.

However, the actual stabilization region is only a subset of the region of
feedback gains where the trivial equilibrium is stable: The feedback gain
must be adjusted such that the Hopf bifurcation is supercritical in order
to guarantee stabilization.

Therefore, let us now calculate the region where the zero equilibrium is
stable at the anti-phase Hopf bifurcation point ⇤ = 2a: Linearizing at
the zero equilibrium u

1

⌘ u
2

⌘ 0 yields

u̇
+

= (⇤+ i)u� + k
�
u
+

(t� ⌧)� u
+

�
, (3.60)

u̇� = (⇤+ i)u� � 2au� � k
�
u�(t� ⌧) + u�

�
, (3.61)

in the coordinates u
+

, u�. Note that the linearized equations decouple in
those coordinates. Using an exponential Ansatz u±(t) = e⌘t, we obtain
the characteristic equations

⌘ = ⇤+ i + k
�
e⌘⌧ � 1

�
, (3.62)

⌘ = ⇤+ i� 2a� k
�
e⌘⌧ + 1

�
. (3.63)

We plug in ⇤ = 2a, and a time delay ⌧ = ⇡, which corresponds to half
the period of the anti-phase periodic orbit at ⇤ = 2a. The characteristic
equations simplify to

⌘ = 2a+ i + k
�
e⌘⇡ � 1

�
, (3.64)

⌘ = i� k
�
e⌘⇡ + 1

�
. (3.65)

Without control (k = 0), the equilibrium has two unstable eigenvalues
⌘ = 2a± i, and two purely imaginary eigenvalues ⌘ = ±i.

We are interested in the stability changes, therefore we set ⌘ = i! and
rearrange as follows:

k = k
+

(!) =
i! � i� 2a

ei⇡! � 1

, (3.66)

k = k�(!) =
i� i!

ei⇡! + 1

. (3.67)
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3. Success of the control triple method

We obtain two sets of curves in the complex plane (k 2 C) determining
the boundaries of stability. Crossing the lines increases or decreases the
number of unstable eigenvalues by two. For full mathematical details,
see [16].

The curves are drawn in Figure 3.5(a). In parentheses, we have denoted
the number of eigenvalues of the zero equilibrium with strictly positive
real part. Without control, i.e., k = 0, there are two unstable eigenvalues.

The colored region has no eigenvalues with strictly positive real part,
and the zero equilibrium is stable here. In [16], it is shown that there
exists a subset of the colored region for which the anti-phase periodic
orbit is stable. Hence, the half-period feedback scheme is successful.

The same process can be carried out for standard Pyragas control as
well. For brevity, we only give the main equations here. Let us introduce
Pyragas control as follows:

u̇
1

= F (u
1

) + a (u
2

� u
1

) + k
�
u
1

(t� ⌧)� u
1

�
, (3.68)

u̇
2

= F (u
2

) + a (u
1

� u
2

) + k
�
u
2

(t� ⌧)� u
2

�
, (3.69)

where ⌧ = p�, i.e., a full period of the anti-phase periodic orbit. We
obtain the characteristic equations

⌘ = ⇤+ i + k
�
e⌘⌧ � 1

�
, (3.70)

⌘ = ⇤+ i� 2a+ k
�
e⌘⌧ � 1

�
. (3.71)

As before, we put ⇤ = 2a. We use ⌧ = 2⇡ for standard Pyragas con-
trol and search for purely imaginary eigenvalues ⌘ = i!. The curves
determining the stability boundaries are given by

k = k
+

(!) =
i! � i� 2a

e2⇡i! � 1

, (3.72)

k = k�(!) =
i! � i

e2⇡i! � 1

. (3.73)

The corresponding curves are drawn in Figure 3.5(b). No regions of sta-
bility can be found. Consequently, Pyragas control fails its stabilization
task.
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(a) Half-period feedback scheme
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(b) Pyragas control
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Figure 3.5.: Curves determining the stability boundaries of the zero equi-
librium for a = 0.07. In parentheses, the number of eigen-
values with strictly positive real part is denoted. (a) Half-
period feedback scheme: In the colored region, the zero equi-
librium is stable. (b) Pyragas control: No region of stability
exists.56



3. Success of the control triple method

Let us summarize: The half-period feedback scheme is successful where
standard Pyragas control is not. This is in accordance with our results
in Section 3.1.

General equivariant Pyragas control, as treated by [56, 66–69] uses pairs
(h,⇥(h)), where h denotes the transformation of the output signal and
⌧ = ⇥(h)p denotes the time delay. ⇥(h) is not necessarily given by 1/2
but can be any number between 0 and 1, if the equivariance allows it.
This is the case for many partial differential equations and we should
explore the many possibilities of combining equivariant Pyragas control
with the control triple method. Note in particular that there exist further
connections between equivariant Pyragas control and the control triple
method: The condition m co-prime to n from Theorem 3.1 also features
prominently in the stabilization of n oscillators coupled in a bi-directional
ring [69].

In conclusion, equivariant Pyragas control can also serve as a model
for the control triple method in general equivariant partial differential
equations.
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Chapter 4

Preliminaries for the proofs

In this chapter we collect some preliminary results for the proofs to fol-
low in Chapter 5 and 6. In Section 4.1 we prove that all rotating and
frozen waves are unstable in scalar reaction-diffusion equations. We de-
rive Hill’s equation from scalar reaction-diffusion equations. We compile
some useful observations on Hill’s equation in Section 4.2. In Section
4.3 we turn to Floquet theory for Hill’s equation with delay. Section 4.4
is devoted to a short introduction to partial delay differential equations,
where we focus on stability analysis. Section 4.5 contains a discussion of
the linear variational equations. We also outline the proofs for the two
different control types as given in Chapters 5 and 6, respectively.

4.1. Stability analysis of the equation without
control

As a preliminary result we first investigate the stability of frozen and
rotating waves in scalar reaction-diffusion equations without control. We
prove a simplified version of the following theorem:

Theorem 4.1 (Angenent and Fiedler [2]). All rotating and frozen waves
of the scalar reaction-diffusion equation u

t

= u
xx

+f(u, u
x

) are unstable.

Remark. Note that frozen and rotating waves are spatially non-homo-
geneous by definition. Homogeneous equilibria can be stable. We will
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4. Preliminaries for the proofs

encounter such an example in Chapter 7, where we will apply the control
triple method to the Chafee-Infante equation.

The proof of Theorem 4.1 was given by Angenent and Fiedler [2] in an
elegant way, using the zero-number (also called lap-number) theory, see
also the work by Matano [46]. However, this theory has so far not been
established in the case of partial delay differential equations. Therefore,
we aim for an elementary proof, shedding light also on the case which
includes the control term. In this proof, after the formal linearization,
we combine two properties of the characteristic equation with a specific
property of the frozen or rotating wave. However, in order not to lose
ourselves in technical difficulties, we only prove Theorem 4.1 in the (sim-
pler, yet nontrivial) case u

t

= u
xx

+ f(u) � cu
x

for which we apply the
control terms.

Proof of Theorem 4.1 in the case u
t

= u
xx

+ f(u)� cu
x

. As in [2], let us
first calculate formally the linearized flow related to the local asymptotic
stability of frozen and rotating waves. By definition the Fréchet deriva-
tive of the flow �

t

on X at the wave U is given as follows:

v
2

= d�
t

(U)v
1

(4.1)

holds if and only if there exists a solution v⇤(s, x) of

v
s

= v
xx

+ cv
x

+Q(s, x)v, (4.2)

with x 2 S1, 0  s  t, and v⇤(0, x) = v
1

(x), v⇤(t, x) = v
2

(x). Here the
coefficient Q(s, x) is given by:

Q(s, x) = f 0
(U(s, x)). (4.3)

The linear operator d�
t

(U) : v
1

7! v
2

is bounded and compact on X [30].
Using the standard Riesz-Schauder Theorem [1] for compact operators,
we can conclude that its spectrum consists of a countable sequence of
eigenvalues. Each of them has finite multiplicity. We call the eigenvalues
�
j

with j 2 N
0

.
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Let us concentrate on the linearization around a rotating or frozen wave
u(x, t) = U(x� ct). To simplify the stability analysis for rotating waves,
we perform a coordinate transformation to a co-rotating frame:

z = x� ct, t = t, (4.4)

freezing all rotating waves. For convenience, we always refer to the co-
ordinate z from hereon, also in the case of an equilibrium, where z = x.
In these co-rotating coordinates, the coefficient Q(z) = f 0

(U(z)) does
not depend on time. Note that the function Q(z) is 2⇡-periodic in z.
Having disposed of the time-dependence, it is now sufficient to consider
the linearized equation

v
t

= v
zz

+Q(z)v. (4.5)

To obtain the eigenvalues �, we solve this linear equation by separation
of variables and apply an exponential Ansatz in time,

v(z, t) = g(z)e�t. (4.6)

We obtain the equation

�g = g
zz

+Q(z)g, (4.7)

which is an homogeneous linear ordinary differential equation of second
order with real 2⇡-periodic coefficient Q(z), z 2 R. Equation (4.7) is
known as Hill’s equation in the literature. It is named after George
W. Hill, who investigated this equation first in 1877 in the context of
lunar motion [31]. The general reference on Hill’s equation is the book
by Magnus and Winkler [45]. Usually, the analysis of linear differential
equations with periodic coefficients is done by Floquet theory, established
by Gaston Floquet in 1883 [20]. Since Hill’s equation does not only have
periodic coefficients but is also a scalar equation, we rely directly on the
many detailed results concerning Hill’s equation.

Eigenfunctions are given by those solutions of Hills’ equation (4.7) which
fulfill the periodic boundary conditions. The values � for which such
periodic solutions exist are the eigenvalues. If there exists at least one
strictly positive eigenvalue �, then the wave is linearly unstable.
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The question of stability has now been reduced to the following question:

For which parameter values of � do there exist
periodic solutions of Hill’s equation?

The first answer to this question was given by Alexander Lyapunov [44]
in 1907 and by Otto Haupt in 1914 and 1918 [27, 28]. We present a
shortened version of their theorem here.

Theorem 4.2 (Oscillation Theorem, [45]). To every differential equation
of Hill’s type, �g = g

zz

+Q(z)g, there belongs a monotonically decreasing
infinite sequence of real numbers {�

n

}
n�0

such that Hill’s equation has a
solution of period 2⇡ if and only if � = �

n

. The �
n

satisfy the inequalities

�
0

> �
1

� �
2

> �
3

� �
4

> �
5

� �
6

> . . . (4.8)

and also
lim

n!1
��1

n

= 0. (4.9)

For complex values of �, Hill’s equation has no bounded solutions except
the trivial zero solution.

For a proof of the Oscillation Theorem, we refer the reader to [45]. Let us
mention two important consequences of the Oscillation Theorem: First,
all eigenvalues are real. Second, there exists a largest eigenvalue �

0

and
our task is to show that �

0

is strictly positive.

Having established general properties of the eigenvalues, we now turn to
a specific property of rotating and frozen waves: U

z

is an eigenfunction
corresponding to the eigenvalue 0 for a wave U . In particular, any non-
homogeneous frozen or rotating waves are non-hyperbolic. Since U is
non-constant, U

z

has at least two zeros in z 2 [0, 2⇡] (infinitely many
for z 2 R), or more precisely sign changes, by periodicity. However, it
turns out that the eigenfunction corresponding to the largest eigenvalue
�
0

has no zeros:
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Theorem 4.3 (Number of zeros 1, [45]). Fix � 2 R. Then either all
nontrivial solutions of Hill’s equation have only a finite number of zeros,
or all solutions of Hill’s equation have infinitely many zeros.

Let �
0

be the largest value of � 2 R for which Hill’s equation has a 2⇡-
periodic solution. Then for � � �

0

, all nontrivial solutions have only a
finite number of zeros, but for � < �

0

, every solution has infinitely many
zeros.

Remark. Note that this theorem classifies all nontrivial solutions of
Hill’s equation: Either they have no zeros or they have infinitely many
zeros. Consequently, this also holds for the periodic solutions. Only one
2⇡-periodic solution has no zeros, it occurs for �

0

. In the autonomous
case, this periodic solution is the constant eigenfunction.

In particular, we can conclude that any eigenfunction which has at least
one zero (and thus, by periodicity, infinitely many of them) is not the
eigenfunction which belongs to the eigenvalue �

0

.

Thus, there must exist an eigenvalue �
0

> 0 which proves the instability
of the frozen and rotating waves. This concludes the proof of Theorem
4.1.

Let us finish this section with a short discussion of stability in the sense
of the unstable dimension of a rotating or frozen wave. Here we merely
cite the corresponding theorems for brevity.

Theorem 4.4 (Number of zeros 2, [2, 27, 45]). If � 2 {�
2n�1

,�
2n

}, then
g has exactly 2n zeros in 0  x < 2⇡.

Remark. The zeros are also simple [2].

While we do not prove the theorem, it can be made plausible when con-
sidering the case Q(z) ⌘ Q, for which a simple Fourier decomposition
yields the result. For our purposes, the following corollary, refining The-
orem 4.1, is most important:
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Corollary 4.5 (Unstable dimensions, [2]). The unstable dimension, i.e.,
the number of strictly positive eigenvalues, of a rotating or frozen wave
with minimal period 2⇡/n is either 2n or 2n� 1.

The eigenfunction U
x

corresponding to the eigenvalue � = 0 has exactly
2n zeros. Using Theorem 4.4, the eigenfunction with 2n zeros corre-
sponds either to �

2n�1

or to �
2n

. Note that the eigenvalues are ordered
by the Oscillation Theorem. This implies Corollary 4.5.

4.2. Useful observations

In this section we show three properties of the function Q(z) from Hill’s
equation. These properties are specific to Hill’s equation if Q(z) comes
from a reaction-diffusion equation. They do not hold in general. Here
we assume Q(z) = f 0

(U(z)), where U(z) is a rotating or frozen wave (not
a homogeneous equilibrium) and f nonlinear.

First, we show that the maximum value of Q(z) is positive, more pre-
cisely, ¯Q = max

z2[0,2⇡]Q(z) � �
0

> 0.

To show this, we first cite the following fact [45]: If ��+Q(z) < 0 for
all z 2 [0, 2⇡], then the nontrivial solutions of �g = g

zz

+ Q(z)g have
only finitely many zeros.

For a proof of this fact, see either Magnus and Winkler [45], or Chapter
5, Step 3, where we present the proof in a slightly different context.

We have seen in the previous section that a periodic solution, having
infinitely many zeros, exists for � = 0. Also all nontrivial solutions
for 0  � < �

0

have infinitely many zeros, see Theorem 4.3. We can
conclude:

�  ¯Q for all 0  � < �
0

. (4.10)

This proves ¯Q = max

z2[0,2⇡]Q(z) � �
0

> 0, as claimed above.

Remark. In the other case, Q(z) ⌘ Q ⌘ ¯Q, we find ¯Q = �
0

. Note that
here �

0

is not necessarily positive, see Chapter 7 for an example.
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Besides positivity, the function Q(z) has other useful properties: Let us
consider a scalar reaction-diffusion equation of the form

u
t

= u
zz

+ f(u), (4.11)

where f is an odd function, i.e., f(u) = �f(�u). It follows that f 0 is an
even function. Let us now consider rotating or frozen waves U(z) with
minimal period ! = 2⇡/n and U(z) = �U(z � ⇡/n). Then

Q(z) = f 0
(U(z)) (4.12)

= f 0
(�U(z � ⇡/n)) (4.13)

= f 0
(U(z � ⇡/n)) (4.14)

= Q(z � ⇡/n), (4.15)

i.e., Q(z) is of period !/2 = ⇡/n. Already in the next section, we will
see how this property greatly simplifies the stability analysis.

Consider now waves which are odd with respect to the reference point 0,
i.e., twisted standing waves: U(z) = �U(�z). Then

Q(z) = f 0
(U(z)) (4.16)

= f 0
(�U(�z)) (4.17)

= f 0
(U(�z)) (4.18)

= Q(�z), (4.19)

i.e., Q(z) is an even function. This property will be crucial to the proof
in Chapter 6.

4.3. Floquet theory for Hill’s equation with delay

In the proof for control schemes of rotation type, we will also consider
Hill’s equation with time delay. Therefore, we give a brief exposition of
Floquet theory for delay differential equations. We follow the presen-
tation of Hale [24] and Hale and Verduyn Lunel [25]. At least to some
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extent, Floquet theory for delay differential equations is analogous to
Floquet theory for ordinary differential equations.

In this thesis, we focus on the case of Hill’s equation with delay, i.e., on
equations of the form

�g = g
zz

+Q(z)g + k
�
g � e��⌧g(z � ')

�
. (4.20)

We assume that Q(z) is !/2 = ⇡/n-periodic. Here ' := ⇠ � c⌧ is the
spatio-temporal delay.

Theorem 4.6 (Floquet exponents, [24, 25]). ⌘ 2 C is a Floquet exponent
of equation (4.20) if and only if there exists a nonzero solution of equation
(4.20) of the form

g(z) = p(z)e⌘z, (4.21)

where p(z + !) = p(z).

Moreover, the following theorem holds true:

Theorem 4.7 (Stability, [24, 25]). The solution g = 0 of the equation

�g = g
zz

+Q(z)g + k
�
g � e��⌧g(z � ')

�
(4.22)

is asymptotically stable if and only if all Floquet exponents of equation
(4.22) have negative real part. If there exists ⌘ 2 C with Re ⌘ = 0, then
there are solutions which are bounded for all times.

However, a complete Floquet decomposition, as known in the case of
ordinary differential equations, does not always exist in the case of delay
differential equations. An explicit counter-example to such a decompo-
sition is given by the equation ġ(t) = (sin t)g(t� 2⇡). For this example
equation, there exist solutions which converge to zero faster than any
exponential, but do not become identically zero after finite time. As a
consequence, no 2⇡-periodic change of variables reduces this equation to
an autonomous equation. See [24, 25] for more details.

Usually, the most difficult part of Floquet theory is the calculation of
the Floquet exponents. Fortunately, in our special case of Hill’s equation
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with delay, we do not have to deal with the additional difficulty of the
delay ': The spatio-temporal delay ' = m⇡/n is an integer multiple
of the period ! = ⇡/n of the periodic coefficient Q(z). Therefore, we
observe that we can eliminate the time delay as follows:

We calculate the Floquet exponents, using the Ansatz

g(z) = p(z)e⌘z, (4.23)

as justified by Theorem 4.6, where

p(z) = p (z + 2⇡) . (4.24)

We then obtain a new equation of the form

0 = p
zz

+ 2⌘ p
z

+

⇣
��+ ⌘2 +Q(z) + k � k e��⌧�⌘'

⌘
p, (4.25)

which is an ordinary differential equation for which we can (at least
theoretically) determine the Floquet exponents.

4.4. A short introduction to partial delay
differential equations

Let us go back to our original problem: Spatio-temporal feedback control
of partial differential equations, where we concentrate on scalar reaction-
diffusion equations. If we add a delayed control term to the reaction
diffusion equation, we obtain a partial delay differential equation. In
this section we give a very short summary of basic stability results in
this context. We follow the presentation of Wu [78], but skip the proofs.

As in Chapter 1, we denote X := Hs

(S1

), s > 3/2. Let C denote the
Banach space of continuous X-valued functions on the interval [�⌧, 0],
together with the supremum norm k · k, i.e., C := C([�⌧, 0];X).

We consider the following abstract delay differential equation

d

dt

u = A
T

u+ F (u, u(t� ⌧)). (4.26)
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Here A
T

is the infinitesimal generator of an analytic compact semigroup
{T (t)}

t�0

. In our case A
T

is defined via A
T

u = u
zz

, and its domain
is given by D(A

T

) =

�
u 2 C2

([0, 2⇡])
�� u(0) = u(2⇡), u0(0) = u0(2⇡)}.

We suppose that the operator F satisfies a local Lipschitz condition
and we furthermore assume that F is Fréchet differentiable with locally
Lipschitz continuous Fréchet derivative. F : X ⇥ C ! X also includes
the terms with time delay. In our case F includes the reaction term f
as well as the control term. In this thesis we only consider a single time
delay ⌧ > 0. Wu also treats far more general cases including multiple
time delays and distributed time delay.

Consider now the linearized equation
d

dt

u = A
T

u+DF
1

(U ,U)u+DF
2

(U ,U)u(t� ⌧). (4.27)

Define A
U

: D(A
U

) ⇢ C ! C as A
U

� = �
t

, with corresponding domain
D(A

U

) =

�
�
���

t

2 C, �(0) 2 D(A
T

), ��
t

(0) = A
T

�(0) +DF
1

(U ,U)�(0)
+DF

2

(U ,U)�(�⌧)}. Here, and only for the definition of the operator A
U

with its domain, we have used the notation �
t

(✓) = �(t+✓), �⌧  ✓  0,
as it is often used in the context of delay differential equations. This is
not to be confused with the partial derivative with respect to t, as used
in partial differential equations and in the rest of this thesis.

We define the corresponding solution semigroup {U(t)}
t�0

, U(t) : C !
C of the linearized equation by

U(t)� := u�(t+ ✓), �⌧  ✓  0, (4.28)

where u�(t+✓),�⌧  ✓  0 denotes the solution of (4.27) with prehistory
� in C. {U(t)}

t�0

is a strongly continuous semigroup of bounded linear
operators in C. Wu proves that A

U

is indeed the infinitesimal generator
of {U(t)}

t�0

.

To determine stability, we now discuss the spectral properties of A
U

. To
this aim, we introduce the characteristic equation

�(�)g = 0, (4.29)

where �(�) is an X-valued operator defined by

�(�)g = A
T

g � �g +DF
1

(U ,U)g +DF
2

(U ,U)e��⌧g. (4.30)
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We call � an eigenvalue if there exists a function g 2 D(A
T

)\{0} (i.e.,
fulfilling the periodic boundary conditions) which solves the characteris-
tic equation �(�)g = 0.

The following three theorems give us a good estimate on the spectrum
of partial delay differential equations.

Theorem 4.8 (The spectrum is countable, [78]). For each t > ⌧ , we
have

• The spectrum �(U(t)) is a countable set. It is compact and 0 is
the only possible accumulation point. If µ 6= 0 is an element of
�(U(t)), then µ also belongs to the point spectrum P�(U(t)).

• P�(U(t)) = etP�(AU ) plus possibly {0}.

• If � 2 P�(A
U

), then the generalized eigenspace of � is finite di-
mensional.

In particular, only point spectrum P�(A
U

) occurs. It possesses the fol-
lowing properties:

Theorem 4.9 (Upper bound on the spectrum, [78]). There exists a real
number � such that Re�  � for all � 2 P�(A

U

). Moreover, if � is a
given real number, then there exists only a finite number of eigenvalues
� 2 P�(A

U

) such that �  Re�.

The upper bound � translates directly to the linear stability in the fol-
lowing way:

Theorem 4.10 (Linear stability, [78]). Let � be the smallest real number
such that if � is an eigenvalue, then Re�  �.

• If � < 0, then for all prehistories � 2 C, kU(t)�k ! 0 as t ! 1.

• If � = 0, then there exists a prehistory � 2 C\{0} such that
kU(t)�k = k�k for all t � 0.

• If � > 0, then there exists a prehistory � 2 C such that kU(t)�k !
1 as t ! 1.
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Suppose that the zero solution of the linearized system (4.27) is asymp-
totically stable. Then the next theorem gives us local (exponential)
stability of the equilibrium U also in the nonlinear equation (4.26).

Theorem 4.11 (Principle of linearized stability, [78]). There exist " > 0,
M � 1 and ↵ > 0 such that if k� � Uk < ", then the solution u� of
equation (4.26) in C with prehistory � exists on [�⌧,1) and

���u�(t)� U
���  Me�↵tk�� Uk, t � 0. (4.31)

With this background, we are now ready to plan the proof of stability in
our controlled scalar reaction-diffusion equation.

4.5. Linear variational equations and steps of the
proof

Having proven instability in the case without control and collected gen-
eral information about partial delay differential equations, we can now
proceed with the study of the stabilization regions for the controlled
equation. In co-rotating coordinates, where all rotating waves are frozen,
the controlled equation of rotation type takes the form

u
t

= u
zz

+ f(u) + k
�
u� u(z � ', t� ⌧)

�
, (4.32)

while the equation of reflection type is of the form

u
t

= u
zz

+ f(u) + k
�
u� u(�z, t� ⌧)

�
. (4.33)

First, we linearize around the frozen wave U(z) and obtain the linear
variational equations

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
, (4.34)

and
v
t

= v
zz

+Q(z)v + k
�
v � v(�z, t� ⌧)

�
, (4.35)
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with 2⇡-periodic coefficient

Q(z) = f 0
(U(z)). (4.36)

For details on the linearization, see Sections 4.1 and 4.4. As discussed
in Section 4.4, we obtain the characteristic equations

�g = g
zz

+Q(z)g + k
�
g � e��⌧g(z � ')

�
, (4.37)

and
�g = g

zz

+Q(z)g + k
�
g � e��⌧g(�z)

�
. (4.38)

Note that the stability is determined by an ordinary (delay) differential
equation. Equation (4.37) is a delayed version of Hill’s equation, which
we have studied in Section 4.3.

It is a necessary and sufficient condition that all eigenvalues � – which
need yet to be determined – are located in the left half of the complex
plane, i.e., that all eigenvalues have negative real part. Throughout the
thesis we denote the complex eigenvalues by � = µ+ i⌫.

We are left with the task of determining the values � for which 2⇡-
periodic solutions of the characteristic equations exist.

4.5.1. Control schemes of rotation type

In order to learn as many details on the control mechanism as possible,
we divide the proof into four parts. In Section 5.1 we discuss the simplest
case where we make the following assumptions: The variational equation
is autonomous, i.e., Q(z) ⌘ Q. Furthermore, we assume that the spatio-
temporal delay ' = ⇠� c⌧ is zero. Hence, the object of Section 5.1 is an
equation of the following form:

v
t

= v
zz

+Qu+ k
�
v � v(z, t� ⌧)

�
. (4.39)

The first condition (Q(z) ⌘ Q) holds automatically if we consider either
linear systems or homogeneous equilibria U(z) ⌘ U (in which case Q(z) =
f 0
(U(z)) ⌘ f 0

(U) ⌘ Q). The second condition (' = 0) corresponds to the
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Step 4

Non-autonomous variational
equations including

spatio-temporal delay

Step 2

Autonomous variational
equations including

spatio-temporal delay

Step 3

Non-autonomous variational
equations without

spatio-temporal delay

Step 1

Autonomous variational
equations without

spatio-temporal delay

@
@
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Figure 4.1.: Steps of the proof (control scheme of rotation type).

situation of Pyragas control as discussed in Chapter 2. We can therefore
prove many special cases of the theorems in Chapters 2 and 3. The
main advantage is that we can obtain explicit results, which we can then
successively extend and compare with the (sometimes approximative)
results in subsequent steps. Therefore, Step 1 forms the base for the
complete proof (also for the control scheme of reflection type) and should
be read carefully.

In Step 2 in Section 5.2 we will show how to dispense with the assumption
on zero spatio-temporal delay in the autonomous case. We consider linear

72



4. Preliminaries for the proofs

variational equations of the type

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
, (4.40)

with ' 6= 0. Such equations occur for the control triple method in the
case of linear equations or for homogeneous equilibria. We are therefore
able to prove the success of the control triple method for the first time
(but for linear equations, only) in Step 2. Many lemmata from Step 2
closely resemble those from Step 1. However, there are crucial differences,
which we point out in detail, due to the spatio-temporal delay.

We change our viewpoint in Step 3 in Section 5.3: Here we consider non-
autonomous linear variational equations, but without spatio-temporal
delay ', similar to Step 1. The variational equation now takes the form

v
t

= v
zz

+Q(z)v + k
�
v � v(z, t� ⌧)

�
. (4.41)

The conditions are chosen such that we can complete the proof of the fail-
ure of Pyragas control as in Chapter 2. We strongly use the results from
Step 1. It is in this step that Hill’s equation features most prominently.

We complete the proofs for the control triple method in Step 4 in Section
5.4. We consider the most general form of the variational equation

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
. (4.42)

The results follow quite fast from the previous steps.

4.5.2. Control schemes of reflection type

For the control scheme of reflection type in Chapter 6, we re-use many
of the intermediary results from Chapter 5. To be able to apply the
results, we first discuss even and odd eigenfunctions. Afterwards, we
treat the even and odd eigenfunctions separately. With this preliminary
consideration, we prove the successful stabilization of twisted standing
waves, the failure of control of standing waves, as well as the successful
stabilization of the zero equilibrium. No new arguments are necessary.
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Chapter 5

Proof for control schemes of

rotation type

In this chapter the control triple (output signal, space, time) is of the
following form:

(multiplication  , rotation ⇠
=

spatial delay ⇠, time delay ⌧).

It combines a scalar multiplication  2 R of the output signal, a rotation
in space, which we interpret as a spatial delay ⇠ 2 S1, with a time delay
⌧ � 0.

The general form of the reaction-diffusion equation including control is

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� u(x� ⇠, t� ⌧)

�
, (5.1)

with periodic boundary conditions and all the assumptions on f as stated
in Section 1.3. Here k 2 R is the variable feedback gain.

The results which we prove in this chapter include the failure of Pyragas
control for periodic orbits (Corollary 2.2) and equilibria (Corollary 2.3).
Furthermore, we also prove the more general results in Theorem 2.1
for the control of rotating waves and in Theorem 2.4 for the control of
homogeneous equilibria. The destabilization of homogeneous equilibria
is proven as in Theorem 2.5. Moreover, all the results for control schemes
of rotation type in Chapter 3 are proven. More precisely, we prove the
theorems on the success (Theorem 3.1) and the failure (Theorem 3.2) of
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control of rotating and frozen waves, as well as the successful stabilization
of the zero equilibrium (Theorem 3.3).

Throughout this chapter we fix a scalar reaction-diffusion equation u
t

=

u
xx

+ f(u) � cu
x

, an equilibrium U(x) or a rotating wave U(x � ct), as
well as the control triple given by ⇠, ⌧ and  . The only parameter which
is varied is the real feedback gain k, and it is our task to determine under
which conditions feedback gains k exist, such that the control triple is
successful for a specific equilibrium or rotating wave.

For our convenience, we introduce the following notations: We call
' := ⇠ � c⌧ the spatio-temporal delay. During the proof, we will see that
the value ', combining the spatial and the temporal delay, is often more
decisive for stabilization than the single values ⇠ or ⌧ . We also introduce

¯Q := max

z2[0,2⇡]
Q(z) := max

z2[0,2⇡]
f 0�U(z)

�
, (5.2)

as a measure of the instability of a rotating wave or equilibrium U(z).
Note that Q(z) is 2⇡-periodic. If f 0�U(z)

�
⌘ ¯Q is a constant, we use the

notation ¯Q = Q instead.

Recall that in Section 4.5 we found the linear variational equation in
co-rotating coordinates z = x� ct,

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
. (5.3)

During the proof in this chapter, we follow the four steps outlined in
Section 4.5. Roughly, the four steps can be described as follows:

Step 1: Q(z) ⌘ Q, ' = 0

Step 2: Q(z) ⌘ Q, ' arbitrary

Step 3: Q(z) arbitrary, ' = 0

Step 4: Q(z) arbitrary, ' arbitrary

For more details, see Section 4.5.

The proofs in this chapter establish for the first time the existence or
nonexistence of successful feedback gains k for a prescribed control term
of rotation type.
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5.1. Step 1: Autonomous variational equations
without spatio-temporal delay

The general linear variational equation in co-rotating coordinates has the
form

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
. (5.4)

In this section we concentrate on the special case Q(z) ⌘ Q, ' = 0, i.e.,
the variational equation simplifies to

v
t

= v
zz

+Qv + k
�
v � v(z, t� ⌧)

�
. (5.5)

Throughout, the stability of the zero equilibrium in equation (5.5) gives
us the stability of the equilibrium or rotating wave.

This section is organized as follows: In Subsection 5.1.1 we state the
theorems corresponding to equation (5.5). From these theorems we can
already conclude some special cases of the theorems in Chapters 2 and
3. In Subsection 5.1.2 we describe the positions of the eigenvalues in the
complex plane. Subsequently, we can derive conditions on the real eigen-
values in Subsection 5.1.3, and on the complex conjugated eigenvalues
in Subsection 5.1.4, thereby proving the theorems in Subsection 5.1.1.

5.1.1. Theorems

The first theorem tells us about the failure of Pyragas-like controls (i.e.,
 = 1, ' = 0) to stabilize the zero equilibrium in the linear variational
equation:

Theorem 5.1 (Step 1: Failure of control of the zero equilibrium in the
linear variational equation). Consider the linear variational equation

v
t

= v
zz

+Qv + k
�
v � v(z, t� ⌧)

�
, (5.6)

with periodic boundary conditions, Q > 0, real feedback gain k, and pos-
itive time delay ⌧ � 0.

Then the zero equilibrium is unstable for all feedback gains k 2 R.
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Remark. Theorem 5.1 implies Theorems 2.2–2.3 for arbitrary waves
but linear dynamics f(u) = Qu. Furthermore, it implies Theorem 2.4
for homogeneous equilibria and arbitrary dynamics f(u).

Control triples where the transformation of the output signal is  = �1,
however, are successful:

Theorem 5.2 (Step 1: Successful stabilization of the zero equilibrium in
the linear variational equation). Consider the linear variational equation

v
t

= v
zz

+Qv + k
�
v � (�1)v(z, t� ⌧)

�
, (5.7)

with periodic boundary conditions, Q > 0 and positive time delay ⌧ � 0.

If the feedback gain k 2 R is chosen in such a way that

�1/⌧ < k < �Q/2 (5.8)

(if such an interval of feedback gains exists), then the zero equilibrium is
stable.

More precisely, if k < �Q/2, then the zero equilibrium of equation (5.7)
is stable if the time delay ⌧ is strictly smaller than

⌧(k) = inf

N<

p
Q,N2N

arccos

⇣
k+Q�N

2

�k

⌘

q
k2 � (Q+ k �N2

)

2

. (5.9)

Remark. Theorem 5.1 is a predecessor of Theorem 3.1, but no special
case yet, because we restrict ourselves to zero spatio-temporal delay. A
first special case of Theorem 3.1 (the linear case) will be proven in Section
5.2.

Let us now state the first result for the stabilization of the zero equilib-
rium.

Theorem 5.3 (Step 1: Successful stabilization of the zero equilibrium).
Consider the homogeneous zero equilibrium of the linear equation u

t

=

u
zz

+Qu, with periodic boundary conditions.
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Choose some real number  6= 1 and a time-delay ⌧ � 0.

If the feedback gain k 2 R fulfills the condition

k
�
1� e�µ⌧

�
< µ�Q for all µ > 0, (5.10)

as well as the condition
|k ⌧ | > 1, (5.11)

then the homogeneous zero equilibrium is stable in the equation including
control,

u
t

= u
zz

+Qu+ k
�
u� u(z, t� ⌧)

�
. (5.12)

In particular, if  = 0, then the zero equilibrium is stable for k < �Q.

Remark. Theorem 5.3 implies Theorem 3.3 in the case ⇠ = 0.

We also prove the following theorem on the destabilization of homoge-
neous equilibria:

Theorem 5.4 (Step 1: Pyragas destabilization of homogeneous equilib-
ria). Consider a stable homogeneous equilibrium U of the equation

u
t

= u
zz

+Qu. (5.13)

Choose some time delay ⌧ > 0, then we can find k⇤ 2 R such that for all
feedback gains k > k⇤, U is unstable in the equation including Pyragas
control,

u
t

= u
zz

+Qu+ k
�
u� u(z, t� ⌧)

�
. (5.14)

Remark. Theorem 5.4 implies Theorem 2.5 in the case ⇠ = 0.

We will prove Theorems 5.1–5.4 in Sections 5.1.2–5.1.4, starting with
determining the positions of the eigenvalues, such that we can derive
conditions of the real as well as on the complex conjugated eigenvalues
next.
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5. Proof for control schemes of rotation type

5.1.2. Positions of the eigenvalues

Let us now investigate the linear variational equation of the form

v
t

= v
zz

+Qv + k
�
v � v(z, t� ⌧)

�
, (5.15)

in order to prove Theorems 5.1–5.4. We solve equation (5.15) via sep-
aration of variables and an exponential Ansatz in the time-variable t,
u(z, t) = g(z)e�t, � 2 C. Note that � might be complex, but that all so-
lutions are real. In this case, we have the solution u(z, t) = g(z)(e�t+e

¯

�t

)

instead, where ¯� denotes the complex conjugate of �. For simplicity, we
calculate with � complex.

The � 2 C are the eigenvalues which carry the stability information of
the equilibrium or wave. Via the Ansatz u(z, t) = g(z)e�t, we obtain an
ordinary differential equation of the form

�g = g
zz

+Qg + k
⇣
g � e��⌧g

⌘
, (5.16)

i.e., a second-order equation of Hill’s type with constant coefficient
��+Q+ k

�
1� e�⌧

�
. To find the eigenvalues �, we need to find those

values � such that equation (5.16) has 2⇡-periodic solutions (compare
with Chapter 4). Since equation (5.16) is a pendulum equation (but
with rather complicated and complex coefficients), we can find the peri-
odic solutions and the corresponding eigenvalues implicitly:

Lemma 5.5 (Positions of the eigenvalues). The eigenvalues � = µ+ i⌫
such that there exist 2⇡-periodic solutions of the equation

�g = g
zz

+Qg + k
⇣
g � e��⌧g

⌘
, (5.17)

are either real, or they can, for each N 2 N
0

, be determined as crossings
of the two curves

⌫(µ) = ±1

⌧
arccos

✓
�µ+Q+ k �N2

k e�µ⌧

◆
± 2⇡n

⌧
, n 2 N

0

, (5.18)

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
, (5.19)
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5. Proof for control schemes of rotation type

in the complex plane.

In particular, for ⌧ = 0, all eigenvalues � are real.

Remark. Note that the curve µ(⌫), which gives the real part µ of the
eigenvalue � depending on its imaginary part ⌫, does not depend on
either Q or N . This property is useful for finding conditions on the
complex conjugated eigenvalues.

Proof. The proof of Lemma 5.5 is straightforward. Rewrite equation
(5.16) in a more convenient way to see the linear pendulum structure:

0 = g
zz

+

⇣
��+Q+ k � k e��⌧

⌘
g. (5.20)

Let us solve equation (5.20) by an exponential Ansatz g(z) = exp(⌘z).
Here the new eigenvalue ⌘ 2 C (not to be confused with the eigenvalue
� of the original system) is given by

⌘ = ±
p
��Q� k + k e��⌧ . (5.21)

The periodic boundary conditions have to be fulfilled which is the case
if and only if ⌘ = ±iN , with N 2 N

0

. We are left with the task of
determining � from the transcendental equation

�N2

= ��Q� k + k e��⌧ . (5.22)

To analyze the values of � fulfilling this equation, let us split � into its
real and imaginary part � = µ+ i⌫:

µ = Q+ k � k e�µ⌧

cos(⌫⌧)�N2 (5.23)
⌫ = k e�µ⌧

sin(⌫⌧). (5.24)

Note that the imaginary part ⌫ appears only once in the first equation,
while the real part µ appears only once in the second equation. Rearrang-
ing, we obtain the two explicit formulas in Lemma 5.5. An eigenvalue
� must fulfill both equations and is therefore characterized by the cross-
ings of the two curves ⌫(µ) and µ(⌫). In the case ⌧ = 0, the equations

81



5. Proof for control schemes of rotation type

simplify to

µ = Q+ k � k �N2 (5.25)
⌫ = 0. (5.26)

Hence, all eigenvalues are real if the time delay ⌧ is zero. This completes
the proof of Lemma 5.5.

For better visualization, we have drawn example curves from Lemma
5.5 in Figures 5.1–5.4. In Figure 5.1 we see an example of the failure
of Pyragas control, while Figure 5.2 gives us a hint that those control
triples which use  = �1 as transformation of the output signal might
be successful. Figure 5.3 is again for  = �1, but here at the limit
of successful control, i.e., we choose the feedback gain k in such a way
that the eigenvalue with the largest real part just crosses the imaginary
axis, in this case at zero. In Figure 5.4 we illustrate what happens if the
feedback parameter k has the wrong sign.

5.1.3. Conditions on the real eigenvalues

Having found the positions of the eigenvalues � in the complex plane,
we now establish conditions on the real eigenvalues to be negative.

Lemma 5.6 (Zero crossings of the real eigenvalues). For the real eigen-
values µ such that there exist 2⇡-periodic solutions of the equation

µg = g
zz

+Qg + k
�
g � e�µ⌧g

�
, (5.27)

the following properties hold:

If the inequality
�µ+Q+ k � k e�µ⌧ < 0 (5.28)

holds for all µ > 0, then there does not exist any 2⇡-periodic solution for
real positive values µ > 0 of equation (5.27).
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Figure 5.1.: Failure of Pyragas control: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = �2. Here Q = 3.
The control triple is defined by  = 1, ' = ⇠ � c⌧ = 0, and
⌧ = 0.5. The curve µ(⌫) is drawn in black, while ⌫(µ) is
drawn in red for N = 0 and in blue for all N � 1. Note that
eigenvalues can also occur on the real axis.

83



5. Proof for control schemes of rotation type

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
-8 -6 -4 -2 0 2

-15

-10

-5

0

5

10

15

μ = Re λ

ν
=
Im

λ

Figure 5.2.: Successful control with  = �1: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = �2. Here Q = 3.
The control triple is defined by  = �1, ' = ⇠ � c⌧ = 0,
and ⌧ = 0.5. The curve µ(⌫) is drawn in black, while ⌫(µ)
is drawn in red for N = 0 and in blue for all N � 1. There
are no real eigenvalues.
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Figure 5.3.: Limit of successful control: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = �1.5. Here Q = 3.
The control triple is defined by  = �1, ' = ⇠ � c⌧ = 0,
and ⌧ = 2/3. The curve µ(⌫) is drawn in black, while ⌫(µ)
is drawn in red for N = 0 and in blue for all N � 1.
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Figure 5.4.: Wrong sign of the feedback gain: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = +2. Here Q = 3.
The control triple is defined by  = �1, ' = ⇠ � c⌧ = 0,
and ⌧ = 2/3. The curve µ(⌫) is drawn in black, while ⌫(µ)
is drawn in red for N = 0 and in blue for all N � 1.
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If  6= 1, then there exists a sequence of feedback gains {k
N

}
N2N,

k
N

=

Q�N2

 � 1

, (5.29)

for which the eigenvalue µ crosses zero if the feedback gain k 2 R is
increased: The crossing of the real eigenvalues µ is from negative to
positive if the inequality

1� 
�
1 + ⌧(N2 �Q)

�
> 0 (5.30)

is fulfilled. If 1 �  
�
1 + ⌧(N2 �Q)

�
< 0, the crossing is from positive

to negative. No other eigenvalues µ = 0 occur.

In the case  = 1, an eigenvalue µ = 0 occurs for all feedback gains
k 2 R if such an eigenvalue exists in the equation without control, i.e.,
for k = 0. No eigenvalues cross zero except for Q = N2, where the
zero-crossing occurs at

k = 1/⌧. (5.31)

From these rather technical conditions, we derive the following corollary,
where we find simple conditions for the cases  = 1 (e.g., Pyragas con-
trol) and  = �1 (control triple method with a sign change of the output
signal).

Corollary 5.7 (Conditions on the real eigenvalues). For the real eigen-
values µ such that there exist 2⇡-periodic solutions of the equation

µg = g
zz

+Qg + k
�
g � e�µ⌧g

�
, (5.32)

Q > 0, the following properties hold:

If  = +1, then there exist positive eigenvalues µ for all time delays
⌧ � 0 and for all feedback gains k 2 R.

If  = �1, the feedback gain k fulfills the condition k < �Q/2, and
the time delay is bounded by ⌧ < 2/Q, then all real eigenvalues µ are
negative.
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5. Proof for control schemes of rotation type

Remark. Corollary 5.7 proves Theorem 5.1.

Proof. We begin by proving Corollary 5.7 from Lemma 5.6. In the case
 = +1, there exists at least one strictly positive eigenvalue µ = Q
without control, i.e., if the feedback gain k is zero. Since no eigenvalue
crossing occurs for N = 0, the corresponding eigenvalue stays positive.

In the case  = �1, there exists a sequence of feedback gains {k
N

}
N2N,

k
N

= �
�
Q�N2

�
/2, for which the eigenvalue µ crosses zero if the feed-

back gain k 2 R is increased. This sequence is monotonically increasing
in N , with the smallest value being k

0

= �Q/2. It remains to check
that the crossings at the k

N

for N2  Q are in the correct direction, i.e.,
from positive to negative, for ⌧ < 2/Q. The following inequality needs
to be fulfilled:

1� 
�
1 + ⌧(N2 �Q)

�
< 0. (5.33)

With  = �1, we obtain

2 + ⌧(N2 �Q) < 0, (5.34)

which we can simplify to

⌧ < 2/(Q�N2

). (5.35)

For N2  Q, we therefore obtain ⌧ < 2/Q, which was our assumption.

Let us next prove Lemma 5.6.

Proof. Consider the value D 2 R defined as

D := �µ+Q+ k � k e�µ⌧ , (5.36)

such that equation (5.45) takes the form

g
zz

+Dg = 0. (5.37)

This is a simple pendulum equation, and 2⇡-periodic solutions must fulfill
D = N2. Hence, no 2⇡-periodic solutions and therefore no eigenvalues
for µ > 0 can occur if D < 0. This proves the first claim of Lemma 5.6.
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5. Proof for control schemes of rotation type

Starting with the condition D = �µ+Q+ k� k e�µ⌧

= N2, we obtain
for the feedback gain k as a function of the real eigenvalue µ:

k(µ) =
µ�Q+N2

1� e�µ⌧

. (5.38)

Hence, we obtain the feedback gains k
N

for which an eigenvalue µ = 0

occurs in the case  6= 1:

k
N

=

Q�N2

 � 1

. (5.39)

In the case  = 1, k
N

is infinite, except for Q = N2. Using L’Hôpital’s
rule, we obtain:

lim

µ!0

k(µ) = lim

µ!0

µ�Q+N2

1� e�µ⌧

= lim

µ!0

1

⌧e�µ⌧

=

1

⌧
. (5.40)

Let us now calculate in which direction the real eigenvalue µ crosses zero.
Differentiating equation (5.38) with respect to µ at µ = 0 (for  6= 1)
yields

k0(µ) =
1� e�µ⌧

�
1 + ⌧(µ+N2 �Q)

�

(1� e�µ⌧

)

2

. (5.41)

At µ = 0 we find the slope of the feedback gain as

k0(0) =
1� 

�
1 + ⌧(N2 �Q)

�

(1� )2
. (5.42)

This proves the second claim of Lemma 5.6.

Last, let us consider the case  = 1. It is obvious that the above
calculations do not apply in this case, since we cannot divide through
zero. Once again, we start with the condition

D = �µ+Q+ k � k e�µ⌧

= N2. (5.43)

Plugging in µ = 0, we obtain the condition

D = Q+ k � k = Q = N2, (5.44)

i.e., an eigenvalue µ = 0 exists if it exists in the equation without control
(k = 0). In this case, it exists for all feedback gains k 2 R. This
concludes the proof of the lemma.

89



5. Proof for control schemes of rotation type

The following lemma on the existence of positive eigenvalues proves the
Pyragas-destabilization of stable homogeneous equilibria.

Lemma 5.8 (Existence of positive real eigenvalues). For the real eigen-
values µ such that there exist 2⇡-periodic solutions of the equation

µg = g
zz

+Qg + k
�
g � e�µ⌧g

�
, (5.45)

Q < 0, the following properties hold:

There exist real eigenvalues µ which are implicitly determined by the
feedback gain k,

k(µ) =
µ�Q

1� e�µ⌧

. (5.46)

k(µ) is a continuous function with the following asymptotic behavior:

lim

µ&0

k(µ) = +1 exponentially,

lim

µ!+1
k(µ) = +1 linearly.

Since k(1) < 1, it follows that there exists a pair (k⇤, µ⇤
) such that

k⇤ < 1, k⇤ minimal, µ⇤ > 0, and k⇤ = k(µ⇤
).

Furthermore, for all k > k⇤, there exists at least one positive eigenvalue
µ determined via the relation (5.46).

Remark. Lemma 5.8 proves Theorem 5.4.

Proof. This lemma can easily be proven by explicit calculation: As
above, the eigenvalues µ have to fulfill the condition

D = �µ+Q+ k � ke�µ⌧

= N2. (5.47)

Let us concentrate on the case N = 0 (existence is enough for our pur-
poses here). We obtain

k(µ) =
µ�Q

1� e�µ⌧

, (5.48)

as claimed above. The limits lim

µ&0

k(µ) = +1 and lim

µ!+1 k(µ) =
+1, as well as the other conclusions are obvious from the formula (5.46).
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5.1.4. Conditions on the complex conjugated eigenvalues

In addition to the conditions on the real eigenvalues, we also establish
conditions on the complex conjugated eigenvalues. As we have seen
in Chapter 4, no complex conjugated eigenvalues exist in the reaction-
diffusion equation without control. In the controlled case, however, we
obtain complex conjugated eigenvalues if the time delay is nonzero, see
also Lemma 5.5 for the positions of the eigenvalues.

Lemma 5.9 (Conditions on the complex conjugated eigenvalues). If the
time delay ⌧ = 0 is zero, then all eigenvalues are real.

Now fix a time delay ⌧ > 0. If the feedback gain k fulfills the inequality

|k| < 1/(| |⌧), (5.49)

then all complex conjugated eigenvalues have negative real part.

Conversely, now fix a feedback gain k 2 R\{0}. If the time delay ⌧ fulfills
⌧ < ⌧⇤(k), and if ⌧⇤(k) > 0,

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

k 

⌘

q
k2 2 � (Q+ k �N2

)

2

, for  k > 0, (5.50)

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

|k |

⌘
+ ⇡

q
k2 2 � (Q+ k �N2

)

2

, for  k < 0, (5.51)

then all pairs of complex conjugated eigenvalues have negative real part.
This threshold on the time delay ⌧ is sharp.

Now consider the case | | = 1.
If N2 < Q, no complex conjugated eigenvalues cross the imaginary axis
for k > (N2 �Q)/2.
If N2 > Q, no complex conjugated eigenvalues cross the imaginary axis
for k < (N2 �Q)/2.
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Figure 5.5.: Illustration of Lemma 5.9 for parameters Q = 3 and mul-

tiplication  = 1 for N = 0, 1, 2, 3: If the time delay ⌧
is zero, then all eigenvalues are real. In the yellow region
in the background, all complex conjugated eigenvalues have
negative real part, since |k| < 1/⌧ . Note that this region
is independent of N . The solid thick curves give the sharp
upper bound ⌧⇤(k) on the time delay, depending on the pa-
rameter N . The curves are red for N = 0 and blue for
N = 1, 2, 3. The regions of nonexistence of the eigenvalues
are shaded in light red and light blue. No eigenvalue cross-
ings occur for k > (N2 �Q)/2, (N = 0, 1, i.e., for N2 < Q),
and k < (N2�Q)/2, (N � 2, i.e., for N2 > Q), respectively
(darker red and darker blue shaded regions).
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Figure 5.6.: Illustration of Lemma 5.9 for parameters Q = 3 and mul-

tiplication  = �1 for N = 0, 1, 2, 3: If the time delay ⌧
is zero, then all eigenvalues are real. In the yellow region
in the background, all complex conjugated eigenvalues have
negative real part, since |k| < 1/⌧ . Note that this region
is independent of N . The solid thick curves give the sharp
upper bound ⌧⇤(k) on the time delay, depending on the pa-
rameter N . The curves are red for N = 0 and blue for
N = 1, 2, 3. The regions of nonexistence of the eigenvalues
are shaded in light red and light blue. No eigenvalue cross-
ings occur for k > (N2 �Q)/2, (N = 0, 1, i.e., for N2 < Q),
and k < (N2�Q)/2, (N � 2, i.e., for N2 > Q), respectively
(darker red and darker blue shaded regions).
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Remark. (a) We will only use the threshold (5.49) in the remaining
parts of the thesis. Though this threshold is not sharp, it has several
advantages over the sharp threshold (5.50): First of all, it is really easy
to check. Second, this threshold is independent of Q and N , therefore it
also persists in the non-autonomous case.
(b) Together with Corollary 5.7 or Lemma 5.6, Lemma 5.9 implies The-
orem 5.2.

Proof. In order to prove the first estimate, we use Lemma 5.5 on the
positions of the eigenvalues. There we already concluded that no complex
conjugated eigenvalues occur if the time delay ⌧ is zero. We now use the
formula

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
(5.52)

from Lemma 5.5. Hence, all eigenvalues have negative real part µ if
����

⌫

k sin(⌫⌧)

���� > 1, (5.53)

in the case of existence (note that eigenvalues do not necessarily need
to exist due to the logarithm, but the conclusion remains the same). A
global minimum of |⌫/(k sin(⌫⌧))| is obtained for ⌫ = 0. Hence, we
find the condition ����

1

k ⌧

���� > 1. (5.54)

This proves the second claim of the lemma and gives a non-sharp thresh-
old on either the feedback gain k or the time delay ⌧ .

Moreover, we can find the sharp threshold on the time delay ⌧ in the
following way: We search for purely imaginary eigenvalues with µ = 0

and ⌫ arbitrary. Starting with equation (5.22) from the proof of Lemma
5.5, we find the following simplified characteristic equations:

N2

= Q+ k (1� cos(⌫⌧)) , (5.55)
⌫ = k sin(⌫⌧). (5.56)
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Rearranging and quadrating the equations yields:
�
Q�N2

+ k
�
2

= k2 2

cos

2

(⌫⌧), (5.57)
⌫2 = k2 2

sin

2

(⌫⌧). (5.58)

We add those two equations and, using the trigonometric equality cos

2 ✓+
sin

2 ✓ = 1 (8✓ 2 [0, 2⇡]), we obtain
�
Q�N2

+ k
�
2

+ ⌫2 = k2 2. (5.59)

This is a quadratic equation in ⌫ which can be solved explicitly,

⌫ = ±
q

k2 2 � (Q�N2

+ k)2. (5.60)

Above, we have seen that pairs of complex conjugated eigenvalues are
determined by

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
. (5.61)

Hence, they only exist in those regions where k ⌫ sin(⌫⌧) is positive. In
the case k > 0, eigenvalues may exist for 2m⇡  |⌫|(2m+1)⇡, m 2 N

0

,
while in the case k < 0, eigenvalues may exist for (2m+1)⇡  |⌫|(2m+

2)⇡, m 2 N
0

, as well as on the real line. The regions of nonexistence of
the eigenvalues are shaded in light colors in Figures 5.5 and 5.6. We can
rearrange the first of the characteristic equations and use the expression
for ⌫ to obtain

⌧⇤(k) =
arccos

⇣
k+Q�N

2

k 

⌘
+ 2⇡n

q
k2 2 � (k +Q�N2

)

2

, for  k > 0, (5.62)

⌧⇤(k) =
arccos

⇣
k+Q�N

2

|k |

⌘
+ ⇡ + 2⇡n

q
k2 2 � (k +Q�N2

)

2

, for  k > 0. (5.63)

Obviously, the minimum value is obtained for n = 0. The two different
formulas originate from the existence regions in ⌫. Since we have deter-
mined the time delay ⌧ for all purely imaginary and non-real eigenvalues,
the threshold is sharp. This completes the proof of the lemma.
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In this way, we have proven Theorems 5.1–5.4. We will permanently
use those results in the following sections, where we first add the spatio-
temporal delay and then later also consider non-autonomous variational
equations.

5.2. Step 2: Autonomous variational equations
including spatio-temporal delay

Let us go back to the general linear variational equation in co-rotating
coordinates:

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
. (5.64)

In this section we include the spatio-temporal delay ' 6= 0. We concen-
trate again on the autonomous case Q(z) ⌘ Q. The variational equation
simplifies to

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
. (5.65)

Again, the stability of the equilibrium or wave is determined by the
stability of the zero equilibrium in equation (5.65).

This section is organized parallel to Step 1: The theorems corresponding
to equation (5.65) are stated in Subsection 5.2.1. We next investigate the
positions of the eigenvalues in Subsection 5.2.2. Conditions on the real
eigenvalues are stated and proved in Subsection 5.2.3, while the condi-
tions on the complex conjugated eigenvalues can be found in Subsection
5.2.4.

5.2.1. Theorems

The first theorem of Step 2 tells us about the success of the control triple
method:
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5. Proof for control schemes of rotation type

Theorem 5.10 (Step 2: Successful stabilization of the zero equilibrium
in the linear variational equation). Consider the linear variational equa-
tion

v
t

= v
zz

+Qv + k
�
v � (�1)v(z � ', t� ⌧)

�
, (5.66)

with Q > 0, periodic boundary conditions and the assumptions from Sec-
tion 1.3. Suppose that the unstable dimension is exactly 2n � 1, n � 1.
The spatio-temporal delay is fixed to ' = ⇠ � c⌧ = m⇡/n, where m is
odd and co-prime to n. The time delay is given by ⌧ � 0.

Then there exists a feedback gain k⇤ 2 R,

k⇤ = min

⇢
N2 �Q

1 + cos('N)

����N 2 N, 0  N <
p
Q

�
, (5.67)

such that the following holds:

For all feedback gains k < k⇤, there exists a time delay ⌧⇤ = ⌧⇤(k) such
that the zero equilibrium is stable in equation (5.66) for all time delays
⌧ < ⌧⇤.

Remark. Theorem 5.10 implies Theorem 3.1, i.e., the successful stabi-
lization of rotating and frozen waves using the control triple method, in
the case of linear dynamics f(u) = Qu.

However, the control fails again if no transformation of the output signal
is present:

Theorem 5.11 (Step 2: Failure of control of the zero equilibrium in the
linear variational equation). Consider the linear variational equation

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
, (5.68)

with Q > 0, periodic boundary conditions and the assumptions from Sec-
tion 1.3.

Then the zero equilibrium of equation (5.68) is unstable for any time
delay ⌧ , any spatio-temporal delay ' and any feedback gain k.
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5. Proof for control schemes of rotation type

Remark. Theorem 5.11 implies Theorem 3.2 in the case of linear dy-
namics f(u) = Qu. Furthermore, Theorem 5.11 implies Theorem 2.4 on
Pyragas control of homogeneous equilibria.

We next state yet another result on the stabilization of the zero equilib-
rium:

Theorem 5.12 (Step 2: Successful stabilization of the zero equilibrium).
Consider the linear variational equation

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
, (5.69)

with periodic boundary conditions and the assumptions from Section 1.3.

Choose some real number  6= 1 and a time delay ⌧ � 0. If the feedback
gain k 2 R fulfills the condition

k
�
1� e�µ⌧

�
< µ�Q for all µ > 0, (5.70)

as well as the condition
|k | < ⌧, (5.71)

and if the spatio-temporal delay ' � 0 is small enough, then the homo-
geneous zero equilibrium of equation (5.69) is stable. In particular, if
 = 0, then the zero equilibrium is stable for k < �Q.

Remark. Theorem 5.12 implies Theorem 3.3, in fact, the two theorems
are almost identical.

We will prove Theorems 5.10–5.12 in the following three subsections.

5.2.2. Positions of the eigenvalues

In this section we consider linear variational equations of the form

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
, (5.72)

in order to prove Theorems 5.10–5.12. Similarly to Step 1, we solve
equation (5.72) via separation of variables and an exponential Ansatz in
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5. Proof for control schemes of rotation type

the time-variable t, u(z, t) = g(z)e�t, � 2 C. As before, the � 2 C are
the eigenvalues of the equilibrium or wave.

Carrying out the Ansatz u(z, t) = g(z)e�t, we obtain an ordinary delay
differential equation of the form

�g = g
zz

+Qg + k
�
g � g(z � ')e�⌧

�
; (5.73)

a second-order equation of Hill’s type. In contrast to Step 1, the equa-
tion contains the spatio-temporal delay ' as a delay. This significantly
complicates the stability analysis in comparison to Step 1.

Recall that we need to find those parameters � such that equation (5.73)
has 2⇡-periodic solutions.

Let us first consider the case ⌧ = 0, i.e., no time delay. In this case,
(5.73) simplifies to

�g = g
zz

+Qg + k
�
g � g(z � ')

�
, (5.74)

i.e., the parameter � does not occur exponentially. Since equation (5.74)
is linear, we solve it via the exponential Ansatz g(z) = exp(⌘z), ⌘ 2 C.
The periodic boundary conditions need to be fulfilled, hence ⌘ = ±iN ,
N 2 N

0

. As a result, we obtain characteristic equations of the form

� = �N2

+Q+ k � k e±i'N . (5.75)

Splitting this equation into real and imaginary part, we obtain the eigen-
values � = µ+ i⌫ explicitly:

µ = �N2

+Q+ k � k cos('N), (5.76)
⌫ = ⌥k sin('N). (5.77)

Thus, in the case where the temporal delay vanishes, it is easy to check
whether all eigenvalues have negative real part. Indeed, the eigenvalues
are negative if N is large enough, compared to the (usually positive)
parameter Q.

Summarizing, we obtain the following lemma on the positions of the
eigenvalues for zero time delay ⌧ :
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5. Proof for control schemes of rotation type

Lemma 5.13 (Step 2: Positions of the eigenvalues for zero time delay).
The eigenvalues � = µ+ i⌫ such that there exist 2⇡-periodic solutions of
the equation

�g = g
zz

+Qg + k
�
g � g(z � ')

�
(5.78)

are explicitly given by the following formulas:

µ = �N2

+Q+ k � k cos('N) and (5.79)
⌫ = ±k sin('N), for N = 0, 1, 2, . . . (5.80)

Consider the case Q > 0 and  = 1. Then the strictly positive real
eigenvalue � = Q exists for all feedback gains k.

Now consider the case Q > 0 and  = �1. If there exists N 2 N
0

with
N <

p
Q such that 'N/⇡ is an odd integer, then there exists a strictly

positive real eigenvalue � = �N2

+ Q for all feedback gains k. If such
an N does not exist, then there exists a k⇤ 2 R such that all eigenvalues
have negative real part for all feedback gains k < k⇤.

In Figure 5.7 we have plotted the real part µ of the eigenvalue � versus
the feedback gain k, illustrating the results of the above lemma.

The case of non-zero time delay requires a more thorough investigation.
Starting with the following lemma, which gives the position of the eigen-
values implicitly, we will continue our investigation in the two following
sections.

Lemma 5.14 (Step 2: Positions of the eigenvalues). The eigenvalues
� = µ+ i⌫ such that there exist 2⇡-periodic solutions of the equation

�g = g
zz

+Qg + k
�
g � e��⌧g(z � ')

�
, (5.81)

are implicitly given by the crossings of the two curves

⌫(µ) = ±1

⌧
arccos

✓
�µ+Q+ k �N2

k e�µ⌧

◆
⌥ 'N � 2⇡n

⌧
, n 2 N

0

,

(5.82)

µ(±⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧ ± 'N)

◆
, (5.83)

in the complex plane.
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5. Proof for control schemes of rotation type

Proof. The proof is mostly analogous to the proof of Lemma 5.5: Using
the exponential Ansatz g(z) = exp(⌘z), and looking only for solutions
which fulfill the periodic boundary conditions (i.e., ⌘ = ±iN), we obtain
that the eigenvalues � must fulfill the following two equations:

�N2

+Q+ k � � = k e��⌧+i'N , (5.84)

�N2

+Q+ k � � = k e��⌧�i'N . (5.85)

Splitting � = µ+ i⌫ into real and imaginary part and rearranging equa-
tions (5.84) and (5.85) for the real and imaginary part separately, we
obtain the curves as claimed above.

Already at this stage, let us formulate an important consequence of
Lemma 5.14.

Corollary 5.15 (Step 2: Including spatio-temporal delay, failure of con-
trol). If the zero equilibrium is unstable in the linear variational equation
of the form

v
t

= v
zz

+Qv + k
�
v � v(z, t� ⌧)

�
, (5.86)

then it is also unstable in the linear variational equation including arbi-
trary spatio-temporal delay ' 2 R:

v
t

= v
zz

+Qv + k
�
v � v(z � ', t� ⌧)

�
. (5.87)

Remark. Corollary 5.15 together with Theorem 5.1 implies Theorem
5.11 on the failure of Pyragas control in the linear case. Furthermore,
Corollary 5.15 together with Theorem 5.4 implies Theorem 2.5 on the
destabilization of homogeneous equilibria via Pyragas control for an ar-
bitrary spatial delay ⇠.

Proof. In the case N = 0, the eigenvalues � determined by Lemma 5.5
(' = 0) coincide with the curves determined by Lemma 5.14.
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a) ' = ⇡, Q = 3, stabilization fails
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b) ' = ⇡, Q = 1, stabilization succeeds
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Figure 5.7.: Real part µ of the eigenvalues � versus the feedback gain
k. The time delay ⌧ is zero. Curves for cos('N) = 1 are
dashed, curves for cos('N) = �1 are solid, and curves for
cos('N) = 0 are dot-dashed.102
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Figure 5.8.: Control triple method, failure: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = �2. Here Q = 3.
The control triple is defined by  = �1, ' = ⇠ � c⌧ = ⇡,
and ⌧ = 0.5. The curve µ(⌫) is drawn in black, while ⌫(µ)
is drawn in red for N = 0 and in blue for all N > 0. Curves
for even N are dashed, curves for odd N are solid.
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Figure 5.9.: Control triple method, success: Positions of the eigenvalues
(green dots) for a fixed feedback gain k = �2. Here Q = 1.
The control triple is defined by  = �1, ' = ⇠ � c⌧ = ⇡,
and ⌧ = 0.5. The curve µ(⌫) is drawn in black, while ⌫(µ)
is drawn in red for N = 0 and in blue for all N > 0. Curves
for even N are dashed, curves for odd N are solid.
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5. Proof for control schemes of rotation type

5.2.3. Conditions on the real eigenvalues

Similarly to Step 1, we now establish necessary and sufficient conditions
for the real eigenvalues to be negative.

Lemma 5.16 (Step 2: Zero crossings of the real eigenvalues). Real eigen-
values µ, such that there exist 2⇡-periodic solutions of the equation

µg = g
zz

+Qg + k
�
g � e�µ⌧g(z � ')

�
, (5.88)

have to fulfill the equations

µ = �N2

+Q+ k � k eµ⌧ cos('N), N 2 N, (5.89)

and they only exist for those N which fulfill sin('N) = 0.

If they exist and additionally fulfill the inequalities

�µ�N2

+Q+ k � k e�µ⌧

cos('N) < 0, N 2 N, (5.90)

for all µ > 0, then there does not exist any 2⇡-periodic solution for real
positive values µ > 0 of equation (5.88).

If additionally  cos('N) 6= 1, then there exists a feedback gain k
N

,

k
N

=

Q�N2

 cos('N)� 1

, (5.91)

for which the eigenvalue µ crosses zero if the feedback gain k 2 R is
increased through k

N

: The crossing of the real eigenvalues µ is from
negative to positive if the inequality

1� cos('N)

�
1 + ⌧(N2 �Q)

�
> 0 (5.92)

is fulfilled. If 1 �  cos('N)

�
1 + ⌧(N2 �Q)

�
< 0, the crossing is from

positive to negative. No other eigenvalues µ = 0 occur.

In the case  cos('N) = 1, an eigenvalue µ = 0 occurs for all feedback
gains k 2 R if such an eigenvalue exists in the equation without control,
i.e., for k = 0.
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5. Proof for control schemes of rotation type

The proof of Lemma 5.16 is analogous to the proof of Lemma 5.6, there-
fore we do not repeat it here.

As a further simple consequence, we find the same simple conditions
for the cases  = 1 (e.g., Pyragas control) and  = �1 (control triple
method with a sign change of the output signal) as in Corollary 5.7. For
completeness, let us include the conditions here.

Corollary 5.17 (Step 2: Conditions on the real eigenvalues). For the
real eigenvalues µ, such that there exist 2⇡-periodic solutions of the equa-
tion

µg = g
zz

+Qg + k
�
g � e�µ⌧g(z � ')

�
, (5.93)

Q > 0, the following properties hold:

If  = +1, then there exist positive eigenvalues µ for all time delays
⌧ � 0 and for all feedback gains k 2 R.

If  = �1, the feedback gain k fulfills the condition k < �Q/2, and
the time delay is bounded by ⌧ < 2/Q, then all real eigenvalues µ are
negative.

Remark. The proof of Corollary 5.17 is trivial if you remember cos('N) =

±1. Corollary 5.17 proves Theorem 5.11 once more.

5.2.4. Conditions on the complex conjugated eigenvalues

In the last subsection of Step 2, we establish conditions on the complex
conjugated eigenvalues.

Let us first consider the simpler case ⌧ = 0. In this case, we found that
the real part µ of the complex conjugated eigenvalues is given by

µ = �N2

+Q+ k � k cos('N), N = 0, 1, 2, . . . (5.94)

It is therefore easy to check if all eigenvalues have negative real part,
even for the general case  2 R. Additionally, we can find the crossings

106



5. Proof for control schemes of rotation type

of the imaginary axis for feedback gains

k
N

=

N2 �Q

1� cos('N)

, N = 0, 1, 2, . . . (5.95)

Note that we exclude cos('N) = ±1, since the corresponding eigenvalues
would be real.

However, in the case of ⌧ > 0, we have to work a little bit more. In this
case, let us look only for purely imaginary eigenvalues � = i⌫. We obtain
the equations (note the ±)

�N2

+Q+ k � i⌫ = k e�i⌫⌧±i'N . (5.96)

Again, we split these equations into real and imaginary part so that we
obtain

0 = �N2

+Q+ k � k cos(⌫⌧ ⌥ 'N), (5.97)
⌫ = k sin(⌫⌧ ⌥ 'N). (5.98)

Taking the square of both equations, adding them, and rearranging yields
a quadratic equation in the imaginary part ⌫ of the eigenvalues �:

⌫2 = k2 2 � (�N2

+Q+ k)2. (5.99)

Going back to the first equation (5.97), we have to solve for ⌧ , which
only appears once in this equation.We find

�N2

+Q+ k

k 
= cos(⌫⌧ ⌥ 'N), (5.100)

arccos

✓
�N2

+Q+ k

k 

◆
= ⌫⌧ ⌥ 'N, (5.101)

and finally

⌧⇤(k) =
arccos

⇣
�N

2
+Q+k

k 

⌘
± 'N

p
k2 2 � (�N2

+Q+ k)2
. (5.102)
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Figure 5.10.: Illustration of Lemma 5.18 for parameters Q = 3, multipli-
cation  = �1, and ' = ⇡ for N = 0, 1, 2, 3: If the time
delay ⌧ is zero, then all eigenvalues are real. In the yellow
region in the background, all complex conjugated eigenval-
ues have negative real part, since |k| < 1/⌧ . Note that this
region is independent of N . The solid thick curves give the
sharp upper bound ⌧⇤(k) on the time delay, depending on
the parameter N . The curves are red for N = 0 and blue
for N = 1, 2, 3. The regions of nonexistence of the eigen-
values are shaded in light red and light blue. No eigenvalue
crossings occur for k > (N2 � Q)/2, (N = 0, 1, i.e., for
N2 < Q), and k < (N2 �Q)/2, (N � 2, i.e., for N2 > Q),
respectively (darker red and darker blue shaded regions).
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Figure 5.11.: Illustration of Lemma 5.18 for parameters Q = 1, multipli-
cation  = �1, and ' = ⇡ for N = 0, 1, 2, 3: If the time
delay ⌧ is zero, then all eigenvalues are real. In the yellow
region in the background, all complex conjugated eigenval-
ues have negative real part, since |k| < 1/⌧ . Note that this
region is independent of N . The solid thick curves give
the sharp upper bound ⌧⇤(k) on the time delay, depend-
ing on the parameter N . The curves are red for N = 0

and blue for N = 1, 2, 3. The regions of nonexistence of
the eigenvalues are shaded in light red and light blue. No
eigenvalue crossings occur for k > (N2 � Q)/2, (N = 0,
i.e., for N2 < Q), and k < (N2 � Q)/2, (N � 2, i.e., for
N2 > Q), respectively (darker red and darker blue shaded
regions).
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Summarizing, we find the following lemma:

Lemma 5.18 (Step 2: Conditions on the complex conjugates eigenval-
ues). If the complex conjugated eigenvalue � = µ + i⌫ has negative real
part for zero time delay ⌧ = 0, i.e., if µ = �N2

+Q+k�k cos('N) < 0,
then this eigenvalue also has negative real part for all time delays 0 
⌧ < ⌧⇤(k),

⌧⇤(k) = min

N2N

arccos

⇣
�N

2
+Q+k

k 

⌘
± 'N

p
k2 2 � (�N2

+Q+ k)2
. (5.103)

In the case ' = ⇡, Lemma 5.9 holds with slight modifications: If the time
delay ⌧ = 0 is zero, then all eigenvalues are real.

Now fix a time delay ⌧ > 0. If the feedback gain k fulfills the inequality

|k| < 1/(| |⌧), (5.104)

then all complex conjugated eigenvalues have negative real part.

Conversely, now fix a feedback gain k 2 R\{0} and N 2 N even. If the
time delay ⌧ fulfills ⌧ < ⌧⇤(k), and if ⌧⇤(k) > 0,

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

k 

⌘

q
k2 2 � (Q+ k �N2

)

2

, for  k > 0, (5.105)

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

|k |

⌘
+ ⇡

q
k2 2 � (Q+ k �N2

)

2

, for  k < 0, (5.106)

then all pairs of complex conjugated eigenvalues have negative real part.

Now consider N 2 N odd. If the time delay ⌧ fulfills ⌧ < ⌧⇤(k), and if
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⌧⇤(k) > 0,

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

k 

⌘

q
k2 2 � (Q+ k �N2

)

2

, for  k < 0, (5.107)

⌧⇤(k) = min

N

2
<Q,N2N

arccos

⇣
k+Q�N

2

|k |

⌘
+ ⇡

q
k2 2 � (Q+ k �N2

)

2

, for  k > 0, (5.108)

then all pairs of complex conjugated eigenvalues have negative real part.

These thresholds on the time delay ⌧ are sharp.

Now consider the case | | = 1.
If N2 < Q, no complex conjugated eigenvalues cross the imaginary axis
for k > (N2 �Q)/2.
If N2 > Q, no complex conjugated eigenvalues cross the imaginary axis
for k < (N2 �Q)/2.

5.3. Step 3: Non-autonomous variational
equations without spatio-temporal delay

In Step 3 let us once more go back to the general linear variational
equation in co-rotating coordinates:

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
. (5.109)

In this section we consider the case where Q(z) is a non-constant func-
tion depending on z. However, we simplify and assume that the spatio-
temporal delay ' is zero, to obtain a linear variational equation of the
form

v
t

= v
zz

+Q(z)v + k
�
v � v(z, t� ⌧)

�
. (5.110)

Analogously to Step 1 and Step 2, the stability of the equilibrium or
rotating wave is given by the stability of the zero equilibrium of equation
(5.110).
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This section is organized as follows: The theorems corresponding to
equation (5.110) are stated in Subsection 5.3.1. From these theorems
we conclude the remaining results of Chapter 2 and some partial results
for Chapter 3. These results are proved via finding the positions of the
eigenvalues in Subsection 5.3.2, and subsequently concluding conditions
on the real eigenvalues in Subsection 5.3.3, as well as conditions on the
complex conjugated eigenvalues in Subsection 5.3.4.

5.3.1. Theorems

We can now formulate the failure of Pyragas-like controls to stabilize the
zero equilibrium in the linear variational equation:

Theorem 5.19 (Step 3: Failure of control of the zero equilibrium in the
linear variational equation). Consider the linear variational equation

v
t

= v
zz

+Q(z)v + k
�
v � v(z, t� ⌧)

�
, (5.111)

with periodic boundary conditions, positive time delay ⌧ > 0, and real
feedback gain k. Assume that there exists at least one strictly positive
eigenvalue �⇤ > 0 in the case without control (k = 0).

Then the zero equilibrium is unstable for all feedback gains k 2 R.

Remark. Theorem 5.19 implies Theorems 2.1–2.3.

In contrast to Pyragas control, the control triple method successfully
stabilizes the zero equilibrium if the transformation of the output signal
is  = �1. This is stated in the following theorem:

Theorem 5.20 (Step 3: Successful stabilization of the zero equilibrium
in the linear variational equation). Consider the linear variational equa-
tion

v
t

= v
zz

+Q(z)v + k
�
v � (�1)v(z, t� ⌧)

�
, (5.112)

with periodic boundary conditions, ¯Q = max

z2[0,2⇡]Q(z) > 0, and posi-
tive time delay ⌧ > 0.
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If the feedback gain k 2 R is chosen in such a way that

�1/⌧ < k < � ¯Q/2 (5.113)

(if such an interval of feedback gains exists), then the zero equilibrium is
stable.

Remark. (a) Theorem 5.20 does not yet prove Theorem 3.1, since no
spatio-temporal delay is present, but it gives us a hint that it is true.
(b) Theorem 5.20 is analogous to Theorem 5.2, but more general. The
sharp upper bound on the time delay ⌧ , in Theorem 5.2, ⌧⇤(k), depends
explicitly on the assumption that Q(z) ⌘ Q is a constant which we do
not assume here. The condition �1/⌧ < k still holds if we drop the
assumption on Q(z).

In addition to the sufficient conditions given in the previous theorem, we
also establish a necessary condition for successful stabilization:

Theorem 5.21 (Step 3: Necessary condition for the control of the zero
equilibrium in the linear variational equation). Consider the linear vari-
ational equation

v
t

= v
zz

+Q(z)v + k
�
v � (�1)u(z, t� ⌧)

�
, (5.114)

with periodic boundary conditions, ¯Q = max

z2[0,2⇡]Q(z) > 0, real feed-
back gain k, and positive time delay ⌧ > 0.

Then the zero equilibrium is unstable for all feedback gains

k > �Q/2 := �
✓

1

2⇡

Z
2⇡

0

Q(z)dz

◆�
2. (5.115)

Remark. The necessary and sufficient conditions coincide only in the
case Q =

¯Q. This only occurs under the additional assumption Q(x) ⌘
Q, which we have discussed in detail in Step 1.

We divide the proof of Theorems 5.19–5.21 into three parts: In the first
part, Subsection 5.3.2, we prove a result on the positions of the eigen-
values. We focus on the differences to the analogous result in Step 1. In
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Subsection 5.3.3 we find conditions on the real eigenvalues. In the last
part, Subsection 5.3.4, we give an estimate which describes when the
complex conjugated eigenvalues are in the left half of the complex plane,
i.e., have negative real part.

5.3.2. Positions of the eigenvalues

To find the positions of the eigenvalues, let us investigate the linear
variational equation of the form

v
t

= v
zz

+Q(z)v + k
�
v � v(z, t� ⌧)

�
. (5.116)

Similarly to Steps 1 and 2, we solve equation (5.116) via separation of
variables and an exponential Ansatz, v(z, t) = g(z)e�t, � 2 C. As before,
the � 2 C are the eigenvalues which carry the stability information of
the equilibrium or wave. We obtain an ordinary differential equation of
the form

�g = g
zz

+Q(z)g + k
⇣
1� e��⌧

⌘
g, (5.117)

i.e., a second-order equation of Hill’s type with periodic boundary condi-
tions. The coefficient ��+Q(z) + k

�
1� e��⌧

�
is non-constant in z,

which is in contrast to both Step 1 and Step 2. Here lies the additional
difficulty of Step 3.

To find the eigenvalues �, we need to find those values � such that
equation (5.117) has 2⇡-periodic solutions (compare with Steps 1, 2, and
Chapter 4).

Lemma 5.22 (Step 3: Positions of the eigenvalues). The eigenvalues
� = µ+ i⌫, such that there exist 2⇡-periodic solutions of Hill’s equation

�g = g
zz

+Qg + k
⇣
1� e��⌧

⌘
g, (5.118)

are either real, or they lie on the curve

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
(5.119)

in the complex plane. In particular, for ⌧ = 0, all eigenvalues � are real.
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Proof. The proof of Lemma 5.22 is straightforward. We split equation
(5.118) into its real and imaginary part:

0 = g
zz

+

�
��+Q(z) + k � k e�µ⌧

cos(⌫⌧)
�
g, (5.120)

0 =

�
�⌫ + k e�µ⌧

sin(⌫⌧)
�
g. (5.121)

The second equation yields

⌫ = k e�µ⌧

sin(⌫⌧). (5.122)

In the case of zero time delay, ⌧ = 0, it follows ⌫ = 0, and hence all
eigenvalues are real. For non-zero time delay, the curve

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
(5.123)

follows immediately. This completes the proof of Lemma 5.22.

5.3.3. Conditions on the real eigenvalues

In this section we establish conditions on the real eigenvalues. In com-
parison to Step 1, they are complicated by the non-constant function
Q(z). However, in the first lemma, which proves Theorem 5.19, there
exists an elegant way to circumvent this problem:

Lemma 5.23 (Step 3: Existence of strictly positive eigenvalues). Sup-
pose there exists a real eigenvalue �⇤ > 0 such that 0 = g

zz

+ (��⇤ +
Q(z))g has a 2⇡-periodic solution.

Fix an arbitrary feedback gain k 2 R, and any time delay ⌧ > 0.

Then there exists at least one real µ > 0 such that

0 = g
zz

+

�
�µ+Q(z) + k � ke�µ⌧

�
g (5.124)

also has a periodic solution for this �.

The proof of Lemma 5.23 is straightforward, because we have already
done the relevant calculation in Chapter 2:
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Proof. We know that 0 = g
zz

+(��⇤+Q(z))g has a 2⇡-periodic solution.
Let us therefore search for µ > 0 such that

��⇤ = �µ+ k � ke�µ⌧ . (5.125)

We calculate explicitly which feedback gain has to be applied to obtain
a given real eigenvalue µ:

k(µ) =
⌫ � �⇤
1� e�µ⌧

. (5.126)

Following the discussion of the example in Chapter 2, where we have
obtained the same formula for �⇤ = 1, we conclude that k : (0,1) ! R
is bijective and that there exists a positive real eigenvalue µ for all real
feedback gains k.

In the following two lemmata, we have to find approximations of the
function Q(z) to obtain the results. Since we cannot longer determine
the eigenvalue crossings through zero explicitly, we derive sufficient and
necessary conditions separately.

Lemma 5.24 (Step 3: Sufficient condition on the real eigenvalues). For
the real eigenvalues µ, such that there exist 2⇡-periodic solutions of Hill’s
equation

µg = g
zz

+Q(z)g + k
�
1� e�µ⌧

�
g, (5.127)

the following holds:

For a fixed feedback gain k, all real eigenvalues µ are negative if

�µ+

¯Q+ k � k e�µ⌧ < 0 (5.128)

for all µ > 0, where ¯Q = max

z2[0,2⇡]Q(z).

Proof. Here we mainly follow the proof of Theorem 2.1 from the book
on Hill’s equation by Magnus and Winkler [45], page 14. Denote D(z) =
µ�Q(z)�k+ ke�µ⌧ and choose the feedback gain k⇤ such that D(z) > 0

for all z and for all µ � 0. Consider the ordinary differential equation

g
zz

(z) = D(z)g(z). (5.129)
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We now consider the two normalized solutions, which are defined by the
initial conditions

g
1

(0) = 1, g0
1

(0) = 0, (5.130)
g
2

(0) = 0, g0
2

(0) = 1. (5.131)

It is clear that the two normalized solutions are linearly independent and
that any solution can be constructed as a linear combination of these
two solutions. We therefore only need to show for these two specific
solutions that they are strictly monotonically increasing. More precisely,
we show g0

1

(z) > 0 for all z > 0 as well as g0
2

(z) > 0 for all z > 0. This
excludes the option of periodic solutions and therefore the existence of
eigenvalues � � 0. Consider now the first normalized solution g

1

with
the initial conditions g

1

(0) = 1 and g0
1

(0) = 0. Since D(0) > 0, it follows
that g00

1

(0) > 0, which implies g0
1

(z) > 0 for all sufficiently small positive
z. We can therefore conclude that, should there exist any " such that
g0
1

(") = 0, then " is positive and bounded away from zero.

It remains to show that such a lower bound " does not exist. Suppose now
that we have indeed found " > 0 such that g0

1

(") = 0. g
1

(z) solves the
differential equation (5.129) for all z and we can multiply the equation
by g

1

(z) and integrate from 0 to ". We then obtain

�
g0
1

(")
�
2

=

Z
"

0

D(z)g
1

(z)g0
1

(z) dz. (5.132)

The left hand side is zero by assumption. On the right hand side, how-
ever, the integrand is strictly positive for all 0  z < ". Hence, the term
on the right hand side is strictly positive. This yields a contradiction.

Almost the same considerations show that g
2

(z) > 0 for all z > 0. Here
g0
2

(0) = 1 > 0 by assumption, therefore we find the same contradiction.
We can conclude that no periodic solutions exist.

Lemma 5.25 (Step 3: Necessary condition on the real eigenvalues). For
the real eigenvalues µ such that there exist 2⇡-periodic solutions of Hill’s
equation

µg = g
zz

+Q(z)g + k
�
1� e�µ⌧

�
g, (5.133)
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Figure 5.12.: Comparison of the sufficient condition from Lemma 5.24
(solid dark red eigenvalue curve, crosses zero at � ¯Q/2;
in the bottom region, shaded in darker red, no positive
real eigenvalues exist) with the necessary condition from
Lemma 5.25 (dot-dashed light red eigenvalue curve, crosses
zero at �Q/2; in the top region, shaded in lighter red,
strictly positive real eigenvalues exist). Parameters:  =

�1, ⌧ = 0.5, ¯Q = 3.5, Q = 0.5.

the following holds:

If for a fixed feedback gain k 2 R there exists at least one µ > 0 such that

�µ+Q+ k � k e�µ⌧ > 0, (5.134)

then there always exists at least one real, strictly positive eigenvalue µ.

Proof. We rewrite equation (5.133) in the form

0 = g
zz

+

⇣
C +

˜Q(z)
⌘
g, (5.135)
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where

C := �µ+Q+ k � ke�µ⌧ , and (5.136)
˜Q(z) := Q(z)�Q. (5.137)

Note that
R
2⇡

0

˜Q(z) dz = 0. Let us for a moment interpret C as a free
parameter. Then for equation (5.135), the following statement holds:

The smallest value C
0

of C for which Hill’s equation (5.135) has a 2⇡-
periodic solution is not positive, and C

0

= 0 if and only if ˜Q(z) ⌘ 0.

While this statement was first proven by Borg in 1946 [6], we follow here
the elegant proof by Ungar from 1961 [75], as explained in the book by
Magnus and Winkler [45].

To prove the statement, remember that we have shortly investigated the
oscillation properties of Hill’s equation (5.135) in Chapter 4. Therefore,
we know that the periodic solution which belongs to C

0

has no zeros.
Let us call this solution g⇤(z). Without loss of generality we assume
g⇤(z) > 0 for all z. Consider now the differentiable and 2⇡-periodic
function

h(z) =
d

dz
log g⇤(z). (5.138)

Then

h0(z) =

✓
g0⇤(z)

g⇤(z)

◆0
, (5.139)

and hence h(z) fulfills the Riccati equation

h0(z) + h2(z) = �C
0

+

˜Q(z), (5.140)

which is of first order, but nonlinear. We integrate both sides from 0 to
2⇡, and we obtain Z

2⇡

0

h2(z) dz = �2⇡C
0

. (5.141)

Remember that
R
2⇡

0

Q(z) dz = 0 by definition. Furthermore,
R
2⇡

0

h0(z) dz =

0 by periodicity of h(z). We can therefore conclude that C
0

is non-
negative. Moreover, C

0

= 0 if and only if h ⌘ 0. This can only occur
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if g⇤(z) ⌘ � 6= 0 is a constant. Hence, � fulfills equation (5.135) for
C = C

0

= 0,
0 =

⇣
0 +

˜Q(z)
⌘
�, (5.142)

and we conclude ˜Q(z) = 0. This proves the statement.

Hence, we obtain C > 0 as a sufficient condition for the existence of
positive eigenvalues, as stated in the lemma.

5.3.4. Conditions on the complex conjugated eigenvalues

In this section we investigate the behavior of the complex conjugated
eigenvalues. This is relatively simple, as our condition does not depend
on Q(z). Therefore, the relevant work has already been done in Step 1,
and we are ready to state the following lemma:

Lemma 5.26 (Step 3: Conditions on the complex conjugated eigenval-
ues). For the eigenvalues � = µ + i⌫ such that there exist 2⇡-periodic
solutions of the equation

�g = g
zz

+Q(z)g + k
⇣
1� e��⌧

⌘
g, (5.143)

the following holds:

If the time delay ⌧ is zero, then all eigenvalues are real. Now fix a time
delay ⌧ > 0. If the feedback gain k fulfills the inequality

|k| < 1/ (| |⌧) , (5.144)

then all pairs of complex conjugated eigenvalues have negative real part.

Proof. In Lemma 5.22 we have shown that the complex conjugated eigen-
values � = µ + i⌫, such that there exist 2⇡-periodic solutions of the
equation

�g = g
zz

+Q(z)g + k
⇣
1� e��⌧

⌘
g, (5.145)
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lie on the curve

µ(⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧)

◆
. (5.146)

We have already investigated this curve in Step 1, therefore we do not
repeat the proof here.

5.4. Step 4: Non-autonomous variational
equations including spatio-temporal delay

In Step 4 we finally consider the general form of the linear variational
equation in co-rotating coordinates,

v
t

= v
zz

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
, (5.147)

in order to finish the remaining proofs of the theorems in Chapter 3.
Here Q(z) = f 0

(U(z)). If the rotating wave has minimal period 2⇡/n,
then also Q(z) has period 2⇡/n. If, in addition, the rotating wave is
odd, then the minimal period of Q(z) is given by ⇡/n, as we have seen in
Chapter 4. In this section we can restrict our attention to  = ±1, since
the theorems on the stabilization of the homogeneous zero equilibrium
have already been proven in Steps 1 and 2.

Again, we investigate the stability of the zero equilibrium of equation
(5.147) to determine the stability of the frozen or rotating waves.

We organize this section as follows: The theorems corresponding to equa-
tion (5.147) are stated in Subsection 5.4.1. These results prove the re-
maining theorems from Chapter 3 for control schemes of rotation type.
To prove these results, we first find the positions of the eigenvalues in
Subsection 5.4.2, and proceed with conditions on the real eigenvalues in
Subsection 5.4.3, as well as with conditions on the complex conjugated
eigenvalues in Subsection 5.4.4.
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5.4.1. Theorems

The following theorem proves the success of the control triple method
in the general case. Note the conditions on Q(z) = f 0

(U(z)) and the
spatio-temporal delay.

Theorem 5.27 (Step 4: Successful control of the zero equilibrium in
the linear variational equation). Consider the linear variational equation

v
t

= v
xx

+Q(z)v + k
�
v � (�1)v(z � ', t� ⌧)

�
, (5.148)

with periodic boundary conditions, where Q(z) has minimal period ⇡/n,
¯Q > 0, the spatio-temporal delay is given by ' = ⇠ � c⌧ = m⇡/n, m odd
and co-prime to n, and ⌧ > 0. Assume that there exist exactly 2n�1 real,
strictly positive eigenvalues in the case without control, i.e., for k = 0.

Then there exists a feedback gain k⇤ 2 R such that the following holds:

For all k < k⇤ there exists a time delay ⌧⇤ = ⌧⇤(k) such that the zero
equilibrium of equation (5.148) is stable for all time delays ⌧ < ⌧⇤.

Remark. Theorem 5.27 proves Theorem 3.1 on the success of the control
triple method.

In contrast, if the conditions on Q(z) and the spatio-temporal delay ' are
changed slightly (double minimal period of Q(z), and ' an even integer
multiple of that minimal period), then control always fails:

Theorem 5.28 (Step 4: Failure of control of the zero equilibrium in the
linear variational equation). Consider the linear variational equation

v
t

= v
xx

+Q(z)v + k
�
v � v(z � ', t� ⌧)

�
, (5.149)

with periodic boundary conditions, where Q(z) has minimal period 2⇡/n,
the spatio-temporal delay is given by ' = ⇠�c⌧ = m⇡/n, m even, ⌧ > 0,
and linearly unstable zero equilibrium for k = 0.

Then the zero equilibrium of equation (5.149) is unstable for all feedback
gains k 2 R.
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Remark. Theorem 5.28 proves Theorem 3.2.

We prove Theorems 5.27 and 5.28 in the following three subsections. We
use many of the results from Steps 1–3.

5.4.2. Positions of the eigenvalues

Solving the linear variational equation (5.147) by an exponential Ansatz
v(z, t) = g(z)e�t, we obtain the following equation of Hill’s type with
delay:

�g = g
zz

+Q(z)g + k
⇣
g � e��⌧g(z � ')

⌘
. (5.150)

First, note that the spatio-temporal delay ' is an integer multiple of
the minimal period of Q(z). Second, we only need to consider Floquet
solutions of equation (5.150), since our current interest is limited to the
periodic solutions and their corresponding eigenvalues. We therefore
make the Ansatz

g(z) = p(z)e⌘z, with p(z) = p (z + 2⇡) . (5.151)

Remark. Suppose there were 2⇡-periodic solutions g⇤(z) which were
not given by Floquet solutions. Then, these solutions could be written
as g⇤(z) = g⇤(z)e0t = p(z)e0t. They are hence Floquet solutions with
Floquet exponent 0. This yields a contradiction. We can conclude that
we can indeed find every periodic solution, and hence each eigenfunction,
by a Floquet Ansatz.

We then obtain another equation of Hill’s type,

0 = p
zz

+ 2⌘ p
z

+

⇣
��+ ⌘2 +Q(z) + k � k e��⌧�⌘'

⌘
p, (5.152)

but without delay '; the delay has become an exponential term. We
underline that this step is only possible because the spatio-temporal
delay ' is an integer multiple of the period of Q(z), see Chapter 4 and
[24, 25].
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The Floquet exponent ⌘ can only take integer values on the imaginary
axis, ⌘ = ±iN , in order to yield periodic solutions g(z) = p(z)e⌘z =

p(z)e±iNz. We obtain

0 = p
zz

± 2iN p
z

+

⇣
���N2

+Q(z) + k � k e��⌧⌥i'N

⌘
p. (5.153)

Let us next transform this equation to the standard form of Hill’s equa-
tion, inverting the coordinate transformation g(z) = e±iNzp(z) (see [45])
to obtain

0 = g
zz

+

⇣
��+Q(z) + k � k e��⌧⌥i'N

⌘
g. (5.154)

This small detour has eliminated the spatio-temporal delay and is there-
fore crucial for the analysis of periodic solutions.

Similarly to Step 2, let us first consider the case of zero time delay, ⌧ = 0.
We obtain the simplified equation

0 = g
zz

+

�
��+Q(z) + k � k e⌥i'N

�
g. (5.155)

Let us split this equation into real and imaginary part:

0 = g
zz

+ (�µ+Q(z) + k � k cos('N)) g (5.156)
0 = (�⌫ ± k sin('N)) g. (5.157)

We easily conclude the following lemma:

Lemma 5.29 (Step 4: Positions of the eigenvalues for zero time delay).
The eigenvalues � = µ + i⌫, such that there exist 2⇡-periodic solutions
of the equation

0 = g
zz

� �g +Q(z)g + k
�
g � g(z � ')

�
, (5.158)

have imaginary part

⌫ = ±k sin('N) for N = 0, 1, 2, . . . (5.159)

In particular, real eigenvalues exist only if 'N = 0 mod ⇡.
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In contrast to Step 2, the real part µ of the eigenvalues � cannot be
determined explicitly. We will derive the conditions on the real part of
the eigenvalues in Subsection 5.4.3.

Let us now turn to the case of nonzero time delay ⌧ .

Lemma 5.30 (Step 4: Positions of the eigenvalues). The eigenvalues
� = µ+ i⌫, such that there exist 2⇡-periodic solutions of the equation

�g = g
zz

+Q(z)g + k
�
g � e��⌧g(z � ')

�
, (5.160)

lie on the curves

µ(±⌫) = �1

⌧
log

✓
⌫

k sin(⌫⌧ ± 'N)

◆
for N = 0, 1, 2, . . . (5.161)

in the complex plane.

Proof. We split equation (5.154) into real and imaginary part to obtain
(the imaginary part)

⌫g = k e�µ⌧

sin(�⌫⌧ ± 'N)g. (5.162)

Rearranging this equation for µ, as well as complex conjugation, yields
the desired result.

In the following two subsections, we determine more specific conditions
on the eigenvalues to guarantee stability.

5.4.3. Conditions on the real eigenvalues

Let us now turn to conditions on the real eigenvalues. Similarly to Step
3, it is impossible to determine the eigenvalue crossings through zero
explicitly, and we can only derive necessary and sufficient conditions on
the real eigenvalues to be negative. Let us start by simplifying equation
(5.154) for real � = µ, i.e., ⌫ = 0. We obtain

0 = g
zz

+

�
�µ+Q(z) + k � k e�µ⌧⌥i'N

�
g, (5.163)
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which we can split into real and imaginary part:

0 = g
zz

+

�
�µ+Q(z) + k � k e�µ⌧

cos('N)

�
g, (5.164)

0 = ±k e�µ⌧

sin('N)g. (5.165)

As in the previous section, we note that real eigenvalues only occur
for such N where 'N = 0 mod ⇡. It follows that cos('N) = ±1,
sin('N) = 0, and the equations simplify to a single equation which
reads

0 = g
zz

+

�
�µ+Q(z) + k ⌥ k e�µ⌧

�
g. (5.166)

Hence, we are back to a slightly modified version of Step 3.

Let us first consider the case N = 0.

In the case  = �1, we can then guarantee stabilization by Lemma 5.24
(or exclude stabilization by Lemma 5.25) from Step 3, and nothing is
left to prove.

In the case  = 1, we can exclude stabilization by Lemma 5.23 from
Step 3, finishing the proof of Theorem 5.28.

We are therefore left with the case  = �1, N > 0, and ' = m⇡/n, m
odd. Let us now consider N > 0 minimal such that cos('N) = �1, i.e.,
N minimal and non-zero such that 'N = (mN⇡)/n = 0 mod ⇡. By
construction of the control, mN/n is not an odd integer for any N < n.

From the case without control, we know that there exist exactly two
eigenfunctions with period 2⇡/n, where, by hyperbolicity, exactly one
eigenfunction belongs to the eigenvalue zero.

We can treat this eigenvalue with the aid of Lemma 5.6 (we use it for the
case Q = N2, which corresponds to an eigenvalue zero). We found that
the eigenvalue zero persists if control is introduced. Furthermore, we
found that real eigenvalues, which appear because of the control term,
can only cross zero at k = 1/⌧ , and in particular, no zero crossings occur
for negative feedback gains k. Note that, in this case, we can make this
explicit statement about the eigenvalue crossings only because the trivial
eigenvalue 0 is known.
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Since we have assumed that the dimension of the unstable manifold is
exactly 2n� 1, we know that the second eigenfunction with period 2⇡/n
has a strictly negative eigenvalue, we call it �⇤. It follows that all real
new eigenvalues µ associated to this eigenvalue fulfill

��⇤ = �µ+ k � ke�µ⌧ , (5.167)

which we can rearrange to read

k(µ) =
µ� �⇤
1� e�µ⌧

. (5.168)

We find that k(µ) is continuous except for µ = 0, which is the only pole.
Furthermore, we find the following limiting values:

lim

µ!�1
k(µ) = 0 (from above) (5.169)

lim

µ%0

k(µ) = �1 (exponentially) (5.170)

lim

µ&0

k(µ) = +1 (exponentially) (5.171)

lim

µ!+1
k(µ) = +1 (linearly). (5.172)

Since k(1) < 1 and the function k is continuous for positive µ, we can
conclude that there exists a k⇤ 2 R such that, for all feedback gains
k < k⇤, no strictly positive eigenvalues exist. Since the case k = 0

yields no strictly positive eigenvalues and the local minimum of k(µ),
µ 2 (0,1), is also the global minimum, we can therefore conclude that
any restriction gives at worst k < 0 as a sufficient condition, which is
already included in the restriction k < ¯Q from above.

The general case N > 0 such that cos('N) = �1 follows analogously.
Here we assume the existence of any �⇤⇤ < �⇤, and it is easy to see that
this imposes no new restrictions on the feedback gain k.

Let us summarize our results in the following lemma:
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Lemma 5.31 (Step 4: Conditions on the real eigenvalues). Consider the
real eigenvalues such that there exist 2⇡-periodic solutions of the delayed
equation of Hill’s type,

0 = g
zz

� µg +Q(z)g + k
�
g � (�1)e�µ⌧g(z � ')

�
, (5.173)

where Q(z) has minimal period ⇡/n, ¯Qmax

z2[0,2⇡]Q(z) > 0, the spatio-
temporal delay is given by ' = ⇠ � c⌧ = m⇡/n, m odd and co-prime
to n, and ⌧ > 0. Assume that there exist exactly 2n � 1 real positive
eigenvalues in the case without control, i.e., for k = 0.

For a fixed feedback gain k, all real eigenvalues µ are negative if

k < � ¯Q/2. (5.174)

Remark. We can also replace the condition k < ¯Q/2 by the condition
k < ��

0

/2, where �
0

is the largest eigenvalue in the equation without
control, if this eigenvalue is known explicitly.

5.4.4. Conditions on the complex conjugated eigenvalues

Here we only need to consider the case  = �1. Thus, we investigate
the following equations of Hill’s type:

0 = g
zz

+

⇣
��+Q(z) + k + ke��⌧⌥iN'

⌘
g, N = 0, 1, 2, . . . (5.175)

First, we consider once more the case of zero time delay for which we can
easily conclude the following: If ¯Q+k+k cos('N) < 0, then stabilization
is successful. Note that cos('N) = ±1 is excluded, because this would
yield real eigenvalues, which we have already discussed in the previous
section. If known, we can replace ¯Q by the eigenvalues �1,2

N

, i.e., the two
eigenvalues belonging to the eigenfunctions having exactly n zeros in the
case without control.

As a sufficient condition for successful stabilization we find

k < min

(
�

�1,2

N

1 + cos('N)

�����N < n

)
. (5.176)
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5. Proof for control schemes of rotation type

This can always be achieved, since the denominator is strictly bounded
away from zero. Note the similarity to the condition in Step 2: We have
simply replaced Q�N2 by �1,2

N

.

To complete the proof in the case of nonzero time delay, we invoke Lemma
5.18 where we replace again Q�N2 by �1,2

N

. If these eigenvalues are not
known explicitly, the upper bound ¯Q is sufficient, though the threshold
is not sharp.

We have now proved all results from Chapter 2 as well as the results for
control schemes of rotation type from Chapter 3.
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Chapter 6

Proof for control schemes of

reflection type

In this chapter the control triple (output signal, space, time) is of the
following form:

(multiplication  , reflection , time delay ⌧).

In other words, the control triple for schemes of reflection type combines
a scalar multiplication  2 R of the output signal and a reflection in
space  : x 7! �x with a time delay ⌧ � 0.

In this case, the reaction-diffusion equation including control takes the
form

u
t

= u
xx

+ f(u) + k
�
u� u(�x, t� ⌧)

�
, (6.1)

where k 2 R is the variable feedback gain. We assume periodic boundary
conditions and the assumptions on f from Section 1.3. Note that the
time delay ⌧ can be chosen arbitrarily, since we only consider frozen
waves.

In this chapter we prove all the results on control schemes of reflection
type from Chapter 3. More specifically, we prove Theorem 3.4 on the
successful stabilization of odd frozen waves, Theorem 3.5 on the failed
stabilization of even frozen waves, as well as Theorem 3.6 on the success-
ful stabilization of the zero equilibrium.

We fix a scalar reaction-diffusion equation u
t

= u
xx

+ f(u), a frozen
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6. Proof for control schemes of reflection type

wave U(x), as well as a control triple given by the reflection , a time
delay ⌧ and a scalar multiplication  of the output signal. Again, the
only parameter which is varied is the feedback gain k 2 R. We want
to determine if a feedback gain k exists such that the frozen wave is
stable. In the case of existence, we would like to get an estimate on the
stabilization region in the feedback gain k.

The linear variational equation is given by

v
t

= v
xx

+Q(x)v + k
�
v � v(�x, t� ⌧)

�
, (6.2)

where Q(x) = f 0
(U(x)). As in Chapters 4 and 5, we solve the above

equation by an exponential Ansatz v(x, t) = g(x)e�t, for which we obtain
an equation of the form

�g = g
xx

+Q(x)g + k
⇣
g � e��⌧g(�x)

⌘
. (6.3)

In the following section we will show, using a simple argument by Magnus
and Winkler [45], that we can restrict the search of eigenfunctions to even
and odd eigenfunctions, respectively.

6.1. Even and odd eigenfunctions

In Section 4.2 we have seen that for twisted standing waves U(x) =

�U(�x) the function Q(x) is even, Q(x) = Q(�x). The same holds for
standing waves of the type U(x) = U(�x), in which case it is trivial
that Q(x) = Q(�x). These simple observations are the key ingredients
to the proof in this chapter. As we will see in the following lemma, we
can conclude that all eigenfunctions are either odd or even functions.
Interpreted correctly, as we will see in the following section, we re-use
many of the results from Chapter 5 and arrive quite quickly at our desired
results.

Lemma 6.1 (adapted from Magnus and Winkler [45]). Consider the
ordinary differential equation

�g = g
xx

+Q(x)g + k
⇣
g � e��⌧g(�x)

⌘
(6.4)
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6. Proof for control schemes of reflection type

and assume that Q(x) is even, Q(x) = Q(�x). Let g
1

(x) and g
2

(x) be
the normalized solutions defined by the initial conditions

g
1

(0) = 1, g0
1

(0) = 0, and g
2

(0) = 0, g0
2

(0) = 1. (6.5)

Whenever a nontrivial solution of period 2⇡ exists, there also exists such
a solution which is either odd or even. Therefore, these solutions are nec-
essarily multiples of one of the normalized solutions unless all solutions
are periodic with period 2⇡.

Proof (Magnus and Winkler [45]). Let g⇤(x) be any global solution of
equation (6.4). Then also g⇤(�x) is a solution. By the initial conditions,
the normalized solution g

1

(x) is even and the other normalized solution
g
2

(x) is odd. Consider now a solution g
p

(x) of period 2⇡. Then

g
3

(x) := g
p

(x) + g
p

(�x), g
4

(x) := g
p

(x)� g
p

(�x) (6.6)

are also 2⇡-periodic solutions by linearity. Then g
3

is even and g
4

is odd.
Unless g

p

⌘ 0, not both solutions can be identically zero. Therefore, we
can conclude that if there exist any solutions with period 2⇡, then there
also exists such a solution which is even or odd, and hence a multiple of
one of the normalized solutions.

We can therefore restrict our search to eigenfunctions which are either
odd and fulfill g(�x) = �g(x), or even, fulfilling g(�x) = g(x). Even
eigenfunctions fulfill the equation

�g = g
xx

+Q(x)g + k
⇣
g � e��⌧g

⌘
, (6.7)

while odd eigenfunctions fulfill the equation

�g = g
xx

+Q(x)g + k
⇣
g + e��⌧g

⌘
. (6.8)

Thus, we can use all the results from Chapter 5, Steps 1 and 3. In the
case of odd eigenfunctions, we have to replace  by � .

Before we go on to conclude the final results, let us observe the following:
There is only one eigenfunction belonging to an unstable eigenvalue, since
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6. Proof for control schemes of reflection type

we have assumed that the unstable dimension is exactly one. By Section
4.1 we know that the eigenfunction belonging to the largest eigenvalue
has no zeros. It must therefore be an even function.

Furthermore, the eigenfunction belonging to the eigenvalue zero, U
x

, is
odd if the wave U is even, and even if the wave U is odd.

6.2. Conclusions

In this section we collect the necessary material to prove Theorems 3.4–
3.6. For better readability, there is one subsection for the concluding
remarks of each theorem.

6.2.1. Successful stabilization of twisted standing waves

Roughly speaking, the first theorem of this section tells us that control
schemes of reflection type can stabilize the zero equilibrium in the linear
variational equation, if the reflection symmetry is odd and the unstable
dimension is exactly one:

Theorem 6.2 (Step 1: Successful stabilization of the zero equilibrium
via odd reflections). Consider the linear variational equation

v
t

= v
xx

+Q(x)v + k
�
v � (�1)v(�x, t� ⌧)

�
, (6.9)

with periodic boundary conditions, ¯Q > 0, and real feedback gain k. As-
sume that there exists exactly one eigenvalue with strictly positive real
part if k = 0.

If the feedback gain k fulfills k < � ¯Q/2, then there exists a time delay
⌧⇤ = ⌧⇤(k) such that the zero equilibrium of equation (6.9) is stable for
all 0  ⌧ < ⌧⇤(k).

Remark. This theorem proves Theorem 3.4 on the success of control
schemes of reflection type for twisted standing waves.
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6. Proof for control schemes of reflection type

Proof. Using the fact that we only need to consider odd or even eigen-
functions, we investigate the following equation for even eigenfunctions,

�g = g
xx

+Q(x)g + k
⇣
g + e��⌧g

⌘
, (6.10)

and the following equation for odd eigenfunctions,

�g = g
xx

+Q(x)g + k
⇣
g � e��⌧g

⌘
. (6.11)

Equation (6.10) can be treated with Lemma 5.24 from Step 3 of the pre-
vious chapter to guarantee strictly negative real eigenvalues for k < ¯Q/2
belonging to even eigenfunctions. Note that this includes the only un-
stable eigenvalue as well as the eigenvalue zero. The complex conjugated
eigenvalues are taken care of by Lemma 5.9, where we replace Q � N2

by the eigenvalues �1,2

N

and choose  = �1.

All eigenvalues fulfilling equation (6.11) in the case without control (k =

0) are strictly negative, we fix an arbitrary eigenvalue �⇤ < 0. All real
new eigenvalues emerging from this eigenvalue can be found as solutions
to the equation

��⇤ = �µ+ k � ke�µ⌧ . (6.12)

We have studied this equation in detail in Subsection 5.4.3, therefore we
will not repeat the analysis here. We conclude that all real eigenvalues µ
are negative for k < 0. The complex conjugated eigenvalues associated
to equation (6.11) are taken care of by Lemma 5.9 once more: We replace
Q�N2 by the eigenvalues �1,2

N

and choose  = 1, completing the proof
of Theorem 6.2.

6.2.2. Failed control of standing waves

If we use an even reflection symmetry, the control fails to stabilize the
zero equilibrium in the linear variational equation:
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6. Proof for control schemes of reflection type

Theorem 6.3 (Step 1: Failure of control of the zero equilibrium via odd
reflections). Consider the linear variational equation

v
t

= v
xx

+Q(x)v + k
�
v � v(�x, t� ⌧)

�
, (6.13)

with periodic boundary conditions, real feedback gain k, and arbitrary but
fixed time delay ⌧ � 0.

Then the zero equilibrium of equation (6.13) is unstable for all feedback
gains k 2 R.

Remark. This theorem proves Theorem 3.5 for standing waves.

Proof. It suffices to show that there exists at least one eigenvalue with
with strictly positive real part. Without control, i.e., k = 0, this eigen-
value belongs to an even eigenfunction because the eigenfunction has
no zeros. Let us therefore restrict our attention to even eigenfunctions.
As we have seen in the previous section, even eigenfunctions fulfill the
equation

�g = g
xx

+Q(x)g + k
⇣
g � e��⌧g

⌘
, (6.14)

thus, we can invoke Lemma 5.23, telling us that there indeed exists an
eigenvalue with strictly positive real part, which proves the theorem.

6.2.3. Successful stabilization of the zero equilibrium

The homogeneous zero equilibrium has both an even and an odd re-
flection symmetry, which indicates that stabilization is possible, using
Theorem 6.2. However, more is possible, as we see in the following the-
orem:

Theorem 6.4 (Step 1: Successful stabilization of the zero equilibrium).
Consider the homogeneous zero equilibrium of the linear equation v

t

=

v
xx

+Qv, with periodic boundary conditions.

Choose some real number  6= 1 and a time delay ⌧ � 0.
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6. Proof for control schemes of reflection type

If the feedback gain k 2 R fulfills the conditions

k
�
1� e�µ⌧

�
< µ�Q for all µ > 0, (6.15)

k
�
1 + e�µ⌧

�
< µ for all µ > 0, (6.16)

as well as the condition
|k ⌧ | < 1, (6.17)

and if the unstable dimension of the zero equilibrium is exactly one, then
the homogeneous zero equilibrium is stable in the equation including con-
trol,

v
t

= u
xx

+Qv + k
�
v � v(�x, t� ⌧)

�
. (6.18)

In particular, if  = 0, then the zero equilibrium is stable for k < �Q.

Remark. Theorem 6.4 proves Theorem 3.6, in fact, the two theorems
are almost identical.

Proof. Real eigenvalues associated to even eigenfunctions can be treated
with Lemma 5.6 from Step 1, Chapter 5. The same lemma can be invoked
for real eigenvalues associated to odd eigenfunctions, but with Q = 0 and
 replaced by � , this yields the second condition. We treat the complex
conjugated eigenvalues with Lemma 5.9, also from Step 1, Chapter 5.
There we obtained the condition |k ⌧ | < 1, independent of Q and the
sign of  , completing the proof of Lemma 6.4.

In this way, we have completed the proofs for control types of reflection
type quickly, using a few key lemmata from Steps 1 and 3 from Chapter 5.
The main aspects for successful control are the same for control schemes
of rotation and reflection type. Therefore, also in reaction-diffusion sys-
tems with more elaborate symmetries, we can expect similar conditions.
To apply our results directly to such systems, it would be useful to con-
struct controls in such a way that the variational equations decouple in
a suitable coordinate system.
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Chapter 7

Applying the control triple method

The aim of this chapter is to apply the new control triple method to a
specific scalar reaction-diffusion equation; the Chafee-Infante equation.
Two main questions arise: First, which noninvasive control terms can we
use in the control triple method? Second, how can we decide whether a
specific control term is successful?

We proceed as follows: In Section 7.1 we give a short introduction to
the Chafee-Infante equation. In Section 7.2 we apply the control triple
method to the homogeneous equilibria. We include a bifurcation analysis
in order to better understand the control mechanism. We also compare
the control schemes of rotation and reflection type. In Section 7.3 we
apply the control triple method to the frozen waves of the Chafee-Infante
equation. We focus on comparing different control schemes of both the
rotation and the reflection type. We give a short summary of this chapter
in Section 7.4.

7.1. The Chafee-Infante equation

The Chafee-Infante equation [9] is a scalar reaction-diffusion equation of
the form

u
t

= u
xx

+ ↵u
�
1� u2

�
, (7.1)

where ↵ 2 R is a bifurcation parameter. The reaction term f
↵

(u) =

↵u(1 � u2) is nonlinear (more precisely: cubic), but no advection term
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7. Applying the control triple method

of the type u
x

is present. For every ↵ > 0, we find exactly three homo-
geneous equilibria: U ⌘ 0 and U ⌘ ±1. No periodic orbits occur. The
frozen waves U(x) are given by the 2⇡-periodic solutions of the ordinary
differential equation

0 = U
xx

+ ↵U
�
1� U2

�
. (7.2)

For our purposes, it is not necessary to know the frozen waves explic-
itly. Instead, it suffices to collect a few key properties, which are easily
noted. First, the frozen waves all lie between the two homogeneous equi-
libria U ⌘ ±1 and they oscillate around the third homogeneous equi-
librium U ⌘ 0. In particular, we can conclude �1 < U(x) < 1 for all
x 2 [0, 2⇡]. Moreover, we can conclude that there exists x

0

2 [0, 2⇡]
such that U(x

0

) = 0. Furthermore, note that the nonlinearity f
↵

(U) =
aU

�
1� U2

�
is odd. Hence, all frozen waves U(x) of period 2⇡/n addi-

tionally fulfill U(x) = �U(x� ⇡/n), as well as U(x
0

+ x) = �U(x
0

� x)
where U(x

0

) = 0. See also the discussion in Chapter 1.

Equation (7.2) is an Hamiltonian equation with potential

F (U) = ↵
�
1

2

U2 � 1

4

U4

�
, (7.3)

and Hamiltonian

H(U ,U
x

) =

1

2

U
x

+ ↵
�
1

2

U2 � 1

4

U4

�
. (7.4)

Its solutions with fixed energy E are determined by

U
x

= ±
p

2 (E � F (U)). (7.5)

The potential together with the energy levels that yield solutions of min-
imal periods 2⇡ (red), ⇡ (blue), and 2⇡/3 (dashed violet) are drawn in
Figure 7.1. The corresponding solutions can be found in Figure 7.2 with
the same color scheme.

The linear variational equation at any frozen wave U(x) takes the form

v
t

= v
xx

+ ↵
�
1� 3U(x)2

�
v, (7.6)
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Figure 7.1.: Hamiltonian potential F (U) (black) versus U for ↵ = 10.
The red, blue, and dashed violet lines indicate the energy
levels for which frozen waves of period 2⇡, ⇡, and 2⇡/3 occur,
respectively.

hence we find the function Q(x) = f 0
↵

(U(x)) = ↵
�
1� 3U2

(x)
�
.

Let us continue by investigating the stability of the homogeneous equi-
libria. For the equilibria U ⌘ ±1 we find v

t

= v
xx

� 2↵v, and we can
therefore find the eigenvalues directly as � = �2↵ � k2, k 2 N

0

, where
all eigenvalues except for the first have multiplicity 2. We conclude that
the equilibria U ⌘ ±1 are both stable for all parameters ↵ > 0.

For the equilibrium U ⌘ 0, we find the linear variational equation v
t

=

v
xx

+↵v. We can therefore calculate the eigenvalues easily as � = ↵�k2,
k 2 N

0

, where all eigenvalues except for � = a have multiplicity 2.
In particular, we can conclude that the equilibrium U ⌘ 0 is unstable
for all ↵ > 0. Bifurcations occur for ↵ = n2, n 2 N, where frozen
waves of period 2⇡/n bifurcate in direction of increasing ↵. The unstable
dimension, i.e., the number of eigenvalues with strictly positive real part,
of U ⌘ 0 is given by 2n � 1 for ↵ 2

�
(n� 1)

2, n2

⇤
. The frozen waves

inherit this instability, thus their unstable dimension is either 2n� 1 or
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Figure 7.2.: Frozen waves U(x) for a = 10 (red for period 2⇡, blue for
period ⇡, dashed violet for period 2⇡/3).

2n. The unstable dimension is determined more precisely in relation with
the period map. Here the period map is defined as the minimal period
T (�, 0) of a solution of (7.2) with initial conditions U(0) = �, U

x

(0) = 0,
see for example [18]. The period map together with the periods 2⇡, ⇡,
and 2⇡/3 are shown in Figure 7.3.

Theorem 7.1 (Unstable dimension versus period map [18]). The sign
of

@
�

T (�, 0)|
�=0

6= 0 (7.7)

decides the unstable dimension of a hyperbolic frozen wave U of minimal
period 2⇡/n in the Chafee-Infante equation to be given by

i(U) = 2n� 1 () @
�

T (�, 0)|
�=0

> 0, (7.8)
i(U) = 2n () @

�

T (�, 0)|
�=0

< 0, (7.9)

where i(U) denotes the unstable dimension (Morse index) of the wave U .

Remark. (a) The actual theorem in [18] holds for more general equa-
tions than the Chafee-Infante equation.
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Figure 7.3.: Period map T (�, 0) (green) for ↵ = 10. The horizontal lines
indicate periods 2⇡ (red), ⇡ (blue), and 2⇡/3 (dashed violet).

(b) Throughout this thesis (except for the linear case) we have assumed
that the rotating and frozen waves are hyperbolic. In fact, they are
hyperbolic if and only if @

�

T (↵, 0)|
�=0

6= 0 [18].

For the Chafee-Infante equation, the period increases with amplitude.
Therefore, all the frozen waves of the Chafee-Infante equation are hy-
perbolic. Hence, we can conclude that the unstable dimension of all
frozen waves is 2n� 1. Consequently, the waves fulfill the requirements
of Theorem 3.1.

7.2. Control of homogeneous equilibria

In this section we add control terms of rotation and reflection type to
the Chafee-Infante equation. It is our aim to observe the bifurcations
which lead to the stabilization of the zero equilibrium U ⌘ 0 and to the
destabilization of the homogeneous equilibria U ⌘ ±1. We consider the
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following equation including control of rotation type:

u
t

= u
xx

+ ↵u
�
1� u2

�
+ k

�
u� u(x� ⇠, t� ⌧)

�
, (7.10)

where k 2 R, ⇠ 2 S1, ⌧ � 0 and  2 R for the stabilization of the zero
equilibrium, or  = 1 for the destabilization of the equilibria U ⌘ ±1.
Moreover, consider the following equation including control of reflection
type:

u
t

= u
xx

+ ↵u
�
1� u2

�
+ k

�
u� u(�x, t� ⌧)

�
. (7.11)

We search for homogeneous equilibria induced by the control term. For
both control types, all homogeneous equilibria fulfill the equation

0 = ↵U
�
1� U2

�
+ k

�
U � U

�
. (7.12)

Note that U ⌘ 0 is always a solution. The other homogeneous equilibria
are given by

U ⌘ ±
p

1 + k(1� )/↵. (7.13)

First, consider the case  = 1. Note that in this case, the homogeneous
equilibria U ⌘ ±1 remain unchanged for all feedback gains k. This
corresponds to the fact that the control is noninvasive on these equilibria,
which it is not for arbitrary  .

Let us compare the bifurcation of equilibria to the condition from Theo-
rem 3.3 for the stabilization of the equilibrium U ⌘ 0. For  6= 1 we find
a supercritical pitchfork bifurcation at k = �↵/(1� ). Here two equi-
libria branch from the zero equilibrium, they exist for all feedback gains
k > �↵/(1 �  ). Their absolute value |U| increases with increasing k.
For k = 0, the equilibria coincide with the known equilibria U ⌘ ±1 from
the uncontrolled equation. Let us compare the location of the pitchfork
bifurcation to the conditions for stabilization from Theorem 3.3. As a
necessary condition, we found

k (1� cos(⇠N)) < N2 � f 0
↵

(0) for all N 2 N, (7.14)

where f 0
↵

(0) = ↵
�
1� 3 · 02

�
= ↵. In particular, the condition must hold

for N = 0:
k (1� )  �↵, (7.15)
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Figure 7.4.: Destabilization of the homogeneous equilibria U ⌘ ±1: Po-
sitions of the eigenvalues (green dots) for a fixed feedback
gain k = 10.2. Here ↵ = 10, and the control triple is given
by  = 1, ⇠ = 0, and ⌧ = 1.0. The curve µ(⌫) is drawn in
black, while ⌫(µ) is drawn in red for N = 0 and in blue for
all N � 1. Compare Step 1, Chapter 5.

which is indeed fulfilled for all feedback gains k  �↵/(1 �  ). We see
that the condition from Theorem 3.3 is sharp for the stabilization of the
zero equilibrium in the Chafee-Infante equation.

Let us next investigate shortly the destabilization of the equilibria U ⌘
±1, where we simplify to the case ⇠ = 0, and, by noninvasiveness,  =

1. Here we can exclude bifurcation through stationary orbits by the
following argument: All homogeneous equilibria and frozen waves U(x),
including those which are induced by the control term, are 2⇡-periodic
solutions of the equation

0 = U
xx

+ ↵U
�
1� U2

�
+ k

�
U � U

�
. (7.16)

The last term cancels and no frozen waves are induced by the control
term. Therefore, any bifurcating solution must be non-stationary. This
is confirmed by the direct calculation of the eigenvalues (compare Step
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1, Chapter 5), where a destabilizing Hopf bifurcation occurs. See Figure
7.4 for illustration.

In conclusion, destabilization of the equilibria U ⌘ ±1 using  = 1 can-
not occur via Pitchfork bifurcation, since no other homogeneous equilib-
ria occur.

7.3. Control of frozen waves

In this section we compare the success of the control schemes of rotation
and reflection type for the stabilization of the frozen waves of the Chafee-
Infante equation, see Theorems 3.1 and 3.4. Let us start by investigating
control terms of rotation type:

u
t

= u
xx

+ ↵u
�
1� u2

�
+ k

�
u� (�1)u(x�m⇡/n, t� ⌧)

�
, (7.17)

where k 2 R is the feedback gain and ⌧ � 0 is the time delay. The spatial
delay is given by ⇠ = m⇡/n. Note that the spatial delay ⇠ is the same as
the spatio-temporal delay '; ' = ⇠ � c⌧ = ⇠ � 0⌧ = ⇠. This is only the
case for frozen waves where the wave speed c is zero. The corresponding
linear variational equation is given by

v
t

= v
xx

+ ↵
�
1� 3U(x)2

�
v + k

�
v � (�1)v(x�m⇡/n, t� ⌧)

�
. (7.18)

To obtain an estimate on the feedback gain k in order to guarantee a suc-
cessful stabilization, we determine the parameter ¯Q = max

x2[0,2⇡]Q(x) =
↵(1�3U(x)2). The maximum of this function can thus be computed in a
surprisingly easy way: It is given by ¯Q = ↵ > 0, as we find the maximum
of the function Q at those x

0

with U(x
0

) = 0. Thus, the maximum is
given by the value at the homogeneous equilibrium U ⌘ 0 around which
the frozen wave U(x) oscillates. In particular, ¯Q does not depend on a
specific frozen wave.

We now consider the three cases corresponding to the minimal periods
2⇡, ⇡, and ⇡/2 separately.
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Figure 7.5.: The function Q(x) for the frozen waves U(x) (red for period
2⇡, blue for period ⇡, dashed violet for period 2⇡/3) for
a = 10. Note that ¯Q = a = 10 for all waves (black dotted
line).

For the wave with minimal period 2⇡, we find n = 1 (the minimal period
is 2⇡/n). By Theorem 7.1, the unstable dimension is given by 2n� 1 =

2 · 1 � 1 = 1. We have to choose m odd and co-prime to n = 1, and
hence, we can select any odd m. By 2⇡-periodicity in x, m = 1 is the
only relevant possibility. Therefore, ⇠ = ' = ⇡. From Lemma 5.31, we
can conclude that all real eigenvalues are negative if the feedback gain k
fulfills

k < � ¯Q/2 = �↵/2. (7.19)

Conditions on the complex conjugated eigenvalues can be found in Step
3, Chapter 5:

|k| < 1/⌧. (7.20)
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Hence, stabilization can always be achieved for a small enough time
delay.

Let us next consider the frozen wave with minimal period ⇡. Here we
have n = 2, and the unstable dimension is 2n � 1 = 2 · 2 � 1 = 3 by
Theorem 7.1. Again, we have to choose m odd and co-prime to n = 2,
and we can hence select any odd m. The relevant spatio-temporal delay
' thus takes the values ⇡/2 and 3⇡/2. From Lemma 5.31, we conclude
that all real eigenvalues are negative if the feedback gain k fulfills

k < � ¯Q/2 = �↵/2. (7.21)

Furthermore, in Subsection 5.4.4, we found as a sufficient condition for
the complex conjugated eigenvalues to have negative real part:

k < min

N<2

(
�

�1,2

N

1 + cos('N)

)
, (7.22)

if the time delay is not too large. Here the �1,2

N

are the two eigenvalues
which correspond to the two eigenfunctions with exactly N zeros. In
the case N = 0, only one such eigenfunction exists, and consequently,
only one eigenvalue, which we call �

0

in the sequel. The �1,2

N

are bound
from above by ↵, see also Step 3, Chapter 5. We find cos(' · 0) = 1,
cos(' · 1) = 0. We can therefore conclude that k < �↵ is a sufficient
condition for stabilization if the time delay is small enough. Note that the
feedback gain necessary for stabilization does not depend on m. However,
this is an exceptional case, and therefore, we next consider the case n = 4,
which is the smallest n such that m influences the stability conditions.

Let us now consider the wave with minimal period ⇡/2. Here n = 4, and
the corresponding unstable dimension is given by 2n� 1 = 2 · 4� 1 = 7.
Again, we have to choose m odd and co-prime to n = 4, and we can
hence use any odd m again. The relevant values of the spatio-temporal
delay ' thus take the values ⇡/4, 3⇡/4, 5⇡/4, and 7⇡/4. Here ' = ⇡/4
is equivalent to ' = 7⇡/4, and ' = 3⇡/4 is equivalent to ' = 5⇡/4.
This is due to the fact that cos(✓) = cos(2⇡� ✓) for all ✓ 2 [0, 2⇡]. Once
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more, if the sufficient condition

k < min

N<4

(
�

�1,2

N

1 + cos('N)

)
(7.23)

is fulfilled, then the complex conjugated eigenvalues have negative real
part for small enough time delay, see Subsection 5.4.4. Let us calculate
the values of the cosine-function for ' = ⇡/4 and ' = 3⇡/4:

cos(0

⇡

4

) = 1; cos(1

⇡

4

) = +

1p
2

; cos(2

⇡

4

) = 0; cos(3

⇡

4

) = � 1p
2

,

cos(0

⇡

4

) = 1; cos(1

3⇡

4

) = � 1p
2

; cos(2

3⇡

4

) = 0; cos(3

3⇡

4

) = +

1p
2

.

In the case m = 1, we obtain the conditions

k < ��
0

· 1/2, (7.24)

k < ��1,2

1

· (2�
p
2), (7.25)

k < ��1,2

2

· 1, (7.26)

k < ��1,2

3

· (2 +
p
2). (7.27)

In contrast, in the case m = 3, we obtain the conditions

k < ��
0

· 1/2, (7.28)

k < ��1,2

1

· (2 +
p
2), (7.29)

k < ��1,2

2

· 1, (7.30)

k < ��1,2

3

· (2�
p
2). (7.31)

This conditions are not equivalent, and as the most important point of
this short analysis, we conclude that the parameter m matters in fact
for successful control! We see that m = 1 and m = 3 are equivalent
from the viewpoint of equivariance, but they are not equivalent from
the viewpoint of control theory. Since we need to distinguish clearly
between the concepts of equivariance and control, we use the control
triple notation for our new spatio-temporal feedback control schemes.
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Figure 7.6.: Feedback gain versus unstable dimension, |k| > ¯Q/(1 +

cos(⇡/n)). We have scaled ¯Q = 1. Stabilization can be
guaranteed for (negative) feedback gains with absolute value
larger than the depicted threshold. Note the quadratic
asymptotic behavior |k| ⇡ 2

¯Qn2/⇡2.

Note that we can indeed find feedback gains k such that stabilization
is possible for arbitrary n 2 N for controls of rotation type. In Figure
7.6 we have sketched the “worst case” feedback gain k, i.e., the feedback
gain k sufficient for stabilization if only the parameter ¯Q is known. In
this case, the feedback strength increases quadratically with the unstable
dimension, asymptotically for large unstable dimensions 2n � 1. To see
this, set all �1,2

N

=

¯Q. The minimum value of � �

1,2
N

1+cos('N)

is obtained
if cos('N) is closest to 1, i.e., cos(⇡/n) (this value is actually obtained
by some N). We approximate cos(⇡/n) ⇡ 1 � ⇡2/(2n2

) to obtain the
approximation

k ⇡ �2

¯Qn2/⇡2. (7.32)

Thus, indeed, we can stabilize arbitrarily high unstable dimension, and
the feedback gain grows at most quadratically.
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To finish this chapter, we shortly consider controls of reflection type,

u
t

= u
xx

+ ↵u
�
1� u2

�
+ k

�
u� (�1)u(�x, t� ⌧)

�
. (7.33)

Here the stabilization of the frozen wave is only possible if the unstable
dimension is exactly one, see Theorem 3.4 and the proof in Chapter 6.
Only the wave with minimal period 2⇡ has unstable dimension 1. Then
the wave is stable for k < ¯Q/2 = �↵/2 and a small enough time delay.

7.4. Summary

First, we have investigated the Chafee-Infante equation, which has three
homogeneous equilibria, two stable equilibria and one unstable zero equi-
librium. Frozen waves with n zeros bifurcate from the zero equilibrium,
their unstable dimension is 2n� 1.

We have then successfully applied the control triple method to the stabi-
lization of the zero equilibrium, and we have seen that the rotation type
and the reflection type yield the same result. A bifurcation analysis has
shown that the conditions of stabilization from Theorem 3.3 (Successful
stabilization of the zero equilibrium) are sharp. Destabilization of the
homogeneous equilibria occurs via bifurcation of non-stationary orbits.

Last, the success of the control method has also been confirmed for the
frozen waves. Using the reflection type, we can stabilize the wave with ex-
actly one unstable dimension. This is in contrast to the control schemes
of rotation type, where we have seen that we can stabilize arbitrarily
high unstable dimensions. Moreover, we have seen that the necessary
feedback gain grows at most quadratically, asymptotically for large un-
stable dimensions 2n � 1. Finally, we want to draw attention to the
important difference between the equivariant description and the control
triple method. We have seen an explicit example where two equiva-
lent equivariant descriptions inspire two different control triples and also
yield different control results. This shows the strong need for a separate
notation for control purposes, fulfilled by the control triple method.
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Chapter 8

Conclusion

To conclude this thesis, we comment on the control triple method from
a variety of perspectives. We present a short overview of our aims,
methods, and results in Section 8.1. In Section 8.2 we discuss the control
triple method in a larger framework. In Section 8.3 we indicate open
problems and give an outlook on further research.

8.1. Overview

It is the main goal of this dissertation to introduce a new concept of
spatio-temporal feedback control for partial differential equations. To
this aim, we introduce the notion of a control triple which replaces the
mere delaying of time, as used by Pyragas [58] and many others. The
control triple defines how we transform output signal, space, and time in
the control term such that the control term is noninvasive on the desired
unstable orbit. The control triple method aims to stabilize an unstable
orbit.

This new Ansatz extends the Pyragas control scheme, and it is especially
well suited for the control of partial differential equations. It incorporates
the spatio-temporal patterns of the equilibria and periodic orbits into the
control term. The control triple method is model-independent.

Having introduced the control triple method, which should serve as a
general method for the control of partial differential equations, we con-
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duct a systematic investigation of the control triple method in the context
of scalar reaction-diffusion equations on the circle. We distinguish two
types of control terms: the rotation type and the reflection type.

For control schemes of rotation type we show that spatio-temporal delays
of half the spatial period combined with a small time delay and a sign
change in the output signal are successful in the stabilization of equilibria
and periodic orbits. In contrast, those control terms which use a full
spatial period, and consequently no sign change of the output signal,
fail their task of stabilization for every time delay. As a corollary, these
results include the failure of Pyragas control for scalar reaction-diffusion
equations.

For control schemes of reflection type, we prove the stabilization for those
frozen waves with an odd reflection symmetry (twisted standing waves),
but not for those with an even reflection symmetry (standing waves).
Here again, control is successful only if a sign change of the output signal
is incorporated into the control triple.

For both control types, we succeed in stabilizing the zero equilibrium
by choosing an arbitrary scalar multiplication as transformation of the
output signal, rotations or reflections in space, and a small time delay.

The proof of stabilization for control schemes of rotation type uses a mod-
ified version of Hill’s equation with spatio-temporal delay. We observe an
amazing interplay of eigenfunctions, oscillation numbers (zero numbers),
delay (both spatial and temporal), and symmetry: The spatio-temporal
delay is an integer multiple of the intrinsic period of Hill’s equation.
This fact allows us to conduct a detailed stability analysis and prove
the results on the success of the control triple method and the failure of
Pyragas control. The proof of stabilization for control schemes of reflec-
tion type follows directly from this proof if it is applied to the even and
odd eigenfunctions separately.
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The application of the control triple method to the Chafee-Infante equa-
tion confirms that, indeed, only a few key properties of the frozen waves
and homogeneous equilibria are necessary to construct valid and success-
ful control triples. We can select and stabilize any frozen wave occurring
in the Chafee-Infante equation. The absolute value of the feedback gain
necessary for stabilization grows at most quadratically with the unstable
dimension. In particular, note that we are able to stabilize waves with
an arbitrarily high unstable dimension.

8.2. Discussion

The aim of this discussion is to take a step back and discuss and comment
our results in the general framework of time-delayed feedback control.

Due to the combination of time delay, which results in an infinite-dimen-
sional equation, and the need for concrete results in control theory, only
few analytical results on Pyragas control and related control schemes
have been obtained up to date. As all results in this thesis are analytical
in nature, they expand our knowledge on the mechanisms of time-delayed
feedback control and it is indispensable to connect the new results to
the few facts which are known from the literature. In this way, the
control triple method as well as the investigations in the context of scalar
reaction-diffusion equations are an important step towards the ultimate
goal of understanding the underlying principles of feedback control.

To underline these general principles, we have compared our results for
partial differential equations to results for ordinary differential equations.
We have found a number of surprisingly close connections on a deeper
level: Comparing with the odd-number limitation for non-autonomous or-
dinary differential equations in Chapter 2, we found that a similar mech-
anism also prevents stabilization via Pyragas control in scalar reaction-
diffusion equations. Comparing with Pyragas control of an unstable fo-
cus in Chapter 3, we found a stunning analogy between spatial delay
in reaction-diffusion equations and the eigenfrequency of the unstable
focus. Half-period feedback schemes are successful in both cases, while
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full-period feedback schemes are not. The same holds if we compare the
control triple method to equivariant Pyragas control, see Chapter 3. The
equivariant approach holds many possibilities of applying the control
triple methods to general partial differential equations.

In most situations, the presence of a time delay in a dynamical system
is seen as a burden, as it greatly increases the dimensionality and the
complexity of a dynamical system. In this thesis, however, with the
concept of the control triple, we use delay as a tool to achieve our goals.
For control types of rotation type, we have even introduced a spatial
delay, thereby allowing stabilization to succeed (remember that Pyragas
control, where only time delay is present, fails as a stabilization method).
In Chapter 3 we have proven that a cleverly chosen combination of spatial
and temporal delays renders stabilization possible.

We can also interpret the spatial and temporal delays as additional pa-
rameters which allow us to observe interesting dynamics. In particular,
note the difference between reaction-diffusion equations with and without
delay: Without delay, all rotating and frozen waves in reaction-diffusion
equations are unstable, but with spatio-temporal delay, we have shown
the existence of stable waves by explicit construction.

Going far beyond the passive description of symmetry, we actively make
use of symmetry concepts such as invariance and equivariance of solu-
tions under certain group actions. Note, however, that the concept of
control and the concept of symmetry are distinct. This is also the rea-
son why we have opted to introduce the control triple notation rather
than use established notation in terms of groups: In the group nota-
tion, certain group elements are seen as equivalent if they describe the
same symmetry. However, if used as a control term, they yield different
results, see the discussion in Chapter 7. Therefore, we use the control
triple notation which distinguishes between these descriptions. In short:
The control properties of the group theoretical description might differ
even if the symmetry does not. This justifies the new control triple no-
tation, designed explicitly for control purposes. Moreover, the control
triple method is not limited to equivariant systems: already trivial or-
bits such as zero equilibria yield a large variety of possible control triples,
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even if no symmetry is present in that particular system. Therefore, we
do not want to limit ourselves with the group notation.

In this dissertation, we have unified the different concepts of control, de-
lay, symmetry, and partial differential equations to present a new concept
of spatio-temporal feedback control.

8.3. Outlook

In this thesis, we have successfully introduced the control triple method
for control of partial differential equations. We are now in a situation
to encourage further investigations in the new research area of spatio-
temporal feedback control for partial differential equations.

This section is organized as follows: First we give an outlook on the
control triple method as a tool for general partial differential equations
und we shortly discuss real-life applications. In the remainder of this
section we return to the control triple method for scalar reaction-diffusion
equations: We discuss two open problems which follow directly from the
results in Chapters 2 and 3 and we present four different options to
extend the control triple method.

Let us start with a general outlook on future research and applications:
The control triple method is not limited to scalar reaction-diffusion equa-
tions – quite the contrary: It is designed to provide a tool for general

partial differential equations. In the introductory chapter, we have
already seen how we could – in general – tackle arbitrary equilibria, equi-
libria with spatial patterns such as periodicity, and plane waves which
occur in many physical systems. Many other examples, including spiral
waves and traveling waves, could be added to this list. It will be particu-
larly interesting to apply the control triple method to higher dimensional
domains, where we are not limited anymore to rotations and reflections
as on the circle. Furthermore, systems of partial differential equations
provide opportunities to use matrices as linear transformations of the
output signal instead of scalar multiplications.
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Concerning real-life applications, where the shape of the wave is un-
known, a self-adapting spatial delay, similar to [39], would in principle
be possible. Note that for partial differential equations we need to adapt
the spatial delay, and not the time delay as for ordinary differential equa-
tions.

Some open problems on the control triple method follow directly from
the results in Chapters 2 and 3 for scalar reaction-diffusion equations. In
particular, we want to draw attention to the following two open problems:

To discuss the first open problem, let us go back to our results about
the success of the control triple method in Chapter 3. We have seen that
we can stabilize waves with unstable dimension 2n � 1 under certain
requirements. However, we cannot stabilize waves with unstable dimen-
sion 2n by the same argument we use to prove the failure of Pyragas
control: The 2n-th simple positive eigenvalue cannot cross zero, since
cos('N) = cos(m⇡/n ·n)(�1) = (�1)

2

= 1 (remember that m is odd).
Previously a similar problem was overcome in the control of a single
Stuart-Landau oscillator using a complex feedback gain k, see Fiedler et
al. [15]. Unfortunately, complex feedback gains are no option for real,
one-dimensional equations. Therefore, it is not at all clear which form
such a control term would take.

As for the second open problem, we believe that the failure of Pyragas
control as proven in Chapter 2 does not persist for complex u. This con-
jecture is motivated by the comparison of the control triple method with
Pyragas control of an unstable focus in Chapter 3. The characteristic
equation of the eigenvalues � 2 C of the unstable focus is given by

� = a± ib+ k
�
1� e��⌧

�
, (8.1)

where both a and b are real parameters. Here, ±ib is the difference to
real u. As we have seen, b 6= 0 destroys real eigenvalues and makes them
complex conjugates. Therefore, we cannot exclude stabilization by the
odd-number limitation. We can expect a similar mechanism for complex
u and complex function Q(z).

In this outlook we present four different options to extend the
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control triple method which are each of quite a different nature. As
we will see, the control triple method leaves ample space for possible
extensions.

In this thesis, we have strictly separated control terms of reflection and
rotation type. But why not mix them? Such control schemes of

mixed type would then be of the form

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� 

1

 

2

u(�x� ⇠, t� ⌧)
�
, (8.2)

where both

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� 

1

u(x� ⇠, t� ⌧)
�
, (8.3)

and
u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� 

2

u(�x, t� ⌧)
�
, (8.4)

are valid equations of rotation and reflection type, respectively. Do the
control regions become larger if the two control schemes are mixed or do
they vanish? How many unstable dimensions can be stabilized by such
mixed control schemes? Such questions can expected to be answered
using analytical methods similar to those in Chapters 5 and 6.

The control triple method in its most general form is not restricted to
constant transformations of output signal, space, and time. Therefore,
it can in principle be used for the stabilization of any rotating wave. We
propose to extend the control triple method by control schemes of

co-rotating type:

u
t

= u
xx

+ f(u)� cu
x

+ k
�
u� (x� ct)u(x� ⇠, t� ⌧)

�
. (8.5)

Here both the spatial delay ⇠ and the time delay ⌧ take arbitrary values
and they do not need to be related in any way. Then  is not necessarily
a unique function of x � ct which guarantees non-invasiveness of the
control. For a rotating wave, the function  (x � ct) rotates along with
the periodic orbit, as is indicated by the argument x� ct. The function
 is 2⇡-periodic in x � ct. In particular, if we chose ⇠ = c⌧ , then
 (x � ct) ⌘ 1 follows immediately, and we obtain the control terms
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inspired directly by Pyragas control. The same holds for frozen waves
with c = 0. Control schemes of co-rotating type can be applied to any
rotating or frozen wave. However, we have to pay a heavy price for the
generalization to a non-constant function  (x � ct): It is necessary to
have almost complete knowledge of the periodic orbit. Therefore, it can
be expected that the control schemes of co-rotating type can be used in
few situations only, however, with a high likelihood of stabilization.

In real life applications, distributed delays are a common feature. There-
fore, we propose to include this phenomenon into the control triple
method by considering additive control terms of the form

k

✓
u� 1

2⇡T

Z
T

0

Z
2⇡

0

⌅(⇠)⇥(⌧) (⇠, ⌧)u(x� ⇠, t� ⌧) d⇠d⌧

◆
, (8.6)

which we call control schemes of distributed type. We distribute
the control both over space, with corresponding kernel ⌅(⇠), and over
time, with kernel ⇥(⌧) and maximum time delay 0  T  1. Note
that we might have to choose different output transformations  (⇠, ⌧)
depending on the spatial delay ⇠ and the temporal delay ⌧ . The kernels
satisfy

1

2⇡

Z
2⇡

0

⌅(⇠) d⇠ = 1, (8.7)

as well as
1

T

Z
T

0

⇥(⌧) d⌧ = 1, (8.8)

to guarantee noninvasiveness. The control schemes discussed in this
thesis correspond to Dirac kernels ⌅ and ⇥. Multiple discrete delays are
also included in this control scheme, as well as extended feedback control
similar to [70]. Such control terms are very hard to tackle analytically
and we therefore suggest numerical studies to explore the scope of control
terms with distributed temporal and spatial delays.

All control terms in this thesis are linear. This is very convenient for
calculations, but not always optimal: Already for ordinary differential
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equations, nonlinear control terms enhance chances of stabilization [7,
14]. We should therefore consider control schemes of nonlinear type,

u
t

= u
xx

+ f(u)� cu
x

+K(u(x, t), u(x� ⇠, t� ⌧)). (8.9)

where K : R ⇥ R ! R is any (suitably smooth) function satisfying
K(y, y) = 0. For example, we might use analytic functions

K(x, y) =

1X

l,m=0


lm

xlym, (8.10)

where the coefficients 
l,m

2 R are chosen in such a way that the infinite
series converges for all x, y 2 R. Since the control is noninvasive, we
demand that for all N 2 N the following condition holds:

X

l+m=N


lm

= 0 (8.11)

In particular, it follows that the constant 
00

is zero. For the linear
term, the equality 

01

= �
10

is a necessary condition for the required
noninvasiveness. Note the similarity to the control scheme by Pyragas.
It will be interesting to see if stabilization regions can be enlarged by
nonlinear control schemes compared to the linear schemes discussed in
this thesis. Another important question is if Pyragas control can be
saved using nonlinear control terms. We conjecture that this is not the
case for similar reasons as in the linear analysis. This question should
be the subject of further research.

In this thesis, we have set out to explore new methods of spatio-temporal
feedback control for partial differential equations. We call the newly
developed method the control triple method, and we have shown its
success for scalar reaction-diffusion equations. Many new applications of
the control triple method are waiting to be investigated.
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A. Appendix

A.1. English Summary

Noninvasive time-delayed feedback control (“Pyragas control”) has been inves-
tigated theoretically, numerically and experimentally during the last twenty
years. Its success has been proven or experimentally demonstrated for numer-
ous dynamical systems given by ordinary differential equations.
In this thesis we introduce new noninvasive spatio-temporal control terms for
partial differential equations with the purpose to stabilize unstable equilibria
and periodic orbits. We construct these successful control terms by introducing
the notion of control triples. The control triple defines how we transform output
signal, space, and time in the control term. This Ansatz, especially well-suited
for the control of partial differential equations, does not exist in the literature
so far. It incorporates the spatio-temporal patterns of the equilibria and peri-
odic orbits into the control term.
We investigate the new control triple method in the context of scalar reaction-
diffusion equations on the circle: For these equations we present two types of
control schemes: Control schemes of rotation type combine rotations in space,
which we interpret as a spatial delay, with a time delay and a sign change of
the output signal, while control schemes of reflection type combine reflections
in space, time delay and a sign change of the output signal.
For control schemes of rotation type it turns out that spatial delays of half the
spatial period combined with a small time delay and a sign change in the out-
put signal are successful in the stabilization of equilibria and periodic orbits.
However, those control terms which use a full spatial period, and consequently
no sign change of the output signal, fail their task of stabilization for every
time delay. This failure includes the control terms of Pyragas type.
Using control schemes of reflection type, we are able to stabilize orbits with an
odd reflection symmetry, but not those with an even symmetry. Here again,
the sign change of the output signal decides whether the control is successful
or not.
The proof of stabilization uses a modified version of Hill’s equation with spatio-
temporal delay. We combine Hill’s equation with symmetry properties to obtain
the results.
Finally, we present a detailed case study for a specific reaction-diffusion equa-
tion, namely the Chafee-Infante equation. We discuss possible extensions and
limitations of our new control schemes.
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A.2. Deutsche Zusammenfassung

Nichtinvasive zeitverzögerte Rückkopplungskontrolle („Pyragas-Kontrolle”)
wurde während der letzten 20 Jahre intensiv theoretisch, numerisch und ex-
perimentell untersucht. Ihr Erfolg wurde für zahlreiche dynamische Systeme,
die durch gewöhnliche Differentialgleichungen gegeben sind, bewiesen oder ex-
perimentell überprüft.
In dieser Arbeit führen wir neue nichtinvasive räumlich-zeitliche Kontrollterme
für partielle Differentialgleichungen ein, mit dem Ziel, instabile Gleichgewichte
und periodische Orbits zu stabilisieren. Wir konstruieren diese erfolgreichen
Kontrollterme indem wir das Konzept der Kontroll-Tripel einführen. Das
Kontroll-Tripel definiert, wie wir das Ausgangssignal, den Raum und die Zeit im
Kontrollterm transformieren. Dieser Ansatz existiert bis jetzt nicht in der Li-
teratur und er ist insbesondere für die Kontrolle von partiellen Differentialglei-
chungen konzipiert. Somit nutzen die neuen Kontrollterme auch die räumlich-
zeitlichen Muster der Gleichgewichte und periodischen Orbits.
Wir untersuchen die neue Kontroll-Tripel-Methode für skalare Reaktions-
Diffusions-Gleichungen. Für diese Gleichungen stellen wir zwei Kontroll-
termtypen vor: Die Kontrollschemata vom Rotationstyp kombinieren Rota-
tionen im Raum, die wir als räumliche Verzögerung interpretieren, mit einer
Zeitverzögerung und einem Vorzeichenwechsel im Ausgangssignal. Dagegen
kombinieren die Kontrollschemata vom Reflektionstyp Reflektionen im Raum,
eine Zeitverzögerung und einen Vorzeichenwechsel im Ausgangssignal.
Bei den Kontrollschemata vom Rotationstyp stellt sich heraus, dass räumliche
Verzögerungen, die die Hälfte der räumlichen Periode betragen, erfolgreich
sind, wenn sie mit einer kleinen Zeitverzögerung und einem Vorzeichenwechsel
im Ausgangssignal kombiniert werden. Dagegen scheitern diejenigen Kontroll-
terme, die eine volle räumliche Periode nutzen, und somit auch keinen Vorzei-
chenwechsel im Ausgangssignal haben, für beliebige Zeitverzögerungen.
Mit den Kontrollschemata vom Reflektionstyp können wir diejenigen Orbits
mit einer ungeraden Reflektionssymmetrie stabilisieren, aber nicht diejenigen
mit einer geraden Symmetrie. Auch hier entscheidet der Vorzeichenwechsel im
Ausgangssignal, ob die Kontrolle erfolgreich ist oder nicht.
Für den Beweis der Stabilisierung nutzen wir eine erweiterte Version von Hills
Gleichung mit räumlich-zeitlicher Verzögerung. Wir kombinieren Hills Glei-
chung mit Symmetrieeigenschaften, um die Ergebnisse zu erhalten.
Unsere Ergebnisse präsentieren wir auch im Rahmen einer detaillierten Fall-
studie für eine bestimmte Reaktions-Diffusions-Gleichung, und zwar für die
Chafee-Infante-Gleichung. Außerdem diskutieren wir mögliche Erweiterungen
sowie Einschränkungen unserer neuen Kontrollterme.
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