PIPKIγ und AP-2 regulierte Phosphatidylinositol-(4,5)-bisphosphat-Synthese in der Clathrinvermittelten Endozytose

Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

Eingereicht in Fachbereich Biologie, Chemie und Pharmazie der Freien Universität Berlin

vorgelegt von

Nina Kahlfeldt

aus Wolfenbüttel

Februar 2010

Die vorliegende Arbeit wurde unter Anleitung von

Herrn Prof. Dr. Volker Haucke

in der Zeit von Mai 2006 bis Oktober 2009 am Institut für Chemie und Biochemie der Freien Universität Berlin angefertigt.

- 1. Gutachter: Prof. Dr. Volker Haucke
- 2. Gutachter: Prof. Dr. Petra Knaus

Disputation am 26.05.2010

Meiner Mutter

Inhaltsverzeichnis

In	Inhaltsverzeichnis			
I.	Da	nksa	911 1 19	1
TT	2u 7u	somn	nanfaccuna	3
11 TT	. Zu t C			
11	1. Su	mma	гу	,
1	Eiı	nleitu	ng	7
	1.1	Endo	ozytose – Wege in die Zelle	
	1.2	Clath	nrin-vermittelte Endozytose	
	1.3	Kom	ponenten der Clathrin-vermittelten Endozytose	11
	1.3	.1	Clathrin	11
	1.3	.2	Adaptorproteine	
	1	.3.2.1	Die Familie der Adaptorprotein-Komplexe	13
	1	.3.2.2	Erkennung klassischer Sortiermotive durch AP-2µ	15
	1	.3.2.3	Erkennung atypischer Sortiermotive durch AP-2µ	17
	1	.3.2.4	Dileucin-Sortiersignale	
	1	.3.2.5	Die AP-2 Ohr-Domänen	
	1	.3.2.6	Der AP-2-Komplex bindet selektiv an Membranen	
	1.3	.3	Alternative Adaptorproteine	
	1.3	.4	Akzessorische Proteine	
	1.4	Clath	rrin-vermittelte Endozytose an der chemischen Synapse	
	1.4	.1	Der synaptische Vesikelzyklus	
	1.4	.2	Mechanismen des Vesikelrückgewinnung an der chemischen Synapse	
	1.5	Syna	ptische Vesikel	
	1.6	Regu	lation des synaptischen Vesikelzyklus durch Phosphatidylinositol-(4,5	5)-
		bispł	10sphat	
	1.6	.1	Rolle von PI(4,5)P ₂ in der Endozytose	
	1.6	.2	Rolle von PI(4,5)P ₂ in der Exozytose	
	1.7	Phos	phatidyIinositol-4-Phosphat-5-Kinasen Typ I	
	1.8	Aufg	abenstellung	

2	Materia	al und Methoden	38
	2.1 Mate	erial	38
	2.1.1	Chemikalien und Einwegartikel	38
	2.1.2	Enzyme	38
	2.1.3	Molekularbiologie Kits	38
	2.1.4	Synthetische Peptide	39
	2.1.5	Synthetische Oligonukleotide	39
	2.1.6	Marker und Ladepuffer	39
	2.1.7	Antikörper	40
	2.1.7.1	Primäre Antikörper	40
	2.1.7	7.1.1 Monoklonale Mausantikörper	40
	2.1.7	7.1.2 Polyklonale Kaninchenantikörper	41
	2.1.7.2	Sekundäre Antikörper	41
	2.1.8	Escherichia coli Bakterienstämme	41
	2.1.9	Tierische Zellinien	41
	2.1.10	Plasmid-Vektoren	42
	2.1.10.	1 Bakterielle Expressionsvektoren	42
	2.1.10.	2 Expressionsvektoren für Säugetierzellen	42
	2.2 Med	lien, Puffer und Lösungen	43
	2.2.1	Bakterienmedien	43
	2.2.2	Puffer und Lösungen	44
	2.2.3	Antibiotika	47
	2.3 Mol	ekularbiologische Methoden	48
	2.3.1	Polymerase Kettenreaktion (PCR)	48
	2.3.2	Analytische und präparative Agarose-Gel-Elektrophorese	49
	2.3.3	Isolation und Aufreinigung von DNA-Fragmenten aus Agarose-Gelen	49
	2.3.4	Analytischer und präparativer Restriktionsverdau	49
	2.3.5	Dephosphorylierung des Vektors	49
	2.3.6	Oligosubklonierung	49
	2.3.7	Ligation	50
	2.3.8	Kolonie-PCR-Screening	50
	2.3.9	Escherichia coli Übernacht-Kultur	51
	2.3.10	Escherichia coli Glycerol-Stammkulturen	51

2.3.11	Isolierung von Plasmid-DNA aus Escherichia coli Kulturen für	
	Mini-Screens	51
2.3.12	Mini- und Midi-Plasmid-DNA Präparation aus Escherichia coli	51
2.3.13	Konzentrationsbestimmung von Nukleinsäuren	52
2.3.14	DNA-Sequenzierung	52
2.4 Mik	crobielle Methoden	52
2.4.1	Kultivierung von Mikroorganismen	52
2.4.1.1	l Escherichia coli	52
2.4.1.2	2 Präparation kompetenter Zellen und Transformation	53
2.4.	1.2.1 Herstellung chemisch kompetenter Escherichia coli Zellen	53
2.5 Pro	tein-biochemische Methoden	53
2.5.1	Expression rekombinanter Proteine in Escherichia coli	53
2.5.2	Aufreinigung rekombinanter GST- und His ₆ -Fusionsproteine	54
2.5.2.1	Proteinreinigung im Batch-Verfahren	54
2.5.2.2	2 Affinitätschromatographie (Fast protein liquid chromatography, FPLC) 55
2.5.2.3	3 Ausschlusschromatographie (Gelfiltration)	55
2.5.3	Bradford-Assay zur Proteinbestimmung	55
2.5.4	Photometrische Proteinbestimmung	56
2.5.5	Quervernetzung von GST-Fusionsproteinen an GST-bindende Sepharose	56
2.5.6	Präparation von Proteinextrakten aus Rattenhirn	56
2.5.6.1	Präparation von Rattenhirnextrakt	57
2.5.6.2	2 Präparation von Rattenhirnsynaptosomenextrakt	57
2.5.7	Affinitätsreinigung aus Extrakten von Rattenhirnen (Pulldown)	58
2.5.8	In vitro-Bindungsexperimente	58
2.5.9	Immunpräzipitation	58
2.5.10	SDS-Polyacrylamid-Gel-Elektrophorese (SDS-PAGE)	59
2.5.11	Immunblotting	59
2.5.12	Affinitätsreinigung polyklonaler Antikörper aus Kaninchenserum	60
2.5.13	Herstellung eines Gesamtzellextraktes tierischer Zellen aus der Zellkultur	: 61
2.5.14	Zellfraktionierung tierischer Zellen aus der Zellkultur	61
2.5.15	PIPKI-Aktivierungsassay	61
2.6 Bio	physikalische Methoden	63
2.6.1	Isothermale Titrationskalorimetrie	63
2.7 Zell	biologische Methoden	65

	2.7.	1 Generelle tierische Zellkultur	. 65
	2.7.2	2 Herstellung von Glycerol-Kulturen tierischer Zellen	. 65
	2.7.	3 Transfektion von Plasmid-DNA und siRNAs	. 66
	2.7.4	4 Transfektion primärer Neuronen	. 66
	2.7.	5 Immunfluoreszenzfärbung	. 66
	2.7.	6 Immunfluoreszenzfärbung primärer Neuronen	. 67
	2.7.2	7 Fluoreszenzmikroskopie und Quantifizierung	. 67
	2.7.	8 Transferrin-Endozytose	. 68
	2.7.	9 Internalisierung Antikörper-markierter β1-Integrine	. 68
	2.7.	10 SynaptopHluorin Assay	. 69
2	Enc		72
3	Erg		, 13
	3.1	We check with the set of the set	- 4
		Moglichkeiten der Komplexbildung	.74
	3.2	Identifizierung eines minimalen AP-2 μ - und β 2-Ohr-bindenden Peptids aus	-
		dem PIPKIy-p90-C-Terminus	. 78
	3.3	Kristallstruktur der AP-2-β2-Ohr-Domäne im Komplex mit dem	
		Minimal-Peptid PTDERSWVYSPLH aus dem PIPKIγ-p90-C-Terminus	. 81
	3.4	Phenylalanin 640 ist als weitere Bindungsdeterminante in die	
		Komplexbildung von PIPKIγ-p90 mit AP-2-β2-Ohr involviert	. 84
	3.5	Mutationsanalyen bestätigen die strukturellen Daten der Komplexbildung des	
		PIPKIγ-p90 abgeleiteten Peptids YFPTDERSWVYSPLH mit AP-2-β2-Ohr	. 86
	3.6	Kristallstruktur von AP-2-C-µ2 im Komplex mit dem Peptid SWVYSPLH	
		aus dem p90-spezifischen Spliceinsert der PIPKIy	. 88
	3.7	Die Interaktion von PIPKIy-p90 und AP-2 involviert verschiedene	
		Interaktionsflächen	. 89
	3.8	Quantitative Bestimmung der Dissoziationskonstanten für die Interaktion	
		von aus dem PIPKIy-p90-C-Terminus abgeleiteten Peptiden mit den AP-2-	
		Domänen C- μ 2 und β 2-Ohr	. 94
	3.9	Der Einfluss unterschiedlicher Interaktionsflächen auf die Komplexbildung	
		von PIPKIγ-p90 mit dem Adaptorkomplex-2	. 97
	3.10	Selbstaktivierung der PIPKIγ-p90 im Komplex mit AP-2μ	. 99

3	.11	Inhibition der β_1 -Integrin-Internalisierung durch Peptide aus dem		
		PIPKIγ-p90-C-Terminus	. 102	
3	.12	Abhängigkeit der β_1 -Integrin-Internalisierung von AP-2 und PIPKI γ	. 104	
3	.13	Der PIPKIy-p90-C-Terminus inhibiert die Endozytose synaptischer Vesikel	. 106	
4 Diskussion			111	
4	.1	Die Komplexbildung von PIPKIy-p90 und AP-2 involviert mehrere		
		Interaktionsstellen	.111	
4	.2	Regulation fokaler Adhäsionen durch PIPKIy-p90	. 115	
4	.3	Endozytose synaptischer Vesikel	. 119	
4	.4	Beitrag weiterer PIPKIγ-Splicevarianten	. 123	
4	.5	Ausblick	. 123	
5	Lite	eraturverzeichnis	125	
A)	Abl	kürzungsverzeichnis	139	
B)	Abl	bildungsverzeichnis	143	
C)	Tał	oellenverzeichnis	146	
D)	Pri	mer-Liste	147	
E) siRNA-Liste		NA-Liste	150	
F)	Dat	Daten Kristallisation151		
Wi	ssen	schaftlicher Werdegang	157	

I. Danksagung

An dieser Stelle möchte ich mich ganz herzlich bei allen bedanken, die zum Gelingen der vorliegenden Arbeit beigetragen haben.

Zunächst möchte ich Herrn Prof. Dr. Volker Haucke sehr herzlich danken. Ich danke ihm für die Bereitstellung dieses interessanten Themas und seine Betreuung. Sein Interesse und seine Bemühungen trugen wesentlich zum Gelingen der Arbeit bei.

Mein Dank gilt auch Frau Prof. Dr. Petra Knaus, die sich freundlicherweise dazu bereit erklärt hat, das zweite Gutachten für diese Arbeit zu übernehmen.

Ein herzliches Dankeschön geht an Herrn Dr. Michael Krauss. Er hat sehr viel Zeit und Mühe für meine Fragen und Probleme aufgebracht und war jederzeit bereit meinem Gedankengang zu folgen und mir zu helfen.

Prof. Dr. Wolfram Sänger, Dr. Ardeschir Vahedi-Faridi und Johannes Schäfer danke ich für die Zusammenarbeit bei der Kristallisation von AP-2 μ /AP-2- β 2-Ohr im Komplex mit PIPKI γ -p90 abgeleiteten Peptiden und die Bereitstellung der röntgenkristallographischen Daten.

Prof. Dr. Sandro Keller und Georg Krainer danke ich für die Zusammenarbeit und ihre Unterstützung bei der quantitativen Bestimmung der Dissoziationskonstanten mittels isothermaler Titrationskalorimetrie.

Ein herzliches Dankschön geht an Soeng Joo Koo für die tolle Zusammenarbeit und ihre tatkräftige Unterstützung bei den SynaptopHluorin-Experimenten.

Ganz herzlich möchte ich mich auch bei Isabelle Grass für ihre Unterstützung bei zahlreichen Proteinpräparationen, Klonierungen und DNA-Aufreinigungen bedanken.

Auf diesem Wege möchte ich all meinen Arbeitskollegen für das gute Arbeitsklima danken. Ohne die zahlreichen Gespräche und die konstruktive Zusammenarbeit wäre diese Arbeit nicht möglich gewesen.

Mein Dank geht auch an Kerstin Loch, Anke Neemann und Sabrina Schmidt für das Korrekturlesen dieser Arbeit. Marco Schmidt danke ich für ebendieses und noch vieles mehr. Vielen Dank auch an Jörn Saupe für seine Hilfe bei der Formatierung der Arbeit. Auch Barbara und Detlef Schmidt möchte ich für ihre Unterstützung meinen Dank aussprechen.

Weiterhin möchte ich auch meiner Familie einen großen Dank aussprechen, die mir während meines Studiums und während der gesamten Promotion Rückhalt und Unterstützung gaben und somit einen großen Anteil am Gelingen dieser Arbeit haben.

II. Zusammenfassung

Das Phospholipid Phosphatidylinositol-(4,5)-bisphosphat (PI(4,5)P₂) ist an der Plasmamembran konzentriert und essentiell für die Clathrin-vermittelte Endozytose. Zelluläres PI(4,5)P₂ wird hauptsächlich durch Phosphatidylinositol-4-Phosphat-5-Kinasen Typ I (PIPKI) synthetisiert. Bisher konnten drei verschiedene Isoformen - α , β und γ - in Säugetieren identifiziert werden. Von allen Isoformen ist PIPKI γ vorwiegend im Hirngewebe exprimiert und bekannt, eine kritische Rolle in dem Recycling synaptischer Vesikel einzunehmen. Allerdings ist der exakte Mechanismus, involviert in die räumliche und zeitliche Regulation der PI(4,5)P₂-Synthese in Bereichen Clathrin-vermittelter Endozytose, noch immer nicht verstanden. Neueste Ergebnisse deuten an, dass PIPKI γ -p90 und Komponenten der endozytotischen Maschinerie, insbesondere der AP-2-Adaptor-Komplex, involviert sind.

In dieser Arbeit wird gezeigt, dass PIPKI γ -p90 über seine C-terminale Schwanzdomäne mit den beiden AP-2-Domänen, β 2-Ohr und C- μ 2, interagiert. Da beide Interaktionen über ein Peptid vermittelt werden, das aus dem PIPKI γ -p90-C-Terminus stammt, wurde es für Kristallisationsansätze mit beiden AP-2-Domänen eingesetzt. Dieser Ansatz zeigte, dass die Interaktion des PIPKI γ -p90 abgeleiteten Peptids YFPTDERSVYSPLH mit der Sandwich-Subdomäne des AP-2- β 2-Ohrs durch hydrophobe und aromatische Reste vermittelt wird, während die Interaktion mit C- μ 2 ein Yxx Φ -Motiv involviert. Interessanterweise konnte nachgewiesen werden, dass die beiden Interaktionstellen innerhalb der PIPKI γ -p90 C-terminalen Domäne überlappen. Allerdings bestätigten umfassende Mutationsanalysen eine Involvierung beider Interaktionsstellen in die Interaktion der PIPKI γ -p90-Schwanzdomäne mit AP-2. In Unterstützung der strukturellen und biochemischen Daten konnte beobachtet werden, dass die aus dem PIPKI γ -p90-C-Terminus abgeleiteten Peptide die AP-2/Clathrinabhängige Aufnahme von Antikörper-markierten β 1-Integrin-Molekülen in nicht-neuronalen Zellen beeinträchtigen. Der beobachtete Effekt war von beiden AP-2-Bindungsstellen, AP-2 μ und β 2-Ohr, abhängig. Eine Rolle von PIPKI γ und AP-2 in β 1-Integrin-Endozytose konnte ferner durch siRNAvermittelte *knockdowns* unterstützt werden.

Die AP-2/Clathrin-vermittelte Endozytose des Reporterproteins SynaptopHluorin in primären Neuronen aus dem Hippocampus von Ratten wurde signifikant durch die Überexpression verschiedener dominant-negativ wirkender Mutanten der PIPKIγ-p90 C-terminalen Domäne beeinträchtigt. Die Verminderung der Endozytose synaptischer Vesikel war abhängig von der Fähigkeit der C-terminalen PIPKIγ-p90-Domäne mit dem AP-2-β2-Ohr und mit C-µ2 zu assoziieren. Diese Ergebnisse bestätigten die strukturbiologischen sowie biochemischen Analysen und bestärken weiter eine wichtige physiologische Rolle für die Komplexbildung zwischen AP-2 und PIPKIγ-p90 in der Endozytose synaptischer Vesikel. Darüber hinaus deuten die Daten an, dass die Interaktion der PIPKIγ-p90-Schwanzdomäne mit dem AP-2-Komplex nicht nur in die Regulation der AP-2-PIPKIγ-

p90-Komplexbildung involviert ist, sondern zusätzlich die Enzymaktivität von PIPKIγ-p90 beeinflusst. Es kann ein Modell postuliert werden, dem zufolge multiple Interaktionen zwischen PIPKIγ-p90 und AP-2 eine räumlich-zeitlich kontrollierte PI(4,5)P₂-Synthese in Bereichen Clathrin-vermittelter Endozytose zur Folge haben.

III. Summary

The phospholipid phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P₂) is concentrated at the plasma membrane and essential for clathrin mediated endocytosis. The majority of cellular PI(4,5)P₂ is synthesized by phosphatidylinositol-4-phosphate-5-kinase type I (PIPKI). Three different isoforms - α , β and γ - have been identified in mammals so far. Of all isoforms, only PIPKI γ is predominantly expressed in the brain and known to play a critical role in synaptic vesicle recycling. However, the exact mechanism involved in spatial and temporal regulation of PI(4,5)P₂ synthesis at sites of clathrin mediated endocytosis still remains elusive. Recent findings indicate that PIPKI γ -p90 and components of the endocytic machinery, in particular the AP-2 adaptor complex, are involved.

This work shows that PIPKI γ -p90 interacts via its C-terminal domain with two domains of AP-2, namely β 2-ear and C- μ 2. Since both interactions are mediated by a peptide found in the PIPKI γ -p90 C-terminus, it was crystallized in complex with the two AP-2 domains, respectively. This approach revealed that the interaction of the PIPKI γ -p90 C-terminus derived peptide YFPTDERSVYSPLH with the sandwich subdomain of β 2-ear is mediated via hydrophobic and aromatic residues, whereas the interaction with C- μ 2 involves a Yxx Φ motif. Interestingly, the two interaction sites within the PIPKI γ -p90 C-terminal domain have proven to be overlapping. Indeed, extensive mutational analysis has confirmed that both interaction sites are implicated in the PIPKI γ -p90 tail interaction with AP-2. In support of the structurally and biochemically derived data, PIPKI γ -p90 tail derived peptides have been observed to affect AP-2/Clathrin-dependent uptake of antibody labeled β 1-Integrin molecules in non-neuronal cells. The monitored effect was dependent on both AP-2 binding sites, AP-2 μ und β 2-ear. A role of PIPKI γ and AP-2 in β 1-Integrin endocytosis was further supported by siRNA mediated knockdowns.

AP-2/Clathrin mediated endocytosis of the reporter protein SynaptopHluorin in primary rat hippocampal neurons was significantly impaired by the overexpression of different dominant negative effective PIPKI γ -p90 C-terminal domain mutants. The decrease of synaptic vesicle endocytosis was dependent on the PIPKI γ -p90 C-terminal domain ability to associate with AP-2 β 2-ear and C- μ 2. These results confirmed the structural and biochemical analysis and further support an important physiological role for complex formation between AP-2 and PIPKI γ -p90 in synaptic vesicle endocytosis.

Furthermore the data suggest that the interaction of PIPKIγ-p90 tail domain with the AP-2 complex may not only be involved in the regulation of AP-2-PIPKIγ-p90 complex formation, but in addition, influences the enzyme activity of PIPKIγ-p90. A model can be postulated according to which multiple interactions between PIPKIγ-p90 and AP-2 lead to spatio-temporally controlled PI(4,5)P₂ synthesis at sites of clathrin mediated endocytosis.

1 Einleitung

Die Zelle ist die kleinste, eigenständige Einheit aller Lebewesen. Das Innere einer Zelle grenzt sich durch eine Lipiddoppelschicht von ihrer äußeren Umgebung ab und erlaubt den Aufbau von Ionengradienten, die für die Erregbarkeit der Zelle und ihre Funktion notwendig sind. In der Plasmamembran ist eine umfassende Anzahl von unterschiedlichen Membranproteinen für die Nährstoffaufnahme, Erkennung und Signaltransduktion zu finden, die in ihrer Komposition niemals gleich bleiben, sondern einer ständigen Umgestaltung als Reaktion auf intra- und extrazelluläre Signale unterliegen. Wie und wann aus der Zellmembran Transmembranproteine entfernt werden, ist entscheidend für unzählige zelluläre Prozesse, die von Nährstoffaufnahme, über Zellteilung bis zur koordinierten Zellbewegung reichen. Auch das Zellinnere ist durch weitere ein- oder doppelschichtige Membranen in unterschiedliche Reaktionsräume wie Endosomen, Lysosomen oder den Golgi-Apparat unterteilt (siehe Abb. 1.1).

Die eukaryotische Zelle ist durch eine Lipiddoppelschicht von ihrer äußeren Umgebung abgegrenzt. Durch die Kompartimentierung des Zellinneren ergeben sich unterschiedliche Reaktionsräume wie Endosomen, Endoplasmatisches Retikulum, Lysosomen und Golgi-Apparat. Der Transport von Membranen und Membranproteinen kann sekretorisch vom Endoplasmatischen Retikulum zur Zelloberfläche oder endozytotisch von der Plasmamembran zum endosomalen-lysosomalen System erfolgen. Die Abbildung wurde aus Maritzen *et al.*, 2009 entnommen.

Die verschiedenen intrazellulären Reaktionsräume unterscheiden sich in ihrer Morphologie sowie Lipid- und Proteinkomposition (Behnia & Munro, 2005). Durch den Austausch von Membranen und luminalen Frachtmolekülen besteht zwischen den Organellen ein dynamisches Equillibrium. Der Transport von Membranenlipiden und -proteinen innerhalb einer Zelle erfolgt durch Vesikel. Es wird generell zwischen dem sekretorischen Transport vom Endoplasmatischen Retikulum (ER) zur Zelloberfläche, sowie dem endozytotischen Transport plasmamembranständiger Rezeptoren, Nährstoffe und Signalmoleküle zum Recycling oder zum Abbau im endosomalen-lysosomalen System unterschieden (siehe Abb. 1.1).

1.1 Endozytose – Wege in die Zelle

Die Vielfalt der zu internalisierenden Transmembranproteine ist hoch, wodurch sich eine Vielzahl verschiedener Aufnahmemechanismen in Abhängigkeit vom Zelltyp ergibt. Jedem endozytotischen Vorgang, der die Aufnahme von spezifischen Molekülen in die Zelle beinhaltet, geht eine Selektion der Zielmoleküle an der Zelloberfläche voraus. Der zur Vesikelbildung notwendigen Krümmung der Plasmamembran folgt im weiteren Reifungsprozess die Abschnürung eines Vesikels und der Transport der Frachtproteine zur Zielorganelle (vergleiche Abb. 1.2).

Die verschiedenen endozytotischen Mechanismen (Überblick bei Doherty & McMahon, 2009; Mayor & Pagano, 2007) variieren nicht nur in den Frachtproteinen, die sie transportieren, sondern lassen sich in ihrer Abhängigkeit von dem Hüllprotein Clathrin sowie der großen GTPase Dynamin voneinander unterscheiden. Phagozytose und Makropinozytose sind Clathrin- und Dynamin-unabhängig und heben sich von allen anderen Internalisierungsmechanismen ab, insofern relativ große Membranbereiche (> 1 µm Durchmesser) für die Internalisierung in Anspruch genommen werden.

Die Clathrin-vermittelte Endozytose findet konstitutiv in allen Säugetierzellen statt und ermöglicht den Transport einer Vielzahl von Rezeptoren, wie zum Beispiel Transferrin- und EGF- (Epidermis-Wachstumsfaktor) Rezeptoren über Sortiermotive ins endosomale System. Die Erkennung und Rekrutierung von Frachtproteinen an der Plasmamembran wird durch das Adaptorprotein-2 (AP-2) vermittelt (Brodsky, 2001; Schmid, 1997). Der Transport von Frachtproteinen durch Clathrin-vermittelte Endozytose nimmt eine Schlüsselrolle in verschiedenen zellulären Prozessen ein. Zum Beispiel während der intrazellulären Kommunikation, die der Gewebe- und Organentwicklung zugrunde liegt (Di Fiore & De Camilli, 2001; Seto *et al.*, 2002), bei der Aufrechterhaltung der Zell- und Serumhomeostase, sowie während der Regeneration synaptischer Vesikel nach der Ausschüttung von Neurotransmittern (Cremona & De Camilli, 1997; Galli & Haucke, 2001; 2004; Slepnev & De Camilli, 2000). Eine Beschreibung der verschiedenen Phasen der Clathrin-vermittelten Endozytose folgt in Abschnitt 1.2 und der Komponenten unter Abschnitt 1.3.

Endozytose kann auch in Abhängigkeit von dem Strukturprotein Caveolin und Membran-Mikrodomänen, die reich an Cholesterol und Sphingolipiden sind, stattfinden (Parton & Simons, 2007).

Abb. 1.2 Wege in die Zelle

Mechanismen, die die Aufnahme von Frachtmolekülen an der Plasmamembran vermitteln, werden nach ihrer Abhängigkeit von dem Hüllprotein Clathrin und der GTPase Dynamin unterschieden. Makropinozytose und Phagozytose sind Clathrin- und Dynamin-unabhängig und unterschieden sich von anderen Internalisierungsmechanismen durch die Invagination großer Membranbereiche (> 1 µm Durchmesser). Der bisher am besten verstandene Internalisierungsvorgang ist die Clathrin- und Dynamin-abhängige Endozytose. Neben diesem Aufnahmemechanismus gibt es aber noch Caveolin-vermittelte Endozytose, ein Prozess, der Clathrin-unabhängig, aber auf die katalytische Aktivität der GTPase Dynamin angewiesen ist. Membranmikrodomänen-vermittelte Endozytose kann auch unabhängig von Caveolin stattfinden. Diese Prozesse können unter anderem in ihrer Abhängigkeit von kleinen GTPasen unterschieden werden und sind abhängig vom Zelltyp. Abbildung (modifiziert) wurde aus Mayor & Pagano, 2007 entnommen.

Caveolae repräsentieren Clathrin-unabhängigen, einen aber Dynamin-abhängigen und unterscheiden von anderen Mikrodomänen-vermittelten Internalisierungsprozess sich Endozytoseprozessen im Wesentlichen durch zwei Aspekte. Zum einen durch ihre einzigartige Morphologie - Caveolae sind 60-80 nm große flaschenförmige Einstülpungen der Plasmamembran, die reich an Sphingolipiden und Cholesterol sind. Zum anderen durch die Anwesenheit von Mitgliedern der Caveolin (Cav)-Proteinfamilie, die Cholesterol binden. Caveolae sind vor allem in glatten Muskelzellen, Fibroblasten, Adipozyten und in Endothelzellen zu finden und internalisieren verschiedene Frachtproteine wie β 1-Integrine, Albumin oder auch Pathogene (Parton & Simons, 2007; Doherty & McMahon, 2009). In Säugetieren konnten bisher drei Caveolin-Isoproteine identifiziert werden. Caveolin-3 ist muskelspezifisch, während Caveolin-2 und Caveolin-1 in Nicht-Muskelzellen mit Ausnahme von Leukozyten und Neuronen verbreitet sind. Zellen, die Caveolin-1 nicht exprimieren (oder Caveolin-3 in Muskelzellen) fehlen morphologisch eindeutige Caveolae. Die Inaktivierung des Caveolin-1-Genes in Mäusen hat den vollständigen Verlust von Caveolae von der Plasmamembran der Epithelzellen zur Folge, doch nichtsdestotrotz sind die Mäuse lebensfähig. Caveolin-2 allein kann keine Caveolae induzieren (Drab et al., 2001). Die Internalisierung von Caveolae ist mit $t_{1/2} \sim 20$ min langsamer als Clathrin-vermittelte Endozytose.

1.2 Clathrin-vermittelte Endozytose

Das Hüllprotein Clathrin, das der Clathrin-vermittelten Endozytose zum Namen verholfen hat, wurde Mitte der 70er Jahre des 20sten Jahrhunderts entdeckt. Barbara Pearse gelang es als erste Clathrinumhüllte Vesikel aus Schweinehirn mittels Dichtegradientenzentrifugation zu isolieren. Pearse bezeichnete das Protein, aus dem die Hülle der isolierten Vesikel hauptsächlich bestand, als Clathrin mit dem Verweis auf seine käfigähnliche Struktur (Pearse, 1975; 1976).

Clathrin-umhüllte Vesikel vermitteln nicht nur den endozytotischen Transport von der Plasmamembran zum endosomalen System der Zelle, sondern sind auch in intrazelluläre Transportvorgänge involviert (Young, 2007). Intrazellulär gibt es noch weitere Hüllproteine. Dazu zählen COPI und COPII, die den antero- und retrograden Transport von Vesikeln zwischen dem ER und dem Golgi-Komplex vermitteln (Béthune *et al.*, 2006; Kirchhausen, 2000; McMahon & Milles 2004). Der heteropentamere Retromer-Komplex vermittelt den retrograden Transport von Transmembranproteinen von Endosomen zum *trans*-Golgi-Netzwerk (Bonifacino & Hurley, 2008; Collins, 2008).

Die Bildung eines Clathrin-umhüllten Vesikels an der Plasmamembran kann in verschiedene Phasen unterschieden werden: Konzentrierung der Frachtproteine und Initiierung des Proteinmantels, Wölbung der Membran und Reifung des Proteinmantels, Abschnürung des Vesikels von der Donor-Membran und die Entfernung des Proteinmantels. Die Abbildung (modifiziert) wurde aus Slepnev & De Camilli, 2000 entnommen.

Clathrin-umhüllte Vesikel entstehen durch die koordinierte Anlagerung von Clathrin auf der inneren Seite der Plasmamembran. Clathrin selbst bindet nicht an Membrankomponenten. Die Rekrutierung und Polymerisierung der äußeren Clathrinschicht wird durch Adaptorproteine unterstützt, welche simultan an Clathrin, Membranlipide und Frachtproteine binden, schematisch dargestellt in Abbildung 1.3 (Ehrlich *et al.*, 2004; Owen *et al.*, 2004; Ungewickell & Hinrichsen, 2007). Der Prozess der Vesikelbildung kann in mehrere Phasen unterschieden werden: Konzentrierung der Frachtproteine und Initiierung des Proteinmantels, Reifung des Proteinmantels und die Wölbung der Membran, Abschnürung des Vesikels von der Donor-Membran und die Entfernung des Proteinmantels (vergleiche Abb. 1.3). Die Bildung eines Vesikels setzt die zeitlich und räumlich regulierte Interaktion unterschiedlichster Proteine voraus. Proteine, die in diesem Proteinnetzwerk zusammenwirken, sind das Hüllprotein Clathrin, die Adaptorproteine sowie eine sich ständig erweiternde Gruppe akzessorischer Proteine und werden im folgenden Abschnitt näher vorgestellt.

1.3 Komponenten der Clathrin-vermittelten Endozytose

Die Clathrin-vermittelte Endozytose ist ein komplexer Vorgang, an dessen stringenter Kontrolle neben Lipiden, insbesondere Phosphatidylinositol-(4,5)-bisphosphat (PI $(4,5)P_2$) und eine Vielzahl von Proteinen beteiligt sind. Im Folgenden soll ein kurzer Überblick über wichtige Proteinkomponenten der Clathrin-vermittelten Endozytose gegeben werden.

1.3.1 Clathrin

Clathrin-umhüllte Vesikel vermitteln nicht nur den endozytotischen Transport von der Plasmamembran zum endosomalen System der Zelle. Flache Clathrinhüllen können auch an frühen Endosomen gefunden werden (Raiborg *et al.*, 2002) und sind in Transportvorgänge zwischen dem *trans*-Golgi-Netzwerk und Endosomen involviert (Edeling *et al.*, 2006b). Die Clathrinhülle eines Vesikels besteht aus einer dreidimensionalen Anordnung von Triskelien, welche die Grundeinheit der polygonalen Vesikelhülle bilden. Ein Triskelion setzt sich aus drei schweren Ketten (CHC, *clathrin heavy chain*) und drei leichten Ketten (CLC, *clathrin light chain*) zusammen (siehe Abb. 1.4A).

Die ca. 190 kDa schwere Clathrinkette lässt sich in fünf funktional verschiedene Bereiche unterteilen (siehe Abb. 1.4A): Eine N-terminale globuläre Domäne, ein flexibler Linkerbereich, ein distales und ein proximales Segment sowie eine C-terminalen Trimerisierungsdomäne (Greene et al., 2000; Schmid, 1997). Die Zusammenlagerung der Clathrin-Triskelien ist ein energetisch günstiger Prozess, der unter geeigneten Pufferbedingungen auch spontan in vitro in Abwesenheit von Hüllproteinen ablaufen kann. Die zentrale Verbindungsstelle eines Triskelions besteht aus den zusammengelagerten C-terminalen Segmenten dreier schwerer Clathrin-Ketten (vergleiche Abb. 1.4A). Sowohl der distale als auch der proximale Bereich der schweren Clathrinkette tragen zu intramolekularen Kontakten bei, die notwendig sind, um eine geschlossene Korbstruktur zu erhalten. Der proximale Kettenbereich enthält die Bindungsstelle für die leichte Clathrinkette (25-29 kDa), die in zwei Isoformen (LCa und LCb) existiert. Über die Funktion der leichten Clathrinketten herrschte lange Ungewissheit. Es konnte jedoch beobachtet werden, dass die leichten Clathrinketten mit dem Huntingtin-interagierenden Protein 1 (HIP1) und dem HIP1-verwandten Protein (HIP1R), beides Komponenten der Proteinhülle von Clathrin-umhüllten Strukturen, interagieren (Chen & Brodsky, 2005; Legendre-Guillemin et al., 2005). Kürzlich durchgeführte knockdown-Versuche zeigten, dass die leichten Clathrinketten Einfluss auf Clathrin-vermittelte Transportvorgängen zwischen dem trans-Golgi Netzwerk und Endosomen nehmen. Der Clathrin-vermittelte Transport an der Plasmamembran wurde durch die siRNAvermittelte Reduktion der leichten Clathrinketten nicht beeinträchtigt (Poupon et al., 2008).

Abb. 1.4 Clathrin

(A) Elektronenmikroskopische Rekonstruktion eines Clathrin-Triskelions, bestehend aus drei schweren Ketten (blau) und drei leichten Ketten (gelb). Die schwere Clathrinkette lässt sich in fünf Bereiche unterteilen, die sich in Struktur und Funktion unterscheiden: eine N-terminale globuläre Domäne (1), ein flexibler Linkerbereich (2), ein distales (3) und ein proximales Segment (4) sowie einer C-terminalen Trimerisierungsdomäne (5). (B) Elektronenmikroskopische Rekonstruktion eines Clathrinkäfigs (blau) ohne leichte Ketten. Die Position dreier schwerer Clathrinketten ist farblich hervorgehoben. Die terminalen Domänen ragen in den Käfig hinein. (C) Clathrinkäfig (blau) mit gelb hervorgehobenen leichten Clathrinketten. Die Abbildungen wurden aus Fotin *et al.*, 2004 entnommen und teilweise modifiziert.

Da Clathrin selbst nicht an Membranen bindet, wird die Hilfe von Adaptorproteinen benötigt. Die globuläre N-terminale Domäne der schweren Clathrinkette, die auch als β -Propeller bezeichnet wird, interagiert durch die Erkennung verschiedener Clathrinbindungsmotive mit zahlreichen Komponenten der Proteinhülle. Die Clathrin-Box mit der Konsensus-Sequenz L $\Phi x \Phi[DE]$ ist als erstes Clathrinbindungsmotiv beschrieben worden (Dell'Angelica *et al.*, 1998; ter Haar *et al.*, 2000). Clathrin-Box-Motive können zum Beispiel in der β 2-Untereinheit des AP-2-Komplexes und in AP180 gefunden werden (Morgan *et al.*, 2000). Weiterhin konnte die W-Box mit der Konsensus-Sequenz PWxxW von Amphiphysin und SNX9 (Miele *et al.*, 2004) als weiteres Clathrinbindungsmotiv identifiziert werden. Die β -Propeller-Domäne ragt zu diesem Zweck weit in das Zentrum eines Clathrinkäfigs hinein (vergleiche Abb. 1.4B und C). Die leichten Ketten hingegen liegen an der Außenseite des Käfigs (siehe Ab. 1.4C). Interaktionen werden nicht ausschließlich über den β -Propeller vermittelt; es konnte gezeigt werden, dass der Linkerbereich zwischen β -Propeller und distaler Domäne ebenfalls Adaptorproteine erkennt (Knuehl *et al.*, 2006).

1.3.2 Adaptorproteine

Adaptorproteine verbinden die Clathrinhülle mit einer Komponente der Membran, die aus einem Phospholipid und/oder einem Transmembranprotein bestehen kann. Bisher konnten mehr als 20 verschiedene Clathrin-Adaptorproteine, die an Transportvorgänge von der Plasmamembran zum endosomalen System oder in Sortiervorgänge am Golgi oder endosomalen Membranen Anteil nehmen, identifiziert werden (Maldonado-Baez & Wendland, 2006; Owen *et al.*, 2004; Traub, 2003, 2005). In

diesem Abschnitt wird jedoch nur auf Adaptorproteine, die in Clathrin-vermittelte Endozytose an der Plasmamembran involviert sind, eingegangen.

Nach Traub und Mitarbeiter (2005) können die Adaptorproteine in heterotertramere Adaptorkomplexe (AP-Komplexe) und *clathrin-associated sorting proteins*, so genannte CLASPs, unterschieden werden. Die heterotetrameren Adaptorkomplexe erkennen zu transportierende Frachtproteine über kurze Peptidmotive (siehe Abschnitt 1.3.2.2 bis einschließlich Abschnitt 1.3.2.5): Die heterogene Familie der CLASPs wird nach den zu transportierenden Frachtproteinen in verschiedene Subfamilien unterschieden (vergleiche Abschnitt 1.3.3) (Owen *et al.*, 2004).

Allen Adaptorproteinen ist ein ähnlicher Aufbau aus einer oder mehreren kompakten, gefalteten Domänen, die durch flexible, unstrukturierte Bereiche verbunden sind, gemeinsam. Über die Domänen werden Interaktionen mit weiteren Proteinen oder Membran-Phospholipiden vermittelt. Die unstrukturierten flexiblen Bereiche enthalten oft Motive, die eine Wechselwirkung mit Clathrin, AP-2 und/oder weiteren Komponenten der Proteinhülle erlauben (Kalthoff *et al.*, 2002; Owen *et al.*, 2004). Eine Stabilisierung der Adaptorproteine an der Plasmamembran erfolgt durch ihre Interaktion mit akzessorischen Proteinen. Um eine rasche Zusammenlagerung sowie ein ebenso schnelles Lösen von Proteinkomplexen zu gewährleisten, müssen die Interaktionen der einzelnen Interaktionspartner dynamisch und reversibel sein. Eine moderate bis niederaffine Bindungsstärke wird durch Interaktionen über kurze Peptidmotive (siehe Abschnitt 1.3.2.5) und Bindungsaffinitäten im μ M-Bereich erreicht (Owen *et al.*, 2004, Traub, 2009).

1.3.2.1 Die Familie der Adaptorprotein-Komplexe

Der Adaptorkomplex-2 ist neben Clathrin das häufigste Protein Clathrin-umhüllter Vesikel, welche die Plasmamembran als Ursprungsort haben. Der AP-2-Komplex gehört zu einer Familie heterotetramerer Adaptorkomplexe, von denen in Säugetieren vier existieren. Die verwandten Adaptorkomplexe 1, 3 und 4 sind an Endosomen und am *trans*-Golgi-Netzwerk lokalisiert (Peden *et al.*, 2004; Robinson & Bonifacino, 2001).

Den vier heterotetrameren Adaptorkomplexen ist eine ähnliche Struktur gemeinsam, die an einen Kopf mit Ohren zu erinnern vermag (Robinson & Bonifacino, 2001) und durch AP-2 repräsentativ in Abbildung 1.5 dargestellt wird. Alle vier AP-Komplexe bestehen aus vier Untereinheiten (UE) – zwei großen von 100-130 kDa (α und β 2 in AP-2), einer mittleren mit ca. 50 kDa (μ 1-4 in AP-1-4) und einer ca. 17 kDa kleinen Untereinheit (σ 1-4 in AP-1-4). Die α -Untereinheit des AP-2-Komplexes ist homolog zu den γ -, δ - und ϵ - Untereinheiten in AP-1, AP-3 und AP-4 und die β 2-Untereinheit ist homolog zu β 1, β 3 und β 4 in AP-1, AP-3 und AP-4.

Abb. 1.5 Der AP-2-Komplex

AP-2 ist ein heterotetramerer Komplex, der aus zwei großen, (α , β 2), einer mittleren (μ 2) und einer kleinen (σ) Untereinheit besteht. Flexible, unstrukturierte Linkerbereiche verbinden den Rumpf des Komplexes mit den Ohr-Domänen. Die α - und β 2-Ohr-Domänen des AP-2-Komlexes sind funktional analog und verfügen jeweils über zwei separate Kontaktflächen, die der Anreicherung akzessorischer Proteine dienen. Die Struktur der Ohr-Domänen und des AP-2-Rumpfs wurde röntgenkristallographisch gelöst, die flexiblen Linkerbereiche hingegen sind Modelldarstellungen. Die Abbildung (modifiziert) wurde aus Owen *et al.*, 2004 entnommen.

Die großen Untereinheiten (α und β 2 in AP-2) können weiter in einen Rumpf mit 70-75 kDa und einer kleinen, anhängenden Domäne von ca. 30 kDa, welche auch als Ohr oder Appendix bezeichnet wird, unterschieden werden. Die genannten Subuntereinheiten sind durch flexible, Proteolyse-sensitive Linkerbereiche miteinander verbunden (Kirchhausen, 1999). Im Fall von AP-1 und AP-2, teilen die β -, μ - und σ - Untereinheiten einen relativ hohen Homologie-Anteil von ca. 40-85 % Sequenzidentität, im Gegensatz zu α und γ mit einer ca. 25 % igen Sequenzidentität (Edeling *et al.*, 2006b).

1.3.2.2 Erkennung klassischer Sortiermotive durch AP-2µ

Die Aufnahme von Frachtproteinen der Plasmamembran durch Clathrin-umhüllte Vesikel kann mit Hilfe von Sortiermotiven erfolgen. AP- 2μ wurde als erste Untereinheit des Adaptorkomplexes-2 identifiziert, Frachtproteine zu erkennen (Ohno *et al.*, 1995) und kann in eine N- sowie eine C-terminale Subdomäne unterteilt werden, die durch einen flexiblen, unstrukturierten Linker miteinander verbunden sind (Collins *et al.*, 2002).

Bindung eines $Yxx\Phi$ -Motivs an AP-2 μ . (A) Vergrößerung der Y0-Bindungstasche. Dargestellt sind die molekularen Details der Aminosäurereste, die an der Bindung des Y0-Restes eines $Yxx\Phi$ -Peptids (grün) beteiligt sind. Der Charakter der Y0-Bindungstasche wird durch die Aminosäuren F174, D176, W421 und R423 der μ 2-Untereinheit bestimmt. (B) Vergrößerte Darstellung der Φ -Bindungstasche und Darstellung der molekularen Details der an der Bindungstasche beteiligten Aminosäuren L173, L175, L404 und W421. Die Abbildung (modifiziert) wurde aus Owen *et al.*, 2004 entnommen.

Aus Mutations- und kombinatorischen Analysen war schon vor der ersten erfolgreichen Kokristallisation der Subdomäne C- μ 2 mit Yxx Φ -Peptiden aus dem EGF-Rezeptor und dem *trans*-Golgi Netzwerkprotein TGN38 (Owen & Evans, 1998) bekannt, dass der zentrale Tyrosinrest der Yxx Φ -Motive essentiell für die Bindung an μ 2 ist und nicht durch das strukturell ähnliche Phenylalanin oder Phosphotyrosinreste ersetzt werden kann. An der Stelle des Φ -Restes wird Leucin bevorzugt, doch auch Isoleucin, Phenylalanin und Methionin werden toleriert (Boll *et al.*, 1996; Ohno *et al.*, 1998; Owen & Evans, 1998).

Die molekularen Charakteristika der Bindung von Yxx Φ -Basismotiven an die µ2-Oberfläche konnten Owen und Evans 1998 aufdecken. Die Studie zeigte, dass die Bindung von Yxx Φ -Sortiermotiven über einen Oberflächenbereich der C-µ2-Domäne erfolgt, der ähnlich einer Banane geformt ist. Die Yxx Φ -Bindungsoberfläche weist je eine Bindungstasche für den zentralen Tyrosin (Y0-Bindungstasche)- und den Φ -Rest (Φ -Bindungstasche) des Yxx Φ -Sortiermotivs auf (vergleiche Abb. 1.6 und Abb. 1.7). Der hydrophobe Ring des zentralen Tyrosinrestes ist in hydrophobe Wechselwirkungen mit F174 und W421 der µ2-Untereinheit involviert, sowie in Pi-Wechselwirkungen mit der Guanidinium-Gruppe von R423. Zusätzlich bildet die phenolische Hydroxylgruppe des Tyrosinrestes mit D176 der μ 2-Untereinheit Wasserstoffbrückenbindungen aus (siehe Abb. 1.6A).

Abb. 1.7 Erkennung von Yxx**Φ**-Motiven durch AP-2µ

Die Bindung eines Yxx Φ -Motivs an AP-2 μ kann über einen *two-pin-plug*- oder einen *three-pin-plug*-Mechanismus erfolgen. (A) Vergrößerte Darstellung der μ 2-Untereinheit von AP-2 (magenta) mit gebundenem YQRL-Sortiersignal des *trans*-Golgi Netzwerkproteins TGN38. Die beiden zentralen Aminosäurereste Y350 und L353 (Kreis) lokalisieren jeweils in eine Bindungstasche (Y0- und Φ -Bindungstasche) auf der μ 2-Oberfläche. Das Peptid interagiert über einen *two-pin-plug*-Mechanismus mit AP-2 μ . (B) Vergrößerte Darstellung der μ 2-Untereinheit von AP-2 (magenta) mit gebundenem YGYECL-Sortiersignal aus der γ -Untereinheit des GABA_A-Rezeptors. Dieses Peptid hat über einen zusätzlichen Peptidkontakt an Position Y-2 (Kreis) mit der μ 2-Oberfläche Kontakt und lokalisiert in einer Bindungstasche (Y-2- oder Y-3-Bindungstasche), die auch durch Peptidkontakte anderer Frachtproteine wie LxxYxx Φ -Motiv von P-Selectin beansprucht werden kann. Involviert die Interaktion über ein Yxx Φ -Motiv einen zusätzlichen proximalen Peptidkontakt, so wird von einem *three-pin-plug*-Mechanismus gesprochen. Die Abbildungen (modifiziert) stammen aus Traub, 2009.

Diese Charakteristika der Y0-Bindungstasche offenbaren, warum ein Phenylalanin oder ein Phosphotyrosin den zentralen Tyrosinrest nur unzureichend ersetzen können. Phenylalanin kann keine Wasserstoffbrückenbindungen mit D176 der μ 2-Untereinheit etablieren und ein Phosphotyrosin ist zu groß, um in die Bindungstasche zu passen und würde zudem durch D176 elektrostatisch abgestoßen. Die wichtigsten Aminosäuren der Φ -Bindungstasche auf der μ 2-Oberfläche sind L173, L175 und L404 (vergleiche Abb. 1.6B). Diese Aminosäurereste sind hydrophob und flexibel, wodurch unterschiedliche Aminosäuren mit hydrophoben Seitenketten in dieser Position toleriert werden (Owen & Evans, 1998). Erfolgt die Interaktion über ein Yxx Φ -Basismotiv, wie es in der zytoplasmatischen Domäne des Transferrin-Rezeptors, des EGF-Rezeptors oder von TGN38 existiert, so wird von einem *two-pin-plug*-Mechanismus gesprochen (vergleiche Abb. 1.6 und Abb. 1.7A) (Owen & Evans, 1998). Mutationen der Aminosäurereste D176A/W412A oder F174A/D176A inhibieren die Aufnahme von Transferrin-Rezeptoren durch Clathrin-vermittelte Endozytose (Moltey

et al., 2006; Nesterov *et al.*, 1999) und bestätigen die Bedeutung der μ 2-Aminosäuren, die an der Wechselwirkung mit Yxx Φ -Peptiden beteiligt sind.

Die Interaktion mit C-µ2 toleriert jedoch auch die Erweiterung des YxxΦ-Basismotivs um zusätzliche Aminosäuren. Das Sortiermotiv YxxGØ des ATP-Rezeptor P2X4 ist distal um einen Glycinrest erweitert, erkennt jedoch analog zu Yxx Φ -Basismotiven die Y0- und die Φ -Bindungstasche auf der µ2-Oberfläche und bindet somit ebenfalls über einen two-pin-plug-Mechanismus (Royle et al., 2005). Das YxxΦ-Basismotiv von P-Selectin, ein Adhäsionsprotein, ist ebenfalls um einen zusätzlichen Peptidkontakt erweitert. Dieser Peptidkontakt, ein Leucin, befindet sich im Gegensatz zum YxxGQ-Motiv des ATP-Rezeptor P2X4 im proximalen Bereich (LxxYxxΦ). Das Leucin als zusätzlicher Peptidkontakt lokalisiert in einer Bindungstasche (Y2- oder Y3-Bindungstasche, vergleiche Abb. 1.7B) auf der µ2-Oberfläche. Die Bindung von P-Selectin an die µ2-Oberfläche wird über einen three-pinplug-Mechanismus vermittelt (Owen et al., 2001). Die γ -Untereinheit des GABA_A-Rezeptors bindet ebenfalls über einen three-pin-plug-Mechanismus an AP-2µ. Das 365YGYECL-Motiv bindet analog zu dem LxxYxxΦ-Motiv von P-Selectin an die C-µ2-Oberfläche (Kittler et al., 2008). Tyrosin-365 als zusätzlicher Peptidkontakt des Yxx Φ -Motivs der γ -Untereinheit des GABA_A-Rezeptors lokalisiert in der gleichen Bindungstasche wie das Leucin des P-Selectin-Bindungsmotivs (siehe Abb. 1.7B). Bindungsstudien mit YGYECL-Peptiden, die an dem zentralen und dem zusätzlichen Tyrosinrest phosphoryliert waren, zeigten, dass trotz eines zusätzlichen Peptidkontaktes der Tyrosinrest des YxxΦ-Motivs, der in die Y0-Bindungstasche lokalisiert, von zentraler Bedeutung für die Interaktion mit der µ2-Oberfläche ist (Kittler et al., 2008).

1.3.2.3 Erkennung atypischer Sortiermotive durch AP-2µ

Die Interaktion mit AP-2 μ über die Yxx Φ -bindende Oberfläche kann nicht nur durch klassische Yxx Φ -Sortiermotive erfolgen, sondern auch über atypische Motive wie das WxxL-Motiv des neonatalen Fc-Rezeptors, in dem die Position des zentralen Tyrosinrestes durch ein Tryptophan eingenommen wird (Wernick *et al.*, 2005).

Weiterhin ist es möglich, dass Frachtproteine auch unabhängig von der Yxx Φ -Interaktionsfläche mit C-µ2 interagieren können. So vermitteln atypische, basische AP-2µ-Erkennungsmotive, wie sie in den AMPA (α -Amino-3-hydroxy-5-methyl-4-isoxazol-propionsäure)-Rezeptor-Untereinheiten GluR2 und 3, den β 3- und γ 2-Untereinheiten des GABA_A (γ -Aminobuttersäure, Typ A)-Rezeptors und α _{1B}-Arenozeptoren zu finden sind, eine Interaktion mit AP-2µ (Diviani *et al.*, 2003; Kastning *et al.*, 2007; Kittler *et al.*, 2005). Auch Synaptotagmin I kann mit Hilfe einer Lysin-reichen Aminosäuresequenz in der zytoplasmatischen C2B-Domäne mit AP-2µ interagieren. Dieses basische AP-2µ-Erkennungsmotiv ist auch in anderen Mitgliedern der Synaptotagmin-Familie konserviert (Chapman *et al.*, 1998; Grass *et al.*, 2004; Haucke *et al.*, 2000). In diesem Kontext ist interessant, dass die

Interaktion von AP-2 mit Synaptotagmin 1 durch gleichzeitige Bindung von $Yxx\Phi$ -haltigen Peptiden verstärkt werden kann (Haucke & De Camilli, 1999; Haucke *et al.*, 2000).

1.3.2.4 Dileucin-Sortiersignale

Das saure Dileucin-Signal mit der Konsensussequenz [DE]xxxL[LIM] ist ein weiteres konstitutives Sortiermotiv von Frachtproteinen, das von AP-2 erkannt werden kann. Das [DE]xxxL[LIM]-Signal ist strukturell verschieden zu $Yxx\Phi$ -Motiven und konkurriert daher nicht mit $Yxx\Phi$ -haltigen Frachtproteinen um den Eintritt in Clathrin-umhüllte Strukturen (Marks et al., 1996). Ursprünglich wurde angenommen, dass die Interaktion mit Dileucin-Motiven die β^2 - oder μ^2 -Untereinheit involvieren. Kürzlich konnte jedoch gezeigt werden, dass sich die Interaktionsfläche für Dileucin-Motive auf der σ -Untereinheit des AP-2-Komplexes nahe zur PI(4,5)P₂-Bindungsstelle der α -Untereinheit befindet (Doray et al., 2007; Kelly et al., 2008). [DE]xxxL[LIM]-Sequenzen interagieren ähnlich zu den YxxA-Motiven über einen gestreckten Bereich. Die Kontaktfläche ist jedoch in der basalen AP-2-Konformation nicht frei zugänglich. Die Bindungstaschen für die beiden Leucinreste werden durch Bereiche der β -Untereinheit verdeckt (Kelly *et al.*, 2008) und durch Phosphorylierung von Y6 der β -Untereinheit reguliert (Huang *et al.*, 2003). Obwohl die Erkennung von Dileucin-Signalen mit einer Veränderung der AP-2-Rumpf-Konformation in Verbindung steht, kann die µ2-Domäne in der geschlossenen Konformation verbleiben, während ein [DE]xxxL[LIM]-Peptid gebunden werden kann (Kelly et al., 2008). CD4, ein Glykoprotein der Zelloberfläche von T-Zellen, interagiert über ein SQIKRLL-Motiv mit AP-2. Die Interaktion von CD4 mit AP-2 wird durch die Phosphorylierung des Serinrestes des SQIKRLL-Motivs reguliert (Pitcher et al., 1999). Nef, ein HIV-1-Protein, das zur Entfernung von CD4 von der Plasmamembran beiträgt, interagiert ebenfalls über ein kanonisches ExxxLL-Dileucin-Signal mit AP-2 (Craig et al., 1998).

1.3.2.5 Die AP-2 Ohr-Domänen

Die funktional analogen α - und β 2-Ohr-Domänen des AP-2-Komlexes bestehen jeweils aus einer Nterminalen Immunoglobulin-ähnlichen Sandwich-Subdomäne, die starr mit einer C-terminalen Plattform-Domäne verbunden ist (Owen *et al.*, 2004; Schmid & McMahon, 2007).

Jede dieser Subdomänen verfügt über eine unabhängige Interaktionsfläche, wodurch pro AP-2-Molekül vier physisch separierte Kontaktbereiche durch die Ohr-Domänen zur Verfügung stehen (vergleiche Abb. 1.8). Die Interaktion mit den Kontaktbereichen wird über kurze aromatische Motive vermittelt, die sich in ihrer Selektivität für Schlüsselaminosäuren in den kurzen Peptidmotiven voneinander unterscheiden. Die Sandwich-Subdomäne der α -Untereinheit bindet Wxx[FW]xDE_n-Konsensus-Sequenzen, wie zum Beispiel von Stonin 2, AP180 und Synaptojanin 1 (Owen *et al.*, 2004; Traub, 2009). Die Plattform-Subdomäne der α -Untereinheit erkennt DP[FW]- oder FxDxF-Motive, wie sie die Adaptor-assozierten Kinase 1 (AAK1) (Conner & Schmid, 2002) Epsinen (Chen *et al.*, 1998), Eps15 (Benmerah *et al.*, 1996), Dab2 (Morris & Cooper, 2001) und Numb (Santolini *et al.*, 2000) aufweisen (siehe Abb. 1.8). Phenylalanin-reiche Motive von Eps15 oder AP180 werden von der Sandwich-Subdomäne der β 2-Untereinheit erkannt (vergleiche Abb. 1.8). Diese Subdomäne kann mit dem Linkerbereich der schweren Clathrinkette (Knuehl *et al.*, 2006), zusätzlich zu den Clathrin-Box-Motiven des flexiblen β 2-Linkers, interagieren. Die β 2-Ohr-Plattform-Domäne erlaubt die Wechselwirkung mit [DE]_nx₁₋₂Fxx[FL]xxxR-Sequenzen im Kontext einer α -Helix über die β -Arrestine, ARH (*autosomal recessive hypercholesterolemia protein*) und Epsine verfügen (siehe Abb. 1.8) (Edeling *et al.*, 2006a; Schmid *et al.*, 2006).

Abb. 1.8 Die AP-2-Ohr-Domänen

Der AP-2-Komplex verfügt über zwei Ohr-Domänen, die über flexible, unstrukturierte Linkerbereiche mit dem Rumpf in Verbindung stehen. Die Ohr-Domänen sind funktional analog und bestehen jeweils aus einer Plattform- und einer Sandwich-Subdomäne, die starr miteinander verbunden sind. Jede Ohr-Subdomäne verfügt über eine separate Kontaktstelle. Die vier physisch separierten Kontaktstellen der beiden Ohr-Domänen unterscheiden sich in ihrer Selektivität für Schlüsselaminosäuren in den Peptidmotiven. Die Abbildung (modifiziert) wurde Traub, 2009 entnommen.

1.3.2.6 Der AP-2-Komplex bindet selektiv an Membranen

Der AP-2-Komplex lokalisiert an der Plasmamembran. Die Selektivität des heterotetrameren Adaptorkomplexes für diese Membran lässt sich durch die Abhängigkeit der Erkennung von Yxx¢-haltigen Frachtproteinen in Gegenwart von PI(4,5)P₂ erklären, das an der Plasmamembran konzentriert zu finden ist (Watt *et al.*, 2002). Bindungsstellen für PI(4,5)P₂ werden durch eine lokale Anhäufung basischer Aminosäurereste geschaffen, wie sie in den α - und μ 2-Untereinheiten des Komplexes zu finden sind (Gaidarov & Keen, 1999; Rohde *et al.*, 2002). Die PI(4,5)P₂-Bindungsstelle in der α -Untereinheit ist notwenig für die Assoziation des AP-2-Komplexes mit der Plasmamembran, da gezeigt werden konnte, dass die Mutation von basischen Aminosäureresten, die zur Koordination der phosphorylierten Inositolkopfgruppe beitragen, die Rekrutierung von AP-2 an die Plasmamembran beeinträchtigt (Gaidarov & Keen, 1999). Während die PI(4,5)P₂-Bindungsstelle in der α -Untereinheit

Einleitung

unabhängig von der Konformation des AP-2-Komplexes zugänglich ist (Gaidarov & Keen, 1999), setzt die Verfügbarkeit der zweiten PI(4,5)P₂-Bindestelle (Rohde *et al.*, 2002) in der C-µ2-Domäne des AP-2-Komplexes eine Konformationsänderung, ausgelöst durch ein Phosphorylierungssereignis, voraus (Collins *et al.*, 2002).

Abb. 1.9 Geschlossene und offene Konformation des AP-2-Komplexes an der Plasmamembran

Der AP-2-Komplex kann in zwei Konformationen, einer basalen, geschlossenen und einer hypothetischen, offenen gefunden werden. (A) In der geschlossenen Konformation interagiert der AP-2-Komplex nur über die konstitutiv zugängliche PI(4,5)P₂-Bindungsstelle der α -Untereinheit mit PI(4,5)P₂-reiche Membranen. Die Oberfläche, die Yxx Φ -Motive erkennt und eine zweite PI(4,5)P₂-Bindungsstelle enthält, ist durch die Lokalisation der C-µ2-Subdomäne in einer Grube auf der Außenseite des AP-2-Komplexes verborgen. (B) Die µ2-Subdomäne wird durch Phosphorylierung von T156 freigesetzt und stabilisiert durch die Wechselwirkung mit PI(4,5)P₂ in Kombination mit Yxx Φ -haltigen Frachtproteinen die Bindung des AP-2-Komplexes an Zielmembranen.

Es wird angenommen, dass die Assoziation von AP-2 mit PI(4,5)P₂-reichen Membranen in zwei Schritten erfolgt (vergleiche Abb. 1.9A und B): einer schwachen, initialen Rekrutierung des basalen Adaptorkomplexes-2 an die Membran durch die konstitutiv zugängliche PI(4,5)P₂-Bindestelle in der α -Untereinheit (vergleiche Abb. 1.9A), gefolgt von der Stabilisierung der Bindung an die Plasmamembran durch eine zweite PI(4,5)P₂-Bindestelle in der C-µ2-Domäne in Verbindung mit der Bindung an Yxx ϕ -Motive aus Frachtproteinen (siehe Abb. 1.9B) (Höning *et al.*, 2005).

Der AP-2-Komplex kommt in einer basalen, geschlossenen und einer hypothetischen, offenen Konformation vor (siehe Abb. 1.9). In der geschlossenen Konformation lokalisiert C- μ 2 in einer Grube an der Außenseite des AP-2-Komplexes. Die μ 2-Oberfläche, die Yxx Φ -Peptide erkennt und die PI(4,5)P₂-Bindestelle werden durch Bereiche der β2-Untereinheit verdeckt, und sind somit einer

Interaktion nicht zugänglich (vergleiche Abb. 1.9A). Die Assoziation von AP-2 mit Yxx Φ -haltigen Frachtproteinen ist abhängig von Phosphorylierung (Olusanya *et al.* 2001). Der Übergang von der basalen zur offenen AP-2-Konformation erfolgt durch die Phosphorylierung von μ 2-T156 durch die Proteinkinase AAK1 (Conner & Schmid, 2002; Fingerhut *et al.*, 2001; Olusanya *et al.* 2001; Ricotta *et al.*, 2002) im μ 2-Linkerbereich, der die beiden μ 2-Subdomänen N- μ 2 und C- μ miteinander verbindet. Die katalytische Aktivität dieser Kinase wird durch die Anlagerung von Clathrin (Conner *et al.*, 2003; Jackson *et al.*, 2003) unterstützt. In der postulierten, offenen Konformation sind die Bindungsstellen für PI(4,5)P₂ und Yxx ϕ der C- μ 2-Domäne zugänglich (vergleiche Abb. 1.9B). Die Affinität für Yxx ϕ -Motive in der zytoplasmatischen Domäne von Rezeptoren erhöht sich um das 25fache, auch die Affinität für Membranlipide ist erhöht (Fingerhut *et al.*, 2001; Ricotta *et al.*, 2002).

1.3.3 Alternative Adaptorproteine

AP-2 ist neben Clathrin das am häufigsten vorkommende Protein in Clathrin-umhüllten Vesikeln. Die Rekrutierung von Frachtproteinen wird jedoch nicht ausschließlich über AP-2 vermittelt. Hinweise auf die Existenz alternativer Adaptoren kamen von *knockdown*-Versuchen. Während ein *knockdown* der schweren Clathrinkette die Internalisierung der Rezeptoren für LDL (Lipoprotein geringer Dichte), EGF und Transferrin blockiert, konnte beobachtet werden, dass LDL- und EGF-Rezeptoren trotz Reduktion von endogenem AP-2 in Zellen aufgenommen werden. Die Internalisierung von Transferrin hingegen blieb blockiert (Hinrichsen *et al.*, 2003; Motley *et al.*, 2003). Diese Beobachtungen zeigten, dass alternative Adaptoren, so genannte CLASPs, neben AP-2 in der Clathrin-vermittelten Endozytose involviert sind. Im Folgenden wird nur auf ausgewählte Beispiele von alternativen Adaptorproteinen, die an der Plasmamembran zu finden sind, eingegangen.

Die endozytotischen Proteine Numb, Dab2 und ARH verfügen über eine Phosphotyroin-bindende Domäne (PTB-Domäne) über die nicht-phosphorylierte [FY]XNPX[FY]-Sequenzen in den zytoplasmatischen Domänen distinkter Frachtproteine erkannt werden (Howell *et al.*, 1999; Morris & Cooper, 2001; Stolt *et al.*, 2006). Dab2 und ARH vermitteln die Internalisierung von Mitgliedern der LDL-Rezeptorfamilie über Clathrin-vermittelte Endozytose (Eden *et al.*, 2007; Keyel *et al.*, 2006; Maurer & Cooper 2006). Dab2 ist außerdem in die Aufnahme der β 1-Integrin-Untereinheit über die Bindung von [FY]XNPX[FY]-Sequenzen in Zellen involviert (Chao & Kunz, 2009; Chetrit *et al.*, 2008; Teckchandani *et al.*, 2009). Eine Beteiligung an der AP-2/Clathrin-vermittelten Endozytose von β 1-Integrin durch Numb konnte ebenfalls nachgewiesen werden (Nishimura & Kaibuchi, 2007). Die beiden Adaptoren interagieren ihrerseits über AP-2-Bindungsmotive mit dem heterotetrameren Adaptorkomplex-2 (siehe Abschnitt 1.3.2.5).

 β -Arrestine haben eine etablierte Funktion in der Internalisierung vieler G-Protein gekoppelter Rezeptoren (GPCR) (Marchese *et al.*, 2008). Phosphorylierte GPGR werden durch β -Arrestine, die mit PI(4,5)P₂, Clathrin und AP-2 wechselwirken können, erkannt und zum reifenden Proteinmantel Clathrin-umhüllter Vesikeln rekrutiert (Marchese *et al.*, 2008). β -Arrestin interagiert ebenso wie ARH über die β 2-Ohr-Domäne mit dem AP-2-Komplex.

Eps15 und Epsin gehören einer CLASP-Subfamilie an, die ubiquitinierte Frachtproteine wie zum Beispiel EGF-Rezeptoren über UIM (Ubiquitin-interagierendes Motiv)-Domänen erkennen (Hofmann & Falquet, 2001; Sorkina *et al.*, 2006; Wendland *et al.*, 2002). Sowohl Epsin als auch Eps15 interagieren mit AP-2 über die Ohr-Domänen. Die Eps15-Homologiedomäne (EH-Domäne) von Eps15 interagiert mit NPF-Motiven von Epsin.

Weiterhin gibt es Neuronen-spezifische CLASPs, wie zum Beispiel Stonin 2. Das alternative Adaptorprotein Stonin 2 erkennt über eine C-terminale μ -Homologiedomäne (μ HD-Domäne) einen Cluster basischer Aminosäuren in der C2A-Domäne von Synaptotagmin 1 und über eine N-terminale unstrukturierte Region das α -Ohr des AP-2-Komplexes (Diril *et al.*, 2006; Jung *et al.*, 2007). Für Endophilin konnte beobachtet werden, das dieses endozytotische Protein die AP-2/Clathrin-abhängige Internalisierung des vesikulären Glutamat-Transporters 1 (VGLUT1) unterstützt. VGLUT1 interagiert mit Endophilin-SH3 (Src-Homologiedomäne 3) über eine Prolin-reiche Sequenz im C-Terminus und vermittelt so die Aufnahme des Transporters über einen AP-2 und D/ExxxL[L]-Motiv abhängigen Mechanismus (Voglmaier *et al.*, 2006).

1.3.4 Akzessorische Proteine

Die Clathrin-vermittelte Endozytose ist einer stringenten Kontrolle unterworfen, die durch zahlreiche Helferproteine, so genannte akzessorische Proteine, zu allen Phasen des Internalisierungsvorganges unterstützt wird.

Akzessorische Proteine können entsprechend ihrer Funktion in unterschiedliche Gruppen unterteilt werden. Die Gruppe der CLASPs umfasst Proteine, die alternativ zu AP-2 über eine Adaptorfunktion in der Clathrin-vermittelten Endozytose verfügen (siehe Abschnitt 1.3.3). Akzessorische Proteine können weiterhin regulativ in die Reifung der Proteinhülle oder die Membranwölbung involviert sein oder sie unterstützen die Abschnürung des Vesikels von der Donormembran oder den uncoating-Prozess. Zu den regulatorischen Proteinen können die GTPase Dynamin, die Proteinkinase AAK1, die Phosphatasen Synaptojanin, Calcineurin und die Lipidkinasen der Typ I Phosphatidylinositol-4-Phosphat-5-Kinase (PIPKI), auf die im Abschnitt 1.7 intensiver eingegangen wird, gezählt werden. Amphiphysin, Endophilin, Epsin, AP180/CALM und HIP1 unterstützen die Wölbung der Membran. Dynamin hingegen ist bedeutend für die Abschnürung des Vesikels von der Donor-Membran. Die Entfernung des Proteinmantels unterstützen Auxilin, Hsc70 und Synaptojanin (Conner & Schmid, 2003a; Jung & Haucke, 2007; McMahon & Mills, 2004; Slepnev & De Camilli, 2000). Die wichtigsten Knotenpunkte in diesem Proteinnetzwerk stellen AP-2, $PI(4,5)P_2$ und Clathrin dar (Schmid & McMahon, 2007). Die Interaktionen in dem endozytotischen Proteinnetzwerk werden durch die Phosphorylierung und Dephosphorylierung von Proteinen (Cousin et al., 2001; Cousin & Robinson, 2001) und Lipiden (Cremona & De Camilli, 2001; Haucke et al., 2005) reguliert.

Der genaue Prozess der Initiierung des Proteinmantels während der Clathrin-vermittelten Endozytose ist noch nicht recht verstanden, jedoch ist bekannt, dass das Phospholipid $PI(4,5)P_2$ von Bedeutung ist. AP-2-Komplexe lagern sich an Membranbereichen zusammen, die reich an $PI(4,5)P_2$ sind (vergleiche Abschnitt 1.3.2.6). Die Synthese von $PI(4,5)P_2$ an der Plasmamembran wird durch PIPKI katalysiert (Doughman *et al.*, 2003). Nach einer Phosphorylierung durch die Proteinkinase AAK1 (Conner & Schmid, 2002; Fingerhut *et al.*, 2001; Olusanya *et al.* 2001; Ricotta *et al.*, 2002) (siehe Abschnitt 1.3.2.6) kann der AP-2-Komplex Yxx Φ -haltige Frachtproteine, wie zum Beispiel den Transferrin-Rezeptor binden und zu Orten reifender Clathrin-umhüllter Strukturen an der Plasmamembran rekrutieren. Neben AP-2 gibt es weitere alternative Adaptoren (siehe Abschnitt 1.3.3), die distinkte Frachtproteine rekrutieren und PI(4,5)P₂ über strukturell unterschiedliche Proteindomänen (Überblick bei Balla *et al.*, 2005; Hurley, 2006; Lemmon, 2003) binden können.

Sowohl Adaptorkomplex-2 als auch akzessorische Proteine, wie zum Beispiel Amphiphysin und SNX9 (Miele *et al.*, 2004) enthalten Clathrin-Bindungsmotive und ermöglichen so die Rekrutierung von Clathrin-Triskelien zur reifenden Proteinhülle (Edeling *et al.*, 2006b; Schmid *et al.*, 2006). Clathrin lagert sich zu einem größeren hexagonalen Netzwerk an der Plasmamembran zusammen (siehe Abschnitt 1.3.1). Der Mechanismus, der die Veränderung der planaren Membran zu einer gewölbten Struktur zur Folge hat und notwendig ist für die Reifung eines Clathrin-umhüllten Vesikels, konnte bisher noch nicht vollständig aufgeklärt werden. Doch es wird angenommen, dass zu dieser Veränderung das Zusammenwirken mehrerer Proteine beiträgt, die die Membranwölbung initiieren und/oder die Membranwölbung erkennen (McMahon & Gallop, 2005). Es wird vermutet, dass Proteine mit einer Bin-Amphiphysin-Rvs (BAR)-Domäne wie Amphiphysin und Endophilin (Ren *et al.*, 2006) und Proteine mit einer ENTH (Epsin N-terminale Homologie-Domäne)-/ANTH (AP180 N-terminale Homologiedomäne)-Domäne wie Epsin, AP180/CALM und HIP1 (Ford *et al.*, 2002) aktiv durch die Insertion hydrophober Reste oder amphipatischer Helices in die zytosolische Hälfte der Lipiddoppelschicht eine Krümmung der Membran verursachen (Itoh & De Camilli, 2006), die durch die Polymerisierung von Clathrin-Triskelien stabilisiert wird (Hinrichsen *et al.*, 2006).

Eps15 scheint nicht nur in die Erkennung ubiquitinierter Frachtproteine involviert zu sein (vergleiche Abschnitt 1.3.3), sondern ebenfalls einen Beitrag zur Reifung der Clathrin-umhüllten Vesikel zu leisten, da dieses akzessorische Protein an den Rändern reifender Clathrin-umhüllter Vesikel gefunden werden kann (Praefcke *et al.*, 2004; Tebar *et al.*, 1996). Weiterhin könnte Eps15 auch eine Verbindung zum Aktinzytoskelett der Zelle herstellen, da Eps15 den Arp2/3-Komplex, der in die Initiierung der Aktinpolymerisierung involviert ist, binden und aktivieren kann (Duncan *et al.*, 2001, Toshima *et al.*, 2005). Eine Verbindung der Clathrin-vermittelten Endozytose mit der Polymerisation von Aktin ist möglicherweise in den späteren Phasen der Vesikelreifung wie der Abschnürung von der Donor-Membran oder dem Transport des endozytotischen Vesikels wichtig (Kaksonen *et al.*, 2006). Auch interagiert die GTPase Dynamin mit Proteinen, die direkt oder indirekt in die Regulation des

Aktinzytoskeletts involviert sind, wie Syndapin oder Abp1 (Kessels & Qualmann, 2002; Murthy & De Camilli, 2003).

Mit fortschreitender Reifung bleiben die Clathrin-umhüllten Vesikel nur noch über einen dünnen Hals mit der Donor-Membran verbunden. Die Trennung der Vesikel wird in Abhängigkeit von GTP durch Dynamin katalysiert. Dynamin ist auch in andere endozytotische Prozesse wie Caveolin-abhängige Endozytose involviert (Conner & Schmid, 2003b) und wird über akzessorische Proteine wie Intersectin, Endophilin und Amphiphysin (Evergren *et al.*, 2004, 2007) zum Vesikel rekrutiert. Bevor das Vesikel mit einer zellulären Akzeptor-Memran fusionieren kann, muss die Clathrinhülle entfernt werden. Die Entfernung des Proteinmantels wird durch unterschiedliche Faktoren beeinflusst. Die Phosphatase Synaptojanin dephosphoryliert PI(4,5)P₂ zu PI(4)P und destabilisiert so die Bindung PI(4,5)P₂-erkennender Komponenten der Proteinhülle zur Vesikelmembran, wodurch indirekt auch die Clathrinhülle an Stabilität verliert. Die Destabilisierung der Clathrinhülle muss parallel dazu erfolgen. Die ATPase Hsc70, die zur DnaK-Familie von Hitzeschockproteinen gehört, wird durch das DNaJ-Homolog Auxilin an Clathrin-umhüllte Vesikel rekrutiert und depolymerisiert die Clathrinhülle unter ATP-Verbrauch (Brodsky, 2001; Morgan *et al.*, 2001; Takei & Haucke, 2001; Young, 2007).

1.4 Clathrin-vermittelte Endozytose an der chemischen Synapse

An chemischen Synapsen von Neuronen findet eine spezialisierte Form der Clathrin-vermittelten Endozytose statt. Die basalen Mechanismen der Clathrin-vermittelten Endozytose in nicht-neuronalen Zellen und neuronalen Zellen zeigen ein hohes Maß an Übereinstimmung, dennoch gibt es signifikante Unterschiede. Clathrin-vermittelte Endozytose an der präsynaptischen Membran ist abhängig von der intrazellulären Ca²⁺-Konzentration (Gad *et al.*, 1998). Die Größe synaptischer Vesikel variiert nur sehr gering. Mutationsstudien lassen die Vermutung zu, dass AP180 in die Größenkontrolle synaptischer Vesikel involviert ist (Brodin *et al.*, 2000). Weiterhin hängt die Aufrechterhaltung der synaptischen Übertragung von einer effizienten Endozytose synaptischer Vesikel innerhalb von nur wenigen Sekunden ab (Murthy & De Camilli, 2003), die durch Neuronen-spezifische Splicevarianten oder Isoformen von Proteinen, die in die Clathrin-vermittelte Endozytose involviert sind, unterstützt wird. Die akzessorischen Proteine AP180, Endophilin 1, Amphiphysin 1 und Dynamin 1 sind Beispiele für Neuronen-spezifische Isoformen ubiquitärer Proteine, die leichten Clathrinketten sowie AP-2 α liegen in Neuronen-spezifischen Splicevarianten vor.

1.4.1 Der synaptische Vesikelzyklus

Die Aufgabe einer chemischen Synapse ist es, ein elektrisches Signal von einer präsynaptischen auf eine postsynaptische Zelle zu übertragen. Diese Aufgabe wird durch synaptische Vesikel, die mit Neurotransmitter-Molekülen beladen sind, erfüllt. An der chemischen Synapse sind Vesikel einem Kreislauf aus Fusion mit der Akzeptormembran und der Rückgewinnung sowie Beladung mit
Neurotransmitter (NT)-Molekülen für eine erneute Exozytose-Runde ausgesetzt, der nach Südhof (2004) in verschiedene Phasen unterteilt werden kann (siehe Abb. 1.10).

Abb. 1.10 Exo- und endozytotischer Vesikelkreislauf

Synaptische Vesikel werden über einen aktiven Prozess mit Neurotransmitter-Molekülen befüllt (1) und in den Vesikel-Cluster aufgenommen (2) und gelangen zur aktiven Zone (3). An der aktiven Zone werden die Vesikel in einem ATP-verbrauchenden Schritt auf die Exozytose vorbereitet (4) und in Abhängigkeit von Ca^{2+} findet eine Fusion mit der Akzeptormembran statt (5). Die Membran der synaptischen Vesikel kann über verschiedene Mechanismen zurückgewonnen werden (6-9). Die Phasen der Exozytose sind durch rote Pfeile markiert, gelbe Pfeile wurden für die Schritte der Endozytose und das Recycling synaptischer Vesikel verwendet. Die Abbildung (modifiziert) wurde Südhof *et al.*, 2004 entnommen.

(1) V-ATPasen säuern das Lumen des synaptischen Vesikels an und der daraus resultierende Protonengradient wird zur Beladung des Vesikels mit Neurotransmittern durch Neurotransmitter-Transporter genutzt. (2) Die mit Neurotransmitter-Molekülen beladenen Vesikel werden Teil des Vesikel-Clusters an der Synapse und (3) lagern sich in einen speziellen Bereich der aktiven Zone im präsynaptischen Bouton (*docking step*) an. (4) In einem Energie-abhängigen Prozess (*priming step*) werden die Vesikel für die Ca²⁺-vermittelte Fusion mit der Akzeptormembran kompetent gemacht. (5) In Abhängigkeit von einem Aktionspotential (AP) öffnen sich spannungsregulierte Ca²⁺-Kanäle und Ca²⁺ strömt ein. Die kompetenten, synaptischen Vesikel fusionieren daraufhin SNARE (*soluble Nethylmaleimide-sensitive-factor attachment receptor*)-vermittelt mit der präsynaptischen Membran und entlassen die Neurotransmitter in den präsynaptischen Spalt. Die Neurotransmitter-Moleküle binden an Rezeptoren auf der postsynaptischen Zelloberfläche. Die Antwort, die als Reaktion auf die Bindung der Neurotransmitter-Moleküle in der postsynaptischen Zelle ausgelöst wird, ist abhängig von der Art des Neurotransmitter-Moleküls. Der Neurotransmitter GABA (γ-Aminobuttersäure) wirkt inhibitorisch, während Glutamat oder Acetylcholin ein exzitatorisches, postsynaptisches Potential auslösen. (6)-(9) Nach der Exozytose wird die Membran der Vesikel durch verschiedene endozytotische Mechanismen (siehe Abschnitt 1.4.2) zurückgewonnen. Anschließend werden die Vesikel mit Neurotransmitter-Molekülen beladen und einer erneuten Exozytose-Runde zur Verfügung gestellt (Murthy & De Camilli, 2003; Schweizer & Ryan, 2006; Südhof, 2004).

1.4.2 Mechanismen des Vesikelrückgewinnung an der chemischen Synapse

Das Recycling der synaptischen Vesikel kann durch drei unterschiedliche Mechanismen erfolgen: Klassische Clathrin-vermittelte Endozytose, *"kiss-and-run"-*Exozytose und durch tiefe Membraneinfaltungen, so genannte Bulk-Endozytose (siehe Abb. 1.11) (Harata *et al.*, 2006; Murthy & De Camilli, 2003; Royle & Lagnado, 2003; Südhof, 2004; Ryan, 2006).

Der Mechanismus der Clathrin-vermittelten Endozytose synaptischer Vesikel ist der Hauptmechanismus der Vesikelrückgewinnung an der Synapse. Fusionieren synaptische Vesikel während der Exozytose nicht vollständig mit der präsynaptischen Membran, sondern entlassen die Neurotransmitter aus dem Vesikellumen durch die Bildung einer transienten Fusionspore in den präsynaptischen Spalt, so wird von *"kiss-and-run"*-Exozytose gesprochen. Das Vesikel wird unmittelbar danach zurückgewonnen. Die Bedingungen, unter denen der *"kiss-and-run"*-Mechanismus stattfindet, eventuell in Folge milder Stimulation, werden kontrovers diskutiert (Gandhi & Stevens, 2003; Granseth *et al.*, 2007).

Bulk-Endozytose repräsentiert einen Weg durch den große Membranbereiche rasch über tiefe Membraneinstülpungen nach massiver Exozytose synaptischer Vesikel, zum Beispiel in Folge lang anhaltender synaptischer Stimulation, internalisiert werden können. Eine mögliche Bildung Clathrinumhüllter Vesikel von Membranzisternen konnte zumindest schon in Neuronen des Neunauges und in Motorneuronen von Schlangen beobachtet werden (Shupliakov *et al.*, 1997; Teng & Wilkinson, 2000). Synaptische Vesikel können auch aus Endosomen-ähnlichen Strukturen in Abhängigkeit von AP-3 hervorgehen (Südhof, 2004; Schweizer & Ryan, 2006). Weiterhin wird angenommen, dass die Vesikelabschnürung von Endosomen-ähnlichen Strukturen Intermediate der präsynaptischen Membran involvieren kann, die in Folge einer massiver Exozytose synaptischer Vesikel an der präsynaptischen Membran entstanden sind (de Lange *et al.*, 2003; Heuser & Reese, 1973; Lenzi *et al.*, 2002; Richards *et al.*, 2000; Takei *et al.*, 1996; Teng & Wilkinson, 2000).

Abb. 1.11 Clathrin-abhängige und unabhängige Transport-Mechanismen

Die Komponenten synaptischer Vesikel können durch drei verschiedene Mechanismen zurückgewonnen werden. (1) Der Mechanismus der *kiss-and-run*-Exozytose beschreibt die transiente Öffnung einer Fusionspore. Die synaptischen Vesikel werden durch diesen Mechanismus intakt zurückgewonnen. (2) Fusionieren synaptische Vesikel komplett mit der präsynaptischen Membran, so werden Vesikel von der aktiven Zone über Clathrin-vermittelte Endozytose generiert. Die Vesikel können mit Neurotransmitter befüllt und sofort dem synaptischen Vesikelpool zugeführt werden oder mit endosomalen Intermediaten fusionieren. (3) Die Einstülpung der Plasmamembran und die Entstehung großer Membranzisternen wird als Bulk-Endozytose bezeichnet. Die Bildung Clathrin-umhüllter Vesikel von diesen Membranzisternen scheint möglich. Die Abbildung (modifiziert) wurde Voglmaier & Edwards, 2007 entnommen.

Der Cluster synaptischer Vesikel an der Synapse besteht aus morphologisch identischen, jedoch funktional unterscheidbaren Pools synaptischer Vesikel (Schikorski & Stevens, 2001) (vergleiche Abb. 1.11). Nach Rizzoli & Betz (2005) wird der Pool synaptischer Vesikel, der sich aus der präsynaptischen Membran angelagerten oder fusionskompetenten Vesikeln zusammensetzt, als *readily-releasable pool* (RRP) bezeichnet. Wird die Synapse stimuliert, so fusionieren die Vesikel des RRPs mit der präsynaptischen Membran und werden durch Vesikel aus dem *recycling pool* ersetzt. Die Größe des *recycling pools* definiert die Anzahl der Vesikel, die unter gegebenen stimulatorischen Bedingungen am vesikulären Membrankreislauf teilnehmen. Es konnte beobachtet werden, dass kürzlich exozytierte Vesikel bevorzugt für eine anschließende Runde der Neurotransmitter-Ausschüttung verwendet werden (Rizzoli & Betz, 2005). Der *reserve-pool* stellt einen dritten Pool synaptischer Vesikel an der Synapse dar, der all die Vesikel umfasst, die nicht unmittelbar für die Ausschüttung von Neurotransmitter-Molekülen benötigt werden (Schweizer & Ryan, 2006). Die genaue Funktion des *reserve-pool* sist nicht bekannt. Es wird jedoch vermutet, dass bei starker Stimulation der Synapse der *reserve-pool* den *recycling pool* auffüllt. Die verschiedenen Vesikel-

Pools sind nicht klar voneinander in der Synapse getrennt, sondern morphologisch scheinbar zufällig angeordnet.

1.5 Synaptische Vesikel

Die synaptischen Vesikel sind die Schlüsselorganellen der synaptischen Informationsweiterleitung. Synaptische Vesikel erfüllen ihre Aufgaben durch die Aufnahme, die Lagerung und die Ca²⁺- abhängige Freisetzung von Neurotransmitter-Molekülen (siehe Abschnitt 1.4.1). Die synaptische Exound Endozytose der Vesikel wird zeitlich und räumlich durch das Zusammenwirken einer gewaltigen Anzahl von Membran- und Membran-assoziierten Proteinen reguliert, die in die unterschiedlichen Phasen des synaptischen Vesikelzyklus wie die Beladung und den Transport der Organellen sowie Interaktionen mit der Plasmamembran während der Exo- und der Endozytose involviert sind (siehe Abb. 1.10) (Morciano *et al.*, 2005; Takamori *et al.*, 2006).

Das Modell zeigt einen Querschnitt durch ein durchschnittliches, synaptischen Vesikels Die Menge der abgebildeten Proteine basiert auf Schätzungen und Messungen und machen ca. 2/3 der experimentell bestimmten Proteinkomposition eines synaptischen Vesikels aus. Die Proteine wurden, soweit möglich, auf der Basis existierender Strukturen oder Teilstrukturen modelliert. Die Abbildung (modifiziert) wurde aus Takamori *et al.*, 2006 entnommen.

Takamori und Mitarbeiter (2006) analysierten massenspektroskopisch die Lipid- und Proteinkomposition synaptischer Vesikel und berechneten auf der Grundlage ihrer Daten die Beschaffenheit eines durchschnittlichen, synaptischen Vesikels. Ein einzelnes Vesikel hat einen Durchmesser von ca. 40 nm, ein Gewicht von ca. 18 MDa und ist mit ca. 1790 Neurotransmitter-Molekülen beladen. Bei den Membranlipiden dominieren Phospholipide mit 7000 und Cholesterol mit ca. 5600 Molekülen. Weiterhin können rund 250 Membran- und Membran-assoziierte Proteine gefunden werden (siehe Abb. 1.12). Die Proteine eines synaptischen Vesikels können in zwei Gruppen unterteilt werden. Die erste Gruppe umfasst Proteine, die zur Beladung des Vesikels mit Neurotransmitter-Molekülen notwendig sind, wie Neurotransmitter-Transporter und V-ATPasen (vergleiche Abb. 1.12). Die zweite Gruppe wird durch Proteine gebildet, die an den verschiedenen Transportschritten des synaptischen Vesikelzyklus beteiligt sind, wie SNAREs, endozytotische Proteine, Rab-Proteine und Proteine des Aktinzytoskeletts der Zelle (siehe Abb. 1.12). Die Hauptproteine eines synaptischen Vesikels sind SNARE-Proteine, von denen Synaptobrevin/VAMP (*vesicle associated membrane protein*) mit ca. 70 Kopien am häufigsten vertreten ist. Synaptotagmin, Synaptophysin, Synapsins, Rab3A und Neurotransmitter-Transporter sind ebenfalls in einer hohen bis mittleren Stückzahl anzutreffen. Synaptische Vesikelproteine wie SV2, Synaptogyrin, SCAMP und V-ATPasen sind nur in geringer Kopienzahl zu finden (Takomori *et al.*, 2006).

Wie schon erwähnt, sind SNARE-Proteine in sehr hohen Kopienzahlen in synaptischen Vesikeln vertreten. SNARE-Proteine vermitteln die Fusion synaptischer Vesikel mit der präsynaptischen Membran in Abhängigkeit von der internen Ca²⁺-Konzentration. Die neuronalen SNAREs mit Synaptobrevin/VAMP auf der Vesikelseite und Syntaxin sowie SNAP25 in der prä-synaptischen Membran bilden den basalen Apparat der Membranfusion. Die SNARE-Proteine bilden einen hochstabilen SNARE-Komplex, der aus einem Bündel von vier parallelen Helices zwischen der Vesikel- und der Plasmamembran besteht, die beiden Membranen zusammenführt und so die Fusion vermittelt (Übersicht bei Jahn & Scheller, 2006; Rizo & Rosenmund, 2008). In Neuronen ist die Fusion der synaptischen Vesikel mit der präsynaptischen Membran eng mit dem Einstrom von Ca²⁺ verbunden. Der putative Ca²⁺-Sensor der SNARE-vermittelten Membranfusion ist Synaptotagmin 1. Synaptotagmin 1 als synaptisches Vesikelprotein ist über eine Transmembrandomäne in der synaptischen Vesikelmembran verankert. Der C-Terminus besteht aus zwei C2-Domänen, die beide Ca²⁺-Ionen binden können. Die erste C2-Domäne wird als C2A bezeichnet und ist über einen kurzen Linker mit der C-terminalen C2B-Domäne verbunden (Brose et al., 1992; Chapman, 2002). Genetische Studien haben gezeigt, dass die Fähigkeit von Synaptotagmin Ca²⁺ wahrzunehmen, wichtig für die Ca²⁺-vermittelte Fusion von kompetenten synaptischen Vesikeln ist (Fernandez-Chacon *et al.*, 2001; 2002; Mackler & Reist, 2001). Weiterhin interagiert Synaptotagmin 1 mit SNARE-Proteinen und Phospholipiden (Sutton et al., 1999; Bai & Chapman, 2004). Phospholipide werden durch beide C2-Domänen gebunden. Während die C2A-Domäne in Ca²⁺-abängiger Weise mit anionischen Phospholipiden wie Phosphatidylserin (PS) interagiert (Chapman & Davis, 1998; Davleton & Südhof, 1993), bevorzugt die C2B-Domäne die Bindung an PI(4,5)P2. auch in Abwesenheit von Ca2+ (Schiavo et al., 1996).

1.6 Regulation des synaptischen Vesikelzyklus durch Phosphatidylinositol-(4,5)-bisphosphat

In allen eukaryontischen Zellen ist $PI(4,5)P_2$ vor allem auf der zytoplasmatischen Seite der Plasmamembran konzentriert zu finden; nachweisbar ist es aber in geringer Konzentration auch in intrazellulären Membranen, zu Beispiel der Zellkernmembran und im Nukleus (Watt *et al.*, 2002). $PI(4,5)P_2$ macht nur 0,5 bis 1,5 % der in der Plasmamembran vorkommenden Phospholipide aus (Singh, 1992; Nasuhoglu *et al.*, 2002), doch ist es an nahezu allen Prozessen an der Zelloberfläche beteiligt (Di Paolo & De Camilli, 2006). Das Phosphoinositid hat Einfluss auf die Verankerung des Zytoskeletts und dessen Organisation. Weiterhin reguliert $PI(4,5)P_2$ die Aktivität verschiedener Ionenkanäle und Transporter, beeinflusst Enzymaktivitäten, so zum Beispiel die von Phospholipase D (PLD), und ist in die Exo- und Endozytose von Membranproteinen involviert. Nicht nur durch die direkte Interaktion von Proteinen, die über Phophoinositid-bindende Domänen oder Cluster basischer Aminosäuren die mit $PI(4,5)P_2$ in Wechselwirkung treten können, ist dieses Phosphoinositid in vielfältige Prozesse involviert, sondern auch durch die Wirkung der Signalmoleküle IP₃ (*myo*-Inositol-(1,4,5)-Trisphosphat), Diacylglycerol (DAG) und $PI(3,4,5)P_3$, denen $PI(4,5)P_2$ als Vorläufermolekül dient (Cremona & De Camilli, 2001; Di Paolo & De Camilli, 2006; Krauss & Haucke, 2007b; Poccia & Larijani, 2009; Rohrbough & Broadie, 2005; Wenk & De Camilli, 2004; Yin & Janmey, 2003).

1.6.1 Rolle von PI(4,5)P₂ in der Endozytose

Das Phosphoinositid $PI(4,5)P_2$ dient der Plasmamembran als Markerlipid (De Mattheis & Godi, 2004) und ist in zahlreiche Plasmamembran-abhängige Prozesse involviert (siehe Abschnitt 1.1 und Abschnitt 1.6). Anhand von einigen Beispielen soll die Bedeutung vom $PI(4,5)P_2$ in der Clathrinvermittelten Endozytose dargestellt werden:

- (1) Die Sequestrierung von PI(4,5)P₂ an der Plasmamembran durch Neomycin, oder die Überexpression der Synaptojanin Inositol-5'-Phosphatase-Domäne, PI(4,5)P₂-Depletion durch induzierbare 5'-Phosphatasen oder die Maskierung des Phospholipids durch PH-PLCδ1 inhibieren die Internalisierung von Transferrin und weisen auf die unmittelbare Abhängigkeit der Clathrin-vermittelten Endozytose von PI(4,5)P₂ hin (Abe *et al*, 2008; Jost *et al.*, 1998; Krauss *et al.*, 2003; Varnai *et al.*, 2006).
- (2) Zahlreiche Proteine der endozytotischen Maschinerie, einschließlich der α- (Gaidarov & Keen, 1999) und der μ- (Rohde *et al.*, 2002) Untereinheiten des AP-2-Komplexes, AP180/CALM (Ford *et al.*, 2001; Mao *et al.*, 2001), Dab2 (Mishra *et al.*, 2002), Numb (Santolini *et al.*, 2000), Epsin (Ford *et al.*, 2002) und Dynamin (Schmid *et al.*, 1998) binden spezifisch an PI(4,5)P₂ über unterschiedliche Proteindomänen. Dynamin erkennt das Phospholipid über eine Pleckstrin-Homologie (PH)-Domäne. Numb und Dab2 binden durch ihre PTB-Domäne sowohl Frachtproteine mit [FY]XNPX[FY]-Sequenzen als auch PI(4,5)P₂. Proteindomänen wie ANTH- oder ENTH von AP180 und Epsinen erkennen PI(4,5)P₂ ebenso, wie die

expositionierten Cluster basischer Aminosäuren der α - und der μ - Untereinheiten des AP-2-Komplexes.

- (3) Der knockdown von PI(4,5)P₂-synthetisierenden PIPKI-Isoformen inhibiert die Internalisierung von Transferrin (Padron *et al.*, 2003) oder die Internalisierung von EGF-Rezeptoren aufgrund einer Mislokalisation von AP-2 (Krauss *et al.*, 2003).
- (4) Die Inositol-Phosphatase Synaptojanin 1, die *in vivo* hauptsächlich als PI(4,5)P₂-Phosphatase wirkt (McPherson *et al.*, 1996), ist in den letzten Schritt der Clathrin-vermittelten Endozytose, dem *uncoating* der Clathrin-umhüllten Vesikel, involviert. Eine Inaktivierung von Synaptojanin 1 in Mäusen ist perinatal letal. In diesen Tieren akkumulieren Clathrin-umhüllte Vesikeln an der Synapse, wahrscheinlich in Folge erniedrigter Raten des präsynaptischen Vesikelzyklus (Cremona *et al.*, 1999). Ähnliches konnte auch in *C. elegans*, *D. melangaster* und dem Neunauge nach der Inaktivierung von endogenem Synaptojanin beobachtet werden (Gad *et al.*, 2000; Harris *et al.*, 2000; Verstreken *et al.*, 2003).
- (5) Der *knockout* von PIPKIγ, dem Hauptenzym der PI(4,5)P₂-Synthese an Synapsen ist letal (Di Paolo *et al.*, 2004; Wang *et al.*, 2007). PIPKIγ-*knockout*-Neuronen zeigen Defekte der Clathrin-vermittelten Endozytose synaptischer Vesikel (Di Paolo *et al.*, 2004).

Die Präsenz von $PI(4,5)P_2$ an der Plasmamembran ist somit wichtig für jede Phase der Clathrinvermittelten Endozytose.

1.6.2 Rolle von PI(4,5)P₂ in der Exozytose

Über die Rolle von $PI(4,5)P_2$ während der Exozytose ist weniger bekannt als über die Bedeutung für die Clathrin-vermittelte Endozytose. Viele Hinweise für einen Bedarf an $PI(4,5)P_2$ kommen aus Studien der regulierten Exozytose von *Dens-Core*-Vesikeln in neurosekretorischen Zellen:

- (1) In permeabilisierten, primären Chromaffin-Zellen aus Rinder-Nebennierenmark konnte gezeigt werden, dass PI(4,5)P₂, nicht aber seine Hydrolyseprodukte IP₃ und DAG, für die Vorbereitungsphase der Vesikel notwendig ist, die der Ca²⁺-vermittelten Fusion mit der präsynaptischen Membran vorausgeht (Eberhard *et al.*, 1990; Holz *et al.*, 1989).
- (2) Ein Phosphatidylinositol-Transfer-Protein (Hay & Martin, 1993) und eine Phosphatidylinositol-4-Phosphat-5-Kinase (Hay *et al.*, 1995) konnten als wichtige Faktoren für die Vorbereitungsphase der Vesikel in PC12-Zellen identifiziert werden.
- (3) PH-PLCδ1 lokalisiert in primären Chromaffin-Zellen aus Rinder-Nebennierenmark selektiv an der Plasmamembran und inhibiert die Ca²⁺-vermittelte Exozytose (Holz *et al.*, 2000). Eine Überexpression der Synaptojanin Inositol-5'-Phosphatase-Domäne inhibiert die Ca²⁺vermittelte Sekretion in PC12-Zellen (Milosevic *et al.*, 2005).
- (4) Eine verstärkte Ca²⁺-vermittelte Exozytose in PC12-Zellen konnte nach Erhöhung der PI(4,5)P₂-Konzentrationen an der Plasmamembran in Folge der Überexpression von PIPKIγ oder der Infusion von PI(4,5)P₂ beobachtet werden (Milosevic *et al.*, 2005).

- (5) Viele Proteine, die sowohl in die Anlagerung wie auch in die Stimulus-vermittelte Fusion synaptischer Vesikel und Vesikel neuroendokriner Zellen involviert sind, verfügen über Phosphoinositid-Bindungsdomänen, vorrangig C2-Domänen. Dazu zählen die Vesikelproteine Doc2 und Rabphilin, aber auch Proteine der aktiven Zone wie Piccolo und RIM, sowie Munc13 (Rizo & Südhof, 1998; Murthy & De Camilli, 2003). Mint, ein Protein der Zytomatrix an der aktiven Zone, verfügt über eine PTB-Domäne, die PI(4,5)P₂ binden kann (Okamoto & Südhof, 1997).
- (6) Synaptotagmin 1, der putative Ca²⁺-Sensor der SNARE-vermittelten Fusion synaptischer Vesikel, bindet *in vitro* PI(4,5)P₂ (Schiavo *et al.*, 1996) Die Interaktion mit PI(4,5)P₂ nimmt Einfluss auf die Bindungsgeschwindigkeit des Proteins nach Ca²⁺-Einstrom mit der Membran (Bai & Chapman, 2004) und erhöht die Affinität für Ca²⁺ (Radhakrishnan *et al.*, 2009).
- (7) Mäuse, denen PIPKIγ fehlt, zeigen neben endozytotischen Defekten (siehe Abschnitt 1.6.1) auch Einschränkungen in der Exozytose an der Synapse (Di Paolo *et al.*, 2004), wie zum Beispiel durch einen verkleinerten Pool fusionskompetenter Vesikel. Im nicht-stimulierten Zustand ist die Häufigkeit der spontanen Fusion synaptischer Vesikel mit der präsynaptischen Membran verringert. Die exozytotische Reaktion der Synapsen auf starke Stimulation ist im Vergleich zu Kontroll-Neuronen ebenfalls vermindert (Di Paolo *et al.*, 2004).

 $PI(4,5)P_2$ ist ein wichtiger Faktor für den Prozess der Anlagerung und den Energie-abhängigen Prozess, durch welchen die Vesikel für die Ca²⁺-vermittelte Fusion mit der Akzeptormembran kompetent gemacht werden. Weiterhin erscheint es möglich, dass $PI(4,5)P_2$ zum Beispiel über Synaptotagmin ebenfalls Einfluss auf die Ca²⁺-vermittelte Exozytose der Vesikel nehmen kann.

1.7 Phosphatidylinositol-4-Phosphat-5-Kinasen Typ I

In Säugetieren konnten bisher drei verschiedene PIPKI-Isoenzyme (α , β und γ) und mehrere Splicevarianten identifiziert werden (Giudici *et al.*, 2004; Ishihara *et al.*, 1996; 1998; Loijens & Anderson, 1996; Schill & Anderson, 2009). Diese Gruppe von Lipidkinasen katalysiert die Phosphorylierung von Phosphatidylinositol-(4)-phosphat (PI(4)P) an der D5-Position des Inositolrings zu PI(4,5)P₂, eine Reaktion, die den Hauptsyntheseweg dieses Phosphoinositids in Säugetieren darstellt (Doughman *et al.*, 2003; Heck *et al.*, 2007; Weernink *et al.*, 2004) (vergleiche Abb. 1.13).

Die katalytischen Domänen der drei PIPKI-Isoenzyme stimmen zu ca. 80 % in der Sequenz überein, ihre N- und C-Termini hingegen sind ohne jede Sequenzhomologie (Doughman *et al.*, 2003). Die einzige Information zu ihrer möglichen Struktur kommt von einer partiellen Kristallstruktur der PIPKIIβ, einer nahe verwandten Lipidkinase, welche die Phosphorylierung von PI(5)P katalysiert. Die

Struktur der PIPKIIβ konnte als scheibenförmiges Homodimer röntgenkristallographisch gelöst werden (Rao *et al.*, 1998).

Während PIPKI α und PIPKI β ubiquitär exprimiert werden (Ishihara *et al.*, 1996; Loijens & Anderson, 1996; Wang *et al.*, 2007; Wenk *et al.*, 2001) ist die γ -Isoform im Hirngewebe stark angereichert (Ishihara *et al.*, 1998; Giudici *et al.*, 2004), an Synapsen konzentriert (Wenk *et al.*, 2001) und bekannt, eine kritische Rolle in der Clathrin-vermittelten Endozytose synaptischer Vesikel einzunehmen (Di Paolo *et al.*, 2004). In nicht-neuronalen Zellen kann PIPKI γ als Interaktionspartner von Talin auch an fokalen Adhäsionen gefunden werden (Di Paolo *et al.*, 2002; Ling *et al.*, 2002).

Abb. 1.13 Synthese von $PI(4,5)P_2$ durch PIPKI-Isoenzyme PIPKI-Isoenzyme katalysieren die Phosphorylierung von Phosphatidylinositol-(4)-phosphat an der D5-Position des Inositolrings zu Phosphatidylinositol-(4,5)-bisphosphat. Die Abbildung (modifiziert) stammt aus Kanaho *et al.*, 2007.

Zu Beginn dieser Arbeit waren nur zwei humane PIPKIγ-Splicevarianten bekannt - PIPKIγ-p87 und PIPKIγ-p90. Die humane PIPKIγ-p87 umfasst 640 Aminosäuren, PIPKIγ-p90 enthält ein zusätzliches C-terminales Spliceinsert von 28 Aminosäuren. PIPKIγ-p87 und PIPKIγ-p90 werden sowohl in Maus als auch in menschlichen Geweben exprimiert. Die als dritte Splicevariante der PIPKIγ-Isoform identifizierte PIPKIγ-p93 konnte bisher nur in Maus/Ratte nachgewiesen werden (Giudici *et al.*, 2004) und verfügt über eine Insertion weiterer 26 Aminosäuren. Kürzlich konnte die Gruppe der PIPKIγ-Splicevarianten um zwei weitere Mitglieder erweitert werden, deren Expression bisher jedoch nur in menschlichem Gewebe gezeigt werden konnte - PIPKIγ-Variante 4 mit 700 Aminosäuren und PIPKγ-Variante 5 (707 Aminosäuren) (Schill & Anderson, 2009). Die Spliceinserte dieser PIPKIγ-Varianten (vergleiche Abb. 1.14) haben jeweils ein anderes Exon als PIPKIγ-p90 zur Grundlage (Schill & Anderson, 2009).

Für diese Arbeit war besonders PIPKIγ-p90 von Interesse (vergleiche Abb. 1.14A): Zum einen aufgrund der Dominanz der PIPKIγ-Isoform an der Synapse, zum anderen durch ihre Wechselwirkung, insbesondere über ihren C-Terminus, mit dem AP-2-Komplex, welche die PIPKIγ-p90-vermittelte PI(4,5)P₂-Synthese beeinflusst. Die im Folgenden geschilderten Kenntnisse dienten als Ausgangspunkt

für die vorgenommene Charakterisierung der molekularen Basis der Interaktion von PIPKIγ-p90 über ihren C-Terminus mit dem AP-2-Komplex.

Ausgehend von der verstärkten Expression in Hirngewebe (Ishihara *et al.*, 1998; Wenk *et al.*, 2001) wurde vermutet, dass PIPKγ eine spezifische Rolle als PI(4,5)P₂-synthetisierendes Hauptenzym im synaptischen Vesikelzyklus hat. Ein eleganter PIPKIγ-*knockout*-Versuch bestätigte diese Vermutung: nachweisbare Einschränkungen der synaptischen Endozytose in Folge einer inhibierten PI(4,5)P₂-Synthese und Defekte in der Exozytose synaptischer Vesikel (Di Paolo *et al.*, 2004). Der genaue Regulationsmechanismus der räumlichen und zeitlichen PI(4,5)P₂-Synthese in Bereichen Clathrinvermittelter Endozytose war unbekannt. Es zeigte sich jedoch, dass Talin, ein spezifischer Interaktionspartner von PIPKIγ-p90 (Di Paolo *et al.*, 2002; Ling *et al.*, 2002), an der Präsynapse Einfluss auf die Clathrin-vermittelte Endozytose nehmen kann (Di Paolo *et al.*, 2002; Morgan *et al.*, 2004).

Abb. 1.14 Humane PIPKIy-Splicevarianten

(A) Bis heute konnten vier verschiedene humane PIPKIγ-Splicevarianten identifiziert werden. PIPKIγ-p87, PIPKIγ-p90, PIPKIγ-Variante 4 und PIPKIγ-Variante 5. Die PIPKIγ-Splicevarianten unterscheiden sich in ihren Spliceinserts. Der C-Terminus von PIPKIγ-p90 ist im Vergleich zu PIPKIγ-p87 um 28 zusätzliche Aminosäuren verlängert (hellbau). PIPKIγ-Variante 4 (gelb) und PIPKIγ-Variante 5 (rot) unterscheiden sich zu PIPKIγ-p90 durch individuelle Spliceinserts. (B) CLUSTALW-Überlagerung der C-Termini der vier humanen PIPKIγ-Splicevarianten. Die Abbildung (modifiziert) wurde aus Anderson & Schill, 2009 entnommen.

Talin interagiert ausschließlich über die Aminosäuresequenz WVYSPL im p90-spezifischen Spliceinsert mit PIPKI γ (siehe Abb. 1.15) (Di Paolo *et al.*, 2002; Ling *et al.*, 2002). AP-2 als ein Hauptprotein der Clathrin-vermittelten Endozytose an der Plasmamembran konnte ebenfalls als Interaktionspartner der PIPKI-Isoenzyme identifiziert werden. Die Interaktion von PIPKI γ mit AP-2 μ wird über die katalytische Domäne der Kinase vermittelt (siehe Abb. 1.15) und nimmt einen Oberflächenbereich von C- μ 2 in Anspruch, der verschieden von der Yxx Φ -Bindungsstelle ist. *In vitr*o Experimente zeigten, dass die Aktivität der PIPKI γ im Komplex mit AP-2 μ potent stimuliert werden kann, wenn gleichzeitig Yxx Φ -haltige Peptide aus Frachtproteinen mit C- μ 2 interagieren (Krauss *et al.*, 2006). Eine weitere Gruppe identifizierte das 28 Aminosäuren umfassende p90-spezifische Spliceinsert der PIPKI γ -p90 als essentielle Bindungsstelle für eine Interaktion der Lipidkinase mit dem AP-2-Komplex. Im Gegensatz zu den Beobachtungen von Krauss und Mitarbeitern (2006) involviert diese Interaktion von AP-2 μ und PIPKI γ -p90 ein Tyrosin-basiertes Motiv, das ausschließlich im p90-spezifischen Spliceinsert des PIPKI γ -C-Terminus zu finden ist (Bairstow *et al.*, 2006) (vergleiche Abb. 1.14 und Abb. 1.15).

Abb. 1.15 Interaktionspartner von PIPKIy-p90

PIPKIγ-p90 kann über die katalytische Domäne mit AP-2µ interagieren. Die Interaktionsfläche ist verschieden von der YxxΦ-Bindungsstelle und kompetitiert nicht die Bindung von YxxΦ-haltigen Peptiden. Die PI(4,5)P₂-Synthese durch PIPKIγ-p90 im Komplex mit AP-2µ kann durch die gleichzeitige Bindung von YxxΦ-haltigen Peptiden stimuliert werden. Das p90-spezifische Spliceinsert der PIPKIγ-p90 ist in die Interaktion mit den AP-2-Domänen β2-Ohr und C-µ2 involviert. Weiterhin interagiert Talin mit PIPKIγ-p90 über das Peptidmotiv WVYSPL, das ausschließlich im p90-spezifischen Spliceinsert vorhanden ist.

Das Interesse an der Untersuchung der molekularen Basis der Interaktion von PIPKI γ -p90 mit AP-2 über den Kinase-C-Terminus wurde weiter dadurch gesteigert, dass unmittelbar nach AP-2 μ das β 2-Ohr als weitere AP-2-Domäne identifiziert werden konnte, das ebenfalls in die Komplexbildung von AP-2 und PIPKI γ -p90 involviert ist (Nakano-Kobayashi *et al.*, 2007) (siehe Abb. 1.15). Das AP-2- β 2-Ohr interagiert ebenfalls über das p90-spezifische Spliceinsert mit PIPKI γ . Weiterhin konnte gezeigt werden, dass die PIPKI γ -p90-vermittelte PI(4,5)P₂-Synthese durch die Wechselwirkung mit dem AP-2- β 2-Ohr *in vitro* moderat stimuliert wird. Eine spezifische Funktion für die PIPKI γ -Splicevariante PIPKI γ -p90 während der AP-2/Clathrin-vermittelten Endozytose synaptischer Vesikel konnte anhand von FM-Farbstoff-Internalisierungsexperimenten in Neuronen aus dem Hippocampus von Mäusen bestätigt werden (Nakano-Kobayashi *et al.*, 2007).

1.8 Aufgabenstellung

PI(4,5)P₂ ist essentiell für die Clathrin-vermittelte Endozytose und wird in Säugetierzellen hauptsächlich durch die Isoenzyme der Typ I PIPK synthetisiert, die das Phospholipid PI(4)P an der D5-Position des Inositolrings phosphorylieren. PIPKIγ-p90 wird im Hirngewebe stark exprimiert, wo diese Splicevariante den exo- und endozytotischen Zyklus synaptischer Vesikel reguliert. Der präzise Mechanismus der räumlichen und zeitlichen Kontrolle des PI(4,5)P₂-Metabolismus ist noch unbekannt, doch mehren sich Hinweise, dass die direkte Interaktion von PIPKIγ-p90 und dem AP-2-Komplex Einfluss nehmen kann. In dieser Arbeit sollte die molekulare Grundlage der Interaktion der PIPKIγ-p90 mit AP-2 und die Bedeutung der unterschiedlichen AP-2-Bindungsstellen für die AP-2/Clathrin-vermittelte Endozytose in nicht-neuronalen Zellen und in Neuronen untersucht werden.

2 Material und Methoden

2.1 Material

2.1.1 Chemikalien und Einwegartikel

Die in dieser Arbeit verwendeten Chemikalien wurden von GE Healthcare, Invitrogen, Merck, Pierce, Roth, Serva Sigma erworben. Einwegartikel stammten von Amersham, Greiner, Millipore, Sarstedt, Schott, Conning und Whatman.

2.1.2 Enzyme

Die verwendeten Enzyme stammten von den folgenden Herstellern:

Restriktionsenzyme	New England Biolabs (NEB)
VENT-Polymerase	NEB
Kälberdarm-alkalische Phosphatase (CIP)	NEB
T4 DNA-Ligase	Fermentas
Dream Taq-Polymerase	Fermentas
Phusion-Polymerase	Finnzyme
Benzonase-Endonuklease	Sigma
Lysozym	Roth

2.1.3 Molekularbiologie Kits

Wizard Plus SV Minipreps DNA Purification System	Promega
ProFection Mammalian Transfection System	Promega
Nucleospin Plasmid	Macherey-Nagel
peqGOLD MicroSpin Cycle-Pure Kit	peQLab
NucleoBond Xtra Midi/Maxi	Macherey-Nagel
NucleoBond Xtra Midi EF/Maxi EF	Macherey-Nagel

2.1.4 Synthetische Peptide

Die Peptide wurden durch Dr. R. Volkmer (Charité, Berlin) synthetisiert.

Tabelle 2.1	Verwendete	synthetische	Pentide
I ubene 2.1	ver wenuete	synthetische	I epilae

Bezeichnung	Peptidsequenz	Spezies
minimales PIPKIγ-p90-Peptid (Aminosäure 641-653)	PTDERSWVYSPLH	Homo sapiens
PIPKIγ-p90-Peptid YFYFPTDERSWVYSPLH (Aminosäure 639-653)	YFYFPTDERSWVYSPLH	Homo sapiens
PIPKIγ-p90-Peptid SWVYSPLH (Aminosäure 646-653)	SWVYSPLH	Homo sapiens
Penetratin-PIPKIγ-p90 WT (Aminosäure 639-653)	RRMKWKKYFPTDERSWVYSPLH	Homo sapiens
Penetratin-PIPKIγ-p90 Δβ2-Bindungsstelle (Aminosäure 639-653)	RRMKWKKYAPTDERSWVYSPLH	Homo sapiens
Penetratin-PIPKIγ-p90 Δβ2µ2-Bindungsstellen (Aminosäure 639-653)	RRMKWKKYAPTDERSWVASPAH	Homo sapiens
EGFR-Internalisierungspeptid	FYRALM	Homo sapiens
Inaktives EGFR-Internalisierungspeptid	FARALM	Homo sapiens

2.1.5 Synthetische Oligonukleotide

Synthetische, anwendungspezifisch hergestellte DNA- und siRNA-Oligonukleotide wurden von MWG Biotech erworben. Eine Auflistung der verwendeten Oligonukleotide für Sequenzierreaktionen, PCR und Oligosubklonierung sowie der verwendeten siRNAs kann im Anhang gefunden werden.

2.1.6 Marker und Ladepuffer

Die folgenden DNA-Marker wurden von Fermentas bezogen: λ -DNA/EcoRI + HindIII Marker, GeneRuler 1 kb DNA Leiter, GeneRuler 50 bp DNA Leiter und Genaxxon (100 bp + 1.5 kb Leiter). Die Protein-Marker wurden von NEB erworben: *broad range protein* Marker und *pre-stained broad range protein* Marker. 6x DNA-Ladepuffer wurden von Fermentas gekauft oder selbst hergestellt (vergleiche Abschnitt 2.2.2).

2.1.7 Antikörper

2.1.7.1 Primäre Antikörper

Die folgenden Antikörper wurden für Immunblotting (IB), Immunfluoreszenz (IF) und Immunpräzipitation (IP) genutzt:

2.1.7.1.1 Monoklonale Mausantikörper

Tabelle 2.2 Monoklonale Mausantikörper

Antigen	Klon	Quelle/ Firma	Verdünnung
α-Adaptin (AP-2)	8	BD Transduction Lab	IB: 1:200/ 250/ 500/ 1 000
α-Adaptin (AP-2)	AC1-M11	Affinity Bioreagents	IB: 1:200
Actin	C2	Santa Cruz	IB: 1:500
Amphyphysin 1	Amphy #3	De Camilli	IB: 1:500
AP50 (AP-2)	31	TDL	IB: 1:500
AP180	LP2D11	P. De Camilli	IB: 1:1 000
β-Aktin	AC-15	Sigma	IB: 1:1 000
β1/2-Adaptin	74	BD Transduction Lab	IB:1:500/ 5000
β1/2-Adaptin	22D3	E.Ungewickell	IB: 1:30
β1/2-Adaptin		T.Kirchhausen	IB: 1:2000
СНС	X22	Affinity Bioreagents	IB: 1:500
СНС	TD.1	Hybridoma / ATCC	IP
E-Cadherin	36/E-cadherin	BD Transduction Lab	IB: 1:2500
Eps15	17	BD Transduction Lab	IB: 1:500
γ1-Adaptin (AP-1)	88	BD Transduction Lab	IB: 1:5000
НА	F7	Santa Cruz	IB: 1:250/ 500,
НА	HA.11	Babco/ Covance	IB: 1:150/ 1 000/ IP
Integrin β1	12G10	Serotec	IB: 1:1500
N-Cadherin	32	BD Transduction Lab	IB: 1:5000
Talin	8D4	Sigma	IB: 1:100
Tubulin	B5-1-2	Sigma	IB: 1:500
ΡΙΡ5Κγ	12	BD Transduction Lab	IB: 1:70

2.1.7.1.2 Polyklonale Kaninchenantikörper

Antigen	Klon	Quelle/ Hersteller	Verdünnung
AP50 (AP-2)	R11-29	J. Bonifacino	IB: 1:1 000
GST		P. De Camilli	IB: 1:1200
НА	Y-11	Santa Cruz	IB: 1:500
ΡΙΡΚΙγ	4339	M. Krauß	IB: 1:1500/ IP
Numb		Abcam	IB: 1:400

Tabelle 2.3 Polyklonale Kaninchenantikörper

2.1.7.2 Sekundäre Antikörper

Mit Meerrettichperoxidase (*horseradish peroxidase*; HRP) konjugierte sekundäre Antikörper 1:1 000 bis 1:20 000 von Dianova kamen beim Immunblotting zum Einsatz. Für Immunfluoreszenz wurden Alexa-Fluor (488, 568, 594 und 647) markierte, sekundäre Antikörper 1:100 von Invitrogen verwendet.

2.1.8 Escherichia coli Bakterienstämme

TOP 10	F- $mcrA\Delta$ (mrr-hsdRMS-mcrBC) φ 80lacZ Δ M15 Δ lacX74 $deoR$ $nupG$ $recA1$ $araD139$ Δ (ara , leu)7697 $galU$ $galK$ $rpsL(StrR)$ $endA1\lambda^-$ (Invitrogen)
ER2566	F- λ - fhuA2 [lon] ompT lacZ::T7 gene 1 gal sulA11 Δ (mcrC-mrr)114::IS10 R(mcr-73::miniTn10-TetS)2 R(zgb-210::Tn10) (TetS) endA1 [dcm] (NEB)
BL21	B F– <i>ompT hsdS</i> (rB–, mB–) <i>dcm</i> + Tetr <i>gal</i> λ (DE3) <i>endA</i> Hte [<i>argU proL</i> Camr] (Stratagene)

2.1.9 Tierische Zellinien

Cos7	Fibroblasten-ähnliche	Zellen	aus	Nierengewebe	der	Grünen
	Meerkatze (Cercopithe	cus aethio	<i>os)</i> .			
HeLa	Epithel-ähnliche Zellen	aus eine	m hum	anen <u>Zervixkarz</u> i	inoma.	
Hek293	Fibroblasten aus mensc	hlichen, e	embryo	onalen Nierengev	vebe.	
Flp-In TM -293	Hek293-Zellen, die	das [Fetrazy	klin-Repressor-F	Protein	stabil
	exprimieren. Die Prote	inexpress	sion w	ird durch Tetraz	yklin i	nduziert
	(Invitrogen).					
Hek293Flp-In HA-p87	Flp-In TM -293 Zellen, st	abil trans	fiziert	für humane PIPI	KIγ-p8΄	7 mit N-
	terminalen HA-Tag (Ki	rauss <i>et a</i>	<i>l.</i> , 200	6).		
Hek293Flp-In HA-p90	Flp-In TM -293 Zellen, st	abil trans	fiziert	für humane PIPI	KIγ-p9	0 mit N-
	terminalen HA-Tag (Ki	rauss <i>et a</i>	<i>l.</i> , 200	5)		

2.1.10 Plasmid-Vektoren

<u>pET-28a(+)</u>	
Größe	5,4 kb
Promoter	Τ7
Fusionsprotein/Tag	His ₆ , T7, N-terminal
Resistenz	Kanamycin
MCS	XhoI, NotI, EagI, HindIII, SalI, SacI, EcorI, BamHI, NheI, NdeI, NcoI
Eigenschaften	prokaryotischer Expressionsvektor
Referenz	Novagen
<u>pGex 4T-1</u>	
Größe	4,9 kb
Promoter	tac
Fusionsprotein/Tag	GST, N-terminal
Resistenz	Ampicillin
MCS	BamHI, EcoRI, SmaI, SalI, XhoI, NotI
Eigenschaften	prokaryotischer Expressionsvektor
Referenz	Amersham Bioscience

2.1.10.1 Bakterielle Expressionsvektoren

2.1.10.2 Expressionsvektoren für Säugetierzellen

<u>pcDNA3.1(+)</u>	
Größe	5,4 kb
Promoter	CMV, T7, SV40
Fusionsprotein/Tag	kein Tag
Resistenz	Ampicillin, Neomycin
MCS	NheI, PmeI, AflI, HindIII, Asp718, KpnI, BamHI, BslXI, EcoRI,
	EcoRV, BstXI, NotI, XhoI, XbaI, DraII, ApaI, PmeI
Eigenschaften	eukaryotischer Expressionsvektor
Referenz	Invitrogen

pcEGFP-MK

Größe	5,4 kb
Promoter	CMV, T7,Sp6, SV40
Fusionsprotein/Tag	EGFP, N-terminal
Resistenz	Ampicillin, Neomycin
MCS	BamHI, DnpI, EcoRI, EcoRV, NotI, XhoI, XbaI, ApaI

Eigenschaften	Derivat von pcDNA3.1(+)
Referenz	Krauss et al., 2006
pcHA-MK	
Größe	5,4 kb
Promoter	CMV, T7, Sp6, SV40
Fusionsprotein/Tag	HA, N-terminal
Resistenz	Ampicillin, Neomycin
MCS	BamHI, DnpI, EcoRI, EcoRV, NotI, XhoI, XbaI, ApaI
Eigenschaften	Derivat von pcDNA3.1(+)
Referenz	Krauss et al., 2006

2.2 Medien, Puffer und Lösungen

Gemeinsam genutzte Medien, Puffer und Lösungen wurden nach Sambrokk und Mitarbeiter (1996) angefertigt. Deionisiertes Wasser wurde durch eine Millipore-Anlage bereitgestellt und Lösungen, wenn es notwendig war, autoklaviert (121 °C/20 min/1 bar). Temperatur-sensitive Komponenten wurden steril filtriert (0,22 μ m) und nach dem Autoklavieren zugefügt. Der pH wurde, insofern nicht anders angegeben, mit HCL oder NaOH eingestellt.

2.2.1 Bakterienmedien

LB	1 % (w/v) Hefeextrakt
	0,5 % (w/v) Trypton
	0,5 % (w/v) NaCl
2xYT	1,6 % (w/v) Trypton
	1 % (w/v) Hefeextrakt
	0,5 % (w/v) NaCl
	pH 7,4
Festmedium	LB-Medium
	14 g Agar/l

2.2.2 Puffer und Lösungen

Antikörper-Lösung	3 % (w/v) BSA	
	in 1x TBS-Puffer pH 7,6	
	eine Spartelspitze Na-Azid	
10x BASIC pH 7,4	1,2 M NaCl	
	35 mM KCl	
	4 mM KH ₂ PO ₄	
	200 mM TES	
	50 mM NaHCO ₃	
	50 mM Glukose	
	12 mM Na ₂ SO ₄	
	13 mM CaCl ₂	
	12 mM MgCl ₂	
	pH 7,4 einstellen	
10x BASIC pH 5,5	1,2 M NaCl	
	35 mM KCl	
	4 mM KH ₂ PO ₄	
	200 mM MES	
	50 mM NaHCO ₃	
	50 mM Glukose	
	12 mM Na ₂ SO ₄	
	13 mM CaCl ₂	
	12 mM MgCl ₂	
	pH 5,5 einstellen	
Block-Puffer	3 % (w/v) Milch-Pulver	
	in 1x TBS-Puffer pH 7,6	
Blot-Puffer	20 % (v/v) Methanol	
	80 % (v/v) 1x SDS-Laufpuffer	
2x Bradford-Reagenz	70 mg Coomassie Brillant Blau G250	
	100 ml 85 % H ₃ PO ₄	
	50 ml Ethanol	
	mit ddH ₂ O auf 0,5 l auffüllen	
	filtrieren	

Coomassie-Entfärberlösung	10 % (v/v) Essigsäure	
	25 % (v/v) Methanol	
	mit ddH ₂ O auf 1 Liter auffüllen	
Coomassie-Färbelösung	1 % (w/v) Coomassie Brillant Blau G250	
	10 % (v/v) Essigsäure	
	25 % (v/v) Methanol	
	mit ddH ₂ O auf 1 Liter auffüllen	
Dissoziationslösung	25 mM HEPES pH 7.4	
	137 mM NaCl	
	5 mM KCl	
	7 mM Na ₂ HPO ₄	
6x DNA-Ladepuffer	0,05 % (w/v) Bromphenolblau	
	0,05 % (w/v) Xylenxyanolblau	
	30 % (v/v) Glycerol	
Fixativ	4% (w/v) para-Formaldehyd (PFA)	
	4% (w/v) Sucrose	
	in 120 mM Natriumphosphat-Puffer pH 7.4	
Glutamin	200 mM in 0,9 % NaCl	
Hochsalz-PBS-Puffer	20 mM Na ₃ PO ₄ pH 7,4	
	500 mM NaCl	
Homogenisationspuffer	4 mM HEPES pH 7.4	
	320 mM Sucrose	
Imidazol	1 M Imidazol in 1x PBS-Puffer pH 7,4	
IPTG	1 M IPTG in 1x PBS-Puffer pH 7,4	
1x K/Ca-BASIC-Lösung	50 ml 10x BASIC pH 7,4	
	500 μl von 1,2 M MgCl_2	
	1,3 ml von 0,5 M CaCl ₂	
	8,333 ml von 3 M KCl	
	mit ddH ₂ O auf 500 ml auffüllen	

1x Na/Ca-BASIC-Lösung	50 ml 10x BASIC pH 7,4
	500 μ l von 1,2 M MgCl ₂
	1,3 ml von 0,5 M CaCl ₂
	8,333 ml von 3 M NaCl
	mit ddH ₂ O auf 500 ml auffüllen
1x BASIC-Lösung NH4Cl	50 ml 10x BASIC pH 7.4
	$500 \text{ ul von } 1.2 \text{ M MgCl}_2$
	1,3 ml von 0,5 M CaCl ₂
	8,333 ml von 3 M NH₄Cl
	mit ddH ₂ O auf 500 ml auffüllen
1x BASIC-Lösung pH 5,5	50 ml 10x BASIC pH 5,5
	500 μl von 1,2 M MgCl ₂
	1,3 ml von 0,5 M CaCl ₂
	8,333 ml von 3 M NaCl
	mit ddH ₂ O auf 500 ml auffüllen
10x TBE-Puffer	108 g Tris
	55 g Borsäure
	7,4 g EDTA
10v TBS_Puffer	200 mM Tris
TOX TDS-T unce	1.4 M N_{2}
	pH 7,6 einstellen
5y TE Duffer	50 mM Tris pH 8.0
JX TE-T unci	5 mM FDTA
	pH 8,0 einstellen
10x PBS-Puffer	80 g NaCl
	2 g KCl
	14.4 g Na ₂ HPO ₄
	2,4 g KH ₂ PO ₄
	pH 7,4 einstellen
	mit ddH ₂ O auf 1 Liter auffüllen
4x Sammelgel-Puffer	0,5 M Tris/HCl pH 6.8
	0,4 % SDS

10x SDS-Laufpuffer	246 mM Tris
	1,92 M Glycerin
	10 % SDS
6x SDS-PAGE Ladepuffer	375 mM Tris
	60 % (v/v) Glycerin
	30 % (v/v) β-Mercaptoethanol
	18 % (w/v) SDS
	eine Spartelspitze Bromphenolblau
4x Trenngel-Puffer	1.5 M Tris/HCl pH 8.8
6	0.4 % SDS
PMSF	100 mM Phenylmethylsulfonylfluorid (PMSF) in Dimethylsulfoxid
	(DMSO)
10x Ponceau	3 % (w/v) Ponceau S
	30 % (w/v) Trichloressigsäure
5x Pulldown-Puffer	100 mM HEPES pH 7.4
	500 mM NaCl
	10 mM MgCl ₂
10x Zytosolischer Puffer	250 mM HEPES pH 7,2
	25 mM KCl
	25 mM Magnesiumacetat
	1,5 M Kaliumglutamat
2.2.3 Antibiotika	
Ampicillin	50 mg/ml in ddH ₂ O, steril filtriert
	Arbeitskonzentration 20 bis 60 µg/ml
Blasticidin S	10mg/ml in HEPES-Puffer, pH 7,5; steril filtriert
	Arbeitskonzentration 10 µg/ml
Chloramphenicol	34 mg/ml in 96 % Ethanol, steril filtriert
	Arbeitskonzentration 25 bis 70 µg/ml
Doxyzyklin	1 mg/ml in 1x PBS-Puffer, steril filtriert
	Arbeitskonzentration 1 bis 2 µg/ml
Gentamicin:	15 mg/ml in ddH_2O , steril filtriert
	Arbeitskonzentration 20 bis 60 µg/ml

HygroGold TM	100 mg/ml, in HEPES-Puffer, pH 7,5; steril filtriert
	Arbeitskonzentration 100 µg/ml
Kanamycin:	10 mg/ml in ddH ₂ O, steril filtriert
	Arbeitskonzentration 10 bis 50 µg/ml
Penicillin-Streptomycin	10 000 U/ml , 10 000 $\mu g/ml$ in 0,85 % NaCl, steril
	Arbeitskonzentration 100 U/ml, 100 µg/ml
Tetracyklin	5 mg/ml in 96 % Ethanol
	Arbeitskonzentration 10 bis 50 µg/ml

2.3 Molekularbiologische Methoden

2.3.1 Polymerase Kettenreaktion (PCR)

Spezifische DNA-Abschnitte wurden mittels Polymerase-Kettenreaktion (*polymerase chain reaction*, PCR) amplifiziert. Hierbei reichen schon geringe Mengen an Start-DNA aus, um eine ausreichende Menge des gewünschten DNA-Fragmentes zu erhalten. Die PCR wurde für fortlaufende Klonierungen von DNA-Fragmenten aus bereits existierenden Plasmiden, *in vitro*-Mutagenesen (*overlap extension PCR*) und für das Screenen von *Escherichia coli* Kolonien angewandt.

Ein Standard-PCR-Ansatz mit 50 μ l Volumen umfasst 100 ng bis 1 μ g Start-DNA, 10x Reaktionspuffer, 200 μ M eines jeden Desoxynukleosid-Triphosphates (dNTPs), 1 μ M von jedem Primer und eine Einheit (U) Vent- oder Phusion-Polymerase. Generell wurde dem PCR-Ansatz 4 % (v/v) DMSO hinzugefügt. Für die durchgeführten Kolonie-PCRs wurden 0,25 U Dream Taq-Polymerase pro 20 μ l Reaktionsansatz verwendet. Standard-Polymerase-Kettenreaktionen wurden im T3 Thermocycler (Biometra) durchgeführt und folgendes Standard-Programm wurde angewendet:

94 °C	5 min	initiale Denaturierung			
94 °C	30 sec	Denaturierung	_)	
55 °C	30 sec	Annealing		\geq	20 bis 30 Zyklen
72 °C	30 bis 90 sec	Elongation	_	J	
72 °C	5 min	finale Elongation			

Die Länge eines Syntheseschrittes (72 °C) ist abhängig von der Länge des PCR-Produktes. Hierbei gilt die Faustregel, dass die Synthesegeschwindigkeit einer DNA-Polymerase bei durchschnittlich 1 000 Nukleotiden pro Minute liegt.

2.3.2 Analytische und präparative Agarose-Gel-Elektrophorese

PCR-Produkte oder linearisierte Vektoren wurden ihrer Größe entsprechend durch Agarose-Gel-Elekrophorese aufgetrennt. Agarose-Gele wurden in Konzentrationen von 0,7 % bis 3 % Agarose (w/v) in 1x TBE-Puffer in Abhängigkeit von der Größe der aufzutrennenden DNA hergestellt. Vor Beladung des Agarose-Gels wurde die DNA mit einem entsprechenden Volumen von 6x Ladepuffer (siehe Abschnitt 2.2.2) versetzt. Als Laufpuffer für die Elektrophorese 1x TBE-Puffer verwendet und die Auftrennung der DNA-Fragmente erfolgte bei einer Spannung von 90 bis 100 V. Anschließend wurden die Agarose-Gele zur Visualisierung der DNA in einem Ethidiumbromid-Bad (1,5 ml einer 1 % igen Ethidiumbromid-Stammlösung auf 1 Liter 1x TBE-Puffer) inkubiert. Ethidiumbromid (EtBr) kann durch UV-Licht (254 bis 366 nm) angeregt werden und emittiert Licht im orange-roten Bereich (590 nm), wodurch die DNA im Agarose-Gel sichtbar wird.

2.3.3 Isolation und Aufreinigung von DNA-Fragmenten aus Agarose-Gelen

Nach Durchführung einer präparativen Gel-Elektrophorese wird das DNA-Fragment der gewünschten Größe aus dem Agarose-Gel herausgeschnitten und die DNA mit Hilfe des Nucleospin Plasmid Kits nach Herstellerangaben isoliert. Die DNA wurde mit 30 µl ddH₂O eluliert.

2.3.4 Analytischer und präparativer Restriktionsverdau

Für alle durchgeführten DNA-Restriktionen wurden Enzyme sowie die entsprechenden Puffer von NEB benutzt. Für einen präparativen Restriktionsverdau wurden in der Regel 5 μ g DNA, Plasmid-DNA oder PCR-Produkt verwendet. In analytischen Ansätzen variierte die eingesetzte DNA-Menge zwischen 0,5 und 1 μ g. Jeder Restriktionsverdau setzte sich aus einer entsprechenden Menge an 10x NEB-Puffer, BSA (10 mg/ml) sowie 10 bzw. 40 U Restriktionsenzym pro analytischen bzw. präparativen Ansatz zusammen. Die Restriktionsansätze wurden in Abhängigkeit der verwendeten Restriktionsenzyme für 5 min bis 4 h bei 37 °C inkubiert.

2.3.5 Dephosphorylierung des Vektors

Linearisierte Plasmid-DNA wurde vor ihrer Verwendung für Ligationen am 5'-Ende dephosphoryliert, um einer Selbstligation vorzubeugen. Pro 1 μ g Vektor-DNA wurden 0,5 U CIP eingesetzt und die Ansätze für 60 min bei 37 °C inkubiert. Im Anschluss an die Dephosphorylierung wurde die Vektor-DNA unter Verwendung des Nucleospin Plasmid Kits nach Herstellerangaben gereinigt.

2.3.6 Oligosubklonierung

DNA-Fragmente kleiner als 50 Basenpaare (bp) wurden über Oligosubklonierung in die linearisierten Vektoren eingefügt. Der Annealing-Ansatz bestand aus 5 µl 10x Annealing-Puffer (100 mM Tris pH

7,4; 1 M NaCl), 5 μ l eines jeden Oligonukleotids (Oligos) (100 pM Stammlösung) und 35 μ l ddH₂O und wurde für 5 min bei 95 °C inkubiert. Im Weiteren wurde die Temperatur in 5 °C-Schritten von 95 °C bis auf RT reduziert. Für die anschließende Phosphorylierung der Oligos wurde T4 Polynukleotid-Kinase (PNK) verwendet. Der Standard-Reaktionsansatz bestand aus 2 μ l Oligo-Duplex-Mixtur, 0,3 μ l einer 100 μ M ATP-Stammlösung, 10 U PNK, 2 μ l 10x PNK-Puffer sowie 14,7 μ l ddH₂O. Der Reaktionsansatz wurde für 30 min bei 37 °C inkubiert, gefolgt von 5 min bei 65 °C. Nach erfolgter Hitzeinaktivierung wurde dem Reaktionsansatz 180 μ l ddH₂O hinzugefügt. Für eine Ligation wurden jeweils 2 μ l der 1:10-Verdünnung sowie 50 bis 100 ng des linearisierten, dephosphorylierten Vektors verwendet.

2.3.7 Ligation

Zwei passende DNA-Enden wurden durch Ligation kovalent miteinander verknüpft. Voraussetzung für eine erfolgreiche Ligation ist, dass die zu verbindenden DNA-Bereiche zueinander passen und eine Dephosphorylierung des Vektors (siehe Abschnitt 2.3.5).

DNA-Fragment und Vektor wurden in einem 1:3-Verhältnis ligiert. Weiterhin wurden dem Ligationsansatz 1 U T4 DNA-Ligase und eine entsprechende Menge an 10x Ligationspuffer hinzugefügt. Durch die Zugabe von ddH_2O wurde ein finales Volumen von 15 µl erreicht. Die Inkubation der Ligationsansätze erfolgte über Nacht bei 8 °C oder für 2 bis 4 h bei RT. Zur Transformation Ca²⁺-kompetenter Zellen wurde jeweils der gesamte Ligationsansatz eingesetzt.

2.3.8 Kolonie-PCR-Screening

Kolonie-PCR-Screening wurde zur Überprüfung von Bakterienkolonien auf das richtige Insert angewendet. Zu diesem Zweck wurde ein wenig Zellmaterial einer Bakterienkolonie zu einem PCR-Ansatz gegeben (vergleiche Abschnitt 2.3.1). Im ersten Denaturierungsschritt der PCR (95 °C) wurden die Zellen aufgebrochen und die DNA freigesetzt. Im PCR-Ansatz befindet sich ein Primer-Paar, das an die flankierenden Vektorsequenzen des Inserts bindet. Mit einer wurde Material einzelner sterilen Pipettenspitze Bakterierenkolonien von einer Transformationsplatte entnommen und in Vertiefungen einer 96-Well-Platte, befüllt mit 80 µl LB-Medium und dem entsprechendem Antibiotikum gegeben. Die 96-Well-Platte wurde für 2 h bei 37 °C und 200 rpm inkubiert. Ein Kolonie-PCR-Standard-Ansatz bestand aus einer entsprechenden Menge 10x Reaktionspuffer, 75 µM je Nukleotid und 1 pM pro Primer und wurde mit ddH₂O auf ein entsprechendes Endvolumen aufgefüllt. Zu jedem Ansatz wurden 2 µl Bakteriensuspension hinzugefügt und die PCR nach dem unter Abschnitt 2.3.1 beschriebenen Standard-Programm durchgeführt. Die PCR-Produkte werden mittels Agarose-Gel-Elektrophorese analysiert (siehe Abschnitt 2.3.2) und anschließend gereinigt (vergleiche Abschnitt 2.3.3).

2.3.9 Escherichia coli Übernacht-Kultur

Um eine flüssige LB-Übernacht-Kulturen anzuimpfen, wurden einzelne Bakterienzellen von einer LB-Platte oder Zellmaterial einer *Escherichia coli* Glycerol-Stammkultur (siehe Abschnitt 2.3.10) entnommen. Die Inkubation der Flüssigkultur erfolgte über Nacht (ü.N.) bei 37 °C und 200 rpm. Wenn erforderlich, wurde dem LB-Medium ein oder mehrere Antibiotika zugesetzt.

2.3.10 Escherichia coli Glycerol-Stammkulturen

Zur Herstellung einer *Escherichia coli G*ylcerol-Stammkultur wurden 900 µl einer *Escherichia coli* Übernacht-Kultur (siehe Abschnitt 2.3.9) sowie 900 µl sterile Gycerol-Stammkultur Lösung (50 % Glycerol, 10 mM Tris pH 8,0; 50 mM MgCl₂) in einem Cryo-Gefäß vermischt und in flüssigem Stickstoff schockgefroren. Die Langzeit-Lagerung der Gylcerol-Kulturen erfolgt bei -80 °C.

2.3.11 Isolierung von Plasmid-DNA aus *Escherichia coli* Kulturen für Mini-Screens

Um ausreichende Mengen an Plasmid-DNA zu gewinnen, wurde eine 5 ml Escherichia coli Übernachtkultur angelegt (vergleiche Abschnitt 2.3.9). Die gesamte Übernacht-Kultur wurde anschließend in ein 15 ml Falcon-Gefäß überführt, für 5 min bei 5 000 x g und RT zentrifugiert und das Bakterienpellet in 100 µl 5x TE-Puffer pH 8,0 + P1-Puffer (enthält RNase) gelöst. Die Lyse der Escherichia coli Zellen wurde durch die Zugabe von 200 µl aus 0,2 M NaOH mit 1 % SDS erreicht. Durch mehrmaliges Invertieren des Reaktionsgefäßes wurde der Reaktionsansatz durchmischt und für 5 min bei RT inkubiert. Die Zelllyse wurde durch die Zugabe von 150 µl 3 M Kaliumacetat pH 4,8 gestoppt. Das Reaktionsgefäß wurde mehrmals invertiert und für 5 bis 10 min auf Eis inkubiert. Im nächsten Schritt erfolgte die Zentrifugation des Zelllysats (10 min, 20 000 x g, RT) und die Überführung des Überstands in ein neues 1,5 ml Eppendorfreaktionsgefäß. Die Präzipitation der DNA wurde durch die Zugabe von 800 µl -20 °C kaltes Isopropanol zum Überstand erreicht. Nach Beendigung der anschließenden Inkubationszeit für 5 bis 10 min auf Eis, wurde die DNA durch einen Zentrifugtionsschritt (20 min, 20 000 x g, 4 °C) pelletiert, anschließend mit 500 µl 70 % Ethanol gewaschen, gefolgt von einem ein weiteren Zentrifugationsschritt (10 min, 20 000 x g, 4 °C). Nach gründlicher Entfernung des Ethanols wurde das DNA-Pellet bei 50 °C getrocknet und in 30 µl sterilem ddH₂O aufgenommen. Für einen anschließenden analytischen Restriktionsverdau (vergleiche Abschnitt 2.3.4) wurden 3 µl der DNA-Lösung verwendet.

2.3.12 Mini- und Midi-Plasmid-DNA Präparation aus Escherichia coli Für die Minipräparationen von Plasmid-DNA wurden 10 ml *Escherichia coli* Übernacht-Kultur (vergleiche Abschnitt 2.3.9) benötigt und das Wizard *Plus* SV Minipreps DNA Purification System Kit nach den Angaben des Herstellers verwendet. Zur Aufreinigung größere DNA-Mengen (Midi-Präparationen) von höherer Qualität, wie z.B. für die Transfektion von tierischen Zellen benötigt wird, wurden Plasmid-DNA aus 100 bis 150 ml *Escherichia coli* Übernacht-Kultur mit dem NucleoBond Xtra Midi/Maxi Kit nach Herstellerangaben gereinigt. Für die Präparation von DNA, die auch für die Transfektion von primären Neuronenkulturen verwendet werden kann, wurde die Endotoxin-freie Variante des NucleoBond Xtra Midi/Maxi Kits verwendet (vergleiche Abschnitt 2.1.3).

2.3.13 Konzentrationsbestimmung von Nukleinsäuren

Die aromatischen Ringe der Nukleinbasen adsorbieren Licht von 260 nm. Die Absorption wurde photometrisch bei 260 nm bestimmt. Die DNA-Lösung wurde 1:100 in ddH_2O mit einem finalen Volumen von 100 µl verdünnt und in einem Eppendorf-Biophotometer vermessen. Die Berechnung der DNA-Konzentration erfolgte durch die folgende Gleichung (1):

Gleichung 1: $c = A_{260} x \text{ Verdünnungsfaktor } x 50 \text{ ng/}\mu 1 \text{ OD}_{260} = 50 \text{ ng/}\mu 1$

2.3.14 DNA-Sequenzierung

DNA-Sequenzierungen wurden durch MWG Biotech. durchgeführt. Für eine Sequenzierungsreaktion wurden 1,5 µg DNA benötigt, die vor dem Versand an MWG Biotech. bei 50 °C eingetrocknet wurden. Zur Sequenz-Analyse wurde das DNA STAR Software Packet sowie NCBI Blast Tools (http://www.ncbi.nlm.nih.gov/BLAST/) verwendet.

2.4 Mikrobielle Methoden

2.4.1 Kultivierung von Mikroorganismen

2.4.1.1 Escherichia coli

Escherichia coli Zellen wurden zur Amplifikation von Plasmid-DNA verwendet und zu diesem Zweck in LB-Medium (siehe Abschnitt 2.2.1) angezogen. Zur heterologen Genexpression sowie zur Proteinreinigung wurden die *Escherichia coli* Zellen in 2x YT-Medium (vergleiche Abschnitt 2.2.1) kultiviert. Das verwendete Medium wurde bei 121 °C für 15 min und 1 bar sterilisiert und, falls es notwendig war, wurden die folgenden Antibiotika in den angegebenen Endkonzentration dem Medium nach dem Autoklavieren hinzugefügt: 100 µg/ml Ampicillin, 50 µg/ml Kanamycin, 25 µg/ml Chloramphenicol. Generell wurden die *Escherichia coli* in Flüssig-Kulturen bei 37 °C und 200 bis 250 rpm oder auf Medium-Platten mit 1,4 % Agar kultiviert.

2.4.1.2 Präparation kompetenter Zellen und Transformation

2.4.1.2.1 Herstellung chemisch kompetenter Escherichia coli Zellen

Voraussetzung für eine erfolgreiche Transformation sind hochkompetente Zellen, die wie folgt präpariert wurden. 50 ml LB-Medium wurden mit *Escherichia coli* TOP10, BL21 oder ER2566 Zellen beimpft. Nach dem Erreichen einer optischen Dichte von $OD_{600} \sim 0,4$ wurden die Zellen für 10 min bei 5 000 x g (4 °C) pelletiert, in 10 ml 0,1 M CaCl₂ resuspendiert und anschließend für einen Zeitraum von 15 bis 30 min bis zu 3 h auf Eis inkubiert. Ein weiterer Zentrifugationsschritt folgte (10 min, 5 000 x g, 4 °C), die Bakterien wurden in 2 ml einer 0,1 M CaCl₂-Lösung aufgenommen und aliquotiert. Die Aliquots wurden entweder sofort für Transformationen verwendet (vergleiche Abschnitt 2.4.2.2), oder durch den Zusatz von sterilem Glycerol mit einer Endkonzentration von 10 % für eine Langzeit-Lagerung vorbereitet. Dazu wurden die Aliquots in flüssigem Stickstoff schockgefroren und anschließend bei -80 C gelagert.

2.4.1.2.1.1 Transformation chemisch kompetenter Escherichia coli Zellen

Eine Transformation beschreibt den passiven Transfer von DNA. Pro Transformationsansatz wurden 100 μ l CaCl₂-kompetenten *Escherichia coli* Zellen verwendet (vergleiche Abschnitt 2.4.2.1). Die bei -80 C gelagerten, Ca²⁺-kompetenten Zellen wurden für diesen Zweck auf Eis aufgetaut und anschließend mit einer Ligationsreaktion oder 10 bis 100 ng gereinigter Vektor-DNA vermengt. Nach einer 30-minütigen Inkubation auf Eis wurden die Zellen bei 42 °C für 1 min inkubiert, anschließend erneut für 5 bis 10 min auf Eis inkubiert. Nach der Inkubation wurde zu den Zellen 900 μ l flüssiges LB-Medium hinzugegeben, gefolgt von einer Inkubation für 45 bis 60 min bei 37 °C und 200 rpm. Anschließend wurden die Zellen durch Zentrifugation für 3 min bei 5 000 x g pelletiert, die Bakterien in ca. 50 μ l LB-Medium aufgenommen und anschließend auf einer selektiven LB-Platte ausgestrichen. Die Inkubation der selektiven LB-Platten erfolgte über Nacht bei 37 °C.

2.5 Protein-biochemische Methoden

2.5.1 Expression rekombinanter Proteine in Escherichia coli

Zur Expression von GST- oder His_{6} -Fusionsproteinen wurde eine Übernacht-Kultur mit dem entsprechenden *Escherichia coli* Expressionsstamm beimpft, am darauf folgenden Tag 1:20 in 2x YT-Flüssigmedium mit dem entsprechenden Antibiotikum verdünnt. Die Inkubation erfolgte bei 37 °C und 180 rpm. Wurde eine OD₆₀₀ von 0,6 bis 0,8 erreicht, so konnte die Expression der Fusionsproteine durch die Zugabe von IPTG mit einer finalen Konzentration von 500 µM IPTG induziert werden. Mit der Inkubation wurde für weitere 2 bis 4 h fortgefahren. Nach der Induktion der Expression der GST- PIPKIγ-p90-Konstrukte (Aminosäure 451-668) wurde die Temperatur von 37 °C auf 25°C reduziert und die Kulturen für 5 h bei 180 rpm inkubiert. Die Bakterien wurden anschließend sedimentiert (15 min, 6 800 x g, 4 °C) und bis zu ihrer Verwendung bei -20 °C gelagert.

2.5.2 Aufreinigung rekombinanter GST- und His₆-Fusionsproteine

2.5.2.1 Proteinreinigung im Batch-Verfahren

In der Regel wurde 1/4 Liter Bakterienkultur in 35 ml 1x PBS-Puffer gelöst sowie PMSF (Endkonzentration 1 mM), eine Spartelspitze Lysozym und 100 U Benzonase-Endonuklease hinzugegeben. Während der Reinigung von GST- und His₆-Fusionsproteinen wurde mit finalen NaCl-Konzentrationen von 0,2 bis 1 M gearbeitet.

Im nächsten Schritt wurde die Bakteriensuspension für 10 min bei 4 °C inkubiert und anschließend Detergenz, Triton X-100 oder CHAPS, hinzugefügt. Die finalen Konzentrationen der eingesetzten Detergenzien lagen zwischen 0,5 bis 1 %. Das Lysat wurde nach einer weiteren Inkubation (20 min, 4 °C) für 1 min sonifiziert (100 % power, 50 % duty cycle) und im Anschluss an eine 15-minütigen Zentrifugation (6 800 x g, 4 °C) wurde der klare Überstand mit der entsprechenden Affinitätsmatrix inkubiert. Im Batch-Verfahren wurden GST-bindende Sepharose (Novagen) und Nickel-Affinitätsmatrix (Sigma) verwendet, 400 µl der Matrix-Suspension wurden pro ¼ Liter Expressionskultur eingesetzt. Vor Zugabe des Bakterienlysats wurde die Matrix in 10 ml 1x PBS-Puffer mit 0,1 % Detergenz gewaschen. Die Bindung von His₆-Fusionsproteinen an Nickel-Affinitätsmatrix fand in der Anwesenheit von Imidazol mit einer Endkonzentration von 5 bis 10 mM statt. Die Bakterien-Lysate wurden zusammen mit der Affinitätsmatrix für 1 bis 2 h bei 4 °C inkubiert. Im Anschluss wurde die Affinitätsmatrix durch Zentrifugation (3 min, 1 000 x g, 4 °C) sedimentiert und drei bis vier Mal mit dem Puffer, der auch für die Bindung der Fusionsproteine an die Affinitätsmatrix verwendet wurde, gewaschen. Nach dem letzten Waschschritt wurde die Affinitätsmatrix in ein neues 1,5 ml Eppendorfreaktionsgefäß überführt. Ab diesem Schritt konnte das an der Matrix immobilisierte Protein direkt im Experiment verwendet werden (siehe Abschnitt 2.5.5, Abschnitt 2.5.7 und Abschnitt 2.5.8), oder es erfolgte eine Elution des Proteins von der Matrix.

Wurde das immobilisierte Protein direkt verwendet, so wurde der Überstand bis auf ein Mal das Volumen der Affinitätsmatrix entfernt. Die Konzentration der Fusionsproteine wurde mittels Bradford-Assay (siehe Abschnitt 2.5.3) ermittelt. Im Fall von GST-C- μ 2 wurde die Proteinkonzentration mit Hilfe von SDS-PAGE (vergleiche Abschnitt 2.5.10) bestimmt. Zur Elution der an die Affinitätsmatrix gebundenen Proteine wurde die Matrix im doppelten Volumen in GST (20 mM Tris pH 8,0; 100 mM NaCl oder 1x PBS-Puffer; 20 mM reduziertes Glutathion)- oder His₆ (300 bis 500 mM NaCl, 300 bis 400 mM Imidazol, 25 % Glycerin in 1x PBS-Puffer)-Elutionspuffer aufgenommen. Die Elution der Fusionsproteine erfolgte für 30 min bei 4 °C. Anschließend wurde die Matrix bei 1 000 x g und 4 °C für 3 min sedimentiert, der Überstand abgenommen und die

Affinitätsmatrix erneut im zweifachen Volumen resuspendiert. Beide Elutionsfraktionen wurden vereint und die Proteinkonzentration bestimmt. Im nächsten Schritt wurde das Eluat zentrifugiert (20 000 x g, 4 °C, 5 min), um die noch in der Proteinlösung verbliebene Matrix zu pelletieren. Zur Entfernung von Imidazol und Glutathion, die Veränderung der Salzkonzentration oder des verwendeten Puffers wurde durch eine Dialyse der Protein-Lösung erreicht. Die Dialyse erfolgte über Nacht gegen 3x 1 Liter des gewünschten Puffers. Im Anschluss an die Dialyse fand ein Ultrazentrifugationsschritt (15 min, 184 000 x g, 4 °C) statt, um präzipitiertes Protein aus dem Überstand zu entfernen. Die Proteinkonzentration wurde erneut bestimmt. Zur Lagerung der Fusionsproteine wurde der Proteinlösung Glycerol mit einer Endkonzentration von 20 bis 50 % beigefügt. Die Proteinlösung wurde anschließend aliquotiert und im flüssigen Stickstoff schockgefroren. Die Aliquots konnten nun bei -80 °C gelagert werden.

2.5.2.2 Affinitätschromatographie (Fast protein liquid chromatography, FPLC)

Für die Reinigung größerer Mengen an rekombinanten Proteinen wurde das Äkta Liquid Chromatography System (Amersham Biosciences) benutzt. Alle Reinigungsschritte wurden bei 4 °C durchgeführt und kommerziell erhältliche Säulen (HisTrap, GSTrap,) nach Angaben des Herstellers verwendet.

2.5.2.3 Ausschlusschromatographie (Gelfiltration)

Im Anschluss an die Affinitätschromatographie (FPLC) wurden die rekombinanten Proteine einem weiteren Reinigungsschritt durch Größenausschlusschromatographie unterzogen, um Verunreinigungen zu entfernen und/oder einen Pufferwechsel durchzuführen. Es wurde eine Superdex 200 Säule (Amersham Bioscience) nach Angaben des Herstellers verwendet.

2.5.3 Bradford-Assay zur Proteinbestimmung

Die Konzentrationsbestimmung einer Proteinlösung kann nach Bradford (1976) erfolgen. In diesem Assay wird Coomassie Brillant Blau G250 als Farbstoff verwendet, dessen Absorptionsmaximum sich in der Gegenwart von Proteinen von 465 nm zu 565 nm verschiebt. Zur Bestimmung der Proteinkonzentration wurde ein Teil der Proteinlösung 1:10 verdünnt und 10 µl der Verdünnung zu 990 µl einer 1x Bradford-Lösung hinzugegeben. Es wurde immer eine Doppelbestimmung der Proben durchgeführt. Vor der Messung wurden die Proben gut durchmischt und für 10 min bei RT inkubiert. Zunächst wurde die Absorption der 1x Bradford-Lösung als Leerwert bestimmt und dann die Proben vermessen. Aus den Absoptionswerten konnte mit Hilfe einer BSA-Standardkurve die Proteinkonzentration der Proben berechnet werden.

2.5.4 Photometrische Proteinbestimmung

Die Konzentration von reinen und hoch konzentrierten Proteinlösungen wurde durch die Messung der Absorption bei einer Wellenlänge von 280 nm (A_{280}) quantifiziert. Bei dieser Wellenlänge absorbieren die aromatischen Aminosäuren Tryptophan und Tryrosin, in geringerem Maß auch Phenylalanin. Zur Bestimmung der Proteinkonzentration wurde ein Teil der Proteinlösung 1:50 bis 1:100 in einem Volumen von 100 µl verdünnt und in einer Küvette mit 1 cm Schichtdicke bei 280 nm vermessen. Die Konzentration einer Proteinlösung wurde mit Hilfe des Lambert-Beer'schen Gesetzes bestimmt. Das Lambert-Beer'sche Gesetz (Gleichung 2) beschreibt den Zusammenhang zwischen der Absorption von Licht und der Konzentration eines absorbierenden Inhaltsstoffes.

Gleichung 2: $A = \varepsilon x d x c$

A = Absorption; ϵ = molarer, dekadischer Extinktionskoeffizient; d = Pfadlänge in cm; c = Konzentration der absorbierenden Substanz

2.5.5 Quervernetzung von GST-Fusionsproteinen an GST-bindende Sepharose

Als Vorbereitung auf die Affinitätsreinigung polyklonaler Antikörper aus Kaninchen-Antiseren (vergleiche Abschnitt 2.5.12) wurden GST-Fusionsproteine nach vorheriger Reinigung (vergleiche Abschnitt 2.5.2.1) kovalent an GST-bindende Sepharose gebunden. Als Crosslinker wurde Disuccinimidylsuberat (DSS) von Pierce verwendet. DSS reagiert mit primären Aminen von Aminosäuren (freie α -Aminogruppe am N-Terminus von Proteinen oder ϵ -Aminogruppen der Lysinreste) unter Bildung einer Amidbindung und Abspaltung von N-Hydroxysuccinimid.

Für eine Crosslinker-Reaktion wurden 2 mg Fusionsprotein, gebunden an 800 µl 50 % GST-bindende Sepharose, mit 2 mM DSS (Stammlösung: 200 mM DSS in DMSO) versetzt und für 2 h bei 4 °C inkubiert. Durch die Zugabe von Tris pH 7,4 (Endkonzentration 50 mM) wurde ungebundenes DSS während einer 20-minütigen Inkubation bei RT gebunden. Nach fünf Waschschritten mit Resuspensionsuffer (50 mM Tris pH 7,4; 150 mM NaCl, 50 mM reduziertes Glutathion) folgte ein weiterer ohne Glutathion. Anschließend wurden die Affinitätsmatrix in eine 5 ml Einweg-Polyethylen-Säule (Pierce) überführt und bei 4 °C bis zur Verwendung in Waschpuffer ohne Glutathion mit 0,02 % Na-Azid gelagert.

2.5.6 Präparation von Proteinextrakten aus Rattenhirn

Alle Schritte während der Präparation von Proteinextrakten aus Rattenhirn wurden bei 4 °C durchgeführt.

2.5.6.1 Präparation von Rattenhirnextrakt

In der Regel wurde Rattenhirnextrakt aus 1 bis 4 Rattenhirnen hergestellt. Die Organe wurden in 10 ml kalten Homogenisationspuffer (siehe Abschnitt 2.2.2) mit PMSF (Endkonzentration 1 mM) sowie *mammalian protease inhibitor cocktail* (3 µl/ml, Sigma) aufgenommen und mittels eines Glas-Teflon-Homogensators durch 10 bis 12 Stöße bei 900 rpm homogenisiert. Im nächsten Schritt wurde das Homogenat für 10 min bei 1 000 x g zentrifugiert, um nicht homogenisiertes Material, große Zellbruchstücke, Myelin sowie Nucleoli zu entfernen. Durch Zusatz von 5x Pulldown-Puffer (siehe Abschnitt 2.2.2) wurde der Überstand auf 20 mM HEPES pH 7,4; 100 mM NaCl, 2 mM MgCl₂ und 1 % Triton X-100 eingestellt. Zur Solubilisierung der Membranproteine wurde das Detergenz Triton X-100 hinzugesetzt. Der Extrakt wurde für 10 min auf Eis inkubiert und anschließend für 15 min bei 43 500 x g zentrifugiert. Der Überstand wurde abermals zentrifugiert (15 min, 184 000 x g). Während der letzten beiden Zentrifugationsschritte wurden die nicht löslichen Membranbestandteile und Zellbruchstücke entfernt, alle übrigen solubilisierten Bestandteile befinden sich im Überstand. Nach Beendigung des letzten Zentrifugationsschrittes wurde die Proteinkonzentration des Überstandes durch den Bradford-Assay bestimmt und für nachfolgende Experimente verwendet.

2.5.6.2 Präparation von Rattenhirnsynaptosomenextrakt

Wie auch schon bei der Präparation von Proteinextrakten aus Rattenhirn wurden alle Präparationsschritte bei 4 °C durchgeführt. Zur Präparation von Rattenhirnsynaptosomextrakt wurden Rattenhirne in Homogenisationspuffer (siehe Abschnitt 2.2.2) mit Zusatz von PMSF (Endkonzentration 1 mM) und mammalian protease inhibitor cocktail (3 µl/ml) aufgenommen (vergleiche Abschnitt 2.5.6.1) und homogenisiert. Der nachfolgende Zentrifugationsschritt für 10 min bei 1 000 x g diente der Entfernung von nicht homogenisiertem Material, großen Zelltrümmern, Myelin und Nucleoli aus dem Homogenat. Der Überstand wurde abermals zentrifugiert (20 min, 14 600 x g). Die sedimentierten Synaptosomen wurden in 10 ml Homogenisationspuffer mit PMSF (Endkonzentration 2 mM) und mammalian protease inhibitor Cocktail (3 µl/ml) vorsichtig resuspendiert und ein weiteres Mal bei 14 600 x g (20 min) zentrifugiert. Anschließend wurden die gewaschenen Synaptosomen in 5 ml Homogenisationspuffer mit zugesetztem PMSF (Endkonzentration 1 mM) und mammalian protease inhibitor cocktail (3 µl/ml) resuspendiert und durch die Verwendung von 5x Pulldown-Puffer auf eine finale Konzentration von 20 mM HEPES pH 7,4; 100 mM NaCl, 2 mM MgCl₂ eingestellt. Die Detergenzien Triton X-100 und CHAPS wurden mit finalen Konzentrationen von 0,5 bis 1 % eingesetzt und dienten zur Solubilisierung der Synaptosomen (20 bis 40 min Inkubationszeit, bei 4 °C). Anschließend wurden alle nicht löslichen Bestandteile aus dem Synaptosomenextrakt durch zweimaliges Zentrifugieren, zuerst bei 5 000 x g. (15 min) und im zweiten Schritt bei 184 000 x g (15 min), entfernt. Der Proteingehalt des Synaptosomextraktes wurde durch den Bradford-Assay quantifiziert und für nachfolgende Experimente verwendet.

2.5.7 Affinitätsreinigung aus Extrakten von Rattenhirnen (Pulldown)

Rattenhirnextrakt und Synaptosomenextrakt aus Rattenhirnen wurden wie unter Abschnitt 2.5.6 beschrieben, präpariert und einer bestimmten Menge von GST-Fusionsprotein, immobilisiert durch GST-bindende Sepharose, hinzugefügt.

Für GST-Pulldowns wurden 1 bis 3 mg Rattenhirnextrakt sowie 0,5 bis 2 mg Rattenhirnsynaptosomextrakt eingesetzt. Die Menge an verwendeten GST und GST-Fusionsproteine lag zwischen 20 μ g bis 150 μ g. Der Pulldown-Ansatz wurde für 1 bis 1,5 h bei 4 °C inkubiert und anschließend für 3 min bei 1 000 x g und 4 °C zentrifugiert. Im Folgenden wurde die Matrix drei Mal mit Pulldown-Puffer mit Detergenz sowie ein weiteres Mal ohne Detergenz gewaschen. Nach dem letzen Waschschritt wurde der Überstand vorsichtig mit einer Hamilton-Pipette entfernt, die Affinitätsmatrix in 40 bis 100 μ l 1x SDS-Ladepuffer aufgenommen und für 5 min bei 95 °C erhitzt. Die Eluate wurde in einer SDS-PAGE aufgetrennt und mittels Western-Blot analysiert.

2.5.8 In vitro-Bindungsexperimente

Die direkte Interaktion von Proteinen wurde *in vitro* durch chromatographische Affinitätsreinigung untersucht. Hierbei wurde ausschließlich rekombinantes Protein eingesetzt. 7 μ g bis 50 μ g GST-Fusionsprotein, gebunden an GST-bindende Sepharose wurde mit 7 μ g bis 20 μ g His₆-Fusionsprotein in Pulldown-Puffer (20 mM Tris pH 7,4; 100 bis 150 mM NaCl, 5 mM Imidazol, 2 mM MgCl₂) mit 0,05 bis 1 % Trixon X-100, CHAPS und Tween20 inkubiert. Inkubation, Waschen, Elution sowie die anschließende Analyse der durchgeführten Bindungsexperimente erfolgte wie unter Abschnitt 2.5.7 beschrieben.

2.5.9 Immunpräzipitation

Zur Isolation nativer Proteinkomplexe aus Proteinextrakten transfizierter Zellen (HeLa, Cos7 oder Hek293) und aus Rattenhirnextrakt wurden Koimmunpräzipitationsexperimente durchgeführt. Pro Ansatz wurden 30 μ l Protein A/G Plus Agarose Matrix (Santa Cruz Biotechnology) zwei Mal mit je 1 ml 1x PBS-Puffer gewaschen. Die Protein A/G Plus Agarose Matrix wurden durch Zentrifugation (3 min, 1 000 x g, 4 °C) sedimentiert und anschließend mit 5 bis 10 μ g Antikörper pro Koimmunpräzipitationsreaktion in einem Volumen von 1 ml 1x PBS-Puffer versetzt. Die Bindung der Antikörper erfolgte entweder für eine Stunde bei RT oder über Nacht bei 4 °C.

Nach Abschluss der Reaktion wurden die Matrix zwei Mal mit IP-Puffer (20 mM HEPES pH 7,4; 100 mM NaCl, 2 mM MgCl₂) ohne Detergenz und ein weiteres Mal mit 1 % Triton X-100-haltigen IP-Puffer gewaschen. Proteinextrakte von Kultur-Zellen wurden mit 1 % Triton X-100-haltigen IP-Puffer hergestellt, die Präparation von Rattenhirnextrakt erfolgte wie unter Abschnitt 2.5.6 beschrieben. Im Regelfall wurden 500 μ g bis 1 mg Zellextrakt bzw. 1 bis zu 17 mg Rattenhirnextrakt mit der Affinitätsmatrix in einem finalen Volumen von 1 ml bei 4 °C für eine Dauer von 1 bis 6 h inkubiert. Durch 3-minütige Zentrifugation bei 1 000 x g und 4 °C wurde die Protein A/G Plus Agarose Matrix

sedimentiert und anschließend drei Mal mit Detergenz-haltigen Puffer gewaschen. Anschließend folgten zwei weitere Waschschritte mit Puffer ohne Detergenz. Nach dem letzen Waschschritt wurde der Überstand vorsichtig mit einer Hamilton-Pipette entfernt und die Matrix mit 40 µl 1x SDS-Ladepuffer versetzt. Die Proben wurden anschließend für 5 min bei 95 °C erhitzt, durch SDS-PAGE aufgetrennt und mittels Western-Blot analysiert.

2.5.10 SDS-Polyacrylamid-Gel-Elektrophorese (SDS-PAGE)

Polyacrylamid-Gele wurden in Konzentrationen von 7 bis 14 % Acrylamid im Trenngel und 3 % im Sammelgel unter Verwendung entsprechender Puffer (vergleiche Abschnitt 2.2.2) hergestellt. Proteinproben wurden in 1x SDS-Ladepuffer eluiert, für 5 min bei 95 °C denaturiert und anschließend auf ein SDS-PAGE-Gel aufgetragen. Die Elektrophorese wurde in 1x SDS-PAGE-Puffer als Laufpuffer und 20 bis 25 mA pro Gel durchgeführt. Nach Beendigung der Gel-Elektrophorese wurde das Gel entweder für Immunblotting (siehe Abschnitt 2.5.11) verwendet oder die aufgetrennten Proteinbanden durch Färbung mit Commassie Brilliant Blau G250 (vergleiche Abschnitt 2.2.2) sichtbar gemacht. Die Entfernung unspezifischer Färbungen erfolgte durch Verwendung von Entfärberlösung.

2.5.11 Immunblotting

Durch SDS-PAGE aufgetrennte Proteine konnten durch das semi-dry Blotting-Verfahren auf Nitrozellulose-Membranen übertragen werden. Ein Blot wurde wie folgt ausgebaut: drei Lagen Whatman Papier, mit Blot-Puffer 1x SDS-Laufpuffer befeuchtet, wurden unter einer Nitrozellulose-Membran platziert. Auf die Membran wurde das SDS-PAGE Gel gelegt, gefolgt von drei weiteren Lagen feuchtes Whatman Papier. Für den Transfer der Proteine aus dem SDS-PAGE Gel auf die Nitrozellulose-Membran wurde mit 1 mA/cm² (45 mA pro Gel) gearbeitet. Nach Abschluss des semidry-Blotting wurden die Membran 5 bis 10 min mit einer Ponceau S Lösung bei RT inkubiert. Unspezifische Ponceau S Färbungen der Membran wurde durch Waschen mit 1 % Essigsäure entfernt, die gefärbten Proteinbanden durch Scannen dokumentiert und die Membran für 1 h in Block-Puffer bei RT inkubiert. Anschließend wurde die Membran zwei Mal in 1x TBS-Puffer gewaschen und mit dem ersten Antikörper entweder für 2 h bei RT oder über Nacht bei 4 °C inkubiert. Die Antikörper-Lösung (primärer Antikörper verdünnt in Antikörper-Lösung) wurde von der Membran entfernt und für weitere Anwendungen bei 4 °C gelagert. Im nächsten Schritt wurde die Membran drei Mal mit Block-Puffer für 5 min bei RT gewaschen und anschließend mit dem sekundären Antikörper, frisch verdünnt in Block-Puffer für 1 h bei RT inkubiert. Als sekundäre Antikörper wurden Meerrettichperoxidase bzw. alkalische Phosphase gekoppelte Ziege anti-Maus oder Ziege anti-Kaninchen Antikörper, in Abhängigkeit vom primären Antikörper, verwendet und 1:5 000 bis 1:20 000 (HRP) bzw. 1:1 000 (AP) in Block-Puffer verdünnt. Anschließend wurde die Membran zwei Mal mit Block-Puffer sowie ein drittes Mal mit 1x TBS-Puffer gewaschen. Zur Visualisierung des

sekundären Antikörpers wurde die Membran mit dem entsprechenden Enzymsubstrat inkubiert. Für sekundäre HRP-gekoppelte Antikörper wurde ECL Detektionsreagenz (Amersham Biosciences) auf die Membran aufgebracht. Durch die enzymatische Reaktion entstehende Chemilumineszenz durch das Auflegen eines Chemilumineszenz-Films (Hyperfilm ECL, Amersham Biosciences) detektiert und das Signal durch die Inkubation des Films in Entwickler- und Fixierungslösungen sichtbar gemacht. Für sekundäre AP-gekoppelte Antikörper wurde die Nitrozellulose-Membran in TSM-Puffer (100 mM Tris pH 9,5; 100 mM NaCl, 5 mM MgCl₂) gewaschen und bis zur Visualisierung von Farbbanden in AP-Entwickler-Lösung (84 µl BCIP-Lösung (20 mg/ml), 61 µl NBT-Lösung (50 mg/ml in 70 % Dimethylformamid (DMF)) in 10 ml TSM-Puffer) inkubiert. Die Reaktion wurde durch das Waschen der Membran mit ddH₂O gestoppt.

2.5.12 Affinitätsreinigung polyklonaler Antikörper aus Kaninchenserum

Polyklonale Antikörper wurden mit einer Antigen-Säule zur Verringerung unspezifischer Kreuzreaktionen affinitätsgereinigt. Zu diesem Zweck wurde GST-PIPKIy-p90 (Aminosäure 451-668) aus 1/2 Liter Bakterienkultur gereinigt (siehe Abschnitt 2.5.2.1), an GST-bindende Sepharose unter Verwendung von DSS (vergleiche Abschnitt 2.5.5) gebunden und in eine 5 ml Einweg-Polyethylen-Säule (Pierce) überführt. Die Matrix wurde zwei Mal mit 5 ml Waschpuffer A (50 mM Tris pH 7.4; 150 mM NaCl) gewaschen und das Serum bei 184 000 x g (15 min, 4 °C) zentrifugiert, bevor es in die Säule transferiert wurde. Die Inkubation erfolgte für zwei Stunden bei 4 °C. Vor der Elution der Antikörper wurde die Matrix drei Mal mit 5 ml Waschpuffer B (50 mM Tris pH 7,4; 500 mM NaCl) gewaschen. Die gebundenen Antikörper wurden zunächst sauer eluiert. Dazu wurden 5 ml Glycin-Puffer (100 mM Glycin pH 2,5) zu der Matrix gegeben und 1 ml Fraktionen in 1,5 ml Eppendorfreaktionsgefäßen aufgefangen, in denen 90 µl 1 M Tris pH 7,4 vorgelegt waren. Anschließend wurde die Matrix mit 10 ml 15 mM Tris pH 8,8 gewaschen. Darauf folgend wurden Antikörper von der Matrix basisch in einem Volumen von 5 ml eluiert. Zur Elution wurde Na₂CO₃-Puffer (100 mM Na₂CO₃ pH 11,5) verwendet und die einzelnen Fraktionen in 1,5 ml Eppendorfreaktionsgefäßen aufgefangen, in denen sich je 100 µl 1M HCl sowie 100 µl 10x PBS-Puffer befanden. Nach erfolgter Elution wurde die Säule mit 15 ml 1x PBS-Puffer gewaschen und die Matrix in 1 bis 2 ml 1x PBS-Puffer bei 4 °C bis zur nächsten Verwendung gelagert. Die Konzentration der Antikörperfraktionen wurde bei 280 nm vermessen ($A_{280}/1,4 =$ Proteinkonzentration mg/ml), die Proben aller Fraktionen auf ein SDS-PAGE Gel aufgetragen und durch Coomassie-Färbung analysiert. Elutionsfraktionen mit hohem Antikörpergehalt und minimalen Verunreinigungen wurden vereint und über Nacht bei 4 °C gegen 3 Liter 1x PBS-Puffer dialysiert. Anschließend wurde die Antikörper-Lösung zentrifugiert (15 min, 184 000 x g, 4 °C), konzentriert und die Proteinkonzentration erneut bei 280 nm bestimmt.
2.5.13 Herstellung eines Gesamtzellextraktes tierischer Zellen aus der Zellkultur

Für die Präparation eines Gesamtzellextrakts aus *in vitro*-Zellkulturen wurde das Medium entfernt und die Zellen 1 Mal mit 1x PBS-Puffer gewaschen. Anschließend wurden die Zellen aus der Kulturschale mit Hilfe eines Zellkratzers gelöst und sedimentiert (4 min, 200 x g, RT). Das Zellpellet wurde in 2 ml 1x PBS-Puffer gelöst, gefolgt von einem weiteren Zentrifugationsschritt (4 min, 200 x g, RT) und der Aufnahme der sedimentierten Zellen in 1 ml IP-Puffer, dem PMSF ((Endkonzentration 1 mM) und *mammalian protease inhibitor cocktail* (3 μl/ml) zugesetzt waren. Die Zellsuspension wurde mit 10 Stößen durch einen Cell-Cracker (Kugeldurchmessers 8,002 cm) aufgeschlossen. Das Homogenat wurde zunächst für 15 min bei 20 000 x g (4 °C) zentrifugiert, im zweiten Zentrifugationsschritt bei 184 000 x g (15 min, 4 °C). Anschließend wurde der Überstand mit 0,2 % Triton X-100 ergänzt und der Proteingehalt des Gesamtzellextraktes durch den Bradford-Assay bestimmt.

2.5.14 Zellfraktionierung tierischer Zellen aus der Zellkultur

Für die Fraktionierung wurden Zellextrakte zunächst wie unter Abschnitt 2.5.13 beschrieben, vorgegangen. Nach Lyse der Zellen mit einem Cell-Cracker wurde das Homogenat bei 1 000 x g zentrifugiert (10 min, 4 °C). Nach einer erneuten Zentrifugation (15 min, 184 000 x g ,4 °C) wurde der Überstand mit 1 % Triton X-100 versetzt, gefolgt von einer 15-minütigen Inkubation auf Eis. In der Zwischenzeit wurde das Membranpellet in 1 ml IP-Puffer mit 1 % Triton X-100 aufgenommen, 15 min auf Eis inkubiert und zehn Mal durch eine 27G Kanüle zur vollständigen Resuspension des Pellets gezogen. Anschließend wurde die beiden Zellfraktionen, die Membran- und die zytosolische Fraktion bei 200 000 x g (15 min, 4 °C) zentrifugiert und jeweils in ein neues Eppendorfreaktionsgefäß überführt. Vor der Verwendung der Zellfraktionen in nachfolgenden Experimenten wurde der Proteingehalt durch den Bradford-Assay bestimmt.

2.5.15 PIPKI-Aktivierungsassay

Die Aktivität der PIPKI γ -p90 kann *in vitro* untersucht werden. Hierzu wird das Produkt der PIPK Typ I, PI(4,5)P₂ radioaktiv durch die Verwendung von [γ]-³²P-ATP als Substrat markiert und anschließend über Dünnschichtchromatographie von anderen Lipiden separiert. Das radioaktiv markierte Lipid kann anschließend audioradiographisch erfasst und quantifiziert werden. Vor der *in vitro*-Untersuchung der Kinaseaktivität steht die Affinitätsreinigung der PIPKI γ . Als Affinitätsmatrix wurde an GST-bindende Sepharose gebundenes C-µ2, ein bekannter Interaktionspartner der PIPKI (Krauss *et al.*, 2006), verwendet. GST-C-µ2 wurde wie unter Abschnitt 2.5.2.1 beschrieben aus 1/4 Liter Bakterienkultur gereinigt. Für die Affinitätsreinigung wurden insgesamt 50 µg GST-Fusionsprotein und 250 µg Hek293 Zellgesamtextrakt eingesetzt. Der Zellextrakt wurde aus Hek293Flp-In-Zellen, die stabil für HA-PIPKI γ -p87 transfiziert waren, hergestellt (siehe Abschnitt 2.5.13). Es wurde der gleiche Puffer

wie unter Abschnitt 2.5.9 beschrieben, verwendet, jedoch wurde KCl anstatt NaCl verwendet. Die Expression von PIPKIγ-p87 steht unter Kontrolle eines Tet-Repressors und wird durch den Zusatz von Doxyzyklin mit einer Endkonzentration von 1 µM induziert. Die Zellen wurden in einer 15 cm Kulturschale bis zur Konfluenz kultiviert und die Expression von HA-PIPKIγ-p87 für ca. 15 h erlaubt. Die Bindung von HA-PIPKIγ-p87 durch GST-C-µ2 fand für 1 h bei 4 °C statt, die Matrix anschließend vier Mal mit Pulldown-Puffer (20 mM Tris pH 7,4; 100 mM KCl, 2 mM MgCl₂) ohne Detergenz gewaschen. Nach dem letzen Waschschritt wurde die Matrix in 1 ml Pulldown-Puffer mit 1 % Triton X-100 aufgenommen.

Um den Einfluss von YxxΦ-Sortiermotiven auf die Aktivität der Typ I PIPKIγ zu untersuchen, wurde 1/5 der Pulldown-Reaktion zusammen mit 100 µM Peptid für 30 min auf Eis inkubiert. Das Substrat der Kinase, PI(4)P (10 µg pro Ansatz) wurde in Methanol/Chloroform/1 M Salzsäure (1:2:0,1) aufgenommen und vollständig eingetrocknet. Der Lipidfilm wurde anschließend in Kinase-Puffer (1x zytosolischer Puffer mit zusätzlich 10 µM CaCl₂ und 0,2 % Triton X-100; 50 µl pro Ansatz) rehydratisiert. Die Lipidlösung wurde sonifiziert (0,5 min; 50 % duty cycle, 60 % power) und anschließend für 30 min bei RT inkubiert. Anschließend wurde dem Substratgemisch 200 µM ATP sowie γ^{-32} P-ATP (10 µCi pro Ansatz) hinzugefügt. Pro Reaktionsansatz wurden 50 µl Substratgemisch eingesetzt, die Reaktion fand für 15 min bei 37 °C statt. Die Reaktion wurde durch den Transfer der Proben auf Eis gestoppt und den Proben jeweils 500 µl Methanol/Wasser/konz. Salzsäure (20:20:1) zugesetzt. Die Proben wurden für 2 min kräftig durchmischt, 10 min bei RT inkubiert und anschließend mit 550 µl Chloroform versetzt. Beide Phasen wurden 30 sec durch kräftiges Schütteln gemischt und zentrifugiert (5 min, 1 200 x g, RT). Anschließend wurden die wässrige und die organische Phase jeweils in neue Eppendorfreaktionsgefäße überführt und die wässrige Phase ein weiteres Mal mit 500 µl Chloroform versetzt, 1 min gut gemischt und zentrifugiert (5 min, 1 200 x g, RT). Die wässrige Phase wurde anschließend verworfen, die beiden organischen Phasen vereinigt und auf zwei Eppendorfreaktionsgefäße aufgeteilt. Die organische Phase wurde erneut mit 500 µl Methanol/Wasser/konz. Salzsäure (20:20:1) versetzt und für 1 min kräftig gemischt. Im Anschluss an den nachfolgenden Zentrifugationsschritt (5 min, 1 200 x g, RT) wurde die wässrige Phase verworfen und die organische Phase vollständig evaporiert, so dass eine Lagerung der Proben bei -20 °C bis zu ihrer Verwendung möglich war.

Die Auftrennung der Proben erfolgte mittels eindimensionaler Dünnschichtchromatographie. Als feste Phase wurden HPTLC Silica Gel 60 F_{254} Platten (20 x 10 cm, Merck) verwendet. Vor der Chromatographie wurden die Platten für 30 min bei RT in einer 1 %igen Kaliumoxalat-Lösung (1 % (w/v) Kaliumoxalat, 40 % (v/v) Methanol; 60 % (v/v) ddH₂O, 2 mM EDTA H 8,0) inkubiert und über Nacht bei RT getrocknet. Vor dem Probenauftrag wurden die Platten für 1,5 bis 2 h bei 110 °C getrocknet. Die Proben wurden in 15 µl Chloroform aufgenommen und vorsichtig auf die feste Phase aufgetragen. Als Laufmittel wurde Chloroform/Aceton/Methanol/Eisessig/Wasser (64:30:24:30:13) verwendet und die Chromatographie nach 4 h gestoppt. Die Silica-Platten wurden anschließend für ca. 1 h bei RT getrocknet, in Folie eingeschlagen und auf Multisensitive Cyclone Storage Phosphor Screens (Packard Biosciences) positioniert. Der multisensitive Cyclone Storage Phosphor Screen wurde zuvor für ca. 10 min auf einem Leuchttisch regeneriert. Die Exposition erfolgt für mind. 48 h unter vollständigem Lichtabschluss und -80 °C. Die Detektion und die Quantifizierung des Signals auf den Cyclone Storage Phosphor Screens erfolgte mit dem Cyclone Autoradiography System (Packard Biosciences).

2.6 Biophysikalische Methoden

2.6.1 Isothermale Titrationskalorimetrie

Die Methode der isothermalen Titrationskalorimetrie (ITC) wurde angewendet, um die Bindungsaffinitäten unterschiedlicher von PIPKI γ -p90 abgeleiteter Peptide an die AP-2-Domänen Cµ2 und β2-Ohr zu bestimmen. ITC ist ein klassisches Verfahren, um biologische Reaktionen quantitativ zu untersuchen und thermodynamisch zu beschreiben. Bei einer Komplexbildung zwischen zwei Biomolekülen geben die thermodynamischen Daten wie Dissoziationskonstante (K_D), freie Energie (ΔG), Enthalpie (ΔH) und die Entropie (ΔS) Informationen über die Stabilität und Stöchiometrie des Komplexes. Die Messungen wurden mit einer VP-ITC (MicroCal, Northampton, USA) durchgeführt. Das Kaloriemeter besteht aus einer Referenz- und einer Messzelle.

In der Messzelle wird die Probenlösung vorgelegt, die konstant gerührt wird. Der Interaktionspartner, hier PIPKI γ -p90 abgeleitete Peptide, befindet sich in einer Spritze und wird schrittweise in die Messzelle injiziert, so dass die beiden Bindungspartner vermischt werden und unter Komplexbildung miteinander interagieren können. Die Referenzzelle ist nur mit Puffer befüllt und fest verschlossen. Diese Zelle dient als Referenzpunkt für die empfindliche Messung einer Temperaturveränderung, die in der Messzelle stattfindet. Die Temperatur der Zellen ist höher als die der sorgsam thermostatisierte Umgebung auf, die über einen messbaren Heizstrom kontrolliert wird, um sie konstant (isotherm) zu halten. Die Bildung eines Protein/Peptid-Komplexes infolge der Injektion des Peptids in die Messzelle hat eine Veränderung der Temperatur zur Folge. Die Temperatur in der Messzelle bei einer Reaktion wird gemessen und der der Referenz angeglichen. Die dabei entstehende bzw. verbrauchte Wärmeenergie Q wird detektiert. Die molare Reaktionsenthalpie ΔH° kann aus der Fläche der Titrationskurve und der Basislinie bestimmt werden (dargestellt in Gleichung 3):

Gleichung 3:
$$\Delta H^{\circ} = \int_{T1}^{12} Q dT$$

m

mit ΔH° = molare Enthalpie

Q = Wärmeenergie

dT = Temperaturdifferenz

Mit der Information über die molare Enthalpie lässt sich die Standard-Gibbs-Energie ΔG° berechnen. Diese thermodynamische Größe gibt Auskunft, ob eine Reaktion freiwillig abläuft (negatives Vorzeichen) oder Energie hinzugeführt werden muss (positives Vorzeichen) und lässt sich wie folgt darstellen:

Gleichung 4: $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S = -RT \ln K_A$

mit	$\varDelta G^{\circ}$	= Gibbs-Energie
	$\varDelta H^{\circ}$	= molare Enthalpie
	Т	= Temperatur
	ΔS°	= molare Entropie
	R	= universelle Gaskonstante
	K_A	= Assoziationskonstante

Anhand von Gleichung 4 wird ersichtlich, dass die Gibbs-Energie und die Assoziationskonstante K_A einer Reaktion miteinander in Beziehung stehen. Die Gibbs-Energie ist von den Stoffmengen der eingesetzten Reaktionspartner und der gebildeten Protein/Peptid-Komplexe abhängig und erlaubt eine Aussage über die Richtung der Gleichgewichtsreaktion:

Gleichung 5: $K_A = [Protein/Peptid] / [Protein] [Peptid]$

Bezogen auf die Wechselwirkung der AP-2-Domänen C- μ 2 und β 2-Ohr mit den PIPKI γ -p90 abgeleiteten Peptiden können anhand der Größen der Gleichgewichtskonstanten Aussagen über die Stärke des gebildeten Protein/Peptid-Komplexes getroffen werden. Die Assoziationskonstante K_A ist reziprok zur Dissoziationskonstante K_D der Reaktion. Je mehr Protein/Peptid-Komplexe vorliegen, desto kleiner ist die Dissoziationskonstante K_D .

Gleichung 6: $K_D = [Protein] [Peptid] / [Protein/Peptid]$

Die rekombinant hergestellten AP-2-Untereinheiten C- μ 2 und β 2-Ohr wurden zuvor über FPLC und Gelfiltration (beschrieben unter Abschnitt 2.5.2.2 und Abschnitt 2.5.2.3) gereinigt. Nach der Reinigung wurden die Proteine und die Peptide gegen 4x 1 Liter Reaktionspuffer (20 mM HEPES pH 7,4; 200 mM NaCl) über Nacht dialysiert. Nach der Dialyse wurden die Proteine und die Peptide bei 184 000 x g (15 min, 4 °C) zentrifugiert, die Proteinkonzentrationen wurden bei 280 nm bestimmt und auf Konzentrationen von 60 bis 100 μ M (Protein) und 1,12 bis 1,5 mM (Peptide) eingestellt. Die Konzentration der Peptide war in der Regel 12 bis 15 Mal stärker als die der verwendeten Proteine. Vor der Messung wurden die verwendeten Lösungen unter Rühren im Vakuum entgast, um Luftblasen

während des Experiments zu vermeiden. Die Proteinlösung wurde in die Messkammer einer VP-ITC vorgelegt und die Peptid-Stammlösung in 30 Schritten von je 10 μ l zu dem Protein injiziert. Die Messung wurde bei 25 °C durchgeführt. Die Injektion erfolgte über einen Zeitraum von 20 sec Zwischen zwei aufeinander folgenden Injektionen lag jeweils ein Intervall von 300 sec, damit die Kurve nach dem Ausschlag zur Basislinie zurückkehren konnte. Die Lösung in der Probenkammer wurde mit 199 rpm durchmischt. Nach Abschluss der Messung wurde das Peptid in 30 Schritten von je 10 μ l in den verwendeten Puffer injiziert, um die Verdünnungswärme festzustellen. Alle Reaktionswärmen wurde bezüglich der molaren Mengen an injiziertem Peptid normalisiert und um den Wert der Verdünnungswärme korrigiert, wodurch sich die aus der Protein-Peptid-Wechselwirkung resultierende Wärme ergab. Die Daten der Titrationen wurden unter Annahme einer Stöchiometrie von 1 (ein AP-2 μ/β 2-Ohr-Molekül bindet ein PIPKI γ -p90-abgeleitetes Peptid) ausgewertet. Die Anpassung der korrigierten Daten erlaubte eine Bestimmung der Dissoziationskonstante (K_D) und wurden aus den Rohdaten in Origin 7.0 unter Verwendung einer nicht-linearen Regressionsanalyse nach dem "*One Set of Sites*"-Modell kalkuliert.

2.7 Zellbiologische Methoden

2.7.1 Generelle tierische Zellkultur

Tierische Zelllinien wurden in CO₂-Inkubatoren (Thermo Electron) bei 37 °C, 95 % Luftfeuchtigkeit und 5 % CO₂ kultiviert. Es wurde *Dulbecco's modified Eagle's* Medium (DMEM, Lonza) verwendet. Hek293-Zellen wurden in DMEM mit 1 g/l Glukose ohne Glutamin kultiviert, Cos7- und HeLa-Zellen hingegen in DMEM mit 4,5 g/l Glukose mit Glutamin, jedoch ohne Natriumpyruvat. Dem Medium wurde außerdem 10 % Hitze inaktiviertes, fötales Rinderserum (FCS; 30 min bei 56 °C), 1 % Penicillin-Streptomycin und, wenn erforderlich 1 % Glutamin zugesetzt. Den verwendeten stabilen Zell-Linien wurden zusätzliche erforderliche Antibiotika hinzugefügt (Hek293Flp-In HA-p87 und Hek293Flp-In HA-p90: 10 µg/ml Blasticidin, 100 µg/ml HygroGold). Generell wurden die Zellen alle 3 bis 5 Tage passagiert. Hierzu wurden die adhärenten Zellen durch Trypsin/EDTA (Invitrogen) gelöst und 1:5 bis 1:20 verdünnt in neue Kulturschalen überführt.

2.7.2 Herstellung von Glycerol-Kulturen tierischer Zellen

Zur Herstellung von Glycerol-Kulturen tierischer Zelllinien wurden die Zellen einer konfluenten 10 cm Kulturschale mit 2 ml Trypsin/EDTA gelöst. Trypsin/EDTA wurde durch die Zugabe von 8 ml Medium inaktiviert, die Zellen sedimentiert (4 min, 200 x g, RT) und anschließend in 3 ml Einfrier-Medium (10 % DMSO, 90 % FCS) aufgenommen. Die Glycerol-Kulturen wurden zunächst bei -80 °C gelagert und nach 1 Tag bis zu einem halben

Jahr in flüssigen Stickstoff überführt.

2.7.3 Transfektion von Plasmid-DNA und siRNAs

Tierische Zellen wurden mit dem Transfektionsreagenz (Invitrogen) Lipofectamine[™] 2000 mit Vektoren, die Expression rekombinanter Proteine in tierischen Zellen erlaubten, transfiziert. Hierzu wurden Zellen mit einer Konfluenz von 80 bis 90 % nach Angaben des Herstellers mit veränderten DNA und Lipofectamine[™] 2000 Mengen (2,5 µg DNA und 5 µl Lipofectamine[™] 2000 pro 9,5 cm² Well) transfiziert. Die DNA/Lipofectamine[™] 2000-Komplexe wurden in Opti-MEM (Invitrogen) präpariert und zu den Zellen in FCS- und Antibiotika-freiem Medium gegeben. Die Zellen wurden für 4 h bei 37 °C und 5 % CO₂ inkubiert, bevor das Medium gewechselt wurde. Anschließend wurden die Zellen für weitere 24 h bei 37 °C und 5 % CO₂ inkubiert.

Für Transfektionen von siRNA wurde Oligofectamine (Invitrogen) sowie 30 bis 50 % konfluente Zellen verwendet. Für effiziente *knockdowns* (> 90 %) wurde die Zellen zwei Mal mit siRNA in einem 48 h Intervall transfiziert. Pro siRNA-Transfektionsansatz wurden 5 µl Oligofectamine und 300 bis 400 pmol siRNA pro 9,5 cm²/Well in Opti-MEM präpariert. Vor Zugabe der siRNA/Oligofectamine-Komplexe zu den Zellen wurde das Medium gegen FCS und Antibiotika-freies Medium ausgetauscht. Das hierbei verwendet Volumen betrug die Hälfte des vorherig verwendeten Mediums. Die Zellen wurden für 4 h bei 37 °C und 5 % CO₂ inkubiert und anschließend mit 2x DMEM (zweifache Menge an FCS und Antibiotika) versetzt, so dass das Medium hinterher wieder eine einfache Konzentration an FCS und Antibiotika aufwies. Zwischen der ersten und der zweiten Transfektion wurden die Zellen passagiert. Experimente mit siRNA-behandelten Zellen wurden im Allgemeinen 48 h nach der zweiten Transfektion durchgeführt. Wurde während der zweiten Transfektionsrunde siRNA mit Vektor-DNA kotransfiziert, so wurde Lipofectamine[™] 2000 anstatt Oligofectamine verwendet und die zweite Transfektionsrunde 24 h vor dem Experiment durchgeführt.

2.7.4 Transfektion primärer Neuronen

Primäre Neuronen aus dem Hippocamous *in vitro* kultiviert auf Deckgläsern in 12-Well Platten wurden an Tag 8 in *in vitro*-Kultur (DIV8) transfiziert. Pro Well wurden 0,5 μ g Endotoxin-freie DNA (siehe Abschnitt 2.3.12) und 1 μ l LipofectamineTM 2000 in jeweils 50 μ l Optimem verwendet. Die DNA/LipofectamineTM 2000-Komplexe wurden zu den Zellen gegeben und für 4 h bei 37 °C inkubiert. Von den Zellen wurde zuvor die Hälfte des Mediums entfernt und bis zur weiteren Verwendung bei 4 °C gelagert. Nach der Transfektionszeit wurde das Transfektionsmedium von den Zellen entfernt und durch das konditionierte Wachstumsmedium ersetzt. Die Zellen wurden an DIV14 fixiert und immungefärbt (vergleiche Abschnitt 2.7.7).

2.7.5 Immunfluoreszenzfärbung

Bevor mit der Immunfluoreszenzfärbung begonnen werden konnte, mussten die Zellen auf den

Deckgläsern fixiert werden. Die Fixierung wurde mit Fixativ (vergleiche Abschnitt 2.2.2) für 20 bis 30 min bei RT oder bei -20 °C 100 % Methanol für 10 min herbeigeführt. Darauf folgend wurden die Zellen drei Mal mit 1x PBS-Puffer gewaschen und mit Block-Lösung (1x PBS mit 30 % Ziegenserum und 0,3 % Triton X-100) zum Blocken und Permeabilisieren behandelt. Anschließend wurden die Zellen mit dem ersten Antikörper in einer mit Parafilm ausgekleideten Feuchtigkeitskammer inkubiert. Für jedes Deckglas wurden 30 bis 50 µl in Blocklösung verdünnte Antikörperlösung benötigt. Die Deckgläser wurden mit der Oberseite auf den Antikörpertropfen platziert und für 1 h bei RT inkubiert. Nach Abschluss der Inkubationszeit wurden die Deckgläser drei Mal in 1x PBS-Puffer gewaschen und mit einem sekundären Alexa-Fluor markierten Antikörper (verdünnt 1:100 in Block-Lösung) für 45 min bei RT und Lichtabschluss inkubiert. Für die Inkubation wurde ebenfalls die Feuchtigkeitskammer verwendet. Die Deckgläser wurden drei Mal mit 1x PBS-Puffer gewaschen und anschließend auf Objektträgern aufgebracht. Hierzu wurde Immumount-Einbettungslösung (Thermo Electron) mit dem Zusatz von 1 µg/ml DAPI verwendet.

Um Hintergrundfärbung durch eine unspezifische Antikörper-Bindung zu reduzieren, wurde in manchen Fällen während der Immunfluoreszenzfärbung mit Hochsalz-PBS-Puffer (vergleiche Abschnitt 2.2.2) anstatt mit 1x PBS-Puffer gewaschen.

2.7.6 Immunfluoreszenzfärbung primärer Neuronen

Die Immunfluoreszenzfärbung von Neuronen erfolgte nach einem modifziertem Protokoll. An DIV14 wurden das Medium entfernt und die Neuronen zwei Mal kurz mit 1x PBS-Puffer gewaschen, anschließend mit Fixativ (siehe Abschnitt 2.2.2) bei RT inkubiert. Das Fixativ wurde nach max. 10 min entfernt und die Zellen zwei Mal kurz mit 1x PBS-Puffer gewaschen. Zu den gewaschenen Neuronen wurde Permeabilisierungslösung (1x PBS-Puffer mit 0,1 % Triton X-100) gegeben. Danach folgte eine Inkubationszeit von 10 min bei RT. Die Neuronen wurden anschließend zwei weitere Male kurz mit 1x PBS-Puffer gewaschen und für 30 min mit Block-Lösung (2 % FCS, 2 % BSA, 0,2 % Fisch-Gelantine in 1x PBS-Puffer) behandelt. Der erste Antikörper wurde währenddessen in Block-Lösung verdünnt und 5 min bei 21 000 x g (4 °C) zentrifugiert. Wie schon unter Abschnitt 2.7.6 beschrieben, erfolgte die Inkubation der Neuronen mit dem ersten und dem zweiten Antikörper in einer Feuchtigkeitskammer. Pro Deckglas kamen 30 bis 50 µl Antikörper-Lösung zum Einsatz. Die Inkubation mit dem zweiten Antikörper erfolgte unter Lichtabschluss und bei RT (vergleiche Abschnitt 2.7.6). Anschließend wurden die Zellen drei Mal je fünf Minuten mit 1x PBS-Puffer gewaschen, gefolgt von einem finalen Waschschritt mit ddH₂O. Wie unter Abschnitt 2.7.6 beschrieben, wurde Immumount-Einbettungslösung, jedoch ohne DAPI-Zusatz verwendet.

2.7.7 Fluoreszenzmikroskopie und Quantifizierung

Für Akquisitionen und Analysen von Fluoreszenzbildern wurde ein Zeiss Axiovert 200M Digital Research Microscopy System, ausgestattet mit einer speziellen Lichtquelle und einem Slidebook Digital Microscopy Software Paket von Intelligent Imaging Innovations, verwendet. Diese Ausstattung erlaubt quasi-konfokale Aufnahmen durch Dekonvolution der akquirierten Aufnahmen. Die Software nutzt den Dekonvolution-Algorithmus zur Umkehr optischen Verzerrung, die in einem Mikroskop stattfindet, wodurch die z-Auflösung stark verbessert wird. Zur Quantifizierung von Fluoreszenzintensitäten wurden Maskenfunktionen sowie statistischen Funktionen der Software genutzt. Details zu den vorgenommenen Quantifizierungen können in den Beschreibungen zu den einzelnen Abbildungen gefunden werden.

2.7.8 Transferrin-Endozytose

Die Internalisierung von Fluoreszenz-markiertem Transferrin wurde als Endozytose-Ablese-System verwendet. Humanes Transferrin-Alexa488 wurde von Invitrogen erworben. Sterile Deckgläser mit einem Durchmesser von 18 mm wurden mit MatrigelTM beschichtet (1:50 in Optimem) und bei 37 °C inkubiert. Anschließend wurden die transfizierten Zellen ausgesät und über Nacht bei 37 °C inkubiert. Zwei Stunden vor dem Beginn der Transferrin-Aufnahme wurde das Medium gewechselt und die Zellen in Opti-MEM[®] bei 37 °C inkubiert. Das Transferrin wurde mit einer finalen Konzentration von 25 µg/ml in Serum-freiem Medium verdünnt und für 10 min bei 21 000 x g zentrifugiert, um Präzipitate zu entfernen. Die Internalisierung des Transferrins wurde für 20 min bei 37 °C erlaubt. Nach Beendigung der Inkubation wurden die Zellen sofort auf Eis transferiert und die Deckgläser drei Mal mit kaltem 1x PBS-Puffer mit zusätzlich 10 mM MgCl₂ gewaschen. Die Zellen wurden mit Fixativ (vergleiche Abschnitt 2.2.2) für 20 min bei RT fixiert. In Abhängigkeit von dem Experiment wurden die Deckgläser sofort auf Objektträger fixiert oder weiter für Immunfluoreszenz-Färbungen verwendet. Für die Fixierung der Deckgläser auf Objektträgern wurde Immumount (Thermo Electron, Langenselbold) verwendet.

2.7.9 Internalisierung Antikörper-markierter β1-Integrine

Zur Untersuchung des Effekts von Peptiden, die aus dem PIPKIy-p90 C-Terminus abgeleitetet waren, AP-2/Clathrin-vermittelte auf die Endozytose von β 1-Integrin, wurden Antikörper-Internalisierungsexperimente durchgeführt. HeLa-Zellen wurden auf sterilen 18 mm Deckgläsern, die zuvor mit MatrigelTM beschichtet worden waren (vergleiche Abschnitt 2.7.10) ausgesät und bis zur Konfluenz bei 37 °C inkubiert. Über Nacht wurden die Zellen in Opti-MEM bei 37 °C inkubiert. 100 µM Peptide (Stammlösung 10 mM) wurden in HEPES gepuffertem Opti-MEM gelöst, bei 21 000 x g zentrifugiert. Das Medium der Zellen wurde gegen das Peptid-haltige Opti-MEM ausgetauscht und die Zellen für 35 min bei 37 °C inkubiert. Währenddessen wurde der monoklonale β1-Antikörper (Serotec) in Medium mit 0,5 % BSA aufgenommen (5 µg/ml), bei 21 000 x g zentrifugiert und anschließend zu den Zellen gegeben. Die Inkubation mit dem Antikörper-Medium erfolgte bei 37 °C für 40 min. Nach der Inkubation wurden die Zellen sofort auf Eis transferiert und drei Mal mit kaltem 1x PBS-Puffer gewaschen. Nicht internalisierte β 1-Antikörper wurden von den Zellen durch einmaliges Waschen mit 0,5 M NaCl in kalter 0,5 % Essigsäure für 45 sec bei RT entfernt. Die Zellen wurden weitere zwei Mal mit kaltem 1x PBS-Puffer gewaschen und mit Fixativ (vergleiche Abschnitt 2.2.2) für 20 min bei RT fixiert. In Abhängigkeit von dem Experiment wurden die Deckgläser sofort auf Objektträger fixiert oder weiter für Immunfluoreszenz-Färbungen verwendet. Für die Fixierung der Deckgläser auf Objektträgern wurde Immumount (Thermo Electron, Langenselbold) verwendet.

2.7.10 SynaptopHluorin Assay

Der Zyklus synaptischer Vesikel wurde mit Hilfe des Reporterproteins SynaptopHluorin (SytpH) untersucht (Miesenböck *et al.*, 1998). Die Methode basiert auf der pH-Sensivität eines mutierten GFPs, das mit der luminalen Domäne des synaptischen Vesikelprotein Synaptobrevin 2 (VAMP2) fusioniert ist und dadurch in das Lumen der Vesikel lokalisiert.

Unter Ruhebedingungen wird die Fluoreszenz des GFPs vollständig durch den saueren pH (~ 5,5) des Vesikellumens gelöscht. Wird die Synapse in Folge eines Aktionspotentials angeregt, so fusionieren synaptische Vesikel Ca²⁺-vermittelt mit der prä-synaptischen Membran, wodurch die SytpH-Moleküle in Kontakt mit der neutralen bis basischen extrazellulären Umgebung (pH \approx 7,4) kommen. Dies hat die Zunahme des Fluoreszenzsignals zur Folge. Das Abklingen der Fluoreszenz ist durch die Entfernung des SytpH von der Zelloberfläche durch kompensatorische Endozytose und der Ansäuerung der synaptischen Vesikel zu erklären (vergleiche Abb. 2.1). Da die Ansäuerung der neu gebildeten synaptischen Vesikel sehr viel schneller erfolgt als Endozytose, ist die Verwendung von SytpH eine gute Methode, um die Endozytose in individuellen Synapsen zu verfolgen.

Die Präparation der Neuronen aus dem Hippocampus von Wistar Ratten 24 h nach der Geburt wurde von Soeng Joo Koo (AG Haucke) durchgeführt. An DIV14 wurden die Neuronen nach der Calcium-Phosphat-Methode unter Anwendung des ProFection Mammalian Transfection Systems mit SynaptopHluorin und jeweils einem der drei verschiedenen mRFP-fusionierten Varianten des PIPKI γ -p90 C-Terminus kotransfiziert. Als Kontrolle wurde mRFP allein verwendet. Insgesamt wurden pro Well einer 6-Well-Platte 6 µg DNA mit einer Konzentration von 1 µg/µl verwendet. Änderungen des Protokolls werden angegeben.

Während der Inkubation zur Bildung von DNA-Phosphat-Kopräzipitaten (siehe Anleitung ProFection Mammalian Transfection Systems; Promega) unter Lichtabschluss wurde das konditionierte Wachstumsmedium von den Neuronen entfernt, bis zur weiteren Verwendung im Inkubator bei 37 °C inkubiert und durch 1 ml frisches, minimales, essentielles Medium (Minimal Essential Medium; MEM) ersetzt. Nach der Beendigung der 30-minütigen Inkubation wurden 200 µl Transfektionslösung vorsichtig tropfenweise zu den Zellen gegeben. Anschließend wurden die Kulturschalen zur besseren Verteilung der DNA-Phosphat-Präzipitate auf den Zellen vorsichtig geschwenkt. Das Transfektionsmedium wurde nach 45 min Inkubation bei 37 °C entfernt, die Zellen zwei Mal mit 2 ml MEM gewaschen und anschließend das konditionierte Wachstumsmedium hinzugefügt. Die Neuronen wurden innerhalb von 16 bis 18 h nach der Transfektion für das *life-cell-imaging* Experiment verwendet.

Das eingefügte Diagramm illustriert die pH-Sensivität des SynaptopHluorins. Unter Ruhebedingungen wird die Fluoreszenz des SynaptopHluorins durch den sauren pH des Vesikel-Lumens gelöscht. Nach Stimulation fusionieren die synaptischen Vesikel Ca²⁺-abhängig mit der Plasmamembran, wodurch die SynaptopHluorin-Moleküle in Kontakt mit der neutralen bis basischen extrazellulären Umgebung (pH \approx 7,4) kommen und eine Zunahme der Fluoreszenz zu beobachten ist. Die Fluoreszenz des Reporterproteins wird in Folge von Endozytose und Ansäuerung des Vesikels wieder gelöscht. Die Abbildung (modifiziert) wurde aus Burrone *et al.*, 2006 entnommen.

Vor dem Start des Experiments wurden die zu untersuchenden Zellen aus dem Inkubator geholt und für mindestens 10 min RT in 1x Na/C-BASIC-Lösung (siehe Abschnitt 2.2.2) inkubiert. Währenddessen wurde die Warner Perfusions-Kammer mit Silicon-Fett bestrichen und das 25 mm Deckglas mit den Neuronen auf der Unterseite der Perfusionskammer vorsichtig angedrückt. Die Kammer wurde anschließend mit 230 µl 1x Na/C-BASIC-Lösung befüllt und durch ein weiteres 25 mm Deckglas auf der Oberseite verschlossen. Anschließend wurde die Kammer in einer Halterung am Mikroskop eingesetzt und mit dem Perfusions-Apparat verbunden.

Abb. 2.2 Die SynaptopHluorin-Fluoreszenz ist pH-sensitiv In der Abbildung ist der durchschnittliche Verlauf der SynaptopHluorin-Fluoreszenz von primären Neuronen aus dem Hippocampus von Ratten, die mRFP exprimieren, dargestellt. Das Diagramm zeigt die Fluoreszenz von SynaptopHluorin während der verschiedenen Schritte des Perfusionsprotokolls. Die Fluoreszenz von > 50 synaptischen Boutons wurde auf die Fluoreszenzontensität, die unter physiologischen pH-Bedingungen \pm SEM beobachtet wurde, normalisiert.

Zunächst wurden GFP-positive Zellen gesucht. Wurde eine GFP- und mRFP-positive Zelle gefunden, so konnte mit dem Perfusionsprotokoll gestartet werden. Zunächst wurde die Perfusions-Kammer 1x Na/C-BASIC-Lösung geleitet und mit der Aufnahme von Bildern bei RT alle 5 sec bei 200 ms Anregung bei 488 nm begonnen (siehe Abb. 2.2) Der SytnaptopHluorin-Pool an der Plasmamembran und in den Vesikeln wurde durch Anwendungen der physiologischen 1x Na/C-BASIC-Lösung, gefolgt durch eine saure (pH 5,5) (vergleiche Abschnitt 2.2.2) und eine basische (NH₄Cl) BASIC-Lösung bestimmt (vergleiche Abb. 2.2). Der Wechsel zu Puffer mit einem sauren pH (5,5) löscht die Fluoreszenz, während die Neutralisation mit einem alkalischen pH das Maximum an Fluoreszenz zulässt (vergleiche Abb. 2.2). Die Erregbarkeit der Neuronen wurde durch die Anwendung von 200 Pulsen bei 100 mA überprüft. Für jedes synaptische Bouton wurde die Fraktion des Reporterproteins SynaptopHluorin an der Plasmamembran nach folgender Gleichung kalkuliert: $p_{surface} = [SpH]_{surface/}$ ([SpH]_{surface+} [SpH]_{vesicle}) = ($F_{physio.-} - F_{acidic}$)/ ($F_{physio.-} - F_{acidic}$) + ($F_{physio.}$).

3 Ergebnisse

Das Phospholipid Phosphatidylinositol-(4,5)-bisphosphat (PI(4,5)P₂) ist an der Plasmamembran konzentriert und essentiell für den synaptischen Vesikelzyklus (Cremona *et al.*, 1999; Di Paolo *et al.*, 2004). In Säugetieren wird PI(4,5)P₂ hauptsächlich durch PIPK Typ I mit den Isoenzymen α , β und γ synthetisiert (Doughman *et al.*, 2003; Heck *et al.*, 2007; Weernink *et al.*, 2004). Das Isoenzym PIPKI γ wird verstärkt im Gehirn expremiert (Guidici *et al.*, 2004; Ishihara *et al.*, 1998; Wenk *et al.*, 2001) und nimmt im synaptischen Vesikelzyklus eine wichtige Rolle ein (Di Paolo *et al.*, 2004), doch der genaue Mechanismus der räumlich und zeitlich regulierten PI(4,5)P₂-Synthese ist noch immer nicht komplett verstanden.

Verschiedene Untersuchungen zeigten, dass an der Interaktion von PIPKI γ -90 mit dem AP-2-Komplex verschiedene Interaktionsstellen beider Proteinen beteiligt sind (siehe Abb. 3.1), die Einfluss auf eine lokale PI(4,5)P₂-Synthese nehmen können.

Abb. 3.1 Unterschiedliche Modelle der Interaktion von PIPKI γ -p90 mit dem Adaptorkomplex-2 Unterschiedliche Proteinbereiche konnten identifiziert werden, die in die Interaktion beider Interaktionspartner involviert sind. (A) PIPKI γ -p90 interagiert über die katalytische Domäne (dunkelblau) mit der µ2-Untereinheit des heterotetrameren AP-2-Komplexes (grün) und erlaubt die gleichzeitige Bindung eines Frachtproteins (orange) an µ2 über ein Yxx Φ -Motiv. (B) Über ein Yxx Φ -Motiv, das in dem p90-spezifischen Spliceinsert (hellblau) im

an μ_2 uber ein YXX Φ -Motiv. (B) Über ein YXX Φ -Motiv, das in dem p90-spezifischen Spliceinsert (heliblau) im C-Terminus enthalten ist, kann PIPKI γ -p90 über die YXX Φ -bindende μ_2 -Oberfläche mit dem AP-2-Komplex in Wechselwirkung treten. (C) Die AP-2-Domäne β_2 -Ohr vermittelt die Interaktion von AP-2 zu PIPKI γ -p90 und involviert Aminosäuren aus dem p90-spezifischen Spliceinsert (hellblau).

Krauss und Mitarbeiter hatten 2006 herausgefunden, dass PIPKI γ mittels ihrer katalytischen Domäne mit der µ2-Untereinheit des AP-2-Komplexes interagiert (siehe Abb. 3.1A). Diese Interaktionstelle ist jedoch verschieden von der postulierten Interaktion von PIPKI γ -p90 mit AP-2µ über ein Yxx ϕ -Internalisierungsmotiv im p90-spezifischen Spliceinsert (vgl. Abb. 3.1B), gezeigt von Bairstow und Mitarbeitern (2006). In einer weiteren Publikation (Nakano-Kobayashi *et al.*, 2007) wurde das β 2Ohr des AP-2-Komplexes als bevorzugter Interaktionspartner benannt, dessen Bindung an PIPKIγ-p90 über das p90-spezifische Spliceinsert vermittelt wird (siehe Abb. 3.1C).

An den genannten Publikationen war auffällig, dass neu entdeckte Interaktionsflächen als bevorzugt gegenüber anderen Proteinbereichen identifiziert wurden und somit widersprüchliche Thesen bezüglich der Komplexausbildung zwischen AP-2 und PIPKIγ-p90 zur Folge hatten. Im Folgenden werden die Ergebnisse dargestellt, die die molekulare Basis der Komplexbildung von PIPKIγ-p90 mit AP-2 und den Einfluss des p90-spezifischen Spliceinserts auf die Internalisierung von Frachtmolekülen und den synaptischen Vesikelzyklus charakterisieren.

3.1 Wechselwirkung von PIPKIγ-p90 mit dem AP-2-Komplex – eine Vielzahl von Möglichkeiten der Komplexbildung

Ein erstes Experiment sollte klären, ob PIPKIγ-p90 über beide Domänen, die katalytische (Aminosäure 1-468) und die C-terminale Domäne (451-668), mit AP-2 interagieren kann. Eine chromatographische Affinitätsreinigung von nativen, endogenen AP-2-Komplexen aus Extrakten gereinigter, synaptischer Endigungen aus Rattenhirn (Rattenhirnsynaptosomenextrakt) mit verschiedenen PIPKIγ-p90-Konstrukten identifizierte AP-2 als Bindungspartner beider PIPKIγ-p90-Domänen (vergleiche Abb. 3.2A) (Bairstow *et al.*, 2006; Krauss *et al.*, 2006; Nakano-Kobayashi et al., 2007). Interessanterweise erfolgt die Bindung von AP-2 an die katalytische Domäne effizienter als an den PIPKIγ-p90-C-Terminus (siehe Abb. 3.2A).

Zur Überprüfung der an der Bindung von PIPKIy beteiligten AP-2-Domänen wurden C-µ2 (Aminosäure 157-435), αc (Aminosäure 702-938) – und das β2-Ohr (Aminosäure 715-951) für chromatographische Affinitätsreinigung von nativer. endogener ΡΙΡΚΙγ aus Rattenhirnsynaptosomenextrakt eingesetzt. Die AP-2-Untereinheit α -Adaptin kommt in zwei ähnlichen Isoformen vor (Robinson, 1989) Für Experimente wurde die α2c-Isoform, die in Gehirn, Leber und anderen Geweben expremiert wird (Ball et al., 1995), verwendet. Das Experiment zeigte, dass die Lipidkinase PIPKIγ mit AP-2-C-μ und β2-Ohr in Wechselwirkung treten kann (Bairstow et al., 2006; Krauss et al., 2006; Nakano-Kobayashi et al., 2007). Hierbei ist auffällig, dass C-µ2 deutlich effizienter als das β2-Ohr endogene PIPKIy anreichert (siehe Abb. 3.2B) Das αc-Ohr des Adaptorkomplexes-2 wurde zusätzlich als Kontrolle eingesetzt und zeigte keine Bindung an PIPKIy (vergleiche Abb. 3.2B). PIPKIy-p90 kann sowohl über die katalytische Domäne als auch über den C-Terminus mit AP-2 interagieren, wobei die AP-2-Domänen C-μ2 und β2-Ohr an der Wechselwirkung mit PIPKIy beteiligt sind.

Abb. 3.2 Interaktion von PIPKIy mit dem AP-2-Komplex

(A) Rattenhirnsynaptosomenextrakt wurde als Quelle für native, endogene AP-2-Komplexe verwendet, die mit GST-PIPKIY (1-468) und GST-PIPKIY-p90 (451-668) chromatographisch affinitätsgereinigt wurden. Aliquots des Rattenhirnsynaptosomenextraktes und des affinitätsgereinigten Materials wurden durch Immunblotting und der Verwendung von Antikörpern gegen AP-2 und Aktin als Kontrolle analysiert. Std, 2 % des insgesamt im Assay eingesetzten Rattenhirnsynaptosomenextraktes. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite. (B) Native, endogene PIPKI γ wurde aus Rattenhirnsynaptosomenextrakten unter Verwendung von α c-Ohr, β 2-Ohr und C- μ 2 GST-Fusionsproteine affinitätsgereinigt. Aliquots des Rattenhirnsynaptosomenextraktes und des als affinitätsgereinigten Materials wurden durch Immunblotting und der Verwendung von Antikörpern gegen PIPKIy und Aktin als Kontrolle analysiert. Std, 0,8 % des insgesamt im Assay eingesetzten Rattenhirnsynaptosomenextraktes. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite.

Zum Zeitpunkt der Experimente waren nur zwei humane Splicevarianten - PIPKIy-p87 und PIPKIy-

p90 - bekannt. Der C-Terminus der beiden humanen PIPKIγ-Splicevarianten unterscheidet sich durch einen zusätzlichen, 28 Aminosäure umfassenden Abschnitt in PIPKIγ-p90 (Ishihara *et al.*, 1998). Es sollte untersucht werden, inwiefern sich die beiden humanen PIPKIγ-Splicevarianten in ihrer Fähigkeit unterscheiden, mit den angebotenen AP-2-Domänen zu interagieren. Zu diesem Zweck wurde die Bindungsfähigkeit beider PIPKIγ-Splicevarianten an die AP-2-Domänen C-µ2, αc- und β2-Ohr durch die Verwendung von Zellextrakten stabil transfizierter Hek293Flp-In-Zellen untersucht (siehe Abb. 3.3).

Die durchgeführte Affinitätsreinigung bestätigte, dass beide PIPKI γ -Splicevarianten - PIPKI γ -p87 und PIPKI γ -p90 - an AP-2-C- μ binden (vgl. Abb. 3.2A) (Krauss *et al.*, 2006). In dieser experimentellen Anordnung konnte keine Aussage über einen möglichen zusätzlichen Beitrag des PIPKI γ -p90 Spliceinserts zur Bindung an die C- μ 2-Domäne getroffen werden. Weiterhin war ersichtlich, dass ausschließlich PIPKI γ -p90 zur Interaktion mit β 2-Ohr fähig ist, wenn auch mit geringerer Effizienz im Vergleich zur Interaktion mit AP-2 μ (siehe Abb. 3.3A). Dies stimmt mit dem Ergebnis der

Ergebnisse

chromatographischen Affinitätsreinigung von PIPKI γ aus Rattenhirnsynaptosomenextrakt überein (vergleiche Abb. 3.2B). Somit scheint die Bindung von PIPKI γ -p90 an die AP-2-Domäne β 2-Ohr durch das Spliceinsert vermittelt zu werden (Nakano-Kobayashi *et al.*, 2007). Die Stärke der Interaktion beider PIPKI γ -Splicevarianten mit der α c-Ohr Domäne ging nicht über das Niveau von Hintergrundbindung hinaus (vgl. Abb. 3.3B).

Abb. 3.3 Das PIPKI γ -p90-spezifische Spliceinsert vermittelt die Interaktion mit der β 2-Ohr-Domäne des AP-2-Komplexes

(A) Affinitätsreinigung von HA-PIPKI γ -p87 und HA-PIPKI γ -p90 aus Zellextrakten stabil transfizierter Hek293Flp-In-Zellen und Hek-Zellen als Kontrolle unter Verwendung von GST-C- μ 2 und GST- β 2-Ohr. Gebundenes Protein wurde mittels Immunblotting unter Verwendung eines HA-spezifischen Antikörpers und Aktin als Kontrolle detektiert. Std, 7,5 % des insgesamt im Assay eingesetzten Zellextraktes. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite. (B) HA-PIPKI γ -p87 und HA-PIPKI γ -p90 aus Zellextrakten stabil transfizierter Hek293Flp-In-Zellen wurden unter Verwendung von GST- α c-Ohr affinitätsgereinigt. Zellextrakt von Flp-In293-Zellen diente als Kontrolle. Gebundene HA-Fusionsproteine wurden mittels Immunblotting unter Verwendung eines HA-spezifischen Antikörpers und Aktin als Kontrolle detektiert. Std, 7,5 % des insgesamt im Assay eingesetzten Zellextraktes. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite.

Dieser Versuch zeigte, dass sowohl PIPKI γ -p87 als auch PIPKI γ -p90 mit C- μ 2 in Wechselwirkung treten können, jedoch nur die lange PIPKI γ -Splicevarianten mit dem p90-spezifischen Spliceinsert das β 2-Ohr des AP-2-Komplexes binden kann.

Zur weiteren Charakterisierung der Proteindomänen von PIPKI γ -p90, welche in die Komplexbildung mit AP-2 involviert sind, wurde ein direktes Bindungsexperiment durchgeführt. Die AP-2-Domänen C- μ 2, α c- und β 2-Ohr wurden rekombinant als His₆-Fusionsproteine hergestellt und einer Affinitätsreinigung durch unterschiedliche GST-PIPKI γ -p90-Konstrukte unterzogen (siehe Abb. 3.4).

(A) Affinitätsreinigung von rekombinantem His_{6} - α c, $-\beta$ 1-Ohr, $-\beta$ 2-Ohr und $-C-\mu$ 2 mit der katalytischen PIPKI γ -p90-Domäne (Aminosäure 1-468) als GST-Fusionsprotein. Gebundenes Protein wurde mittels Immunblotting unter Verwendung von His₆-spezifischen Antikörpern detektiert. Std, 10 % des insgesamt im Assay eingesetzten His₆-Fusionsproteins. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und die markierten GST-Fusionsproteine auf der rechten Seite. (**B**) Affinitätsreinigung von verschiedenen AP-2-Domänen durch den PIPKI γ -p90-C-Terminus (Aminosäure 451-668) als GST-Fusionsprotein. Gebundenes Protein wurde mittels Immunblotting unter Verwendung His₆spezifischer Antikörper detektiert. Std, 10 % des insgesamt im Assay verwendeten His₆-Fusionsproteins. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite. (**C**) Als Kontrolle wurden die AP-2-Domänen durch GST affinitätsgereinigt. Gebundenes Protein wurde mittels Immunblotting unter Verwendung His₆-spezifischer Antikörper detektiert. Std, 10 % des insgesamt im Assay eingesetzten His₆-Fusionsproteins. Das Sternchen markiert BSA, das aus dem verwendeten Puffer stammt. Unten: Ponceau S gefärbte Membran mit molekularem Größenstandard auf der linken und Markierung des GST auf der rechten Seite. Dieser Versuch bestätigte eine direkte Interaktion von AP-2µ mit der katalytischen PIPKIγ-p90-Domäne (Aminosäure 1-468) und dem PIPKIy-p90-C-Terminus (Aminosäure 451-668) (siehe Abb. 3.4A und B) und ist in Übereinstimmungen mit den vorangegangenen Versuchen (vergleiche Abb. 3.2 und Abb. 3.3). Das GST-Fusionsprotein α c-Ohr zeigte erwartungsgemäß weder an die katalytische Domäne noch an den PIPKIy-p90-C-Terminus Bindung über das Niveau von Hintergrundbindung hinaus (vergleiche Abb. 3.4A und B). Dieses Experiment zeigte, dass C-µ2 sowohl von der katalytischen Domäne als auch von dem PIPKIy-p90-C-Terminus gebunden werden kann. Die Wechselwirkung mit dem AP-2- β 2-Ohr wird ebenfalls durch den C-Terminus von PIPKI γ -p90 vermittelt. Zusätzlich zu den benannten AP-2-Domänen wurden die PIPKIy-p90-Konstrukte auf eine mögliche Interaktion mit der β 1-Ohr des AP-1-Komplexes untersucht. Die $\tilde{\beta}$ -Ohr-Domänen der beiden Adaptorkomplexe AP-1 und AP-2 sind zu über 80 % identisch (Kirchhausen et al., 1989), wodurch eine Bindung der PIPKIy-p90 nicht auszuschließen ist, zumal Ling und Mitarbeiter 2007 bereits eine Bindung von PIPKIy-p90 an AP-1 über µ1B detektierten konnten. Wie in Abb. 3.4 gezeigt, konnte keine Wechselwirkung der β1-Ohr-Domäne des AP-1-Komplexes mit PIPKIγ-p90 nachgewiesen werden. Die Detektion einer möglichen Interaktion beider Proteine blieb auch in weiteren, nachfolgenden Affinitätsreinigungen (nicht dargestellt) erfolglos. Dieses Ergebnis schließt grundsätzlich jedoch eine Interaktion von AP-1 und PIPKIy-p90 nicht aus, die durch andere Domänen des AP-1-Komplexes vermittelt werden könnte.

3.2 Identifizierung eines minimalen AP-2 μ - und β 2-Ohr-bindenden Peptids aus dem PIPKI γ -p90-C-Terminus

Die vorangegangenen Versuche zeigten, dass die Interaktion von PIPKI γ -p90 mit den AP-2-Domänen μ^2 und β^2 -Ohr grundsätzlich möglich ist und sowohl die katalytische Domäne und auch den C-Terminus der Kinase involviert. Das Protein Talin, eine essentielle Komponente fokaler Adhäsionen (Critchley, 2000; Calderwood & Ginsberg, 2003), ist ein weiterer, wichtiger Interaktionspartner von PIPKI γ -p90 und interagiert über eine FERM-Domäne mit dem minimalen Bindemotiv 647WVYSPL652 im p90-spezifischen Spliceinsert der Lipidkinase (Di Paolo *et al.*, 2002; Ling *et al.*, 2002). Das Vermögen aller drei Proteine an das p90-spezifische Spliceinsert zu binden, warf die Frage auf, ob sich die Interaktionsflächen aller drei Interaktionspartner auf einen kurzen Bereich des C-terminalen PIPKI γ -p90-Spliceinserts konzentrieren, oder ob die Interaktionen über unterschiedliche Bereiche im Spliceinsert vermittelt werden. Um die Interaktionsbereiche des AP-2-Komplexes und des Talins genauer eingrenzen zu können, wurden verkürzte Versionen des PIPKI γ -p90-spezifischen Spliceinsert hergestellt (siehe Abb. 3.5A) und für affinitätschromatographische Reinigungen eingesetzt (Abb. 3.5 und Abb. 3.6).

Abb. 3.5 Identifizierung einer minimalen Peptidsequenz im p90-spezifischen Spliceinsert, die Bindung von endogenem Talin und AP-2 erlaubt

(A) Schematische Darstellung der eingesetzten PIPKIγ-p90-Spliceinsert-Konstrukte als GST-Fusionsproteine zur Identifizierung einer minimalen Peptidsequenz, die Bindung von Talin und AP-2 erlaubt. (B) Affinitätsreinigung von endogenem Talin und AP-2 aus Rattenhirnextrakt mit verschiedenen Varianten des PIPKIγ-p90-spezifischen Spliceinserts (641PTDERSWVYSP651, 641PTDERSWVYSPLH653, 645RSWVYSPLH653, 654YSAQAPPASDGES666 und 641PTDERSWVYSPLHYSAQAPPASDGESDT668) als GST-Fusionsproteine. Aliquots des Rattenhirnextraktes und des affinitätsgereinigten Materials wurden durch Immunblotting und die Verwendung von Antikörpern gegen AP-2, Talin und Aktin als Kontrolle analysiert. Std, 2 % des insgesamt im Assay eingesetzten Rattenhirnsynaptosomenextraktes.

Der Erwartung entsprechend, konnte Bindung von nativem, endogenem AP-2 und Talin an das Volllängen-Spliceinsert der PIPKIy-p90 detektiert werden (siehe Abb. 3.5B). Doch von insgesamt vier unterschiedlichen Konstrukten interagierte nur 641PTDERSWVYSPLH653 mit beiden endogenen Proteinen, dem das minimale Talin-Bindungsmotiv (WVYSPL) und ein Tyrosin-basiertes Motiv (649YSPL652) mit dem Volllängen-Spliceinsert der PIPKIy-p90 gemeinsam ist (vergleiche Abb. 3.5A **GST-Fusionsproteine** 641PTDERSWVYSP651. Für die drei verbleibenden und **B**). 645RSWVYSPLH653 und 654YSAQAPPASTGES666 konnte weder für Talin noch für AP-2 über das Niveau von Hintergrundbindung hinaus eine Interaktion bestätigt werden (siehe Abb. 3.5B). Ein Ergebnis, das überraschte, da zumindest das Konstrukt 645RSWVYSPLH653 hinreichende Bindemotive zur Interaktion mit AP-2 und Talin beinhaltet. Eine mögliche Erklärung liefert die quantitative Bestimmung der Dissoziationskonstanten für die Interaktion des PIPKIy-p90 abgeleiteten Peptids YFPTDERSWVYSPLH mit C-µ2 (vergleiche Abschnitt 3.8). Aus den Messungen geht hervor, dass die Wechselwirkung durch einen niederaffinen K_D von 6 μ M charakterisiert ist. Die räumliche Nähe des Peptids zum GST-Tag in Verbindung mit dem hohen K_D könnte die Interaktion der Bindungspartner bis unterhalb der Detektionsgrenze eingeschränkt haben.

Eine Bevorzugung des Peptids 641PTDERSWVYSPLH653 als Interaktionspartner von AP-2 und Talin konnte auch in einem direkten Bindungsexperiment mit rekombinanten Proteinen beobachtet werden (vergleiche Abb. 3.6). Interessanterweise wies das β2-Ohr nur eine sehr schwache Bindung zu 641PTDERSWVYSPLH653 und dem Volllängen-Spliceinsert auf (vergleiche Abb. 3.6B). Aus den Strukturdaten, dargestellt unter Abschnitt 3.3, geht hervor, dass die β2-Ohr-Bindungsstelle in dem 641PTDERSWVYSPLH653-Peptid nicht vollständig war. Wie auch schon bei der Untersuchung nativer Interaktionspartner beobachtet werden konnte, zeigte das Peptid 641RSWVYSPLH653 keine Wechselwirkung mit Talin-FERM und den angebotenen AP-2-Domänen.

Abb. 3.6 Die AP-2-Domänen C-μ2 und β2-Ohr sowie das Strukturproein Talin interagieren mit der Aminosäuresequenz PTDERSWVYSPLH aus dem PIPKIγ-p90-spezifischen Spliceinsert

(A) Unterschiedliche Konstrukte des PIPKIy-p90-spezifischen Spliceinserts (641PTDERSWVYSP651, 641PTDERSWVYSPLH653, 645RSWVYSPLH653, 654YSAQAPPASDGES666 und 641PTDERSWVYSPLHYSAQAPPASDGESDT668) wurden mit gereinigtem His₆-β2-Ohr inkubiert. Gebundenes β2-Ohr wurde mittels Immunblotting unter Verwendung His₆-spezifischer Antikörper detektiert. Std, 10 % des insgesamt im Assay verwendeten His₆-Fusionsproteins. Unten: Ponceau S gefärbte Membran mit Markierung der GST- und His₆-Fusionsproteine auf der rechten Seite. (B) Die bereits beschriebenen Konstrukte des PIPKIY-p90-spezifischen Spliceinserts wurden mit gereinigtem His₆-C-µ2 inkubiert. Gebundenes C-µ2 wurde mittels Immunblotting unter Verwendung von His₆-spezifischen Antikörpern detektiert. Std, 10 % des insgesamt im Assay verwendeten His6-C-µ2. Unten: Ponceau S gefärbte Membran mit Markierung der GST-Fusionsproteine auf der rechten Seite. (C) Inkubation verschiedener Konstrukte des PIPKIy-p90-Spliceinserts mit gereinigtem His₆-Talin-FERM. Gebundene Talin-FERM-Domäne wurde mittels Immunblotting unter Verwendung His₆-spezifischer Antikörper detektiert. Std, 10 % des insgesamt im Assay verwendeten His₆-Talin-FERM. Unten: Ponceau S gefärbte Membran mit Markierung von GST- und His₆-Fusionsproteine auf der rechten Seite.

Ausgehend von den Ergebnissen der durchgeführten Affinitätschromatographien mit nativen und rekombinanten Bindungspartnern wurde das 13 Aminosäuren umfassende Peptid 641PTDERSWVYSPLH653 als Minimalsequenz identifiziert und fand zunächst Anwendung in Kokristallisationsexperimenten. Alle gezeigten Kokristallisationsexperimente sind in Kooperation mit Dr. Ardeshir Vahedi-Faridi (AG Saenger) durchgeführt wurden.

3.3 Kristallstruktur der AP-2-β2-Ohr-Domäne im Komplex mit dem Minimal-Peptid PTDERSWVYSPLH aus dem PIPKIγ-p90-C-Terminus

Die minimale Aminosäuresequenz PTDERSWVYSPLH aus dem p90-spezifischen Spliceinsert des PIPKI γ -p90-C-Terminus wurde synthetisiert und für ein Kokristallisationsexperiment mit rekombinanter β 2-Ohr-Domäne unter bekannten Kristallisationsbedingungen eingesetzt (Edeling *et al.*, 2006a). Die Kokristallisation war erfolgreich und der Kristall von Peptid und β 2-Ohr erreichte eine maximale Auflösung von 1,6 Å, wobei die Elektronendichten der Aminosäuren PTDE in der Kristallstruktur nicht zu erkennen waren.

Abb. 3.7 Darstellung der räumlichen Anordnung des aus PIPKIγ-p90 abgeleiteten Minimalpeptids PTDERSWVYSPLH an der *side site* der β2-Ohr-Sandwich-Subdomäne

(A) Vereinfachte, atomare Struktur des PIPKI γ -p90-Peptids (blau) im Komplex mit der β 2-Ohr-Domäne (grau). Das Peptid bindet an die *side site* der β 2-Ohr-Sandwich-Subdomäne (B) Darstellung der räumlichen Anordnung des PIPKI γ -p90-Peptids (blau) auf der β 2-Ohr-Oberfläche, das über einen großen Bereich der Sandwich-Subdomäne interagiert. W647 lokalisiert in eine flache Bindungstasche.

Der Darstellung in Abbildung 3.7A ist zu entnehmen, dass das PIPKI γ -p90-Peptid PTDERSWVYSPLH an die *side site* der Sandwich-Subdomäne des AP-2- β 2-Ohrs bindet. Die Position, die das PIPKI γ -p90-Peptid auf der β 2-Ohr-Oberfläche einnimmt, ist ähnlich zu der des mit β 2-Ohr kokristallisierten Peptids SFGDGFADFSTL, das aus dem Eps15-C-Terminus stammt (Schmid *et al.*, 2006). Eine Überlagerung beider Kokristalle ist in Abbildung 3.9A dargestellt. Die Interaktionsfläche des PIPKI γ -p90-Peptids erstreckt sich über einen ausgedehnten Bereich der β 2-Ohr-

Ergebnisse

Sandwich-Subdomäne. Die Aminosäure W647 von PIPKIy-p90 lokalisiert in eine flache Bindungstasche, die durch K808, A754 sowie Q756 des β 2-Ohrs geformt wird (Abb. 3.7B und 3.8). Weitere, wichtige Kontakte involvieren die Aminosäuren Y649 und S650 sowie weitere Wasserstoffbrückenbindungen, die an der Stabilisierung des Peptids beteiligt sind. Für die Aminosäuren Y649 und S650 ist zudem bekannt, dass sie Substrate verschiedener Proteinkinasen sind (Lee et al., 2005; Ling et al., 2003). Die stimulationsabhängige Phosphorylierung von S650 durch Cdk5 unterbricht die Bindung von PIPKIy-p90 an die β2-Ohr-Domäne (Nakoano-Kobayashi et al., 2007). Die Daten des Kokristalls von β2-Ohr im Komplex mit dem PIPKIy-p90-Peptid PTDERSWVYSPLH offenbaren den Grund: S650-OH ist in die Ausbildung von Wasserstoffbrückenbindungen mit dem Peptid-Rückgrat von F753 und L770 involviert, die durch eine Phosphorylierung des Serins unterbunden werden (siehe Abb. 3.8).

Abb. 3.8 Die Aminosäuren K808, Q756 und A754 des AP-2-β-Ohres formen eine Bindungstasche, in die W647 des PIPKIγ-p90-Peptids lokalisiert

Vergrößerte Darstellung direkter, molekularer Kontakte (rot) zwischen dem PIPKI γ -p90-Peptid PTDERSWVYSPLH (blau) und der β 2-Ohr-Sandwich-Domäne (grau). W647 bindet in eine Tasche, geformt durch K808, Q756 und A754 der β 2-Ohr-Domäne. Über die gesamte Peptidsequenz werden Wasserstoffbrückenbindungen, ähnlich denen von β -Faltblättern, ausgebildet.

Das bereits erwähnte Eps15-Peptid formt eine enge Windung, deren räumliche Anordnung stark von der Position des zentralen Glycinrestes G₅ geprägt ist (vergleiche Abb. 3.9A und B). Wichtige Aminosäuren des Eps15-Peptids SFGDGFADFSTL, welche in die Wechselwirkung mit dem β 2-Ohr involviert sind, stellen die drei Phenylalanine F₂, F₆ und F₉ dar, die in korrespondierende Bindungstaschen des β 2-Ohrs lokalisieren. Die Überlagerung beider Kokristalle zeigt, dass W647 des PIPKI γ -p90-Peptids und der Phenylalaninrest F₉ des Eps15-Peptids dieselbe Bindungstasche auf der β 2-Ohr-Oberfläche besetzen (vgl. Abb. 3.9A und C). Die Bindungstasche, welche der Phenylalaninrest F₂ des Eps15-Peptids in Anspruch nimmt, befindet sich im unmittelbaren Bereich der

Bindungsoberfläche des PIPKIγ-p90-Peptids, wird jedoch durch keinen Aminosäurerest des Kinase-Peptids besetzt (vergleiche Abb. 3.9A, B und D).

Abb. 3.9 Die Interaktion des aus dem PIPKIγ-p90-C-Terminus abgeleiteten minimalen Peptids PTDERSWVYSPLH und des Eps15-Peptids SFGDGFADFSTL mit der AP-2-β2-Ohr-Domäne wird über einen ähnlichen Oberflächenbereich vermittelt

(A) Darstellung der räumlichen Anordnung des PIPKI γ -p90-Peptids (blau) und des kürzlich charakterisierten Eps15-Peptids (gelb) auf der β 2-Ohr-Oberfläche. (B) Vergrößerte, isolierte Darstellung einer Überlagerung des lang gestreckten PIPKI γ -p90-Peptids (blau) mit dem Eps15-Peptid (gelb), das eine enge Windung formt. (C) Vergrößerte Darstellung der Oberfläche der β 2-Ohrs-Sandwich-Subdomäne einschließlich der Bindungstasche, die durch Eps15 Phenylalanin F₉ und W647 des PIPKI γ -p90-Peptids in Anspruch genommen wird. (D) Vergrößerung der zweiten Bindungstasche, in die der Phenylalaninrest F₂ des Eps15-Peptids lokalisiert.

Die Distanz zwischen Phenylalaninen F_2 und F_9 des Eps15-Peptids beträgt sechs Aminosäuren. Ein Vergleich der Aminosäuresequenzen des PIPKI γ -p90-C-Terminus und der AP-2-Bindungssequenz von Eps15 führt zur Identifizierung eines zu F_2 homologen Phenylalaninrestes (F640) im PIPKI γ -p90-C-Terminus (siehe Abb. 3.10).

Eps15	N	Е	S	F ₂	G	D	G	F ₆	Α	D	F ₉	S	т	L	S	S	ĸ	v	N	N	Е	D
ΡΙΡΚΙγ-ρ90	D	Ι	Y	F 64	P	Т	D	Е	R	S	W 64	V 7	Y	S	Ρ	L	H	Y	S	A	Q	Α

Abb. 3.10 Vergleich der Aminosäuresequenzen der beiden Peptide aus dem Eps15- und PIPKIγ-p90-C-Terminus

Vergleich der Aminosäuresequenzen des Eps15-Peptids (gelb) und des aus dem PIPKIγ-90-spezifischen Spliceinsert stammenden Peptids (türkis). Die drei Phenylalaninreste des Eps15-Peptids sind in Rot gekennzeichnet. Phenylalanin F2 und F9 befindet sich in einem Abstand von sechs Aminosäuren zueinander. Eine Distanz, die für die beiden hydrophoben Aminosäuren F640 (rot) und W647 (rot) im PIPKIγ-90-C-Terminus ebenfalls zutrifft. Die beiden Aminosäuren Y639 und F640, um die das PIPKIγ-90 Peptid verlängert wurde, sind grau unterlegt.

Die hydrophobe Aminosäure F640 befindet in einem Abstand von sechs Aminosäuren zu W647. Phenylalanin 640 liegt außerhalb des p90-spezifischen Spliceinserts und erschien aufgrund seines Abstandes zu W647 als ein optimaler Kandidat für die Besetzung der Bindungstasche, in die Phenylalanin F_2 des Eps15-Peptids lokalisiert. Der Sequenzvergleich hatte zur Folge, dass ein weiteres PIPKI γ -p90-Peptid, verlängert um die Aminosäuren 639YF640 synthetisiert, und in einem neuen Kokristallisationsexperiment eingesetzt wurde. Dieses Peptid wird im Weiteren als YFPTDERSWVYSPLH-Peptid bezeichnet.

3.4 Phenylalanin 640 ist als weitere Bindungsdeterminante in die Komplexbildung von PIPKI γ -p90 mit AP-2- β 2-Ohr involviert

Die Kokristallisation von AP-2- β 2-Ohr mit dem YFPTDERSWVYSPLH-Peptid aus dem PIPKI γ -p90-C-Terminus unter bekannten Kristallisationsbedingungen war abermals erfolgreich und der neue Kokristall erreichte eine Auflösung von 1,83 Å. In diesem Komplex waren die Elektronendichten aller Aminosäuren des von PIPKI γ -p90 abgeleiteten YFPTDERSWVYSPLH-Peptids sichtbar. Der zweite Kokristall zeigt, dass F640 als weitere Bindungsdeterminante den Kontakt des PIPKI γ -p90-C-Terminus zum β 2-Ohr vermittelt. Diese zusätzliche Kontaktstelle ist in der vorhergesagten Position zu finden und geht hydrophobe Wechselwirkungen mit den umgebenden Aminosäuren A806, Y815, Q804 und N758 ein (siehe Abb. 3.11).

Abb. 3.11 Kristallstruktur der $\beta 2$ -Ohr-Domäne im Komplex mit dem PIPKI γ -p90-Peptid YFPTDERSWVYSPLH

(A) Darstellung der Bindung des PIPKI γ -p90-Peptids YFPTDERSWVYSPLH (blau) auf der β 2-Ohr-Oberfläche mit einer Überlagerung des Eps15-Peptids (gelb). (B) Vergrößerte Darstellung direkter, molekularer Kontakte (rot) zwischen dem PIPKI γ -p90-Peptid (blau) und der β 2-Ohr-Sandwich-Subdomäne (grau). F640 lokalisiert in eine hydrophobe Tasche (Kalotten) geformt durch die β 2-Ohr Aminosäuren A806, Y815, Q804 und N758. Die molekularen Kontakte zwischen dem PIPKI γ -p90-Peptid und den Aminosäuren des β 2-Ohrs sind in Rot dargestellt.

Neben der partiellen Überlappung des Eps15- und des PIPKIγ-p90-Peptids in ihrer Assoziation mit der β 2-Ohr-Oberfläche bestehen drei wesentliche Unterschiede zwischen den Peptid- β 2-Ohr-Komplexen. So beansprucht das langgestreckte PIPKIy-p90-Peptid YFPTDERSWVYSPLH einen ungemein größeren Anteil der β2-Ohr-Oberfläche als das kürzere Eps15-Peptid SFGDGFADFSTL (773,7 Å gegen 395.2 Å (siehe Anhang Tabelle F.4 und Tabelle F.5). Es bestehen jedoch noch weitere Abweichungen in den Bindungscharakteristika beider Peptide. Phenylalanin F6 des Eps15-Peptids ist im PIPKIy-p90-Peptid durch E644 ersetzt (vgl. Abb. 3.10), wodurch ein hydrophober Kontakt mit V813 verloren E644 wiederum der β2-Ohr-Domäne geht. interagiert durch eine Wasserstoffbrückenbindung mit K808. Ein weiterer Unterschied ist ein Serin (S650) anstelle von Aspartat D_8 im Eps15-Peptid. Die Carbonylgruppe der Aspartat D_8 Seitenkette bildet eine Wasserstoffbrückenbindung mit Y815 aus, wohingegen S650 mit L770 und F753 über Wasserstoffbrückenbindungen interagiert.

3.5 Mutationsanalyen bestätigen die strukturellen Daten der Komplexbildung des PIPKIγ-p90 abgeleiteten Peptids YFPTDERSWVYSPLH mit AP-2-β2-Ohr

Aus der proteinkristallographischen Analyse des β 2-Ohrs im Komplex mit dem PIPKI γ -p90-Peptid YFPTDERSWVYSPLH ging hervor, dass die Aminosäuren Y815 und K808 in die Komplexbildung involviert sind (vgl. Abb. 3.11). Ihre Bedeutung für die Interaktion des β 2-Ohrs mit PIPKI γ -p90 wurde in anschließenden Bindungsexperimenten genauer untersucht. Native, endogene PIPKI γ aus Rattenhirnsynaptosomenextrakt wurden unter Verwendung verschiedener AP-2- β 2-Ohr-Konstrukte affinitätsgereinigt. Das Ergebnis belegt, dass der Austausch von Y815 und K808 gegen die Aminosäure Alanin einen vollständigen Bindungsverlust zur Folge hat, und bestätigt die Bedeutung beider Aminosäuren für die Komplexformation von β 2-Ohr und PIPKI γ -p90 (siehe Abb. 3.12A).

Abb. 3.12 Bestätigung der strukturellen Daten durch Mutation essentieller Aminosäuren, die in die Bindung der β2-Ohr-Domäne mit dem PIPKIγ-p90-C-Terminus involviert sind

(A) Affinitätsreinigung nativer, endogener PIPKIy aus Rattenhirnsynaptosomenextrakt unter Verwendung verschiedener GST-β2-Ohr-Konstrukte. Aliquots Rattenhirnsynaptosomenextrakts des und des affinitätsgereinigten Materials wurden durch Immunblotting und der Verwendung von Antikörpern gegen PIPKIy Aktin als Kontrolle analysiert. Std, 7,5 % des insgesamt im Assay eingesetzten und Rattenhirnsynaptosomenextraktes. Unten: Ponceau S gefärbte Membran mit Markierung der GST-Fusionsproteine auf der rechten Membranseite. (B) GST-PIPKIy-p90 (Aminosäure 451-668) WT oder mutierte Varianten wurden mit His₆-Talin-FERM oder His₆- β 2-Ohr inkubiert. Gebundenes Talin-FERM oder β 2-Ohr wurden durch Immunblotting und der Verwendung von His6-Antikörpern analysiert. Std, 50 % (Talin-FERM) oder 10 % (B2-Ohr) des insgesamt im Assay eingesetzten His₆-Fusionsproteins.

Umgekehrt verursachte die Mutation kritischer, an der Bindung zur β 2-Ohr-Domäne beteiligter Aminosäuren des PIPKI γ -p90-C-Terminus, namentlich F640, W647 oder Y647 in Kombination mit L652 gegen Alanin bzw. Phenylalanin, einen Verlust der Interaktion mit rekombinanter, gereinigter β 2-Ohr-Domäne (vgl. Abb. 3.12B) und belegt ihre Funktion in der Interaktion mit der AP-2- β 2-Ohr-Domäne. Zusätzlich zu dem Einfluss der unterschiedlichen PIPKIy-p90-C-Terminus-Mutanten auf die Interaktion mit AP-2-β2-Ohr wurde ihr Effekt auf die Bindung der Talin-FERM-Domäne analysiert (siehe Abb. 3.12B). Den Erwartungen entsprechend, konnte nach dem Austausch von W647 zu Alanin keine Bindung der Talin-FERM-Domäne detektiert werden (Di Paolo et al., 2002; Morgan et al., 2004). Die Mutation F640A hingegen hatte keinen, Y647A in Kombination mit L652A nur einen geringen, negativen Einfluss auf die Interaktion mit Talin-FERM. Überraschend war hingegen, dass die Mutation des Tryptophans 647 zu Phenylalanin (W647F) die Interaktion mit Talin-FERM nur leicht einschränkte und somit das Ergebnis von Di Paolo und Mitarbeitern (2002) nicht bestätigte. Die Strukturdaten des kristallisierten Komplexes von AP-2-β2-Ohr mit PIPKIγ-p90 YFPTDERSWVYSPLH konnten mittels der durchgeführten Mutationsanalysen verifiziert werden. Weiterhin weisen die Versuchergebnisse darauf hin, dass die Bindungsstellen der Talin-FERM-Domäne und des β 2-Ohrs im PIPKI γ -p90-C-Terminus teilweise überlappen.

3.6 Kristallstruktur von AP-2-C-μ2 im Komplex mit dem Peptid SWVYSPLH aus dem p90-spezifischen Spliceinsert der PIPKIγ

Zu Charakterisierung der molekularen Basis der Interaktion von AP-2 μ mit dem PIPKI γ -p90-C-Terminus wurde ein sieben Aminosäuren langes Peptid, SWVYSPLH, korrespondierend zu der Primärsequenz Aminosäure 646-652 von PIPKI γ -p90, synthetisiert und für Kokristallisationsexperimente mit gereinigtem C- μ 2 unter bekannten Kristallisationsbedingungen (Kittler *et al.*, 2008) verwendet. Der Kristall zeigte eine maximale Auflösung von 2,6 Å, die Elektronendichten aller Aminosäuren des PIPKI γ -p90-Peptids SWVYSPLH waren in der Kristallstruktur zu erkennen.

Abb. 3.13 Kristallstruktur von AP-2-C-μ2 im Komplex mit dem PIPKIγ-p90-Peptid SWVYSPLH (A) Oberflächendarstellung von AP-2-C-μ2 mit dem PIPKIγ-p90-Peptid SWVYSPLH (blau), das langgestreckt über die bekannte YxxΦ-Motiv-Interaktionsfläche mit der AP-2-Untereinheit interagiert. (B) Vereinfachte, atomare Struktur der Interaktionsfläche des PIPKIγ-p90-Peptids (blau) im Komplex mit AP-2-C-μ2 (grau). W647 lokalisiert als dritte, spezifische Bindungsdeterminante in eine hydrophobe Bindungstasche (Kalotten), die von Glu-391, Gln-318 und Pro-393 der AP-2-Untereinheit μ2 geformt wird.

Das PIPKI γ -p90-Peptid SWVYSPLH interagiert mit C- μ 2 über einen ausgedehnten Bereich, der bekanntermaßen die Wechselwirkung mit Yxx Φ -Motiven (Owen *et al.*, 1998; 2001; Collins *et al.*, 2002) vermittelt (vergleiche Abb. 3.13). Die Bindung von SWVYSPLH an C- μ 2 erfolgt über einen *three-pin-plug* Mechanismus, der zum ersten Mal von Owen und Mitarbeitern 2001 im Fall der Interaktion von P-Selectin mit AP-2-C- μ 2 beschrieben wurde. Der *three-pin-plug* Mechanismus unterscheidet sich von *two-pin-plug* Mechanismus (Owen & Ewans, 1998) durch die Existenz einer zusätzlichen Bindungsdeterminante, die in die Interaktion mit C- μ 2 involviert ist. W647 stellt im PIPKI γ -p90-Peptid SWVYSPLH die dritte Kontaktstelle neben Y649 und L652 dar (siehe Abb. 3.13). Wichtige, in die Bindung von SWVYSPLH involvierte Aminosäuren von AP-2-C- μ 2 sind D176, W421 und R423 (siehe Abb. 3.14). Das verwendete PIPKI γ -p90-Peptid entspricht von den Abständen der hydrophoben Aminosäuren (WxYxx Φ) dem Peptid YGYECL, das aus dem zytoplasmatischen Bereich der γ 2-Untereinheit des GABA_A-Rezeptors stammt und ebenfalls über einen *three-pin-plug* Mechanismus an C-µ2 bindet (Kittler *et al.*, 2008). Im Kokristall von C-µ2 und dem Peptid YEYECL besetzt ein Tyrosinrest die hydrophobe Bindungstasche, geformt durch D391, Q318 und P393, die im SWVYSPLH-Peptid durch W647 in Anspruch genommen wird (vgl. Abb. 3.14B).

Abb. 3.14 Die Interaktion von AP-2-C-µ2 und dem PIPKIγ-p90-Peptid SWVYSPLH involviert W647 als zusätzlichen Peptidkontakt

(A), (B) Vergrößerte Darstellung der Interaktionsfläche des PIPKI γ -p90-Peptids SWVYSPLH (Aminosäure 646-653, blau) im Komplex mit AP-2-C- μ 2 (grau) mit einer Überlagerung (B) des kürzlich charakterisierten Peptids YGYECL (gelb), das dem zytoplasmatischen Bereich der γ 2-Untereinheit des GABA_A-Rezeptors zugehört. W647 lokalisiert in eine hydrophobe Tasche (Kalotten), geformt durch die AP-2 μ Aminosäuren D391, Q318 und P393. Dieselbe hydrophobe Tasche in AP-2 μ akkomodiert auch ein Tyrosin des vom GABA_A-Rezeptors abgeleiteten Peptids <u>Y</u>EYECL. Direkte, molekulare Kontakte zwischen dem PIPKI γ -p90-Peptid (blau) und AP-2 μ (grau) sind in Rot dargestellt.

Der Kokristall von C- μ 2 mit dem Peptid SWVYSPLH zeigte eindeutig, dass PIPKI γ -p90 über ein Yxx Φ -Motiv im p90-spezifischen Spliceinsert mit AP-2 μ in Wechselwirkung treten kann.

3.7 Die Interaktion von PIPKIγ-p90 und AP-2 involviert verschiedene Interaktionsflächen

Die Kristallstrukturen der AP-2-Domänen C-µ2 und β2-Ohr im Komplex mit Peptiden aus dem PIPKIy-p90-C-Terminus (vgl. Abb. 3.11 und Abb. 3.13) zeigen anschaulich, dass über den PIPKIyp90-C-Terminus eine Interaktion mit beiden AP-2-Domänen vermittelt werden kann. Die bereits identifizierten Interaktionsbereiche schließen jedoch die Existenz weiterer AP-2-Interaktionsflächen im **C**-Terminus der PIPKIy-p90 nicht aus. Daher wurden zur Identifizierung neuer Interaktionsbereiche Affinitätsreinigungen mit unterschiedlichen Mutanten-Konstrukten des PIPKIyp90-C-Terminus durchgeführt.

Zunächst wurde die Fähigkeit ausgewählter PIPKI γ -p90-C-Terminus-Mutanten untersucht, mit endogenen, nativen AP-2-Komplexen aus Rattenhirnextrakt zu interagieren (vgl. Abb. 3.15A). Ein Austausch von F640, involviert in die Interaktion mit AP-2- β 2-Ohr zu Alanin, hatte in Kombination mit Y649A, beteiligt an der Bindung beider AP-2-Domänen, eine Schwächung der Wechselwirkung mit endogenem AP-2 zur Folge. In zwei weiteren Mutanten wurde W647, eine Aminosäure, die ebenfalls eine essentielle Rolle in der Interaktion mit beiden AP-2-Domänen einnimmt, gegen Alanin ausgetauscht und in Verbindung mit Y649A und Y649A/L652A verwendet. Auch diese PIPKI γ -p90 Mutanten zeigten eine verminderte Bindungsfähigkeit, hatten jedoch keinen vollständigen Verlust der Wechselwirkung mit AP-2 zur Folge. Demnach ist AP-2 fähig, weiterhin mit dem PIPKI γ -p90-C-Terminus zu interagieren, auch wenn alle essentiellen Aminosäuren, die an der Bindung an C- μ 2 bzw. die β 2-Ohr-Domäne beteiligt sind, gegen Alanin ausgetauscht wurden.

Dieselben PIPKI γ -p90-C-Terminus-Konstrukte wurden zur Affinitätsreinigung rekombinant hergestellter AP-2-Domänen (C- μ 2 und β 2-Ohr) sowie Talin-FERM eingesetzt (vgl. Abb. 3.15 B bis D). Das Experiment zeigte, dass der Austausch kritischer, an der Bindung beteiligter Aminosäuren, die Interaktion mit C- μ 2 reduzierte, aber nicht komplett disruptierte (siehe Abb. 3.15B). Im Fall von gereinigtem β 2-Ohr führte die Einführung von F640A/Y649A und W647A/Y649A auch in Kombination mit L652A zur vollständigen Eliminierung der Bindung an den PIPKI γ -p90-C-Terminus (vgl. Abb. 3.15C). Die Bindung der Talin-FERM-Domäne an den PIPKI γ -p90-C-Terminus wurde unterbrochen, wenn W647A in Kombination mit weiteren Mutationen zur Affinitätsreinigung eingesetzt wurde. Der Austausch von F640 zusammen mit Y649 gegen jeweils ein Alanin hatte keinen Einfluss auf die Assoziation mit Talin-FERM (siehe Abb. 3.15D).

Das Bindungsexperiment bestätigte, dass sich die Bindungsbereiche von β 2-Ohr und Talin-FERM überschneiden; ein Austausch der Aminosäuren F640 und W647 disruptiert die Interaktion des PIPKI γ -p90-C-Terminus mit dem AP-2- β 2-Ohr. Der Ersatz von W647 gegen Alanin im PIPKI γ -p90-C-Terminus führt zum Verlust der Fähigkeit mit Talin-FERM zu interagieren. Überraschend hingegen war, dass die Mutation von Aminosäuren, die bekannte Schlüsselpositionen in der Interaktion mit C- μ 2 einnehmen, keine vollständige Unterbrechung der Interaktion mit AP-2 μ zur Folge hatte.

Im Fall aller in diesem Experiment untersuchten PIPKIγ-p90-Konstrukte (Aminosäure 451-668) war eine Wechselwirkung mit AP-2μ möglich, auch wenn die Bindung an die PIPKIγ-p90-C-Termini zu gewissen Anteilen in Abhängigkeit von den Mutationen verringert war. Dieses Ergebnis erklärt die Fähigkeit nativer AP-2-Komplexe trotz Mutation wichtiger p90-Spliceinsert-spezifischer Aminosäuren an den PIPKIγ-p90-C-Terminus zu binden und deutet gleichzeitig auf die Existenz mindestens einer weiteren AP-2μ-Interaktionsfläche hin.

Abb. 3.15 Die Bindungsstellen für Talin und die AP-2-Domänen C- μ 2 und β 2-Ohr im PIPKI γ -p90-C-Terminus überlappen

(A) Affinitätsreinigung von nativen, endogenem AP-2 aus Rattenhirnextrakt unter Verwendung von GST-PIPKIy-p90 (Aminosäure 451-668) WT oder Mutanten. Aliquots des Rattenhirnextrakts und des affinitätsgereinigten Materials wurden durch Immunblotting und die Verwendung von Antikörpern gegen PIPKIy und Aktin als Kontrolle analysiert. Std, 5 % des insgesamt im Assay eingesetzten Rattenhirns. (B) GST-PIPKI γ -p90 (Aminosäure 451-668) WT und bereits verwendete Mutanten wurden mit gereinigtem His₆- β 2-Ohr inkubiert. Gebundene β 2-Ohr-Domäne wurde durch Immunblotting und die Verwendung von His₆-Antikörpern analysiert. Std, 10 % der insgesamt im Assay eingesetzten β2-Ohr-Domäne. Unten: Ponceau S gefärbte Membranen, Angabe molekularer Standardgewichte auf der linken und der GST-Fusionsproteine auf der rechten Membranseite. Durch Ponceau S Färbung kann gebundenes β 2-Ohr nicht visualisiert werden, da Degradationsprodukte der PIPKIy-p90-Konstrukte das His₆-Fusionsprotein überdecken. (C) GST-PIPKIy-p90 (Aminosäure 451-668) WT oder Mutanten wurden mit gereinigtem His₆-C-u2Aminosäure inkubiert. Gebundenes C-µ2 wurde durch Immunblotting und die Verwendung von His₆-Antikörpern analysiert. Std, 50 % des insgesamt im Assay eingesetzten His₆-Fusionsproteins. Unten: Ponceau S gefärbte Membranen, Angabe molekularer Standardgewichte auf der linken und der GST-Fusionsproteine auf der rechten Membranseite. (D) GST-PIPKIy-p90 (Aminosäure 451-668) WT oder Mutanten wurden mit gereinigter His₆-Talin-FERM-Domäne inkubiert. Gebundendes Talin wurde durch Immunblotting und die Verwendung von His₆-Antikörpern analysiert. Std, 50 % des insgesamt im Assay eingesetzten His₆-Fusionsproteins. Unten: Ponceau S gefärbte Membranen, Angabe molekularer Standardgewichte auf der linken und der GST-Fusionsproteine auf der rechten Membranseite.

Daher wurde die Primärsequenz des PIPKI γ -p90-C-Terminus auf weitere, potentielle AP-2-C- μ 2-Interaktionssignale untersucht. Tatsächlich konnte ein weiteres, putatives Yxx Φ -Motiv, gebildet von den Aminosäuren 497-500, identifiziert werden (siehe Abb. 3.16A).

Abb. 3.16 Der PIPKIγ-90-C-Terminus enthält ein zweites, proximales YxxΦ-Motiv

(A) Schematische Darstellung von PIPKIy-p90 mit beiden YxxA-Motiven, YSPL (proximal) und WVYSPL (distal) im C-Terminus. (B) Affinitätschromatographische Aufreinigung rekombinanter Bindungspartner mit GST-PIPKIy-p90 (Aminosäure 451-668) WT oder Mutanten-Konstrukten. Gebundenes His₆-C-µ2, His₆-Talin-FERM oder His₆-β2-Ohr wurde durch Immunblotting und der Verwendung von His₆-spezifischen Antikörper analysiert. Std, 50 % (Talin, C- μ 2) oder 10 % β 2-Ohr des insgesamt im Experiment eingesetzten His₆-Fusionsproteins. **(C)** Affinitätsreinigung von nativen, endogenen AP-2-Komplexen aus Rattenhirnsynaptosomenextrakt mit verschiedenen GST-PIPKIy-90-Konstrukten (Aminosäure 451-668), WT und Mutanten. Aliquots des Rattenhirnsynaptosomenextraktes sowie des affinitätsgereinigtem Materials wurden durch Immunblotting und der Verwendung von AP-2-, Talin- und Aktin-Antikörpern analysiert. Std, 10 % des insgesamt im Experiment eingesetzten Rattenhirnsynaptosomenextraktes.

Um den Einfluss dieses zweiten, proximalen $Yxx\Phi$ -Motivs im PIPKI γ -p90-C-Terminus auf die Bindung an AP-2 μ zu untersuchen, wurden Y497/L500 allein sowie in Kombination mit W647, Y649 sowie L652 des distalen Sortiermotivs gegen Alanin ausgetauscht und die neuen PIPKI γ -p90-Konstrukte zur Affinitätsreinigung der rekombinanten Bindungspartner C- μ 2, β 2-Ohr-Domäne sowie Talin-FERM eingesetzt. In Abbildung 3.16B ist dargestellt, dass die Mutation von Y497A und L500A allein keinen Einfluss auf die Interaktion aller verwendeten His₆-Fusionsproteine hat. Y497A/L500A in Verbindung mit W647A/Y649A/L652A, Schlüsselaminosäuren für die Interaktion aller drei Bindungspartner, eliminierte nicht nur - wie erwartet - die Bindung von β 2-Ohr und Talin-FERM, sondern auch von C- μ 2. Auch native, endogene AP-2-Komplexe aus Rattenhirnsynaptosomenextrakt verloren durch den Austausch von Y497, L500, W647, Y649 und L652 zu Alanin bis auf das Niveau von Hintergrundbindung ihre Fähigkeit mit dem PIPKI γ -p90-C-Terminus zu interagieren (vergleiche Abb. 3.16C). Wurden nur die Aminosäuren F640, W647, Y649 und L652, allein oder in Kombination mutiert, so war weiterhin eine Detektion von gebundenem, endogenem AP-2 möglich, wenn auch mit unterschiedlich starkem Effekt in Abhängigkeit von den ausgetauschten Aminosäuren. Den Erwartungen entsprechend, konnte keine Wechselwirkung von endogenem Talin mit dem $\mu 2\beta 2$ (Y497/L500/W647/Y649/L652)-bindungsdefizienten PIPKI γ -p90-C-Terminus detektiert werden (siehe Abb. 3.16C). Auch alle anderen Konstrukte, denen ein zu Alanin verändertes W647 gemeinsam ist, waren unfähig, eine Bindung mit Talin einzugehen und bestätigen somit vorangegangene Experimente (vergleiche Abb. 3.12 und Abb. 3.15). Die Mutationen F640A und Y497A/L500A haben hingegen keine Auswirkungen auf die Talin-Wechselwirkung.

Nach den Ergebnissen der durchgeführten Mutations- und Bindungsexperimente involviert die Assoziation des PIPKIγ-p90-C-Terminus mit AP-2μ zwei YxxΦ-Internalisierungsmotive, ein proximales YPTL (Aminosäure 497-500) und ein distales WVYSPL-Peptid (Aminosäure 647-652). Eine Dysfunktion des proximalen YPTL-Motivs durch den Austausch von Y497 und L500 gegen Alanin hat keine offensichtlichen Auswirkungen auf die Interaktion von AP-2μ mit dem PIPKIγ-p90-C-Terminus, wohingegen die Mutation der Schlüsselaminosäuren W647, Y649 und L652 des distalen WVYSPL-Motivs zu einer sichtlichen Reduktion der AP-2μ-Bindung führt.

3.8 Quantitative Bestimmung der Dissoziationskonstanten für die Interaktion von aus dem PIPKIγ-p90-C-Terminus abgeleiteten Peptiden mit den AP-2-Domänen C-µ2 und β2-Ohr

Um weitere Einblicke in die Interaktion der PIPKI γ -p90 mit den AP-2-Domänen C- μ 2 und β 2-Ohr zu gewinnen, wurden Dissoziationskonstanten quantitativ mittels isothermaler Titrationskalorimetrie (ITC) in Kooperation mit Georg Krainer (AG Keller) bestimmt. Für die ITC-Messungen wurden synthetische WT- und β 2-Ohr (F640A)-bindungsdefiziente PIPKI γ -p90-Peptide (Aminosäure 639-652) sowie rekombinantes C- μ 2 und β 2-Ohr verwendet. Die PIPKI γ -p90-Peptide hatten eine zusätzliche Penetratin-Sequenz (RRMKWKK) (siehe Abb. 3.17A), um sie später auch in Zellexperimenten einsetzen zu können (siehe Abschnitt 3.11 und 3.12).

Die ITC-Messungen ergaben einen K_D -Wert von 9 µM für die Wechselwirkung des WT-PIPKIγ-p90-Peptids mit AP-2-C-µ2. Für die Interaktion von β2-Ohr mit demselben Peptid wurde eine Dissoziationskonstante von 157 µM bestimmt (vergleiche Abb. 3.17 B bis E). Die ins Peptid eingeführte Mutation F640A hatte eine deutliche Auswirkung auf die Wechselwirkung mit der β2-Ohr-Domäne, die sich in einer Erhöhung des K_D -Werts von 157 µM auf 746 µM widerspiegelte und die kritische Rolle des Phenylalanins 640 für diese Interaktion bestätigte (vergleiche Abb. 3.11 und Abb. 3.12). Der Austausch von F640 gegen Alanin hatte nahezu keinen Einfluss auf die Bindung zu C-µ2 mit einem K_D -Wert von 11 µM (siehe Abb. 3.17 B bis E).

Mit einem Wert von 9 μ M ist die Interaktion des WT-PIPKI γ -p90-Peptids mit AP-2-C- μ 2 thermodynamisch gegenüber dem β 2-Ohr mit 157 μ M begünstigt und die Inaktivierung der β 2-Ohr-Bindungsstelle im PIPKI γ -p90 abgeleiteten Peptid RRMKWKK-YAPTDRRSWVYSPLH hatte wie erwartet einen dramatischen Effekt auf die Interaktion mit AP-2- β 2-Ohr-Domäne (746 μ M) (vergleiche Abb. 3.17).

Die Dissoziationskonstante des PIPKI γ -p90-Peptids ist mit 9 μ M im Vergleich zu den 42,2 nM der Assoziation des YEYECL-Peptids aus der γ 2-Untereinheit des GABA_A-Rezeptors (Kittler *et al.*, 2008), das ebenfalls über einen *three-pin-plug* Mechanismus mit AP2-C- μ 2 interagiert, deutlich höher. Auch der *K*_D-Wert des TGN38 Yxx Φ -Motivs, das über einen *two-pin-plug* Mechanismus an phosphorylierten AP-2-Rumpf bindet, das eher den Bedingungen in der Zelle entspricht, liegt mit 72 nM ebenfalls deutlich unterhalb der 9 μ M für das PIPKI γ -p90-Peptid (Höning *et al.*, 2005).

Abb. 3.17 Quantitative Bestimmung von Dissoziationskonstanten für die Interaktion von Penetratin-PIPKIγ-p90-Peptiden mit den AP-2-Domänen C-µ2 und β2-Ohr

(A) Schematische Darstellung der verwendeten, synthetischen Peptide aus dem C-Terminus von PIPKI γ -p90. Die Peptide verfügen N-terminal über ein zusätzliches Penetratin-Peptid RRMKWKK (grün). Die Mutation des β 2-Ohr (F640A)-bindungsdefizienten PIPKI γ -p90-Peptids ist in Rot eingezeichnet. (B)-(C) Heizleistung Δp aufgetragen gegen die Zeit (*t*). Die einzelnen Datenpunkte ergeben sich aus der Injektion der synthetischen PIPKI γ -p90-Peptide zur β 2-Ohr-Domäne (B) und C- μ 2 (158-435) (C). Die ITC-Messungen wurden bei 25°C durchgeführt. (D), (E) Integrierte, normalisierte und um die Verdünnungswärme korrigierte Reaktionswärme (*Q*) aufgetragen gegen die molaren Protein/Peptid-Verhältnisse (*R*). Die Reaktionswärmen, die aus der Injektion des Peptids zu β 2-Ohr (Kreise) oder C- μ 2 (Quadrate) resultierten, wurden an ein "one-set-of-sites" Model angepasst und die Dissoziationskonstanten (*K*_D) mittels linearer Regression berechnet.

Ergebnisse

Eine mögliche Erklärung für diese vergleichsweise niedrigaffinen Wechselwirkungen könnte die Gegenwart der Penetratin-Sequenz innerhalb des verwendeten Peptids darstellen. Um diese Möglichkeit zu untersuchen, wurden die quantitativen Bestimmungen der Dissoziationskonstanten durch ITC mit einem WT-PIPKI γ -p90-Peptid ohne das stark basische Penetratin (vergleiche Abb. 3.18A) wiederholt. Daraus resultierte ein K_D -Wert von 6 μ M für die Interaktion mit C- μ 2 bzw. 22 μ M für das β 2-Ohr (siehe Abb. 3.18B und C).

Abb. 3.18 Quantitative Bestimmung der Dissoziationskonstanten der Interaktion des WT-PIPKIγ-p90-Peptids YFPTDERSWVYSPLH ohne Penetratin mit den AP-2-Domänen C-µ2 und β2-Ohr

(A) Schematische Darstellung des verwendeten synthetischen PIPKI γ -p90-Peptids YFPTDERSWVYSPLH aus dem C-Terminus der Kinase. (B) Auftragung der Heizleistung (Δp) gegen die Zeit (t). Die einzelnen Datenpunkte resultieren aus der Injektion des synthetischen PIPKI γ -p90-Peptids zu β 2-Ohr und C- μ 2. Die ITC-Messungen wurden bei 25°C durchgeführt. (C) Die integrierte, normalisierte und um Verdünnungswärme korrigierte Reaktionswärme (Q) wurde gegen die molaren Protein/Peptid-Verhältnisse (R) aufgetragen. Die Reaktionswärmen, die aus der Injektion des Peptids zur β 2-Ohr Domäne (Kreise) oder C- μ 2 (Quadrate) resultierten, wurden an ein "one-set-of-sites"-Modell angepasst und die Dissoziationskonstanten (K_D) mittels linearer Regression berechnet.

Die Verwendung des WT-PIPKI γ -p90-Peptids in Abwesenheit der Penetratin-Sequenz zeigte, dass die zusätzlichen basischen Aminosäuren der im ersten Versuch verwendeten Peptide, die Interaktion des Peptids mit den AP-2-Domänen, insbesondere mit der β 2-Ohr-Domäne, negativ beeinflussten (vergleiche Abb. 3.17 und Abb. 3.18). Diese relativ geringe Auswirkung des Penetratins auf die Wechselwirkung des PIPKI γ -p90-Peptids mit C- μ 2 bestätigt den niedrigaffinen K_D -Wert dieser Interaktion.
Die ermittelten K_D -Werte weisen darauf hin, dass zumindest *in vitro* die Interaktion des PIPKI γ -p90-C-Terminus mit AP-2-C- μ 2 gegenüber dem β 2-Ohr thermodynamisch bevorzugt ist.

3.9 Der Einfluss unterschiedlicher Interaktionsflächen auf die Komplexbildung von PIPKIγ-p90 mit dem Adaptorkomplex-2

Die Daten der Kristallstrukturen sowie anschließende Mutationsanalysen zeigten, dass der AP-2-Komplex sowohl über das \beta2-Ohr als auch über C-\mu2 mit dem C-Terminus der PIPKI\u03c4-p90 interagieren kann. Die Interaktionsflächen der beiden AP-2-Domänen im PIPKIy-p90-C-Terminus sind überlappend und *in vitro* wird AP-2-C- μ 2 (6 μ M) der β 2-Ohr-Domäne (22 μ M) thermodynamisch bevorzugt. Es gab jedoch keine Daten bezüglich des Einflusses unterschiedlicher Mutationen im C-Terminus der PIPKIy-p90 im Volllängen-Kontext auf die Komplexbildung mit AP-2. Daher wurde zunächst eine Affinitätsreinigung von unterschiedlichen HA-PIPKIy-p90-Konstrukten aus transient transfizierten Cos7-Zellen mit GST- β 2-Ohr und C- μ 2 durchgeführt (siehe Abb. 3.19). In den untersuchten PIPKIy-p90-Konstrukten waren Aminosäuren mutiert, welche an der Bindung von β2-Ohr (F640A; Δβ2-Bindungsstelle) und C-µ2 (Y497A/L500A/W647A/Y649A/L652A, Δβ2µ2-Bindungsstellen) des AP-2-Komplexes beteiligt sind (siehe Abb. 3.19A). Eine Inaktivierung der β 2-Ohr-Bindungsstelle innerhalb des PIPKIγ-p90-C-Terminus (F640A, Δβ2-Bindungsstelle) hatte den Verlust der Bindung an GST- β 2-Ohr zur Folge, die Interaktion mit GST-C-2 μ war nicht beeinflusst (vergleiche Abb. 3.19B und C). Wurden das proximale und das distale Yxxø-Motiv einschließlich der β2-Ohr Bindungstelle innerhalb des PIPKIγ-p90-C-Terminus durch Mutation ausgeschaltet (Y497A/L500A/W647A/Y649A/L652A; $\Delta\beta 2\mu 2$ -Bindungsstellen), konnte neben dem Bindungsverlust an das β2-Ohr eine Verringerung, jedoch kein Verlust der Wechselwirkung mit C-μ2 detektiert werden (siehe Abb. 3.19B und C).

Diese Ergebnisse weisen darauf hin, dass an der Komplexbildung zwischen PIPKI γ -p90 und AP-2 zumindest teilweise Bereiche außerhalb des C-Terminus beteiligt sind. Die Quantifizierung von zwei unabhängig durchgeführten Experimenten veranschaulicht neben den beschriebenen Folgen der eingeführten Mutationen auf die AP-2-PIPKI γ -p90-Komplexbildung, dass die Bindung von PIPKI γ -p90 über AP-2-C- μ 2 mit ca. 16 % Bindung des eingesetzten Materials effizienter erfolgt als über das β 2-Ohr mit ca. 5 % (vergleiche Abb. 3.19C).

Abb. 3.19 Die Komplexbildung von PIPKI_γ-90 mit AP-2 involviert Interaktionsbereiche außerhalb des PIPKI_γ-90-C-Terminus

(A) Darstellung der verwendeten PIPKI γ -p90-Konstrukte WT, $\Delta\beta$ 2-Bindungsstelle (F640A) und $\Delta\beta$ 2 μ 2-Bindungsstellen (Y497A/L500A/W647A/Y649A/L652A). (B) Affinitätsreinigung von HA-PIPKI γ -p90-Varianten aus Lysaten transient transfizierter Cos7-Zellen unter Verwendung von GST, GST- β 2-Ohr und GST-C- μ 2. Aliquots der Zelllysate und des affinitätsgereinigten Materials wurden durch Immunblotting und der Verwendung von Antikörpern gegen HA und Aktin als Kontrolle analysiert. Std, 12 % der insgesamt im Assay eingesetzten Zelllysate. Unten: Ponceau S gefärbte Membranen, Angabe molekularer Standardgewichte auf der linken und Markierung der GST-Fusionsproteine auf der rechten Membranseite. (C) Quantifizierung der totalen Menge (% des insgesamt verwendeten Materials) an HA-PIPKI γ -p90-Varianten, die an GST-C- μ 2 (links) und GST- β 2-Ohr (rechts) affinitätsgereinigt wurden. Darstellung repräsentativer Daten unter (B). Zur Quantifizierung wurde ImageJ verwendet. Das Balkendiagramm zeigt Durchschnittswerte \pm der Standardabweichung (n = zwei unabhängige Experimente).

3.10 Selbstaktivierung der PIPKIγ-p90 im Komplex mit AP-2µ

Die Kristallstruktur von C- μ 2 im Komplex mit dem PIPKI γ -p90-Peptid SWVYSPLH zeigte, dass die Interaktion der beiden Proteine das distale WVYSPL-Motiv im Kinase-C-Terminus involviert. Darüber hinaus ist bekannt, dass die Aktivität der PIPKI γ -p90 durch ihre Bindung von AP-2 μ bei gleichzeitiger Bindung von Yxx Φ -haltigen Frachtproteinen stimuliert werden kann (Krauss *et al.*, 2006). Dies führte zu der Frage, ob eine Erhöhung der PIPKI γ -p90-vermittelten PI(4,5)P₂-Synthese durch das distale WVYSPL-Motiv möglich ist.

Abb. 3.20 Stimulation der PIPKI γ -p87-vermittelten PI(4,5)P₂-Synthese durch das distale WVYSPL-Motiv aus dem PIPKI γ -p90-C-Terminus

(A) Daten von zwei unabhängigen Experimenten wurden zur Quantifizierung der HA-PIPKI γ -p87-vermittelten [³²P]-PI(4,5)P₂-Synthese in An- oder Abwesenheit der dargestellten Peptide verwendet. Lysate HA-PIPKI γ -p87 stabil transfizierter Hek293Flp-In-Zellen wurden präpariert und in An- oder Abwesenheit von 3 μ M His₆-C- μ 2 und 100 μ M der dargestellten Peptide, PI(4)P und γ -[³²P]-ATP inkubiert. Das CT-Peptid (YFPTDERSWV<u>YSPLH</u>) stammt aus dem PIPKI γ -p90-C-Terminus und entspricht der Primärsequenz Aminosäure 639-652. Die Aminosäuresequenz des Yxx Φ -Peptids (F<u>Y</u>RALM) entstammt dem EGF-Rezeptor-C-Terminus und interagiert, im Gegensatz zum Axx Φ -Peptid (F<u>A</u>RALM), einer C- μ 2-bindungsdefizienten Variante des FYRALM-Peptids, ebenfalls mit C- μ 2. Die extrahierten Lipide wurden per Dünnschichtchromatographie separiert und die Menge an generiertem [³²P]-PI(4,5)P₂ quantitativ durch Phosphorimage Analyse analysiert. Das Balkendiagramm zeigt Durchschnittswerte ± Standardabweichung (n = zwei unabhängige Experimente). Die Daten wurden auf die Menge an generiertem [³²P]-PI(4,5)P₂ in Abwesenheit von Peptiden normalisiert. (B) Affinitätsreinigung von HA-PIPKI γ -p87 aus den Lysaten stabil transfizierter Hek293Flp-In-Zellen über GST und GST-C- μ 2. Aliquots des Zelllysates und des affinitätsgereinigten Materials wurden durch Immunblotting und die Verwendung von Antikörpern gegen HA und Aktin als Kontrolle analysiert. Std, 10 % des insgesamt im Assay eingesetzten Zelllysates.

Diese Fragestellung wurde angegangen, indem der Effekt des distalen WVYSPL-Motivs aus dem p90spezifischen Spliceinsert auf die enzymatische Aktivität von PIPKIγ-p87 im Komplex mit AP-2µ untersucht wurde (siehe Abb. 3.20 und 3.21). PIPKIγ-p87 ist eine PIPKIγ-Splicevariante, der das p90-spezifische AP-2 μ/β 2-Ohr-bindende Spliceinsert und somit das distale WVYSPL-Motiv fehlt. Für das folgende Experiment wurden Zellextrakte HA-PIPKIγ-p87 überexpremierender, stabil transfizierter Hek293Flp-In-Zellen verwendet. Die enzymatische Aktivität der in diesen Lysaten enthaltenen PIPKIγ-p87 wurde dann in der Anwesenheit von C- μ 2 und Peptiden untersucht (vergleiche Abb. 3.20). Die Synthese von PI(4,5)P₂ im Zellextrakt konnte in Anwesenheit von C- μ 2 und dem CT-Peptid YFPTDERSWVYSPLH aus dem PIPKIγ-p90-C-Terminus stimuliert werden (vergleiche Abb. 3.20A).

Abb. 3.21 Das distale WVYSPL-Motiv aus dem PIPKIγ-p90-C-Terminus stimuliert PIPKIγ-p87 im Komplex mit AP-2-C-μ2

(A) Quantifizierung der PIPKIγ-p87-abhängigen PI(4,5)P₂-Synthese aus zwei unabhängigen Experimenten. Lysate HA-PIPKIγ-p87 stabil transfizierter Hek293Flp-In-Zellen wurden präpariert. HA-PIPKIγ-p87 wurde affinitätschromatographisch an GST-C-µ2 angereichert und in Hinblick auf seine Aktivität untersucht. GST fungierte als Negativkontrolle. Radioaktiv-markiertes PI(4,5)P₂, synthetisiert in An- oder Abwesenheit von Peptiden und den Substraten γ -[³²P]-ATP sowie PI(4)P, wurde mittels Dünnschichtchromatographie aufgetrennt und anschließend einer quantitativen Phosphorimage Analyse unterzogen. Die Daten repräsentieren Durchschnittswerte ± Standardabweichung. Die Daten wurden auf die Menge an [³²P]-PI(4,5)P₂ normalisiert, das durch PIPKIγ-p87, gebunden an GST-µ2, in Abwesenheit von Peptiden generiert wurde. (**B**) Aliquots des affinitätsgereinigten Materials wurden zur Überprüfung des Effekts der verwendeten Peptide auf die Stabilität des Komplexes von PIPKIγ-p87 und C-µ2 verwendet. Das affinitätsgereinigte Material wurde mit einsprechenden Peptidmengen für die Dauer des Kinaseassays inkubiert und anschließend intensiv gewaschen. Ein Aliquot des Materials wurde über eine SDS-PAGE aufgetrennt und durch Immunblotting und Verwendung Aktin- und HA-spezifischer Antikörper analysiert. Std, 10 % des insgesamt im Assay eingesetzten Zelllysates. Unten: Durch Ponceau S gefärbte Membran mit Angabe der molekularen Standardgrößen auf der linken und Markierung der GST-Fusionsproteine auf der rechten Seite.

Eine vergleichbare Stimulation der Kinaseaktivität von PIPKI γ -p87 konnte durch die Zugabe von His₆-C-µ2 und einem Yxx Φ -Peptid (F<u>Y</u>RA<u>L</u>M) aus EGF-Rezeptor-C-Terminus zu PIPKI γ -p87-haltigen Zellextrakten detektiert werden (vergleiche Abb. 3.20A). Wurde hingegen ein nichtfunktionales, mutiertes Axx Φ -Peptid, das zu einer Interaktion mit C-µ2 nicht fähig ist, verwendet, so konnte die PIPKI γ -p87-vermittelte PI(4,5)P₂-Synthese nicht potent gesteigert werden (vergleiche Abb. 3.20A). Der Nachweis von PIPKI γ -p87 im Extrakt erfolgte durch eine Affinitätsreinigung von HA-PIPKI γ -p87 aus dem verwendeten Zellextrakt mittels GST-C-µ2 (vergleiche Abb. 3.20B).

Ähnliche Ergebnisse für die Stimulation der PIPKI γ -p87-Kinaseaktivität konnten beobachtet werden, nachdem die kurze Splicevariante der PIPKI γ -Isoform mittels GST-C- μ 2 affinitätsgereinigt und für anschließende Kinaseaktivitätsassays eingesetzt wurde (siehe Abb. 3.21). Die Aktivität von PIPKI γ -p87 im Komplex mit GST-C- μ 2 konnte nur durch den Zusatz funktionaler Yxx Φ -Peptide aus den C-Terminus von PIPKI γ -p90 und dem EGF-Rezeptor (vergleiche Abb. 3.21A) erfolgreich stimuliert werden. Die PI(4,5)P₂-Synthese in Anwesenheit des mutierten Axx Φ -Peptids konnte hingegen wie schon bei der Verwendung von PIPKI γ -p87-haltigen Zellextrakten nicht gesteigert werden (vergleiche Abb. 3.20A und 3.21A). Zusätzlich wurde überprüft, ob der Komplex von PIPKI γ -p87 und GST-C- μ 2 auch nach dem Zusatz und der anschließenden Inkubation mit Yxx Φ -Peptiden besteht. Dies konnte positiv bestätigt werden (siehe Abb. 3.21B).

Die durchgeführten Kinaseaktivitätsassays zeigten, dass die PIPKI γ -p87-abhängige PI(4,5)P₂-Synthese durch das WVYSPL-Motiv-haltige Peptid aus dem PIPKI γ -p90-spezifischen Spliceinsert stimuliert werden kann. Dieses Resultat ist in Übereinstimmung mit den Ergebnissen durchgeführter Kinaseaktivierungsassays, in denen der Effekt von Yxx ϕ -Motiven aus Frachtproteinen auf die Aktivität von PIPKI γ -Splicevarianten im Komplex mit AP-2 μ untersucht wurde (Krauss *et al.*, 2006). Darüber hinaus sind die aus den Kinaseaktivitätsassay gewonnenen Erkenntnisse in Einklang mit dem Modell, dass ein Komplex aus PIPKI γ -p90 und AP-2 zur Bereitstellung eines spezifischen PI(4,5)P₂-Pools im Rahmen des synaptischen Vesikelzyklus beitragen könnte.

3.11 Inhibition der β_1 -Integrin-Internalisierung durch Peptide aus dem PIPKI γ -p90-C-Terminus

Die Aufnahme des Transferrin-Rezeptors in die Zelle erfolgt über ein klassisches Yxx Φ -Internalisierungsmotiv, das die AP-2/Clathrin-vermittelte Endozytose unterstützt (Bonifacino & Traub, 2003). Über AP-2- und Clathrin-vermittelte Endozytose können jedoch auch Transmembranproteine aufgenommen werden, deren Internalisierung nicht über eine konventionelle Yxx Φ -Erkennungssequenz vermittelt wird, wie es für die Aufnahme von β_1 -Integrin der Fall ist.

Integrine sind heterodimere Transmembranrezeptoren, die aus einer α - und einer β -Untereinheit bestehen und den mechanischen Kontakt der Zelle über das Aktinzytoskelett zur extrazellulären Matrix (ECM) oder zu Nachbarzellen vermitteln (Hynes, 2002). Der Kontakt zwischen den Integrinen und dem Aktinzytoskelett ist jedoch nicht direkt, sondern wird durch das fokale Adhäsionsprotein Talin, Interaktionspartner von PIPKI γ -p90, vermittelt (Legate & Fässler, 2009; Moser *et al.*, 2009). Der dynamische Auf- und Abbau fokaler Adhäsionen spielt eine zentrale Rolle in der Regulation der Zelladhäsion, -motilität und -ausbreitung. Das membranproximale NPxY-Motiv des β 1-Integrins kann durch die PTB-Domänen (Calderwood *et al.*, 2003) der endozytotischen Adaptorproteine Numb und Dab2 erkannt werden. Numb und Dab2 wechselwirken über AP-2-Bindemotive mit der AP-2 α -Ohr-Domäne (Santolini *et al.*, 2000; Morris & Cooper, 2001). Da PIPKI γ -p90 über die Interaktion mit Talin ebenfalls im Bereich fokaler Adhäsionen anzutreffen ist (Di Paolo *et al.*, 2002; Ling *et al.*, 2002), stellte sich die Frage, ob die AP-2- und Clathrin-vermittelte Internalisierung von β_1 -Integrin PIPKI γ p90 involviert und die Aufnahme von β_1 -Integrin in Zellen durch dominant-negativ wirkende PIPKI γ p90-Peptide blockiert werden kann. Dieses und das folgende Experiment (siehe Abschnitt 3.12) wurde in Kooperation mit Dr. Michael Krauss (AG Haucke) durchgeführt.

Eine vollständige Inhibition der β_1 -Integrin-Internalisierung war nicht zu erwarten, da viele Integrine, einschließlich β_1 -Integrin, über Clathrin-unabhängige, endozytotische Vorgänge in die Zelle aufgenommen werden (Caswell *et al.*, 2009; Caswell & Norman, 2008; Ulrich & Heisenberg, 2009).

Zur Untersuchung des Effekts der verschiedenen PIPKI γ -90-Peptide auf die Internalisierung von β_1 -Integrin wurden HeLa-Zellen für 35 min mit Penetratin-PIPKI γ -p90-Peptiden inkubiert (vergleiche Abb. 3.22A). Anschließend folgte eine Inkubation der Zellen für 40 min bei 37°C in Anwesenheit monoklonaler anti- β 1-Integrin-Antikörper gerichtet gegen die extrazelluläre Proteindomäne. Nachfolgend wurden die Zellen drei Mal mit kaltem 1x PBS-Puffer gewaschen, nicht internalisierte β 1-Integrin-Antikörper wurden von der Zelloberfläche durch das einmalige Waschen mit 0,5 M NaCl in kalter 0,5 % Essigsäure für 45 sec entfernt. Die Zellen wurden gewaschen, fixiert, permeabilisiert und durch Immunfluoreszenzfärbung analysiert.

A

Penetratin-PIPKI γ -p90-Peptid WT:RRMKWKK-YFPTDERSWVYSPLHPenetratin-PIPKI γ -p90-Peptid $\Delta\beta$ 2-Bindungsstelle:RRMKWKK-YAPTDERSWVYSPLHPenetratin-PIPKI γ -p90-Peptid $\Delta\beta$ 2 μ 2-Bindungsstellen:RRMKWKK-YAPTDERSWVASPAH

Abb. 3.22 Peptide aus dem PIPKIγ-p90-C-Terminus inhibieren die Internalisierung von β1-Integrin

(A) Darstellung der Aminosäuresequenz der verschiedenen PIPKI γ -p90-Peptide (WT, $\Delta\beta^2$ - und $\Delta\beta^2\mu^2$ -Bindungsstellen). Die verwendeten Peptide verfügen über eine N-terminale Penetratinsequenz (grün), welche die Aufnahme der Peptide in die Zellen vermitteln sollen. Zu Alanin mutierte Aminosäuren der Peptide sind in Rot hervorgehoben. (**B**) Vor der Inkubation mit je 100 μ M Peptid wurden die HeLa-Zellen über Nacht in Serumfreiem Medium kultiviert. Die Inkubation mit den Peptiden erfolgte für 35 min bei 37°C. Die Inkubation der Zellen mit einem monoklonalen anti- β 1-Integrin-Antikörper (5 μ g/ml) erfolgte über weitere 40 min. Anschließend wurden die Zellen dreimal mit kaltem 1x PBS-Puffer gewaschen. Nicht internalisierte β 1-Integrin-Antikörper wurden von der Zelloberfläche durch Waschen mit 0,5 M NaCl in kalter 0,5 % Essigsäure für 45 sec entfernt, anschließend weitere zwei Mal mit kaltem 1x PBS-Puffer gewaschen und mit 4 % Paraformaldehyd für 20 min bei RT fixiert. Die Menge an internalisierten β_1 -Integrin-Antikörpern wurde durch Epifluoreszenz-Mikroskopie (Axiovert 200M; Carl Zeiss, Inc.) quantifiziert. (C) Quantifizierung der durchschnittlichen Fluoreszenz pro Zelle. Die Analyse der Daten von > 120 Zellen pro Experiment erfolgte mit der Slidebook 4.0.10 Software (Intelligent Imaging Innovations, Inc.). Die Daten repräsentieren Durchschnittswerte \pm Standardabweichung (n = 2 unabhängige Experimente).

Das WT-PIPKI γ -90-Peptid hatte eine dominant-negative Wirkung auf die Internalisierung der Antikörper-markierten β_1 -Integrine in HeLa-Zellen. Die Integrin-Internalisierung wurde nicht vollständig blockiert, sondern nur um ca. 50 % reduziert (siehe Abb. 3.22B und C). Die Inaktivierung der β 2-Ohr-Bindungsstelle resultierte ebenfalls in einer Verminderung der Antikörperaufnahme, die jedoch weniger effizient im Vergleich zum WT-PIPKI γ -90-Peptid war (vergleiche Abb. 3.22B und C). Das $\beta 2\mu 2$ (F640A/Y649A/L652A)-bindungsdefiziente PIPKI γ -90-Peptid hatte keinen negativen Einfluss auf die Internalisierung von β_1 -Integrin und war in seinem Effekt dem des verwendeten Kontrollpeptids ähnlich (vgl., Abb. 3.22B und C).

Diese Ergebnisse zeigten, dass Peptid-vermittelte Interferenz mit der AP-2-PIPKI γ -p90-Komplexbildung die Internalisierung zu inhibieren vermag. Dieser Effekt ist größtenteils von der Fähigkeit der Peptide abhängig, an AP-2 μ zu binden, während die Assoziation mit der β 2-Ohr-Domäne nur einen geringen Beitrag zu leisten scheint. Die zellulären Effekte korrelieren mit den Affinitäten dieser Peptide für AP-2 μ und das β 2-Ohr.

3.12 Abhängigkeit der β_1 -Integrin-Internalisierung von AP-2 und PIPKI γ

Das vorangehende Experiment hatte gezeigt, dass die Internalisierung eines Anteils von β_1 -Integrin durch PIPKI γ -90-Peptid-Varianten beeinflusst werden kann. Die Interaktion von AP-2 und PIPKI γ p90 wird durch die PIPKI γ -p90 abgeleiteten Peptide eingeschränkt und wirkt sich negativ auf die β_1 -Integrin-Internalisierung aus. Somit wäre zu erwarten, dass die Entfernung von endogenem PIPKI γ p90 und AP-2 aus dem System durch RNAi ebenfalls einen inhibitorischen Effekt auf die Internalisierung von β_1 -Integrin haben sollte.

Um diese Frage zu beantworten, wurden HeLa-Zellen mit siRNA gegen PIPKI γ und AP-2 μ behandelt. Um unspezifische Effekte, verursacht durch die Transfektionsmethode, ausschließen zu können, wurde zusätzlich eine humane Kontroll-siRNA (*scrambled*) ohne gezielte Expressionsreduktionsfunktion verwendet (siehe Abb. 3.23). Die Inkubation mit dem monoklonalen anti- β 1-Integrin-Antikörper erfolgte wie in Abschnitt 3.11 beschrieben. Die Behandlung der Zellen mit siRNA gegen AP-2 μ war zu ca. 90 % und für PIPKI γ zu ca. 80 % erfolgreich und konnte durch Western-Blot Analysen von Zellextrakten nachgewiesen werden (siehe Abb. 3.23B und C). Die *scrambled* Kontroll-siRNA hatte auf die Expression beider endogener Proteine keine Auswirkung und glich somit der unbehandelten Probe (vergleiche Abb. 3.23B).

Die Verminderung der AP-2-Expression hatte eine Reduktion der Aufnahme von β_1 -Integrin in die Zellen zur Folge, die mehr als 50 % im Vergleich zu den Kontrollzellen und unbehandelten Zellen betrug. Eine ähnliche Auswirkung auf die Internalisierung der anti- β_1 -Integrin-Antikörper konnte in Zellen detektiert werden, in denen die PIPK γ Expression reduziert worden war (vergleiche Abb. 3.23B und C).

Abb. 3.23 Die Reduktion von endogenem AP-2 und PIPKI γ -p90 inhibiert die Internalisierung von β 1-Integrin in HeLa-Zellen

(A) Zur Reduktion der Expression von endogenem AP-2 und PIPKI γ wurden HeLa-Zellen zwei Mal mit siRNA transfiziert. Ca. 24 h nach der zweiten Transfektion wurden die Zellen 2 h in Serum-freiem Medium kultiviert. Nachfolgend wurde zu den Zellen monoklonaler anti- β 1-Integrin-Antikörper gegeben und mit der Inkubation für weitere 40 min fortgefahren. Anschließend wurden die Zellen drei Mal mit kaltem 1x PBS-Puffer gewaschen und mit 4 % Paraformaldehyd für 20 min bei RT fixiert. Die Menge an internalisierten β_1 -Integrin-Antikörpern wurde durch Epifluoreszenz-Mikroskopie (Axiovert 200M; Carl Zeiss, Inc.) quantifiziert. (B) Quantifizierung der durchschnittlichen Fluoreszenz pro Zelle (A.U.). Die Analyse der Daten von > 120 Zellen pro Experiment erfolgte mit der Slidebook 4.0.10 Software (Intelligent Imaging Innovations, Inc.). Die Daten repräsentieren Durchschnittswerte \pm Standardabweichung (n = 2 unabhängige Experimente). (C) Immunblotting von HeLa-Zellextrakten 24 h nach der zweiten Transfektion mit siRNA mit Antikörpern gegen AP-2, PIPKI γ und Clathrin als Kontrolle.

Die Reduktion von endogenem AP-2 und PIPKI γ durch die Anwendung von siRNA hatte eine sichtbare Inhibition der β_1 -Integrin-Endozytose zur Folge, die für beide Proteine von ähnlicher Effizienz war (vergleiche Abb. 3.23B). Ähnliche Ergebnisse konnten auch durch die Anwendung des WT-PIPKI γ -90-Peptids erzielt werden (vergleiche Abb. 3.22B und C), wodurch eine Rolle von PIPKI γ -90 in der AP-2-abhängigen Endozytose von β_1 -Integrinen unterstützt wird. In dieser Versuchsanordnung ist jedoch nicht auszuschließen, dass die stark reduzierte Expression von endogenem AP-2 und/oder PIPKI γ -p90 Auswirkungen auf andere Internalisierungsprozesse oder Effektorproteine hat, die ebenfalls einen Beitrag zur Internalisierung von β_1 -Integrin in die Zellen leisten und damit auch zur beobachteten Inhibition beitragen.

3.13Der PIPKI_γ-p90-C-Terminus inhibiert die Endozytose synaptischer Vesikel

PIPKIγ-90 ist an Synapsen konzentriert und nimmt im exo- und endozytischen Zyklus synaptischer Vesikel primärer Neuronen eine wichtige Rolle ein (Di Paolo *et al.*, 2004; Wenk *et al.*, 2001). Der Verlust der PIPKIγ-Expression in Mäusen hat eine signifikante Behinderung der Clathrin-abhängigen Endozytose synaptischer Vesikel zur Folge, wodurch die Rückführung synaptischer Vesikelproteine von der präsynaptischen Seite der Plasmamembran vermindert wird (Di Paolo *et al.*, 2004). Ähnliche Beobachtungen konnten auch für die Überexpression des PIPKIγ-p90-C-Terminus in primären Neuronen aus dem Hippocampus gemacht werden (Nakano-Kobayashi *et al.*, 2007). Die Möglichkeit der Überexpression in Neuronen bot die Gelegenheit, einen möglichen dominant-negativen Effekt verschiedener Varianten des PIPKIγ-90-C-Terminus auf den endozytischen Zyklus synaptischer Vesikel funktionell zu analysieren. Dies geschah in Zusammenarbeit mit Soeng Joo Koo (AG Haucke). Zu diesem Zweck wurde SynaptopHluorin verwendet.

Um den Effekt verschiedener Varianten des PIPKIγ-90-C-Terminus auf den endozytotischen Zyklus synaptischer Vesikel zu untersuchen, wurden primäre Neuronen aus dem Hippocampus von Wistar Ratten präpariert. Die Neuronen aus dem Hippocampus sind endogen aktiv, d.h. der exo- und endozytotische Zyklus synaptischer Vesikel findet auch in Abwesenheit stimulatorischer Impulse von außen statt. Nach vierzehn Tagen in *in vitro* Kultur wurden die Neuronen unter Anwendung der Calcium-Phosphat-Methode mit SynaptopHluorin und jeweils einem der drei verschiedenen mRFP-fusionierten Varianten des PIPKIγ-90-C-Terminus kotransfiziert (siehe Abb. 3.24C). Als Kontrolle wurde mRFP verwendet. Die pH-abhängige Fluoreszenz des SynaptopHluorin wurde zur quantitativen Analyse der SynaptopHluorin-Fraktionen an der Vesikel- und Plasmamembran genutzt. Es wurden nur synaptische Boutons verwendet, die aktiv waren, d.h. sich elektrisch stimulieren ließen (vergleiche Abb. 3.24A).

Die Veränderung der SynaptopHluorin-Fluoreszenz wurde durch den Wechsel zwischen Puffern mit unterschiedlichen pH-Werten herbeigeführt und durch *life-cell-imaging* dokumentiert. Beispiele für die Veränderung der SynaptopHluorin-Fluoreszenz unter verschiedenen pH-Bedingungen sind in Abbildung 3.24A dargestellt. Bei physiologischen pH (7,4) trägt nur die SynaptopHluorin-Fraktion an der Plasmamembran zur Fluoreszenz bei, die Fluoreszenz des SynaptopHluorins synaptischer Vesikel wird durch die dort herrschenden sauren Bedingungen gelöscht.

Abb. 3.24 Einfluss verschiedener Varianten des PIPKIγ-p90-C-Terminus auf die Endozytose, der an der neuronalen Plasmamembran expositionierten SynaptopHluorin-Moleküle

(A) Fluoreszenz des SynaptopHluorin vor (links oben) und direkt nach der Stimulation mit 200 Aktionspotentialen (200 AP), um die Aktivität der Neuronen zu überprüfen. Der Wechsel zu Puffer mit sauerem pH (5,5) löscht die Fluoreszenz (unten links), wohingegen die Neutralisation mit einem alkalischen pH das Maximum an Fluoreszenz zulässt (unten rechts). Maßstab 10 µm. Die Fluoreszenzwerte sind farbkodiert und entsprechen der Farbskala auf der rechten Seite. (B) Die relativen Fluoreszenzwerte, die vor und nach der Lösung der Fluoreszenz gemessen wurden, dienten als Grundlage zur Berechnung des Verhältnisses von plasmamembranständigem SynaptopHluorin zu vesikulären SynaptopHluorin. Die Daten wurden auf die mRFP-Kontrolle normalisiert und aufgetragen ± Standardabweichung des Probendurchschnitts (n = 4 Experimente). Kontrolle = 670 synaptische Boutons, 13 Neuronen; WT = 621 synaptische Boutons, 10 Neuronen; $\Delta\beta$ 2-Bindungsstelle = 463 synaptische Boutons, 8 Neuronen und $\Delta\beta$ 2µ2-Bindungsstelle = 548 synaptische Boutons, 8 Neuronen. Die Fehlerbalken geben die Standardabweichung des Probendurchschnitts an (Kontrolle $\pm 0,0177$; WT $\pm 0,0337$; $\Delta\beta$ 2-Bindungsstelle $\pm 0,0255$ und $\Delta\beta 2\mu 2$ -Bindungsstellen ± 0.0215 ; *P < 0.01; **P < 0.001). (C) Schematische Darstellung der verwendeten Cterminalen PIPKI γ -p90 Konstrukte (Aminosäure 451-668), WT, $\Delta\beta$ 2- und $\Delta\beta$ 2 μ 2-Bindungsstellen, die an mRFP fusioniert sind. (D) Transferrin-Internalisierung von HeLa-Zellen, die mit unterschiedlichen mRFP-PIPKIγ-p90-C-Terminus-Konstrukten (WT oder Mutanten) transfiziert worden. Die Zellen wurden 20 min mit 25 µg/ml Alexa⁴⁸⁸-markiertem, humanen Transferrin inkubiert. Anschließend wurden die Zellen drei Mal mit kaltem 1x PBS-Puffer gewaschen und bei RT fixiert. Die Menge an internalisiertem Transferrin von > 50 Zellen pro Experiment wurde durch Epifluoreszenz-Mikroskopie (Axiovert 200M; Carl Zeiss, Inc.) quantifiziert. Die Analyse der Daten erfolgte mit der Slidebook 4.0.10 Software (Intelligent Imaging Innovations, Inc.). Die Daten repräsentieren Durchschnittswerte ± Standardabweichung (n = 3 unabhängige Experimente).

Der Wechsel zu einem Puffer mit sauren pH (5,5) hat zur Folge, dass nun auch die Fluoreszenz des SynaptopHluorin der Plasmamembran gelöscht wird, wodurch die synaptischen Boutons im *life-cell-imaging* nicht mehr sichtbar sind. Ein Puffer mit alkalischem pH resultiert in der Visualisierung der vesikulären SynaptopHluorin-Fraktion (vergleiche Abb. 3.24A). Die Quantifizierung der SynaptopHluorin-Fluoreszenz in Abhängigkeit vom pH gibt Aufschluss über die relativen Verhältnisse von vesikulärem SynaptopHluorin zu Plasmamembran-ständigem SynaptopHluorin in den synaptischen Boutons (vergleiche Abb. 3.24B).

Synaptische Boutons, die den WT-PIPKI γ -90-C-Terminus überexpremierten, wiesen eine signifikante Erhöhung der SynaptopHluorin-Fraktion um mehr als 50 % auf (vergleiche Abb. 3.24B). Die Akkumulation des SynaptopHluorin deutet darauf hin, dass die Endozytose synaptischer Vesikel durch den WT-PIPKI γ -90-C-Terminus beeinträchtig wird und stimmt mit den Beobachtungen von Nakano-Kobayashi *et al.*, 2007 überein. Die Expression des PIPKI γ -90-C-Terminus ohne funktionelle β 2-Ohr-Bindungsstelle (F640A; $\Delta\beta$ 2-Bindungsstelle) inhibierte ebenfalls signifikant die Endozytose synaptischer Vesikel, wenn auch mit leicht reduzierter Effizienz. Die SynaptopHluorin-Fraktion an der Plasmamembran in synaptischen Boutons, die den PIPKI γ -90-C-Terminus mit inaktiven β 2 μ 2-Bindungsstellen expremierten (Y497A/L500A/W647A/Y649A/L652A; $\Delta\beta$ 2 μ 2-Bindungsstellen) lag deutlich unter dem Niveau der SynaptopHluorin-Fraktion, die durch den β 2-Ohr (F640A)bindungsdefizienten PIPKI γ -90-C-Terminus verursacht wurde. Das SynaptopHluorin-Niveau der mRFP-Kontrolle konnte dennoch nicht erreicht werden (vergleiche Abb. 3.24B). Es bleibt herauszufinden, ob die beobachtete geringe Inhibition der SynaptopHluorin-Endozytose in Neuronen durch die Sequestrierung anderer, bisher unbekannter Bindungspartner des PIPKI γ -90-C-Terminus verursacht wurde, oder unspezifische Effekte widerspiegelt.

Die Daten, die aus der Untersuchung der SynaptopHluorin-Fraktion an der Plasmamembran in Abhängigkeit von der Präsenz verschiedener Varianten des PIPKI γ -90-C-Terminus gewonnen wurden, unterstreichen die physiologische Bedeutung der Komplexausbildung zwischen AP-2 und PIPKI γ -90 im endozytotischen Zyklus synaptischer Vesikel. Die beobachtete Inhibition der synaptischen Endozytose war sowohl von der AP-2 μ Bindungsstelle, als auch von der Fähigkeit der PIPKI γ -90-C-Terminus-Konstrukte mit AP-2- β 2-Ohr zu interagieren, abhängig. Der Einfluss der AP-2 μ -Bindungsstelle ist jedoch stärker als die der β 2-Ohr-Bindungsstelle allein.

Der Effekt der unterschiedlichen Konstrukte des PIPKI γ -90-C-Terminus (Aminosäure 451-668) wurde zusätzlich auf die Aufnahme von Fluoreszenz-markiertem Transferrin in HeLa-Zellen untersucht (vgl. Abb. 3.24D). Zellen, die den WT- oder β 2-Ohr (F640A)-bindungsdefizienten PIPKI γ -90-C-Terminus überexpremierten, zeigten keine signifikante Inhibition der Transferrin-Endozytose. Die Transferrin-Aufnahme in Zellen, die das PIPKI γ -90-C-Terminus-Konstrukt mit inaktiver β 2-Ohr- und μ 2-Bindungsstelle expremierten (Y497A/L500A/W647A/Y649A/L652A; $\Delta\beta$ 2 μ 2-Bindungsstellen) glich ebenfalls der von Kontroll-Zellen. Im Gegensatz zum Recycling synaptischer Vesikelproteine konnte für Zellen, die den $\beta 2\mu 2$ (Y497A/L500A/W647A/Y649A/L652A)-bindungsdefizienten-PIPKI γ -p90-C-Terminus überexpremierten, keine Einschränkung der Endozytose des Reporterproteins festgestellt werden (siehe Abb. 3.24D).

Die beobachteten zellulären Effekte in HeLa-Zellen sind in Übereinstimmung mit der spezifischen Rolle von PIPKIγ-90 in der Regulation des Recycling synaptischer Vesikel.

4 Diskussion

4.1 Die Komplexbildung von PIPKIγ-p90 und AP-2 involviert mehrere Interaktionsstellen

In der vorliegenden Arbeit wurde die molekulare Basis der Interaktion der C-terminalen Domäne der PIPKIγ-p90 mit AP-2 untersucht und basierend auf den Ergebnissen ein hypothetisches Modell der Komplexbildung von PIPKIγ-p90 und AP-2 erstellt.

Die hier vorgestellten Daten zeigen, dass die Interaktion von PIPKIy-p90 mit dem AP-2-β2-Ohr über eine Bindungsstelle vermittelt wird, die mit der von Talin und AP-2µ überlappt (vergleiche Ergebnisse Abb. 3.15). Der Kontakt involviert die Aminosäuren F640, W647 sowie Y649 und S650 des PIPKIyp90-C-Terminus und die Sandwich-Subdomäne des β 2-Ohrs (vergleiche Ergebnisse Abb. 3.11). Das β2-Ohr setzt sich aus der Plattform- und der Sandwich-Subdomäne zusammen und dient zusammen mit dem α-Ohr der Anreicherung akzessorischer Proteine (McPerson & Ritter, 2005; Traub, 2009). Die *side site* der Sandwich-Subdomäne ist eine autonome Kontaktfläche neben der *top site* der β 2-Ohr-Plattform-Subdomäne, die von akzessorischen Proteinen wie Eps15, AP180/CALM und Amphiphysin erkannt werden kann (Schmid et al., 2006). Die Interaktion des von PIPKIy-p90 abgeleiteten Peptids YFPTDERSWVYSPLH erfolgt über einen ausgedehnten Bereich der β 2-Ohr Sandwich-Subdomäne und ähnelt in der Position der des Eps15-Peptids (Schmid et al., 2006), ist jedoch nicht damit identisch (vergleiche Ergebnisse Abb. 3.11). Dies könnte dazu dienen, der Lipidkinase einen privilegierten Zugang zur endozytotischen Maschinerie zu gewähren. Obwohl das PIPKI γ -p90-Peptid über einen großen Oberflächenbereich mit dem β 2-Ohr interagiert (vergleiche Anhang Tabelle F.4), ist die Assoziation mit einem K_D -Wert von 22 μ M (siehe Ergebnisse Abb. 3.18) niederaffin – ein Wert, dem Affinitäten anderer Interaktionsmotive an die Interaktionsstellen der α und β2-Ohr-Domänen nahe kommen (Edeling et al., 2006a; Praefcke et al., 2004; Schmid et al., 2006).

Die Interaktion des von PIPKI γ -p90 abgeleiteten Peptids mit AP-2 μ ist ebenfalls durch einen niederaffinen K_D -Wert von 6 μ M charakterisiert und somit thermodynamisch gegenüber der Bindung des β 2-Ohrs (22 μ M) bevorzugt (vergleiche Ergebnisse Abb. 3.18). Die Interaktion von AP-2 μ und dem PIPKI γ -p90-Peptid YFPTDERSWVYSPLH wird über ein konventionelles Yxx Φ -Motiv vermittelt, das die Aminosäuren W647, Y649 und L652 involviert (vergleiche Ergebnisse Abb. 3.14) und daher einem *three-pin-plug*-Mechanismus entspricht (Owen *et al.*, 2001). Der Aminosäurerest W647 ist dafür bekannt, essentiell für die Interaktion von PIPKI γ -p90 mit dem Strukturprotein Talin in fokalen Adhäsionen oder an der Synapse zu sein (Di Paolo *et al.*, 2002; Ling *et al.*, 2002).

Mit 6 µM (siehe Ergebnisse Abb. 3.18) ist die Interaktion des PIPKIy-p90-Peptids YFPTDERSWVYSPLH mit AP-2μ schwächer als die Assoziation des YxxΦ-Motivs YGYECL aus der γ-Untereinheit des GABA_A-Rezeptors, für die eine Affinität von 42,2 nM ermittelt wurde (Kittler et al., 2008). Auch die Dissoziationskonstante für die Interaktion des $Yxx\Phi$ -Motivs aus TGN38 mit phosphoryliertem AP-2-Rumpf liegt unterhalb von 6 µM (Höning et al., 2005). Die K_D-Werte der Interaktion des PIPKIγ-p90-Peptids mit den AP-2-Domänen C-µ2 und β2-Ohr wurden im Rahmen dieser Arbeit durch ITC bei 25°C bestimmt. Die Assoziation des YxxΦ-Motivs aus TGN38 an phosphorylierten AP-2-Rumpf hingegen wurde durch die Anwendung einer anderen Methode, der Biacore SPR (surface plasmon resonance) Technologie ermittelt. Ein weiterer Unterschied besteht darin, dass Höning und Mitarbeiter (2005) das TGN38-Peptid zur Vermessung an PI(4,5)₂-haltige Liposomen konjugiert hatten. Weiterhin kommt hinzu, dass die Bindung von AP-2 μ an PI(4,5)P₂ die offene Konformation des AP-Komplexes unterstützt, was eine erhöhte Affinität zu YxxΦ-Motiven zur Folge hat (Fingerhut et al., 2001; Höning et al., 2005; Ricotta et al., 2002). Auch die Bindung des YGYECL-Peptids aus der γ -Untereinheit des GABA_A-Rezeptors an C-µ2 wurde durch Biacore SPR Technologie untersucht (Kittler *et al.*, 2008). Da die Affinitäten der verschiedenen $Yxx\Phi$ -Motive zu AP-2µ durch unterschiedliche Methoden und unter verschiedenen experimentellen Bedingungen bestimmt wurden, lassen sich die K_D -Werte nur unter Vorbehalt miteinander vergleichen.

Die Affinitätsreinigungen verschiedener PIPKI γ -90-Konstrukte mit AP-2 μ und β 2-Ohr offenbarten, dass die Komplexbildung von AP-2 und PIPKIy-90 auch Interaktionsflächen außerhalb des PIPKIy-90-C-Terminus involviert (vergleiche Ergebnisse Abb. 3.19). Ein potentieller Kandidat hierfür ist die katalytische Domäne der PIPKIγ-p90, die unlängst als Interaktionspartner der AP-2-Untereinheit μ2 identifiziert werden konnte (Krauss et al., 2006). Die Wechselwirkung der katalytischen PIPKIy-p90-Domäne mit AP-2µ wird durch eine gleichzeitige Bindung von YxxΦ-Motiven - aus Frachtproteinen (Krauss et al., 2006) oder aus dem PIPKIy-p90-C-Terminus (siehe Ergebnisse Abb. 3.20 und 3.21) nicht eingeschränkt. Die Interaktion der katalytischen PIPKIy-p90-Domäne mit C-u2 ist durch einen K_D-Wert von 0,5 µM charakterisiert, der mittels Biacore SPR Technologie bestimmt wurde (Krauss et al., 2006). Aufgrund der unterschiedlichen Methoden und experimentellen Bedingungen lassen sich auch hier die Affinitäten der beiden PIPKIy-p90-Domänen nur eingeschränkt miteinander vergleichen, so dass die Erstellung einer Hierarchie der Wechselwirkungen spekulativ wäre. Jedoch konnte beobachtet werden, dass die Affinitätsreinigung von endogenem AP-2 über die katalytische PIPKIyp90-Domäne effizienter erfolgt als über den PIPKIy-p90-C-Terminus (vergleiche Ergebnisse Abb. 3.2). Daraus lässt sich schließen, dass die β2-Ohr-Bindungsstelle von PIPKIγ-p90 eine, im Vergleich zu den μ2-Bindungsstellen in der katalytischen PIPKIγ-p90-Domäne und im C-Terminus (siehe Ergebnisse Abb. 3.4 und Abb. 3.19), untergeordnete Rolle in der Komplexbildung mit AP-2 einnimmt.

Die thermodynamisch gegenüber AP-2 μ weniger bevorzugte Bindung des β 2-Ohrs *in vitro* (vergleiche Ergebnisse Abb. 3.18) schließt jedoch nicht aus, dass regulatorische Ereignisse wie Phosphorylierung die Verfügbarkeit oder die Affinität der beiden AP-2-Untereinheiten beeinflussen und dadurch unter bestimmten Bedingungen die Interaktion mit dem ß2-Ohr favorisiert wäre. Dieser Fall könnte eintreten, wenn AP-2 in der basalen, geschlossenen Konformation vorliegt und die Bindungsstelle für YxxΦ-Motive durch die Lokalisation von C-µ2 in einer Grube an der Außenseite des AP-2 Komplexes verborgen wird (siehe Abb. 4.1A) (Collins et al., 2002). In diesem Szenario wäre die Bindung von β2-Ohr gegenüber AP-2μ durch den PIPKIγ-p90-C-Terminus bevorzugt. Die Interaktion mit AP-2 über das
^β2-Ohr könnte einer initialen Anreicherung von PIPKI_γ-p90 an Orten endozytotischer Aktivität dienen. Weiterhin kann spekuliert werden, dass die β 2-Ohr-Bindungsstelle im weiteren Verlauf der Reifung der Clathrin-umhüllten Vesikeln (Edeling et al., 2006b) durch AP-2-Interaktionsflächen, die PIPKI γ -p90 effizienter als die β 2-Ohr-Sandwich-Subdomäne binden, stabilisiert und/oder abgelöst werden (siehe Abb. 4.1B und C). Ferner fanden Nakano-Kobayashi und Mitarbeiter (2007) heraus, dass die Interaktion von PIPKI γ -p90 mit der β 2-Ohr-Domäne des AP-2-Komplexes die Aktivität der Kinase in vitro stimuliert. Im Kontext einer initialen Anreicherung von PIPKI γ -p90 über das β 2-Ohr könnte dieser Aktivierungsmechanismus die Bindung von AP-2 an die Plasmamembran zusätzlich stabilisieren und zur Rekrutierung weiterer PI(4,5)P₂-bindener, akzessorischer Proteine, die Wechselwirkungen mit Clathrin, AP-2 und/oder weiteren Komponenten der Proteinhülle eingehen können, beitragen (Balla, 2005; Edeling et al., 2006a; Höning et al., 2005; Lemmon, 2003; Schmid & McMahon, 2007). Thieman und Mitarbeitern (2009) beobachteten, dass Clathrin die Bindung von PIPKI γ -p90 an das β 2-Ohr negativ reguliert. Ähnliches wurde auch für Eps15 beobachtet (Cupers et al., 1998). Diese Beobachtungen unterstützen die Vermutung, dass das β2-Ohr einer initialen Anreicherung von PIPKIγ-p90 dient, weiterhin, dass die Assoziation von AP-2 mit Clathrin gegenüber der Bindung von akzessorischen Proteinen bevorzugt wird. Darüber hinaus ist unlängst bekannt, dass die Anlagerung von Clathrin die katalytische Aktivität der Proteinkinase AAK1, die den Übergang von der basalen, geschlossenen Konformation zur offenen AP-2-Konformation fördert, unterstützt (Conner et al., 2003; Jackson et al., 2003). Die Phosphorylierung von T156 durch AAK1 erleichtert in Kombination mit der Bindung von AP-2-C- μ 2 an PI(4,5)P₂ die Erkennung von Yxx D-Motiven (Fingerhut et al., 2001; Olusanya et al., 2001; Ricotta et al., 2002), die aus Frachtproteinen (Höning et al., 2005) oder aus dem C-Terminus von PIPKIy-p90 stammen können. Ein direkter Beweis ist nicht verfügbar, doch konnte gezeigt werden, dass die Koimmunpräzipitation

von AP-2 und PIPKI γ aus Zellmembranfraktionen, die Frachtproteine enthalten, effizienter als die aus zytosolischen Fraktionen ist (Krauss *et al.*, 2006). Liegt PIPKI γ -p90 im Komplex mit AP-2 μ vor, so kann die PI(4,5)P₂-synthetisierende Aktivität durch die gleichzeitige Bindung von Yxx Φ -Motiven aus Frachtproteinen (Krauss *et al.*, 2006), oder potentiell durch das distale WVYSPL-Motiv aus dem Kinase-C-Terminus (vergleiche Ergebnisse Abb. 3.20 und Abb. 3.21) stimuliert werden.

Abb. 4.1 Hypothetisches Modell der Komplexbildung von PIPKIy-p90 und AP-2

(A) Die Interaktion von PIPKI γ -p90 über ihren C-Terminus mit der Sandwich-Subdomäne des AP-2- β 2-Ohrs könnte einer initialen Anreicherung der Kinase an Orten endozytotischer Aktivität dienen. Die Interaktion ist mit 22 μ M relativ schwach und könnte im Verlauf der Reifung der Clathrin-umhüllten Vesikel durch weitere Bindungsstellen stabilisiert und/oder abgelöst werden. (B) Liegt AP-2 in der offenen Konformation vor, so kann PIPKI γ -p90 über die katalytische Domäne mit AP-2 μ in Wechselwirkung treten und die Interaktion über das β 2-Ohr unterstützen. Die Yxx Φ -Bindungstelle der AP-2 μ -Oberfläche könnte durch das distale WVYSPL-Motiv der Kinase (C) in Anspruch genommen werden.

Diese mögliche Autostimulation der PIPKI γ -p90-vermittelten PI(4,5)P₂-Synthese könnte dazu beitragen, Frachtproteine, deren AP-2/Clathrin-vermittelte Internalisierung unabhängig von Yxx Φ -Sortiersignalen erfolgt, in die Zellen aufzunehmen. Es bedarf jedoch noch weiterer Untersuchungen, um dieses hypothetische Szenario zu prüfen. Ein nahe liegendes Experiment wäre die Untersuchung der Interaktion von WT- und β 2-Ohr (F640A)-bindungsdefizienter PIPKI γ -p90 an endogene AP-2-Komplexe unter phosphorylierenden und nicht-phosphorylierenden Bedingungen.

4.2 Regulation fokaler Adhäsionen durch PIPKIγ-p90

Frachtproteine, die in Abhängigkeit von AP-2/Clathrin, jedoch unabhängig von Yxx Φ -Sortiersignalen in Zellen aufgenommen werden können, sind β 1-Integrine. β 1-Integrine interagieren nicht direkt mit AP-2, sondern können indirekt über ihre Interaktion mit den endozytotischen Adaptorproteinen Numb und Dab2 internalisiert werden (Chao & Kunz, 2009; Nishimura & Kaibuchi, 2007; Morris & Cooper, 2001; Santolini *et al.*, 2000: Teckchandani *et al.*, 2009). Integrine sind Bestandteile fokaler Adhäsionen, deren Bildung abhängig von lokaler PI(4,5)P₂-Synthese ist (Hyes, 2002). Talin, ein Strukturprotein und bekannter PIPKI γ -p90-Interaktionspartner, vermittelt den Kontakt der Integrine zum Aktinzytoskelett der Zelle (Hyes, 2002). Die PIPKI γ -p90-vermittelte PI(4,5)P₂-Synthese wird durch Interaktion der Lipidkinase über die Aminosäuresequenz WVYSPL im Spliceinsert der p90-Isoform mit Talin-FERM stimuliert (Di Paolo *et al.*, 2002; Ling *et al.*, 2002; Ling *et al.*, 2003) und fördert den Aufbau fokaler Adhäsionen. Umgekehrt hat eine Sequestrierung von PI(4,5)P₂ den Verlust des Kontakts der Zelle zum Substrat zur Folge (Martel *et al.*, 2001).

Aufgrund der Notwendigkeit des dynamischen Auf- und Abbaus fokaler Adhäsionen für die Zellmotilität in Verbindung mit der Dominanz dieser PIPKIY-Splicevariante in fokalen Adhäsionen (Di Paolo et al., 2002; Ling et al., 2002) erscheint es durchaus möglich, dass die AP-2/Clathrinabhängige Internalisierung von β1-Integrin PIPKIγ-p90 involviert. Die zusätzlichen AP-2μ/β2-Ohr-Bindungsstellen im C-Terminus von PIPKIy-p90 könnten die Lipidkinase an Orte endozytotischer Aktivität an fokalen Adhäsionen konzentrieren (vergleiche Abschnitt 4.1). Unterstützung erfährt die Hypothese durch die dominant-negative Wirkung verschiedener PIPKγ-p90-Peptide aus dem Kinase-C-Terminus auf die Internalisierung Antikörper-markierter β_1 -Integrine in HeLa-Zellen (vergleiche Ergebnisse Abb. 3.22). Die stärkste Inhibition der β_1 -Integrin-Internalisierung wird durch das WT-PIPKI γ -90-Peptid mit intakter μ 2- und β 2-Ohr-Bindungsstelle erreicht (vergleiche Ergebnisse Abb. 3.22). Das die β 2-Ohr-Bindungsstelle von PIPKI γ -90 ebenfalls Einfluss auf die Internalisierung der Antikörper-markierten β_1 -Integrine nimmt, zeigt die leicht eingeschränkte inhibitorische Wirkung im Vergleich zum WT-PIPKIy-90-Peptid (vergleiche Ergebnisse Abb. 3.22). Die beobachtete Inhibition der Internalisierung Antikörper-markierter β_1 -Integrine durch die PIPKI γ -90-Peptide korreliert mit den Affinitäten der Peptide zur β 2-Ohr-Domäne und C- μ 2 (vergleiche Ergebnisse Abb. 3.18). Weiterhin wird die Hypothese einer initialen Anreicherung von PIPKIy-90 in Bereichen endozytotischer Aktivität über das B2-Ohr unterstützt. Die Inhibition durch das WT- und B2-Ohr (F640A)bindungsdefiziente PIPKI γ -90-Peptid mit jeweils intakter μ 2-Bindungsstelle weist darauf hin, dass die Internalisierung von β_1 -Integrin ein Yxx Φ -Signal involvieren könnte. Die PI(4,5)P₂-Synthese in Abhängigkeit von PIPKI γ -p90 im Komplex mit AP-2 μ erfordert die Bindung eines Yxx Φ -Motivs an AP-2µ (Krauss et al., 2006), das weder durch Numb, noch durch Dab2 bereitgestellt werden kann. Dadurch ergibt sich womöglich die Notwendigkeit eines anderweitig zur Verfügung gestellten YxxΦ- Motivs. PIPKIγ-p90 würde das erforderliche Sortiersignal in Form des distalen WVYSPL-Motivs aus dem p90-spezifischen Spliceinsert intramolekular beitragen.

 β_1 -Integrine werden jedoch nicht ausschließlich durch AP-2/Clathrin-vermittelte Endozytose internalisiert. Zahlreiche Integrine, einschließlich der β_1 -Integrine, werden auch über Clathrinunabhängige Mechanismen, die Caveolae/Detergenz-resistente Membran-Mikrodomänen und die kleine GTPase Arf6 involvieren, internalisiert (Brown et al., 2001; Ezratty et al., 2005; Ng et al., 1999; Upla et al., 2004; Wary et al., 1996; Wary et al., 1998). Der AP-2-knockdown resultierte in einer, um ca. 50 % verminderten β_1 -Integrin-Internalisierung (siehe Ergebnisse Abb. 3.23). Dieses Ergebnis zeigt, dass ein Teil der β_1 -Integrine in Abhängigkeit von AP-2 und Clathrin, die verbleibende Hälfte unabhängig von diesen beiden Proteinen, internalisiert werden kann. Der knockdown von PIPKIy wirkte sich ebenfalls inhibierend, mit vergleichbarerer Effizienz wie der AP-2-knockdown, auf die β_1 -Integrin-Integrin aus (vergleiche Ergebnisse Abb. 3.23). Jedoch kann β_1 -Integrin in HeLa-Zellen auch in Abhängigkeit von Membran-Mikrodomänen in Verbindung mit der kleinen GTPase Arf6 internalisiert werden (Brown et al., 2001). Für die Internalisierung Arf6-abhängiger Frachtproteine wie β_1 -Integrin ist die Aktivierung von Typ I PIPK-Isoformen und die Kontrolle der PI(4,5)P₂-Synthese durch den Aktivitätsstatus von Arf6 essentiell und konnte in HeLa-Zellen in Abhängigkeit von PIPKIa gezeigt werden (Brown et al., 2001). Direkte Beweise fehlen bisher, dass PIPKIy-p90 in Arf6-abhängige Endozytose involviert ist. Doch es konnte gezeigt werden, dass Arf6-GTP in vitro direkt mit PIPKIy interagiert und die PIPKIy-vermittelte PI(4,5)P₂Synthese stimuliert (Honda et al., 1999; Krauss et al., 2003). Weiterhin sind die fokalen Adhäsionen nicht-neuronaler Zellen Orte, an denen PIPKIy-p90 konzentriert zu finden ist (Di Paolo et al., 2002; Ling et al., 2002). Trägt die Interaktion von PIPKIy und Arf6 unabhängig von AP-2/Clathrin zu der Internalisierung von β_1 -Integrin bei, so kann ein Einfluss dieses Aufnahmemechanismus auf die beobachtete inhibierte β_1 -Integrin-Internalisierung in HeLa-Zellen nicht ausgeschlossen werden. Weiterhin ist in Betracht zu ziehen, dass $PI(4,5)P_2$ in zahlreiche zelluläre Prozesse involviert ist, dies nicht zuletzt durch die sekundären Botenstoffe DAG, IP₃ und PI(3,4,5)P₃, denen PI(4,5)P₂ als Ausgangsverbindung dient. Daher kann ebenfalls nicht ausgeschlossen werden, dass sekundäre Effekte in Folge der Reduktion der PIPKIy-vermittelten PI(4,5)P₂-Synthese durch RNAi auftreten könnten, die ebenfalls einen negativen Einfluss auf die β_1 -Integrin-Internalisierung nehmen (Haucke & Di Paolo, 2007; Krauss & Haucke, 2007a; Poccia & Larijani, 2009; Yin & Janmey, 2003). Der genaue Umfang der PIPKIγ-Beteiligung an der AP-2/Clathrin-abhängigen Internalisierung von β_1 -Integrin verbleibt demnach ungewiss, jedoch zeigte die Reduktion der endogenen PIPKIy-Expression, dass die PIPKIy-Isoform Anteil an der endozytotischen Remobilisierung von Integrinen nimmt. Eine mögliche Funktion von PIPKIy in der endozytotischen Remobilisierung Integrine der wird außerdem durch schwere Herzentwicklungsdefekte bei PIPKIy-knockout-Mäusen bekräftigt, verursacht durch eine verminderte Zellmigration in Folge einer gestörten Assemblierung fokaler Adhäsionen (Wang et al., 2007).

Die Interaktionen von PIPKIy-p90 mit AP-2 und Talin involvieren partiell überlappende Bindungsstellen (vergleiche Ergebnisse Abb. 3.15 und Diskussion Abb. 4.2A). Da eine gleichzeitige Interaktion der Bindungspartner auszuschließen ist, kann angenommen werden, dass diese vielfältigen Interaktionen während des Auf- und Abbaus fokaler Adhäsionen reguliert sein könnten. In Übereinstimmung mit dieser Annahme konnte gezeigt werden, dass die Interaktion von PIPKIy-p90 und Talin durch Phosphorylierung reguliert wird (Ling et al., 2002; 2003; Lee et al., 2005). An fokalen Adhäsionen erfolgt die Phosphorylierung von PIPKIy-p90 an Y649 (Y644 in Maus) in Abhängigkeit von der Proteinkinase Src (vergleiche Abb. 4.2B). Diese Phosphorylierung hat keinen negativen Einfluss auf die Interaktion von PIPKIy-p90 und Talin (Ling et al., 2003; Lee et al., 2005), jedoch könnte phosphoryliertes Y649 die Interaktion der Lipidkinase mit AP-2 erschweren. Unterstützt wird diese Vermutung durch Bairstow und Mitarbeiter (2006), die zeigen konnten, dass die Phosphorylierung von Y649 einen negativen Einfluss auf die Interaktion von PIPKIy-p90 mit AP-2µ hat. Weiterhin weisen die Daten der Kristallstrukturen von AP-2µ darauf hin, dass die Phosphorylierung von Y649 aufgrund elektrostatischer Abstoßungen und sterischer Behinderung eine Interaktion mit AP-2µ unterbinden würde. Ähnliches konnte zuvor schon für die Interaktion anderer Tyrosin-basierter Motive mit AP-2µ gezeigt werden (Bonifacino & Traub, 2003; Kittler et al., 2008; Owen et al., 1998; 2004). Der Einfluss von phosphoryliertem Y649 auf die Bindung zur β2-Ohr-Domäne hingegen ist bisher unbekannt. Y649 ist durch die Ausbildung einer Wasserstoffbrückenbindung mit der K808-Seitenkette an der Bindungsstabilisierung mit dem β 2-Ohr involviert (siehe Ergebnisse Abb. 3.11). Da der Phosphatrest ebenfalls negativ geladen ist, könnte die elektrostatische Wechselwirkung zwischen beiden Aminosäureresten Y649 und K808 bestehen bleiben, möglicherweise sogar einen stabilisierenden Einfluss auf die Interaktion nehmen. Die Interaktion von Talin und PIPKIy-p90 wird durch die Phosphorylierung von Y649 stabilisiert und die Kinase weiterhin aktiviert, was sich positiv auf die Assemblierung fokaler Adhäsionen auswirkt. In diesem Fall erscheint eine Wechselwirkung von PIPKIy-p90 mit phosphoryliertem Y649 mit dem AP-2-Komplex nur über das β 2-Ohr möglich. Die Y649-phosphorylierte PIPKI γ -p90 kann wiederum als Substrat für die Phosphatase Shp-1 dienen. Shp-1 interagiert direkt mit PIPKIy-p90 (Bairstow et al., 2005) mit der Folge, dass die Affinität von PIPKIy-p90 zu Talin verringert wird. Läge Y649 dephosphoryliert vor, so wäre eine Interaktion des PIPKIy-p90-C-Terminus mit AP-2µ und eine Autoaktivierung der Lipidkinase möglich.

In Folge der verminderten Interaktion von PIPKI γ -p90 mit Talin würde weniger PI(4,5)P₂ synthetisiert, die fokalen Adhäsionen destabilisiert und die endozytotische Remobilisierung von β 1-Integrin in Abhängigkeit von AP-2, Clathrin und PIPKI γ -p90 gefördert werden. Die Dephosphorylierung von Y649 würde die Phosphorylierung von S650 (S645 in Maus) ermöglichen (siehe Abb. 4.2C). S650 ist als weitere Aminosäure im PIPKI γ -p90-C-Terminus in die Regulation der Interaktion von Talin mit der Kinase involviert. S650 kann sowohl durch Prolin-gerichtete Proteinkinasen als auch durch MAPK phosphoryliert werden (Lee *et al.*, 2005).

Abb. 4.2 Phosphorylierungsstellen im p90-spezifischen Spliceinsert von PIPKIy-p90

(A) Partiell überlappende Bindungsstellen im C-Terminus der PIPKI γ -p90 vermitteln die Interaktion mit AP-2 und Talin. (B) Y649 im p90-spezifischen Spliceinsert von PIPKI γ -p90 kann durch Src und andere Tyrosinkinasen als Phosphorylierungsstelle erkannt werden. (C) S650 im p90-spezifischen Spliceinsert von PIPKI γ -p90 kann z.B. durch Prolin-gerichtete Proteinkinasen oder MAPK phosphoryliert werden. Eine Phosphorylierung von S650 schließt aufgrund elektrostatischer Abstoßung eine Phosphorylierung von Y649 und umgekehrt aus.

S650-Phosphorylierung innerhalb der Talin-Bindesequenz WVYSPL inhibiert durch Eine elektrostatische Abstoßung eine Y649-Phosphorylierung und umgekehrt (Lee et al., 2005). Liegt S650 phosphoryliert vor, so ist eine Internaktion von PIPKIy-p90 mit Talin nicht möglich. Die PIPKIy-p90vermittelte PI(4,5)P₂-Synthese wird durch Talin nicht weiter stimuliert und fördert die Destabilisierung und den Abbau der fokalen Adhäsionen. Doch nicht nur Talin, sondern auch die Wechselwirkung von PIPKI γ -p90 mit der AP-2-Untereinheit β 2-Ohr wird durch Phosphorylierung an S650 behindert (Nakano-Kobayashi et al., 2007). Die Daten aus der Kristallstruktur von β2-Ohr im Komplex mit dem PIPKIy-p90 abgeleiteten Peptid YFPTDERSWVYSPLH offenbaren den Grund: S650-OH ist in die Ausbildung von Wasserstoffbrückenbindungen mit dem Peptidrückgrat um die β2-Ohrreste F753 und L770 involviert, die durch eine Phosphorylierung des Serins unterbrochen werden. Hingegen ist S650-OH in dem Kristall von AP-2-C-µ2 im Komplex mit dem PIPKIy-p90-Peptid SWVYSPLH nicht an der Interaktion mit AP-2µ beteiligt und zeigt von der Proteinoberfläche weg (vergleiche Ergebnisse Abb. 3.14). Weiterhin ist aus früheren Publikationen bekannt, dass die Mutation S650F keinen dramatischen Effekt auf die Interaktion mit der µ2-Untereinheit des AP-2-Komplexes hat (Bairstow et al., 2006; Ling et al., 2007).

Die kombinierten Daten lassen die Vermutung zu, dass der Aufbau fokaler Adhäsionen durch die Wechselwirkung der PIPKI γ mit Talin und der Abbau durch deren Interaktion mit dem AP-2-Komplex reziprok reguliert werden kann. Die Phosphorylierung von Aminosäureresten im PIPKI γ -p90-C-Terminus erscheint als ein möglicher Mechanismus zur Modulation der erforderlichen Protein-Protein-Wechselwirkungen.

4.3 Endozytose synaptischer Vesikel

An chemischen Synapsen, wo synaptische Vesikel einem aktivitätsabhängigen Zyklus aus Exo- und Endozytose ausgesetzt sind, ist die endozytotische, Clathrin-abhängige Maschinerie zusammen mit der p90-Splicevariante der PIPKI γ konzentriert vorzufinden. Aus diesem Grund ist es nahe liegend zu spekulieren, dass die zusätzlichen AP- μ 2/ β 2-Ohr-Bindungsstellen im PIPKI γ -p90-C-Terminus dazu dienen könnten, die Kinase an Orten endozytotischer Aktivität an der aktiven oder präaktiven Zone zu konzentrieren (vergleiche Abschnitt 4.1).

Die physiologische Relevanz der Interaktion von AP-2 und PIPKI γ -p90 konnte durch SynaptopHluorin-Experimente bestätigt werden (vergleiche Ergebnisse Abb. 3.24) und ist in Übereinstimmung mit den Beobachtungen von Di Paolo *et al.* 2004 sowie Nakano-Kobayashi *et al.*, 2007. Die Überexpression von WT- und β 2-Ohr (F640A)-bindungsdefizienten PIPKI γ -90-C-Terminus-Konstrukten schränkte die Endozytose des Reporterproteins SynaptopHluorin (SytpH) signifikant ein (vergleiche Ergebnisse Abb. 3.24). Die Inhibition der SytpH-Endozytose durch das β 2-Ohr (F640A)-bindungsdefiziente PIPKI γ -90-C-Terminus-Konstrukt war im Vergleich zum WT- PIPKIγ-90-C-Terminus leicht vermindert (vergleiche Ergebnisse Abb. 3.24) und unterstützt die Hypothese, dass die Sandwich-Subdomäne des AP-2-β2-Ohrs als initiale Kontaktstelle für PIPKIγ-p90 an Orten reger endozytotischer Aktivität dienen könnte. Da auch Talin an der Präsynapse zu finden ist und durch die Interaktion mit PIPKIγ-p90 Einfluss auf die Clathrin-vermittelte Endozytose nehmen kann (Di Paolo *et al.*, 2002; Morgan *et al.*, 2004), ist ein Beitrag von Talin zur beobachteten Inhibition der Endozytose von SytpH nicht auszuschließen. Auf die Möglichkeiten der Regulation der verschiedenen PIPKIγ-p90 Interaktionspartner wird im weiteren Verlauf von Abschnitt 4.3 eingegangen. Weiterhin war auffällig, dass trotz Inaktivierung aller bekannten AP-2-Bindungsstellen im PIPKIγ-90-C-Terminus das SytpH-Niveau der mRFP-Kontrolle an der Plasmamembran nicht erreicht werden konnte (vergleiche Ergebnisse Abb. 3.24). Die beobachtete, signifikante Akkumulation von SytpH an der Plasmamembran ist möglicherweise durch die Existenz eines bisher unbekannten PIPKIγ-90 Bindungspartners zu erklären, der ebenfalls Einfluss auf die AP-2/Clathrinvermittelte Endozytose an der Synapse nehmen kann und dessen Identität näherer Untersuchungen bedarf. Ein unspezifischer Effekt der Proteinüberexpression ist jedoch ebenfalls nicht auszuschließen.

Die potente Inhibition der SytpH-Endozytose durch die WT- oder β 2-Ohr (F640A)-bindungsdefiziente C-terminale Domäne der PIPKI γ -90 deutet darauf hin, dass ein bestimmter Anteil synaptischer Vesikelproteine in Abhängigkeit von Yxx Φ -Motiven internalisiert werden könnte. Hierbei ist interessant, dass die Erkennung vieler synaptischen Vesikelproteine nicht über klassische, endozytotische Internalisierungsmotive erfolgt (Jung & Haucke, 2007). Yxx Φ -Motive, die in der zytoplasmatischen Domäne des Vesikelproteins SV2 gefunden wurden, deuten darauf hin, dass die Internalisierung synaptischer Vesikelproteine potentiell auch über konventionelle Sortiermotive vermittelt werden könnte (Haucke & De Camilli, 1999). Eindeutige Nachweise, dass die Yxx Φ -Motive direkt an der Internalisierung von SV2 beteiligt sind, fehlen bisher.

Beispiele für synaptische Vesikelproteine, die über Frachtprotein-spezifische, Yxx Φ -unabhängige Sortiermechanismen in Clathrin-umhüllte Vesikel sortiert werden, sind der VGLUT1 und Synaptotagmin 1 (Jung & Haucke, 2007). VGLUT1 erkennt über eine Prolin-reiche Sequenz im C-Terminus die SH3-Domäne des akzessorischen Proteins Endophilin, das die Internalisierung des Transporters in einem AP-2- und D/ExxxL[L]-Motiv-abhängigen Mechanismus vermittelt (Voglmaier *et al.*, 2006). Die Internalisierung von Synaptotagmin 1 erfolgt über einen Cluster basischer Aminosäuren in der C2A-Domäne, der durch die μ -Homologiedomäne des synaptischen Adaptorproteins Stonin 2 erkannt wird. Stonin 2 wiederum assoziiert effizient mit dem AP-2- α -Ohr (Diril *et al.*, 2006; Jung *et al.*, 2007). Das distale WVYSPL-Motiv von PIPKI γ -p90 im Komplex mit AP-2 μ könnte daher durch eine Autostimulation der Kinaseaktivität die AP-2/Clathrin-vermittelte Endozytose synaptischer Vesikelproteine wie Synaptotagmin 1 und VGLUT1 unterstützen. Ein ähnlicher Mechanismus wurde auch für die AP-2/Clathrin-vermittelte Internalisierung von β 1-Integrin postuliert (vergleiche Abschnitt 4.2). Es ist seit langem bekannt, dass synaptische Vesikelproteine und konventionelle Frachtproteine wie zum Beispiel der Transferrin-Rezeptor in Neuronen und neuroendokrinen Zellen nicht gemeinsam transportiert werden (Linstedt & Kelly, 1991). Aus der Möglichkeit der PIPKIy-p90 über das distale WVYSPL-Motiv mit der Yxx Φ -erkennenden µ2-Oberfläche zu interagieren, ergibt sich die Frage, ob über diesen Mechanismus möglicherweise konventionelle Frachtproteine wie Transferrin- und EGF-Rezeptoren von der Sortierung in präsynaptische Clathrin-umhüllte Vesikel ausgeschlossen werden könnten. Nach dem jetzigen Wissensstand kann diese Frage nicht eindeutig und nur unter Vorbehalt beantwortet werden. Eine Möglichkeit wäre, dass konventionelle Frachtproteine unabhängig von PIPKIy-p90 über einen AP2/Clathrin-vermittelten Mechanismus endozytiert werden. So konnte in nicht-neuronalen Zellen gezeigt werden, dass konventionelle Yxx P-haltige Frachtproteine wie EGFund Transferrin-Rezeptoren vermittelt durch PIPKIa und PIPKIB internalisiert werden können (Bairstow et al., 2006, Barbieri et al., 2001, Padrón et al., 2003). Weiterhin konnte gezeigt werden, dass Überexpression des WT-PIPKIy-90-C-Terminus die Internalisierung von SytpH potent inhibiert, die Endozytose von fluoreszierendem Transferrin hingegen nicht signifikant einschränkt (siehe Ergebnisse Abb. 3.24). PIPKI α und PIPKI β werden auch in Neuronen exprimiert (Di Paolo *et al.*, 2004, Wenk et al., 2001), doch im Gegensatz zu PIPKIy-p90 konnte noch keine Funktion an Synapsen nachgewiesen werden.

zytoplasmatischen Domäne, deren Funktion in vivo unbekannt ist. Haucke und De Camilli (1999) konnten *in vitro* zeigen, dass die Bindung von Yxx Φ -haltigen Peptiden aus TGN38 und SV2 an AP-2u die direkte Interaktion mit Synaptotagmin 1 fördert. Synaptotagmin 1 kann nicht nur indirekt über das Adaptorprotein Stonin in Abhängigkeit von AP-2 und Clathrin internalisiert werden (siehe oben), sondern direkt über ein Cluster basischer Aminosäurereste in der C2B-Domäne mit AP-2µ, verschieden zur Yxx D-Bindungsoberfläche, interagieren (Chapman et al., 1998; Grass et al., 2004; Haucke & De Camilli, 1999; Haucke et al., 2000). Demnach scheint es möglich zu sein, dass synaptische Vesikelproteine in Abhängigkeit von konventionellen Yxx D-Motiven und Clustern basischer Aminosäuren kooperativ internalisiert werden könnten. Welche Folgen hätte dieser kooperative Internalisierungsmechanismus für die Interaktion der PIPKIy-p90 mit dem AP-2-Komplex? Die Interaktion von PIPKIy-p90, sowohl über die katalytische Domäne (0,5 µM) (Krauss *et al.*, 2006) als auch den C-Terminus (6 µM, 22 µM) mit AP-2 ist durch Dissoziationskonstanten im µM-Bereich charakterisiert, wie sie für die Ausbildung transienter Interaktionen typisch ist (Miele et al., 2004; Owen et al., 2004; Traub, 2009). Dies ist in Übereinstimmung mit der Beobachtung, dass PIPKIY hauptsächlich außerhalb von Clathrin-umhüllten Strukturen zu finden ist (Krauss et al., 2006). Diese Beobachtung ermutigt daher zu der Spekulation, dass die Verdrängung von PIPKIy aus Clathrinumhüllten Vesikeln über einen kooperativen Internalisierungsmechanismus synaptischer Vesikelproteine in Abhängigkeit von Yxx Φ -Motiven möglicherweise gefördert werden könnte.

Möglicherweise trägt das distale WVYSPL-Motiv nicht nur zur Autoaktivierung von PIPKIγ-p90 im Komplex mit AP-2µ bei, sondern fördert zunächst die Bindung weiterer synaptischer Vesikelproteine an AP-2µ wie zum Beispiel Synaptotagmin 1 über basische Aminosäure-Cluster. Da sowohl Synaptotagmin I als auch PIPKIγ-p90 mit AP-2µ über eine von der YxxΦ-Bindestelle verschiedenen Oberfläche interagieren, können elektrostatische Abstoßungen und sterische Behinderungen nicht ausgeschlossen werden, die möglicherweise einen destabilisierenden Einfluss auf die Bindung von PIPKIγ-p90 nehmen. Im Verlauf der Reifung Clathrin-umhüllter Vesikel dissoziiert PIPKIγ-p90 von AP-2µ, oder wird möglicherweise durch YxxΦ-haltige synaptische Vesikelproteine verdrängt. Weitere Versuche werden jedoch nötig sein, um Einblicke in diese hypothetischen Szenarien zu erhalten. Eine Reduktion der endogenen Expression von PIPKIα und PIPKIβ in Neuronen durch RNAi mit anschließender Untersuchung der Transferrin-Aufnahme wäre ein nahe liegendes Experiment. Weiterhin wäre interessant, eine mögliche Freisetzung von PIPKIγ-p90 im Komplex mit AP-2µ und Synaptotagmin I durch YxxΦ-haltige Vesikelproteine zu untersuchen.

PIPKIy-p90 gehört zu den Dephosphinen, einer Gruppe endozytotischer, nicht verwandter Proteine, die stimulationsabhängig phosphoryliert oder dephosphoryliert an Synapsen gefunden werden können (Cousin & Robinson, 2001). Unter Ruhebedingungen liegt PIPKIy-p90 an der Synapse an S650 phosphoryliert vor (vergleiche Abb. 4.2C). In diesem Phosphorylierungsstatus wäre wie schon unter Abschnitt 4.2 beschrieben eine Interaktion mit Talin und AP-2 in der basalen, geschlossenen Konformation nicht möglich. Wird die Synapse durch ein Aktionspotential angeregt, so wird S650 der PIPKIγ-p90 durch die Ca²⁺-abhängige Phosphatase Calcineurin dephosphoryliert und eine Interaktion mit AP-2 und Talin ist möglich. Talin könnte an der Synapse PIPKIy-p90 in Bereiche endozytotischer Aktivität rekrutieren und AP-2 die Kinase aktivieren. Ebenso wie in fokalen Adhäsionen nichtneuronaler Zellen kann an Synapsen eine gleichzeitige Interaktion von Talin und AP-2 bei überlappenden Bindungsstellen im PIPKIy-p90-C-Terminus nicht gleichzeitig stattfinden. Es ist daher zu vermuten, dass die Regulation der Interaktion von PIPKIy-p90 mit Talin und AP-2 an der Synapse den Aminosäurerest Y649 (vergleiche Abschnitt 4.2 und Abbildung 4.2) involviert. Unter nicht stimulatorischen Bedingungen, d.h. einer eingeschränkten Interaktion von Talin und AP-2, könnte die Kinase in andere Bereiche an der Synapse wie die aktive Zone rekrutiert und zur PI(4,5)P₂-Synthese stimuliert werden. Die Defekte in der Exo- und der Endozytose synaptischer Vesikel, die in PIPKIyknockout Neuronen detektiert werden konnten (Di Paolo et al., 2004), unterstützen diese Hypothese. Der Bedarf und der regulative Einfluss an $PI(4,5)P_2$ in Bereichen der Exozytose zeigt sich zum Beispiel in der Bindung von PI(4,5)P₂ durch Synaptotagmin 1 (Mikoshiba et al., 1999; Schiavo et al., 1996), den putiven Ca²⁺-Sensor der SNARE-vermittelten Endozytose, CAPS, MINT1 und MINT2, Interaktionspartner von Munc18 (Okamoto & Südhof, 1997).

4.4 Beitrag weiterer PIPKIγ-Splicevarianten

Zusätzlich zu den bereits bekannten humanen Splicevarianten war die Identifizierung von zwei weiteren PIPKI γ -Varianten (Variante 4 und 5) möglich (Schill & Anderson, 2009). Eine zusätzliche PIPKI γ -Splicevariante (PIPKI γ -p93) konnte bisher nur in Maus und Ratte nachgewiesen werden und unterscheidet sich durch 26 zusätzliche Aminosäuren vor dem p90-spezifischen Spliceinsert von PIPKI γ -p90 (Guidici *et al.*, 2004). Das p93-spezifische Spliceinsert unterbricht die β 2-Ohr-Bindungsstelle des p90-spezifischen Spliceinserts. Somit verfügt PIPKI γ -p93 in seinem C-Terminus noch über das distale Yxx Φ - und das Talin-Motiv. Die Spliceinserte der humanen PIPKI γ -p90 zur Grundlage (Schill & Anderson, 2009). Variante 4 teilt außer Phenylalanin 640 keine weitere Gemeinsamkeit mit PIPKI γ -p90. Variante 5 verfügt in seinem spezifischen Spliceinsert über eine potentielle β 2-Ohr-Bindungsstelle und ein potentielles Talin-Bindungsmotiv der Sequenz 647WIYSPRH.

Somit verfügt keine der anderen bisher identifizierten PIPKI γ -Splicevarianten über das komplette Inventar C-terminaler AP-2 μ/β 2-Ohr-Bindungsstellen. Da weder für PIPKI γ -p93, noch für PIPKI γ -Variante 4 und 5 Bindungspartner bzw. genaue Funktionen identifizierten werden konnten, wäre es von großem Interesse, ob und wie eine Interaktion mit bekannten Interaktionspartnern der PIPKI γ -p90 möglich ist.

4.5 Ausblick

Durch ihr distales WVYSPL-Motiv verfügt PIPKIγ-p90 im Komplex mit AP-2µ über die Möglichkeit zur Autoaktivierung, die für nicht YxxΦ-vermittelte, AP-2/Clathrin-abhängige Internalisierungen von Frachtmolekülen in nicht-neuronalen Zellen und an Synapsen von Bedeutung sein könnte. Dieser Aktivierungsmechanismus könnte auch zur Internalisierung weiterer, noch unbekannter Frachtmoleküle beitragen. Da PI(4,5)P₂, das Produkt der PIPKIγ-p90 nicht nur für die Endozytose synaptischer Vesikel von Bedeutung ist, sondern auch für Exozytose synaptischer Vesikel benötigt wird, wären weiterführende Studien zu einer möglichen Aktivierung von PIPKIγ-p90 von großem Interesse, auch um den Beitrag der Kinase an der Exozytose synaptischer Vesikel aufzuklären (Di Paolo *et al.*, 2004). Auch wäre es interessant zu untersuchen, ob die Freisetzung von PIPKIγ-p90 aus synaptischen Vesikeln durch eine kooperative Internalisierung von synaptischen Vesikelproteinen in Abhängigkeit von YxxΦ- und Clustern basischer Aminosäuren gefördert werden kann. Auch eine Charakterisierung der neu identifizierten PIPKIγ-Splicevarianten hinsichtlich ihrer bevorzugen Interaktionspartner und ihres eventuellen Einflusses auf den exo- und endozytotischen Zyklus synaptischer Vesikel erscheint reizvoll.

5 Literaturverzeichnis

- Abe *et al.*(2008). "Dissecting the role of PtdIns(4,5)P2 in endocytosis and recycling of the transferrin receptor." *J Cell Sci* **121**(Pt 9): 1488-94.
- Bai & Chapman (2004). "The C2 domains of synaptotagmin--partners in exocytosis." *Trends Biochem Sci* **29**(3): 143-51.
- Bairstow *et al.* (2005). "Phosphatidylinositol phosphate kinase type Igamma directly associates with and regulates Shp-1 tyrosine phosphatase." *J Biol Chem* **280**(25): 23884-91.
- Bairstow *et al.* (2006). "Type Igamma661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis." *J Biol Chem* **281**(29): 20632-42.
- Ball et al. (1995). "Expression and localization of alpha-adaptin isoforms." J Cell Sci 108 (Pt 8): 2865-75.
- Balla (2005). "Inositol-lipid binding motifs: signal integrators through protein-lipid and proteinprotein interactions." *J Cell Sci* **118**(Pt 10): 2093-104.
- Barbieri *et al.* (2001). "Phosphatidylinositol-4-phosphate 5-kinase-1beta is essential for epidermal growth factor receptor-mediated endocytosis." *J Biol Chem* **276**(50): 47212-6.
- Behnia & Munro (2005). "Organelle identity and the signposts for membrane traffic." *Nature* **438**(7068): 597-604.
- Benmerah *et al.* (1996). "The ear of alpha-adaptin interacts with the COOH-terminal domain of the Eps 15 protein." *J Biol Chem* **271**(20): 12111-6.
- Bethune et al. (2006). "COPI-mediated transport." J Membr Biol 211(2): 65-79.
- Boll *et al.* (1996). "Sequence requirements for the recognition of tyrosine-based endocytic signals by clathrin AP-2 complexes." *Embo J* **15**(21): 5789-95.
- Bonifacino & Hurley (2008). "Retromer." Curr Opin Cell Biol 20(4): 427-36.
- Bonifacino & Traub (2003). "Signals for sorting of transmembrane proteins to endosomes and lysosomes." *Annu Rev Biochem* **72**: 395-447.
- Bradford (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." *Anal Biochem* **72**: 248-54.
- Brodin *et al.* (2000). "Sequential steps in clathrin-mediated synaptic vesicle endocytosis." *Curr Opin Neurobiol* **10**(3): 312-20.
- Brodsky *et al.* (2001). "Biological basket weaving: formation and function of clathrin-coated vesicles." *Annu Rev Cell Dev Biol* **17**: 517-68.
- Brose *et al.* (1992). "Synaptotagmin: a calcium sensor on the synaptic vesicle surface." *Science* **256**(5059): 1021-5.
- Brown *et al.* (2001). "Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic." *J Cell Biol* **154**(5): 1007-17.

- Burrone *et al.* (2006). "Studying vesicle cycling in presynaptic terminals using the genetically encoded probe synaptopHluorin." *Nat Protoc* **1**(6): 2970-8.
- Calderwood & Ginsberg (2003). "Talin forges the links between integrins and actin." *Nat Cell Biol* **5**(8): 694-7.
- Calderwood *et al.* (2003). "Integrin beta cytoplasmic domain interactions with phosphotyrosinebinding domains: a structural prototype for diversity in integrin signaling." *Proc Natl Acad Sci* USA **100**(5): 2272-7.
- Caswell & Norman (2008). "Endocytic transport of integrins during cell migration and invasion." *Trends Cell Biol* **18**(6): 257-63.
- Caswell *et al.* (2009). "Integrins: masters and slaves of endocytic transport." *Nat Rev Mol Cell Biol* **10**(12): 843-53.
- Chao & Kunz (2009). "Focal adhesion disassembly requires clathrin-dependent endocytosis of integrins." *FEBS Lett* **583**(8): 1337-43.
- Chapman (2002). "Synaptotagmin: a Ca(2+) sensor that triggers exocytosis?" *Nat Rev Mol Cell Biol* **3**(7): 498-508.
- Chapman & Davis (1998). "Direct interaction of a Ca2+-binding loop of synaptotagmin with lipid bilayers." *J Biol Chem* **273**(22): 13995-4001.
- Chapman *et al.* (1998). "Delineation of the oligomerization, AP-2 binding, and synprint binding region of the C2B domain of synaptotagmin." *J Biol Chem* **273**(49): 32966-72.
- Chen & Brodsky (2005). "Huntingtin-interacting protein 1 (Hip1) and Hip1-related protein (Hip1R) bind the conserved sequence of clathrin light chains and thereby influence clathrin assembly in vitro and actin distribution in vivo." *J Biol Chem* **280**(7): 6109-17.
- Chen *et al.* (1998). "Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis." *Nature* **394**(6695): 793-7.
- Chetrit et al. (2009). "Dab2 regulates clathrin assembly and cell spreading." Biochem J 418(3): 701-15.
- Collins (2008). "The structure and function of the retromer protein complex." *Traffic* 9(11): 1811-22.
- Collins *et al.* (2002). "Molecular architecture and functional model of the endocytic AP2 complex." *Cell* **109**(4): 523-35.
- Conner & Schmid (2002). "Identification of an adaptor-associated kinase, AAK1, as a regulator of clathrin-mediated endocytosis." *J Cell Biol* **156**(5): 921-9.
- Conner & Schmid (2003a). "Differential requirements for AP-2 in clathrin-mediated endocytosis." *J Cell Biol* **162**(5): 773-9.
- Conner & Schmid (2003b). "Regulated portals of entry into the cell." Nature 422(6927): 37-44.
- Conner *et al.* (2003). "AAK1-mediated micro2 phosphorylation is stimulated by assembled clathrin." *Traffic* **4**(12): 885-90.
- Cousin & Robinson (2001). "The dephosphins: dephosphorylation by calcineurin triggers synaptic vesicle endocytosis." *Trends Neurosci* **24**(11): 659-65.

- Cousin *et al.* (2001). "Protein phosphorylation is required for endocytosis in nerve terminals: potential role for the dephosphins dynamin I and synaptojanin, but not AP180 or amphiphysin." *J Neurochem* **76**(1): 105-16.
- Craig *et al.* (1998). "Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity." *Proc Natl Acad Sci U S A* **95**(19): 11229-34.
- Cremona & De Camilli (1997). "Synaptic vesicle endocytosis." *Curr Opin Neurobiol* **7**(3): 323-30.
- Cremona & De Camilli (2001). "Phosphoinositides in membrane traffic at the synapse." *J Cell Sci* **114**(Pt 6): 1041-52.
- Cremona *et al.* (1999). "Essential role of phosphoinositide metabolism in synaptic vesicle recycling." *Cell* **99**(2): 179-88.
- Critchley (2000). "Focal adhesions the cytoskeletal connection." Curr Opin Cell Biol 12(1): 133-9.
- Cupers *et al.* (1998). "Assembly of clathrin coats disrupts the association between Eps15 and AP-2 adaptors." *J Biol Chem* **273**(4): 1847-50.
- Davletov & Südhof (1993). "A single C2 domain from synaptotagmin I is sufficient for high affinity Ca2+/phospholipid binding." *J Biol Chem* **268**(35): 26386-90.
- de Lange *et al.* (2003). "Two modes of vesicle recycling in the rat calyx of Held." *J Neurosci* 23(31): 10164-73.
- De Matteis & Godi (2004). "PI-loting membrane traffic." Nat Cell Biol 6(6): 487-92.
- Dell'Angelica *et al.* (1998). "Association of the AP-3 adaptor complex with clathrin." *Science* **280**(5362): 431-4.
- Di Fiore & De Camilli (2001). "Endocytosis and signaling. an inseparable partnership." *Cell* **106**(1): 1-4.
- Di Paolo & De Camilli (2006). "Phosphoinositides in cell regulation and membrane dynamics." *Nature* **443**(7112): 651-7.
- Di Paolo *et al.* (2002). "Recruitment and regulation of phosphatidylinositol phosphate kinase type 1 gamma by the FERM domain of talin." *Nature* **420**(6911): 85-9.
- Di Paolo *et al.* (2004). "Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking." *Nature* **431**(7007): 415-22.
- Diril *et al.* (2006). "Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization and recycling." *Dev Cell* **10**(2): 233-44.
- Diviani *et al.* (2003). "The adaptor complex 2 directly interacts with the alpha 1b-adrenergic receptor and plays a role in receptor endocytosis." *J Biol Chem* **278**(21): 19331-40.
- Doherty & McMahon (2009). "Mechanisms of endocytosis." Annu Rev Biochem 78: 857-902.
- Doray *et al.* (2007). "The gamma/sigma1 and alpha/sigma2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site." *Mol Biol Cell* **18**(5): 1887-96.

- Doughman *et al.* (2003). "Phosphatidylinositol phosphate kinases put PI4,5P(2) in its place." *J Membr Biol* **194**(2): 77-89.
- Drab *et al.* (2001). "Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 genedisrupted mice." *Science* **293**(5539): 2449-52.
- Duncan *et al.* (2001). "Yeast Eps15-like endocytic protein, Pan1p, activates the Arp2/3 complex." *Nat Cell Biol* **3**(7): 687-90.
- Eberhard *et al.* (1990). "Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP." *Biochem J* 268(1): 15-25.
- Edeling *et al.* (2006a). "Molecular switches involving the AP-2 beta2 appendage regulate endocytic cargo selection and clathrin coat assembly." *Dev Cell* **10**(3): 329-42.
- Edeling *et al.* (2006b). "Life of a clathrin coat: insights from clathrin and AP structures." *Nat Rev Mol Cell Biol* **7**(1): 32-44.
- Eden *et al.* (2007). "Adaptor protein disabled-2 modulates low density lipoprotein receptor synthesis in fibroblasts from patients with autosomal recessive hypercholesterolaemia." *Hum Mol Genet* **16**(22): 2751-9.
- Ehrlich *et al.* (2004). "Endocytosis by random initiation and stabilization of clathrin-coated pits." *Cell* **118**(5): 591-605.
- Evergren *et al.* (2004). "Amphiphysin is a component of clathrin coats formed during synaptic vesicle recycling at the lamprey giant synapse." *Traffic* **5**(7): 514-28.
- Evergren *et al.* (2007). "Intersectin is a negative regulator of dynamin recruitment to the synaptic endocytic zone in the central synapse." *J Neurosci* 27(2): 379-90.
- Ezratty *et al.* (2005). "Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase." *Nat Cell Biol* **7**(6): 581-90.
- Fernandez-Chacon *et al.* (2001). "Synaptotagmin I functions as a calcium regulator of release probability." *Nature* **410**(6824): 41-9.
- Fernandez-Chacon *et al.* (2002). "Structure/function analysis of Ca2+ binding to the C2A domain of synaptotagmin 1." J Neurosci 22(19): 8438-46.
- Fingerhut *et al.* (2001). "Binding of AP2 to sorting signals is modulated by AP2 phosphorylation." *J Biol Chem* **276**(8): 5476-82.
- Ford *et al.* (2001). "Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes." *Science* **291**(5506): 1051-5.
- Ford et al. (2002). "Curvature of clathrin-coated pits driven by epsin." Nature 419(6905): 361-6.
- Fotin *et al.* (2004). "Molecular model for a complete clathrin lattice from electron cryomicroscopy." *Nature* **432**(7017): 573-9.
- Gad *et al.* (2000). "Fission and uncoating of synaptic clathrin-coated vesicles are perturbed by disruption of interactions with the SH3 domain of endophilin." *Neuron* **27**(2): 301-12.

- Gaidarov & Keen (1999). "Phosphoinositide-AP-2 interactions required for targeting to plasma membrane clathrin-coated pits." *J Cell Biol* **146**(4): 755-64.
- Galli & Haucke (2001). "Cycling of synaptic vesicles: how far? How fast!" Sci STKE 2001(88): re1.
- Galli & Haucke (2004). "Cycling of synaptic vesicles: how far? How fast!" Sci STKE 2004(264): re19.
- Gandhi & Stevens (2003). "Three modes of synaptic vesicular recycling revealed by single-vesicle imaging." *Nature* **423**(6940): 607-13.
- Giudici *et al.* (2004). "A novel neuronal-specific splice variant of Type I phosphatidylinositol 4phosphate 5-kinase isoform gamma." *Biochem J* **379**(Pt 2): 489-96.
- Granseth *et al.* (2006). "Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses." *Neuron* **51**(6): 773-86.
- Grass *et al.* (2004). "Recognition of a basic AP-2 binding motif within the C2B domain of synaptotagmin is dependent on multimerization." *J Biol Chem* **279**(52): 54872-80.
- Greene *et al.* (2000). "Complete reconstitution of clathrin basket formation with recombinant protein fragments: adaptor control of clathrin self-assembly." *Traffic* 1(1): 69-75.
- Harata *et al.* (2006). "Kiss-and-run and full-collapse fusion as modes of exo-endocytosis in neurosecretion." *J Neurochem* **97**(6): 1546-70.
- Harris *et al.* (2000). "Mutations in synaptojanin disrupt synaptic vesicle recycling." *J Cell Biol* **150**(3): 589-600.
- Haucke (2005). "Phosphoinositide regulation of clathrin-mediated endocytosis." *Biochem Soc Trans* **33**(Pt 6): 1285-9.
- Haucke & De Camilli (1999). "AP-2 recruitment to synaptotagmin stimulated by tyrosine-based endocytic motifs." *Science* **285**(5431): 1268-71.
- Haucke & Di Paolo (2007). "Lipids and lipid modifications in the regulation of membrane traffic." *Curr Opin Cell Biol* **19**(4): 426-35.
- Haucke *et al.* (2000). "Dual interaction of synaptotagmin with mu2- and alpha-adaptin facilitates clathrin-coated pit nucleation." *Embo J* **19**(22): 6011-9.
- Hay *et al.* (1995). "ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion." *Nature* **374**(6518): 173-7.
- Hay & Martin (1993). "Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion." *Nature* **366**(6455): 572-5.
- Heck *et al.* (2007). "A conspicuous connection: structure defines function for the phosphatidylinositol-phosphate kinase family." *Crit Rev Biochem Mol Biol* **42**(1): 15-39.
- Heuser & Reese (1973). "Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction." *J Cell Biol* **57**(2): 315-44.
- Hinrichsen *et al.* (2003). "Effect of clathrin heavy chain- and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells." *J Biol Chem* **278**(46): 45160-70.

- Hinrichsen *et al.* (2006). "Bending a membrane: how clathrin affects budding." *Proc Natl Acad Sci U S A* **103**(23): 8715-20.
- Hofmann & Falquet (2001). "A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems." *Trends Biochem Sci* **26**(6): 347-50.
- Holz *et al.* (1989). "MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis." *J Biol Chem* **264**(10): 5412-9.
- Holz *et al.* (2000). "A pleckstrin homology domain specific for phosphatidylinositol 4, 5-bisphosphate (PtdIns-4,5-P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5-P2 as being important in exocytosis." *J Biol Chem* **275**(23): 17878-85.
- Honda *et al.* (1999). "Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation." *Cell* **99**(5): 521-32.
- Höning *et al.* (2005). "Phosphatidylinositol-(4,5)-bisphosphate regulates sorting signal recognition by the clathrin-associated adaptor complex AP2." *Mol Cell* **18**(5): 519-31.
- Howell *et al.* (1999). "The disabled 1 phosphotyrosine-binding domain binds to the internalization signals of transmembrane glycoproteins and to phospholipids." *Mol Cell Biol* **19**(7): 5179-88.
- Huang *et al.* (2003). "Tyrosine phosphorylation of the beta2 subunit of clathrin adaptor complex AP-2 reveals the role of a di-leucine motif in the epidermal growth factor receptor trafficking." *J Biol Chem* **278**(44): 43411-7.
- Hurley (2006). "Membrane binding domains." *Biochim Biophys Acta* 1761(8): 805-11.
- Hynes (2002). "Integrins: bidirectional, allosteric signaling machines." Cell 110(6): 673-87.
- Ishihara *et al.* (1996). "Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4-phosphate 5-kinase." *J Biol Chem* **271**(39): 23611-4.
- Ishihara *et al.* (1998). "Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family." *J Biol Chem* **273**(15): 8741-8.
- Itoh & De Camilli (2006). "BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature." *Biochim Biophys Acta* **1761**(8): 897-912.
- Jackson *et al.* (2003). "Clathrin promotes incorporation of cargo into coated pits by activation of the AP2 adaptor micro2 kinase." *J Cell Biol* **163**(2): 231-6.
- Jahn & Scheller (2006). "SNAREs--engines for membrane fusion." *Nat Rev Mol Cell Biol* **7**(9): 631-43.
- Jost *et al.* (1998). "Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation." *Curr Biol* **8**(25): 1399-402.
- Jung & Haucke (2007). "Clathrin-mediated endocytosis at synapses." Traffic 8(9): 1129-36.
- Jung *et al.* (2007). "Molecular basis of synaptic vesicle cargo recognition by the endocytic sorting adaptor stonin 2." *J Cell Biol* **179**(7): 1497-510.

- Kaksonen *et al.* (2006). "Harnessing actin dynamics for clathrin-mediated endocytosis." *Nat Rev Mol Cell Biol* **7**(6): 404-14.
- Kalthoff *et al.* (2002). "Unusual structural organization of the endocytic proteins AP180 and epsin 1." *J Biol Chem* **277**(10): 8209-16.
- Kanaho *et al.* (2008). "Novel activation mechanism and physiological function of PIP5Kgamma661." *Adv Enzyme Regul* **48**: 88-96.
- Kastning *et al.* (2007). "Molecular determinants for the interaction between AMPA receptors and the clathrin adaptor complex AP-2." *Proc Natl Acad Sci U S A* **104**(8): 2991-6.
- Kelly *et al.* (2008). "A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex." *Nature* **456**(7224): 976-79.
- Kessels & Qualmann (2002). "Syndapins integrate N-WASP in receptor-mediated endocytosis." *Embo J* **21**(22): 6083-94.
- Keyel *et al.* (2006). "A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors." *Mol Biol Cell* **17**(10): 4300-17.

Kirchhausen (1999). "Adaptors for clathrin-mediated traffic." Annu Rev Cell Dev Biol 15: 705-32.

Kirchhausen (2000). "Three ways to make a vesicle." Nat Rev Mol Cell Biol 1(3): 187-98.

- Kirchhausen *et al.* (1989). "Structural and functional division into two domains of the large (100- to 115-kDa) chains of the clathrin-associated protein complex AP-2." *Proc Natl Acad Sci U S A* **86**(8): 2612-6.
- Kittler *et al.* (2005). "Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission." *Proc Natl Acad Sci U S A* **102**(41): 14871-6.
- Kittler *et al.* (2008). "Regulation of synaptic inhibition by phospho-dependent binding of the AP2 complex to a YECL motif in the GABAA receptor gamma2 subunit." *Proc Natl Acad Sci U S A* **105**(9): 3616-21.
- Knuehl *et al.* (2006). "Novel binding sites on clathrin and adaptors regulate distinct aspects of coat assembly." *Traffic* **7**(12): 1688-700.
- Krauss & Haucke (2007a). "Phosphoinositide-metabolizing enzymes at the interface between membrane traffic and cell signalling." *EMBO Rep* **8**(3): 241-6.
- Krauss & Haucke (2007b). "Phosphoinositides: regulators of membrane traffic and protein function." *FEBS Lett* **581**(11): 2105-11.
- Krauss *et al.* (2003). "ARF6 stimulates clathrin/AP-2 recruitment to synaptic membranes by activating phosphatidylinositol phosphate kinase type Igamma." *J Cell Biol* **162**(1): 113-24.
- Krauss *et al.* (2006). "Stimulation of phosphatidylinositol kinase type I-mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2mu-cargo complexes." *Proc Natl Acad Sci U S A* **103**(32): 11934-9.
- Lee *et al.* (2005). "Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases." *J Cell Biol* **168**(5): 789-99.

- Legate & Fassler (2009). "Mechanisms that regulate adaptor binding to beta-integrin cytoplasmic tails." *J Cell Sci* **122**(Pt 2): 187-98.
- Legendre-Guillemin *et al.* (2005). "Huntingtin interacting protein 1 (HIP1) regulates clathrin assembly through direct binding to the regulatory region of the clathrin light chain." *J Biol Chem* **280**(7): 6101-8.
- Lemmon (2003). "Phosphoinositide recognition domains." *Traffic* **4**(4): 201-13.
- Lenzi *et al.* (2002). "Depolarization redistributes synaptic membrane and creates a gradient of vesicles on the synaptic body at a ribbon synapse." *Neuron* **36**(4): 649-59.
- Ling *et al.* (2002). "Type I gamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions." *Nature* **420**(6911): 89-93.
- Ling *et al.* (2003). "Tyrosine phosphorylation of type Igamma phosphatidylinositol phosphate kinase by Src regulates an integrin-talin switch." J Cell Biol **163**(6): 1339-49.
- Ling *et al.* (2007). "Type Igamma phosphatidylinositol phosphate kinase modulates adherens junction and E-cadherin trafficking via a direct interaction with mu 1B adaptin." *J Cell Biol* **176**(3): 343-53.
- Linstedt & Kelly (1991). "Synaptophysin is sorted from endocytotic markers in neuroendocrine PC12 cells but not transfected fibroblasts." *Neuron* **7**(2): 309-17.
- Loijens & Anderson (1996). "Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family." *J Biol Chem* **271**(51): 32937-43.
- Mackler & Reist (2001). "Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions." *J Comp Neurol* **436**(1): 4-16.
- Maldonado-Baez & Wendland (2006). "Endocytic adaptors: recruiters, coordinators and regulators." *Trends Cell Biol* **16**(10): 505-13.
- Mao *et al.* (2001). "A novel all helix fold of the AP180 amino-terminal domain for phosphoinositide binding and clathrin assembly in synaptic vesicle endocytosis." *Cell* **104**(3): 433-40.
- Marchese *et al.* (2008). "G protein-coupled receptor sorting to endosomes and lysosomes." *Annu Rev Pharmacol Toxicol* **48**: 601-29.
- Maritzen et al. (2009). "Ins Innere der Zelle." Nachrichten aus der Chemie 57(11): 1085-1089.
- Marks *et al.* (1996). "Protein targeting by tyrosine- and di-leucine-based signals: evidence for distinct saturable components." *J Cell Biol* **135**(2): 341-54.
- Martel *et al.* (2001). "Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides." *J Biol Chem* **276**(24): 21217-27.
- Maurer & Cooper (2006). "The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH." *J Cell Sci* **119**(Pt 20): 4235-46.
- Mayor & Pagano (2007). "Pathways of clathrin-independent endocytosis." *Nat Rev Mol Cell Biol* **8**(8): 603-12.
- McMahon & Gallop (2005). "Membrane curvature and mechanisms of dynamic cell membrane remodelling." *Nature* **438**(7068): 590-6.
- McMahon & Mills (2004). "COP and clathrin-coated vesicle budding: different pathways, common approaches." *Curr Opin Cell Biol* **16**(4): 379-91.
- McPherson & Ritter (2005). "Peptide motifs: building the clathrin machinery." *Mol Neurobiol* **32**(1): 73-87.
- McPherson et al. (1996). "A presynaptic inositol-5-phosphatase." Nature 379(6563): 353-7.
- Miele *et al.* (2004). "Two distinct interaction motifs in amphiphysin bind two independent sites on the clathrin terminal domain beta-propeller." *Nat Struct Mol Biol* **11**(3): 242-8.
- Miesenbock *et al.* (1998). "Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins." *Nature* **394**(6689): 192-5.
- Mikoshiba *et al.* (1999). "Role of synaptotagmin, a Ca2+ and inositol polyphosphate binding protein, in neurotransmitter release and neurite outgrowth." *Chem Phys Lipids* **98**(1-2): 59-67.
- Milosevic *et al.* (2005). "Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells." *J Neurosci* **25**(10): 2557-65.
- Mishra *et al.* (2002). "Disabled-2 exhibits the properties of a cargo-selective endocytic clathrin adaptor." *Embo J* 21(18): 4915-26.
- Morciano *et al.* (2005). "Immunoisolation of two synaptic vesicle pools from synaptosomes: a proteomics analysis." *J Neurochem* **95**(6): 1732-45.
- Morgan *et al.* (2000). "A conserved clathrin assembly motif essential for synaptic vesicle endocytosis." *J Neurosci* **20**(23): 8667-76.
- Morgan *et al.* (2001). "Uncoating of clathrin-coated vesicles in presynaptic terminals: roles for Hsc70 and auxilin." *Neuron* **32**(2): 289-300.
- Morgan et al. (2004). "A role for talin in presynaptic function." J Cell Biol 167(1): 43-50.
- Morris & Cooper (2001). "Disabled-2 colocalizes with the LDLR in clathrin-coated pits and interacts with AP-2." *Traffic* **2**(2): 111-23.
- Moser et al. (2009). "The tail of integrins, talin, and kindlins." Science 324(5929): 895-9.
- Motley *et al.* (2003). "Clathrin-mediated endocytosis in AP-2-depleted cells." *J Cell Biol* **162**(5): 909-18.
- Motley *et al.* (2006). "Functional analysis of AP-2 alpha and mu2 subunits." *Mol Biol Cell* **17**(12): 5298-308.
- Murthy & De Camilli (2003). "Cell biology of the presynaptic terminal." *Annu Rev Neurosci* **26**: 701-28.
- Nakano-Kobayashi *et al.* (2007). "Role of activation of PIP5Kgamma661 by AP-2 complex in synaptic vesicle endocytosis." *Embo J* 26(4): 1105-16.
- Nasuhoglu *et al.* (2002). "Nonradioactive analysis of phosphatidylinositides and other anionic phospholipids by anion-exchange high-performance liquid chromatography with suppressed conductivity detection." *Anal Biochem* **301**(2): 243-54.

- Nesterov *et al.* (1999). "Inhibition of the receptor-binding function of clathrin adaptor protein AP-2 by dominant-negative mutant mu2 subunit and its effects on endocytosis." *Embo J* **18**(9): 2489-99.
- Ng *et al.* (1999). "PKCalpha regulates beta1 integrin-dependent cell motility through association and control of integrin traffic." *Embo J* **18**(14): 3909-23.
- Nishimura & Kaibuchi (2007). "Numb controls integrin endocytosis for directional cell migration with aPKC and PAR-3." *Dev Cell* **13**(1): 15-28.
- Ohno et al. (1995). "Interaction of tyrosine-based sorting signals with clathrin-associated proteins." Science 269(5232): 1872-5.
- Ohno *et al.* (1998). "The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals." *J Biol Chem* **273**(40): 25915-21.
- Okamoto & Südhof (1997). "Mints, Munc18-interacting proteins in synaptic vesicle exocytosis." J Biol Chem 272(50): 31459-64.
- Olusanya *et al.* (2001). "Phosphorylation of threonine 156 of the mu2 subunit of the AP2 complex is essential for endocytosis in vitro and in vivo." *Curr Biol* **11**(11): 896-900.
- Owen & Evans (1998). "A structural explanation for the recognition of tyrosine-based endocytotic signals." *Science* **282**(5392): 1327-32.
- Owen *et al.* (2001). "A third specificity-determining site in mu 2 adaptin for sequences upstream of Yxx phi sorting motifs." *Traffic* **2**(2): 105-10.
- Owen *et al.* (2004). "Adaptors for clathrin coats: structure and function." *Annu Rev Cell Dev Biol* **20**: 153-91.
- Padron *et al.* (2003). "Phosphatidylinositol phosphate 5-kinase Ibeta recruits AP-2 to the plasma membrane and regulates rates of constitutive endocytosis." *J Cell Biol* **162**(4): 693-701.
- Parton & Simons (2007). "The multiple faces of caveolae." Nat Rev Mol Cell Biol 8(3): 185-94.
- Pearse (1975). "Coated vesicles from pig brain: purification and biochemical characterization." *J Mol Biol* **97**(1): 93-8.
- Pearse (1976). "Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles." *Proc Natl Acad Sci U S A* **73**(4): 1255-9.
- Peden *et al.* (2004). "Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins." *J Cell Biol* **164**(7): 1065-76.
- Pitcher *et al.* (1999). "Cluster of differentiation antigen 4 (CD4) endocytosis and adaptor complex binding require activation of the CD4 endocytosis signal by serine phosphorylation." *Mol Biol Cell* **10**(3): 677-91.
- Poccia & Larijani (2009). "Phosphatidylinositol metabolism and membrane fusion." *Biochem J* **418**(2): 233-46.
- Poupon *et al.* (2008). "Clathrin light chains function in mannose phosphate receptor trafficking via regulation of actin assembly." *Proc Natl Acad Sci U S A* **105**(1): 168-73.

- Praefcke *et al.* (2004). "Evolving nature of the AP2 alpha-appendage hub during clathrin-coated vesicle endocytosis." *Embo J* 23(22): 4371-83.
- Radhakrishnan *et al.* (2009). "The Ca2+ affinity of synaptotagmin 1 is markedly increased by a specific interaction of its C2B domain with phosphatidylinositol 4,5-bisphosphate." *J Biol Chem* **284**(38): 25749-60.
- Raiborg *et al.* (2002). "Hrs sorts ubiquitinated proteins into clathrin-coated microdomains of early endosomes." *Nat Cell Biol* **4**(5): 394-8.
- Rao *et al.* (1998). "Structure of type IIbeta phosphatidylinositol phosphate kinase: a protein kinase fold flattened for interfacial phosphorylation." *Cell* **94**(6): 829-39.
- Ren *et al.* (2006). "The BAR domain proteins: molding membranes in fission, fusion, and phagy." *Microbiol Mol Biol Rev* **70**(1): 37-120.
- Richards *et al.* (2000). "Two endocytic recycling routes selectively fill two vesicle pools in frog motor nerve terminals." *Neuron* **27**(3): 551-9.
- Ricotta *et al.* (2002). "Phosphorylation of the AP2 mu subunit by AAK1 mediates high affinity binding to membrane protein sorting signals." *J Cell Biol* **156**(5): 791-5.
- Rizo & Rosenmund (2008). "Synaptic vesicle fusion." Nat Struct Mol Biol 15(7): 665-74.
- Rizo & Südhof (1998). "C2-domains, structure and function of a universal Ca2+-binding domain." J Biol Chem 273(26): 15879-82.
- Rizzoli & Betz (2005). "Synaptic vesicle pools." Nat Rev Neurosci 6(1): 57-69.
- Robinson (1989). "Cloning of cDNAs encoding two related 100-kD coated vesicle proteins (alpha-adaptins)." *J Cell Biol* **108**(3): 833-42.
- Robinson & Bonifacino (2001). "Adaptor-related proteins." Curr Opin Cell Biol 13(4): 444-53.
- Rohde *et al.* (2002). "A phosphatidylinositol (4,5)-bisphosphate binding site within mu2-adaptin regulates clathrin-mediated endocytosis." *J Cell Biol* **158**(2): 209-14.
- Rohrbough & Broadie (2005). "Lipid regulation of the synaptic vesicle cycle." *Nat Rev Neurosci* **6**(2): 139-50.
- Royle & Lagnado (2003). "Endocytosis at the synaptic terminal." J Physiol 553(Pt 2): 345-55.
- Royle *et al.* (2005). "Non-canonical YXXGPhi endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors." *J Cell Sci* **118**(Pt 14): 3073-80.
- Ryan (2006). "A pre-synaptic to-do list for coupling exocytosis to endocytosis." *Curr Opin Cell Biol* **18**(4): 416-21.
- Sambrook *et al.* (1996). "Molecular Cloning: A Laboratory Manual. Sambrook, J.; Fritsch, E.F. & Maniatis, T. (Eds.); 3. Edition.Cold Spring Harbor Laboratory Press, New York.

Santolini et al. (2000). "Numb is an endocytic protein." J Cell Biol 151(6): 1345-52.

Schiavo *et al.* (1996). "Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin." *Proc Natl Acad Sci U S A* **93**(23): 13327-32.

- Schikorski & Stevens (2001). "Morphological correlates of functionally defined synaptic vesicle populations." *Nat Neurosci* **4**(4): 391-5.
- Schill & Anderson (2009). "Two novel phosphatidylinositol-4-phosphate 5-kinase type Igamma splice variants expressed in human cells display distinctive cellular targeting." *Biochem J* **422**(3): 473-82.
- Schmid (1997). "Clathrin-coated vesicle formation and protein sorting: an integrated process." *Annu Rev Biochem* **66**: 511-48.
- Schmid & McMahon (2007). "Integrating molecular and network biology to decode endocytosis." *Nature* **448**(7156): 883-8.
- Schmid et al. (1998). "Dynamin and its partners: a progress report." Curr Opin Cell Biol 10(4): 504-12.
- Schmid *et al.* (2006). "Role of the AP2 beta-appendage hub in recruiting partners for clathrin-coated vesicle assembly." *PLoS Biol* **4**(9): e262.
- Schweizer & Ryan (2006). "The synaptic vesicle: cycle of exocytosis and endocytosis." *Curr Opin Neurobiol* **16**(3): 298-304.
- Seto *et al.* (2002). "When cell biology meets development: endocytic regulation of signaling pathways." *Genes Dev* **16**(11): 1314-36.
- Singh (1992). "Quantitative analysis of inositol lipids and inositol phosphates in synaptosomes and microvessels by column chromatography: comparison of the mass analysis and the radiolabelling methods." *J Chromatogr* **581**(1): 1-10.
- Shupliakov *et al.* (1997). "Synaptic vesicle endocytosis impaired by disruption of dynamin-SH3 domain interactions." *Science* **276**(5310): 259-63.
- Slepnev & De Camilli (2000). "Accessory factors in clathrin-dependent synaptic vesicle endocytosis." *Nat Rev Neurosci* 1(3): 161-72.
- Sorkina *et al.* (2006). "RNA interference screen reveals an essential role of Nedd4-2 in dopamine transporter ubiquitination and endocytosis." *J Neurosci* **26**(31): 8195-205.
- Stolt & Bock (2006). "Modulation of lipoprotein receptor functions by intracellular adaptor proteins." *Cell Signal* **18**(10): 1560-71.
- Südhof (2004). "The synaptic vesicle cycle." Annu Rev Neurosci 27: 509-47.
- Sutton *et al.* (1999). "Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca(+2)-independent snare complex interaction." *J Cell Biol* **147**(3): 589-98.

Takamori et al. (2006). "Molecular anatomy of a trafficking organelle." Cell 127(4): 831-46.

- Takei & Haucke (2001). "Clathrin-mediated endocytosis: membrane factors pull the trigger." *Trends Cell Biol* **11**(9): 385-91.
- Takei *et al.* (1996). "The synaptic vesicle cycle: a single vesicle budding step involving clathrin and dynamin." *J Cell Biol* **133**(6): 1237-50.
- Tebar *et al.* (1996). "Eps15 is a component of clathrin-coated pits and vesicles and is located at the rim of coated pits." *J Biol Chem* **271**(46): 28727-30.

- Teckchandani *et al.* (2009). "Quantitative proteomics identifies a Dab2/integrin module regulating cell migration." *J Cell Biol* **186**(1): 99-111.
- Teng & Wilkinson (2000). "Clathrin-mediated endocytosis near active zones in snake motor boutons." *J Neurosci* **20**(21): 7986-93.
- ter Haar *et al.* (2000). "Peptide-in-groove interactions link target proteins to the beta-propeller of clathrin." *Proc Natl Acad Sci U S A* **97**(3): 1096-100.
- Thieman *et al.* (2009). "Clathrin regulates the association of PIPKIgamma661 with the AP-2 adaptor beta2 appendage." J Biol Chem 284(20): 13924-39.
- Toshima *et al.* (2005). "Phosphoregulation of Arp2/3-dependent actin assembly during receptormediated endocytosis." *Nat Cell Biol* **7**(3): 246-54.
- Traub (2003). "Sorting it out: AP-2 and alternate clathrin adaptors in endocytic cargo selection." J Cell Biol 163(2): 203-8.
- Traub (2005). "Common principles in clathrin-mediated sorting at the Golgi and the plasma membrane." *Biochim Biophys Acta* **1744**(3): 415-37.
- Traub (2009). "Tickets to ride: selecting cargo for clathrin-regulated internalization." *Nat Rev Mol Cell Biol* **10**(9): 583-96.
- Ulrich & Heisenberg (2009). "Trafficking and cell migration." Traffic 10(7): 811-8.
- Ungewickell & Hinrichsen (2007). "Endocytosis: clathrin-mediated membrane budding." *Curr Opin Cell Biol* **19**(4): 417-25.
- Upla *et al.* (2004). "Clustering induces a lateral redistribution of alpha 2 beta 1 integrin from membrane rafts to caveolae and subsequent protein kinase C-dependent internalization." *Mol Biol Cell* **15**(2): 625-36.
- Varnai *et al.* (2006). "Rapidly inducible changes in phosphatidylinositol 4,5-bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells." *J Cell Biol* **175**(3): 377-82.
- Verstreken *et al.* (2003). "Synaptojanin is recruited by endophilin to promote synaptic vesicle uncoating." *Neuron* **40**(4): 733-48.
- Voglmaier & Edwards (2007). "Do different endocytic pathways make different synaptic vesicles?" *Curr Opin Neurobiol* **17**(3): 374-80.
- Voglmaier *et al.* (2006). "Distinct endocytic pathways control the rate and extent of synaptic vesicle protein recycling." *Neuron* **51**(1): 71-84.
- Wang *et al.* (2007). "PIP5KI gamma is required for cardiovascular and neuronal development." *Proc Natl Acad Sci U S A* **104**(28): 11748-53.
- Wary *et al.* (1996). "The adaptor protein Shc couples a class of integrins to the control of cell cycle progression." *Cell* **87**(4): 733-43.
- Wary *et al.* (1998). "A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth." *Cell* **94**(5): 625-34.

- Watt *et al.* (2002). "Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1." <u>Biochem J 363</u>(Pt 3): 657-66.
- Weernink *et al.* (2004). "Regulation and cellular roles of phosphoinositide 5-kinases." *Eur J Pharmacol* **500**(1-3): 87-99.
- Wendland (2002). "Epsins: adaptors in endocytosis?" Nat Rev Mol Cell Biol 3(12): 971-7.
- Wenk & De Camilli (2004). "Protein-lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals." *Proc Natl Acad Sci U S A* **101**(22): 8262-9.
- Wenk *et al.* (2001). "PIP kinase Igamma is the major PI(4,5)P(2) synthesizing enzyme at the synapse." *Neuron* **32**(1): 79-88.
- Wernick *et al.* (2005). "Recognition of the tryptophan-based endocytosis signal in the neonatal Fc Receptor by the mu subunit of adaptor protein-2." *J Biol Chem* **280**(8): 7309-16.
- Yin & Janmey (2003). "Phosphoinositide regulation of the actin cytoskeleton." *Annu Rev Physiol* **65**: 761-89.
- Young (2007). "Structural insights into the clathrin coat." Semin Cell Dev Biol 18(4): 448-58.

A) Abkürzungsverzeichnis

A	Absorption		
Å	Ångström, Längeneinheit		
Abp1	Aktin-bindendes Protein 1 (actin binding protein1)		
AAK1	Adaptor-assozierte Kinase 1 (adaptor-associated kinase 1)		
Abb.	Abbildung		
ADP	Adenosindiphosphat		
AMPA	α-Amino-3-hydroxy-5-methyl-4-isoxazol-propionsäure		
ANTH	AP180 N-terminale Homologiedomäne (AP180 N-terminal homology)		
AP-Komplexe	Adaptorprotein-Komplexe		
AP	alkalische Phosphase		
AP	Aktionspotential		
AP	Adaptorprotein		
AP180	assembly protein mit einer apparenten Molekülmasse von 180 kDa		
ARF	ADP-Ribosylierungsfaktor (ADP-ribosylation factor)		
ARH	autosomal recessive hypercholesterolemia protein		
ATP	Adenosintriphosphat		
ATPase	Adenosintriphosphatase		
bar	physikalische Einheit für Druck		
BAR-Domäne	Bin-Amphiphysin-Rys-Domäne		
BCA	Bicinchoninsäure (<i>bicinchoninic acid</i>)		
BCIP	5-Brom-4-chlor-3-indolylphosphat		
bp	Basenpaare		
BSA	Bovines Serumalbumin (<i>bovine serum albumin</i>)		
BSA	buried surface area		
bzw.	beziehungsweise		
c	Konzentration der absorbierenden Substanz		
ca.	circa		
Cdk5	Cyclin-abhängige Proteinkinase 5		
CALM	clathrin assembly lymphoid myeloid leukemia protein		
Cav	Caveolin		
cDNA	komplementäre DNA (complementary DNA)		
C. elegans	Caenorhabditis elegans		
CHAPS	3-[(3-Cholamidopropyl)dimethylammonio]-1-propansulfonat		
CIP	Kälberdarm-alkalische Phosphatase (<i>calf intestine alkaline phosphatase</i>)		
CLASPs	Clathrin-assoziierte Sortierproteine (<i>clathrin-associated sorting proteins</i>)		
CLIC	(clathrin-independent carrier)		
CME	Clathrin-vermittelte Endozytose (<i>clathrin mediated endocytosis</i>)		
CCV	Clathrin umhülltes Vesikel (clathrin coated vesicle)		
CO ₂	Kohlenstoffdioxid		
COP	Hüllprotein-Komplex (<i>coat protein complex</i>)		
C-terminal	carboxyterminal		
D	Pfadlänge in cm		
Da	Dalton		
DAG	Diacylglycerol		
DAK	Diacylglycerol Kinase		
DAPI	4'.6-Diamidino-2-phenylindol		
ddH ₂ O	bidestilliertes Wasser		
ΛG°	Gibbs-Energie		
ΔH°	molare Enthalie		
DIV	Tage in vitro (days in vitro)		
D melangaster	Drosonhila melanovaster		
DMFM	Dulbeccos modifiziertes Fagle's Medium		
	zarocovo modifizionos zugle s modifili		

DMF	Dimethylformamid	
DMSO	Dimethylsulfoxid	
DNA	Desoxyribonukleinsäure	
DNase	Desoxyribonuklease	
dNTP	Desoxynukleosid-Triphosphat	
AS	molare Entropie	
DSS	Disuccinimidylsuberat	
Th	Temperaturdifferenz	
DTT	Dithiothreitol	
FCI	verstärktes Chemilumineszenz Reagenz (anhancad chamoluminascanca)	
ECL E coli	Escherichia coli	
E. CON	Ethylandiamintetraacetat	
	Euryrendianninetraacetat	
٤ EE		
EE	Trunes Endosomen (<i>early endosom</i>)	
EGF	Epidermis-wachstumstaktor (<i>epidermal growth factor</i>)	
EGF-K	EGF-Rezeptor	
EH-Domane	Epsib-Homologiedomane	
ENTH-Domâne	Epsin N-terminale Homologie-Domane (Epsin N-terminal homology domain)	
ER	Endoplasmatisches Retikulum	
et al.	und andere (<i>et alii</i>)	
EtBr	Ethidiumbromid	
etc.	et cetera	
EtOH	Ethanol	
Eps15	EGF-Rezeptorproteinsubstrat 15	
Epsin	Eps15-interagierendes Protein	
FCS	Fetales Kälberserum (fetal calf serum)	
FERM-Domäne	4.1-ezrin-radixin-moesin-Domäne	
FPLC	Fast Frotein Liquid Chromatography	
g	-fachem der Erdbeschleunigung	
g	Gramm	
GABA	γ-Aminobuttersäure	
GABAA	γ-Aminobuttersäure-Rezeptor Typ A	
GAK	Cyklin G-assoziierte Kinase (cyclin G associated kinase)	
GEEC	mit GPI angereichertes frühes Endosom (GPI-enriched early endosomal	
	compartment)	
GFP	grün fluoreszierendes Protein (green fluorescent protein)	
γ - ³² P-ATP	am gamma-Phosphatrest radioaktiv markiertes ATP	
GPCR	G-Protein gekoppelter Rezentor	
GPI	Glycosylphosphatidylinositol	
GST	Glutathionyl-S-Transferase	
GTP	Guanosin-5'-Trinhosnhat	
h	Stunde	
HBSS	Hank's balanced salt solution	
HC	schwere Kette von Clathrin (heavy chain)	
HEDES	$2_{-(A_{-}(2-Hvdroxvethvl)_{-}1-ninerazinvl)_{-}ethansulfonsäure}$	
HIP1	Huntingtin_interagierenden Protein 1 (Huntingtin_interacting protein 1)	
	HID1 vorwandtas Protain (HID1 related protein)	
Hin IK	Have Histidin	
	Wassar	
	Wassel	
	konstitutiu avnimiartas Hitrasshiakmatain mit sinar Cräße von 70 1-D-	
TISC/U TD	KONSTITUTV EXPIRIMENTES FILZESCHICKPROTEIN HILL EINER GROBE VON /U KDa	
ID IE	Immunoloully	
	Ininumuoreszenz	
IgG	Immunglobulin G	
IP IP	Immunprazipitation	
IP_3	<i>myo</i> -inositol-(1,4,5)-trisphosphat	

IPTG	Isopropyl-β-D-thiogalactopyranosid	
ITC	Isothermale Tirationskalorimetrie	
K_A	Assoziationskonstante	
kb	Kilobasen	
K_D	Dissoziationskonstante	
kDa	Kilodalton	
LB	Luria-Bertani-Medium	
LC	leichte Kette von Clathrin (<i>light chain</i>)	
LDL	Lipoprotein geringer Dichte (low-density-lipoprotein), Transportpartikel für	
	Cholesterol	
LE	spätes Endosom (late endosome)	
М	Mol	
mA	Milliamper	
MAP	mitogen-activated protein	
max.	maximal	
MAPK	MAP-Kinase	
MCS	Multiple Cloning Site	
MEM	Minimal Essential Medium	
MES	2-(<i>N</i> -morpholino)ethansulfonsäure	
иHD	u-Homologiedomäne (u-homology domain)	
min	Minute	
mRFP	monomeres rot fluoreszierendes Protein (<i>red fluorescent protein</i>)	
ms	Millisekunden	
NBT	Nitroblau-Tetrazoliumchlorid	
nm	Nanometer	
NT	Neurotransmitter	
N-terminal	aminoterminal	
OD	Antische Dichte	
Oligo	Oligonukleotide	
PΔ	Polyacylamid	
PAGE	Polyacrylamidgelelektrophorese (polyacrylamide ael electrophoresis)	
DRS	Phosphat genufferte Salzlösung (nhosphate huffered saline)	
PCP	Polymerase_Kettenreaktion	
DEV	nara Formaldabyd	
DU Domäna	Plackstrin Homologiadomäna (plackstrin homology) Domäna	
DI DI CS1	Piecksum-nomologiedomane (piecksum nomology) Domane	
PH-PLC01	PH-Domane von PLC01	
pM DMCE	Picomoi Dhamathalan Ifanalfluarid	
PMSF	Phenyimethylsuironylfluorid Deleveletettid Kinese	
PINK	Polynukieoud-Kinase	
PIPKI	Phosphatidylinositol-4-Phosphat-5-Kinase Typ I	
PI(4)P	Phosphatidylinositol-(4)-phosphat	
$PI(4,5)P_2$	Phosphatidylinositol-(4,5)-bisphosphat	
$PI(3,4,5)P_3$	Phosphatidylinositol-(3,4,5)-trisphosphat	
PLC	Phospholipase	
PLD	Phospholipase	
PM	Plasmamembran	
PMSF	Phenylmethylsulphonylfluorid	
PNK	Polynukleotid-Kinase	
PS	Phosphatidylserin	
PTB-Domäne	Domane (phosphotyrosine bindung domaine)	
PtdIns	Phosphatidylinositol	
PtdOH	Phosphatidsäure	
RE	Recycling-Endosom (recycling endosom)	
RNA	Ribonukleinsäure	
RNAi	RNA Interferenz	
RNase	Ribonuklease	

Q	Wärmeenergie	
R	Gaskonstante	
rpm	Umdrehungen pro Minute (rotations per minute)	
RRP	readily-releasable pool	
SDS	Natriumdodecylsulfat (sodium dodecylsulfate)	
sec	Sekunde	
SH3-Domäne	Src-Homologiedomäne 3 (Src-homology 3)	
SNAREs	soluble N-ethylmaleimide-sensitive-factor attachment receptor	
SNAP	soluble NSF attachment protein	
SNX9	sorting nexin 9	
siRNA	small interfering RNA	
S.O.	siehe oben	
Std	Standard	
SytpH	SynaptopHluorin	
T	Temperatur	
t _{1/2}	Halbwertszeit	
Tab.	Tabelle	
Taq	Thermus aquaticus	
TBE	TRIS-Borat-EDTA-Puffer	
TBS	Tris-gepufferte Salzlösung (Tris buffered saline)	
TE	TRIS-EDTA-Puffer	
TES	N-Tris (hydroxymethyl)-methyl-2-Aminomethansulfonsäure	
Tf	Transferrin	
TGN	Trans-Golgi-Netzwerk	
TGN38	Trans-Golgi-Netzwerk 38 Protein	
T_{m}	Schmelztemperatur	
Tris	Tris (hydroxymethyl)-aminomethan	
Triton	t-Octylphenoxypoly-etoxyethanol	
Tween20	Polyoxyethylen(20)-sorbitan-monolaurat	
U	Einheit (<i>unit</i>)	
UE	Untereinheit	
ü.N.	über Nacht	
UE	Untereinheiten	
UIM	Ubiquitin-interagierendes Motiv (ubiquitin-interacting motif)	
UV	ultraviolettes Licht	
u.v.a.	und vielen anderen	
V	Volt	
VAMP	Vesikel-assoziiertes Membranprotein (vesicle associated membrane protein)	
V-ATPase	vesikuläre ATPase	
VGLUT1	vesikulären Glutamat-Transporters 1	
Vol.	Volumen	
WT	Wildtyp	

Aminosäuren wurden entsprechend dem Einbuchstaben- und dem Dreibuchstabencode abgekürzt. Das Symbol Φ wurde für große, hydrophobe Reste verwendet, x bezeichnet jede beliebige Aminosäure.

Alle Graphiken und Zeichnungen wurden, insofern nicht anders von der Autorin gekennzeichnet, mit Adobe Illustrator CS2 und Adobe Photoshop C2S erstellt.

B) Abbildungsverzeichnis

Abb. 1.1	Membrantransportwege in der Zelle7
Abb. 1.2	Wege in die Zelle
Abb. 1.3	Phasen der Clathrin-vermittelten Endozytose10
Abb. 1.4	Clathrin12
Abb. 1.5	Der AP-2-Komplex14
Abb. 1.6	Die Bindung von YxxΦ-Motiven an µ215
Abb. 1.7	Erkennung von YxxΦ-Motiven durch AP-2μ16
Abb. 1.8	Die AP-2-Ohr-Domänen
Abb. 1.9	Geschlossene und offene Konformation des AP-2-Komplexes an der Plasmamembran
Abb. 1.10	Exo- und endozytotischer Vesikelkreislauf25
Abb. 1.11	Clathrin-abhängige und unabhängige Transport-Mechanismen27
Abb. 1.12	Molekulares Modell eines durchschnittlichen, synaptischen Vesikels28
Abb. 1.13	Synthese von PI(4,5)P ₂ durch PIPKI-Isoenzyme33
Abb. 1.14	Humane PIPKIy-Splicevarianten
Abb. 1.15	Interaktionspartner von PIPKIy-p90
Abb. 2.1	Das Funktionsprinzip von SynaptopHluorin70
Abb. 2.2	Die SynaptopHluorin-Fluoreszenz ist pH-sensitiv71
Abb. 3.1	Unterschiedliche Modelle der Interaktion von PIPKIγ-p90 mit dem Adaptorkomplex-2
Abb. 3.2	Interaktion von PIPKIy mit dem AP-2-Komplex75
Abb. 3.3	Das PIPKIγ-p90-spezifische Spliceinsert vermittelt die Interaktion mit der β2-Ohr-Domäne des AP-2-Komplexes
Abb. 3.4	PIPKIγ-p90 interagiert über den C-Terminus direkt mit AP-2-C-µ und -β2-Ohr77
Abb. 3.5	Identifizierung einer minimalen Peptidsequenz im p90-spezifischen Spliceinsert, die Bindung von endogenem Talin und AP-2 erlaubt
Abb. 3.6	Die AP-2-Domänen C-μ2 und β2-Ohr sowie das Strukturproein Talin interagieren mit der Aminosäuresequenz PTDERSWVYSPLH aus dem PIPKIγ-p90-spezifischen Spliceinsert

Abb. 3.7	Darstellung der räumlichen Anordnung des aus PIPKIγ-p90 abgeleiteten Minimalpeptids PTDERSWVYSPLH an der <i>side site</i> der β2-Ohr-Sandwich- Subdomäne	
Abb.3.8	Die Aminosäuren K808, Q756 und A754 des AP-2-β-Ohres formen eine Bindungstasche, in die W647 des PIPKIγ-p90-Peptids lokalisiert82	
Abb. 3.9	Die Interaktion des aus dem PIPKIγ-p90-C-Terminus abgeleiteten minimalen Peptids PTDERSWVYSPLH und des Eps15-Peptids SFGDGFADFSTL mit der AP-2-β2-Ohr-Domäne wird über einen ähnlichen Oberflächenbereich vermittelt	
Abb. 3.10	Vergleich der Aminosäuresequenzen der beiden Peptide aus dem Eps15- und PIPKIγ-p90-C-Terminus	
Abb. 3.11	Kristallstruktur der β2-Ohr-Domäne im Komplex mit dem PIPKIγ-p90-Peptid YFPTDERSWVYSPLH	
Abb. 3.12	Bestätigung der strukturellen Daten durch Mutation essentieller Aminosäuren, die in die Bindung der β2-Ohr-Domäne mit dem PIPKIγ-p90-C-Terminus involviert sind	
Abb. 3.13	Kristallstruktur von AP-2-C-μ2 im Komplex mit dem PIPKIγ-p90-Peptid SWVYSPLH	
Abb. 3.14	Die Interaktion von AP-2-C-μ2 und dem PIPKIγ-p90-Peptid SWVYSPLH involviert W647 als zusätzlichen Peptidkontakt	
Abb. 3.15	Die Bindungsstellen für Talin und die AP-2-Domänen C-µ2 und β2-Ohr im PIPKIγ-p90-C-Terminus überlappen91	
Abb. 3.16	Der PIPKIγ-90-C-Terminus enthält ein zweites, proximales YxxΦ-Motiv92	
Abb. 3.17	Quantitative Bestimmung von Dissoziationskonstanten für die Interaktion von Penetratin-PIPKIγ-p90-Peptiden mit den AP-2-Domänen C-µ2 und β2-Ohr95	
Abb. 3.18	Quantitative Bestimmung der Dissoziationskonstanten der Interaktion des WT- PIPKIγ-p90-Peptids YFPTDERSWVYSPLH ohne Penetratin mit den AP-2-Domänen C-µ2 und β2-Ohr96	
Abb. 3.19	Die Komplexbildung von PIPKIγ-90 mit AP-2 involviert Interaktionsbereiche außerhalb des PIPKIγ-90-C-Terminus	
Abb. 3.20	Stimulation der PIPKIγ-p87-vermittelten PI(4,5)P ₂ -Synthese durch das distale WVYSPL-Motiv aus dem PIPKIγ-p90-C-Terminus	
Abb. 3.21	Das distale WVYSPL-Motiv aus dem PIPKIγ-p90-C-Terminus stimuliert PIPKIγ-p87 im Komplex mit AP-2-C-μ2100	
Abb. 3.22	Peptide aus dem PIPKIγ-p90-C-Terminus inhibieren die Internalisierung von β1-Integrin	
Abb. 3.23	Die Reduktion von endogenem AP-2 und PIPKIγ-p90 inhibiert die Internalisierung von β1-Integrin in HeLa-Zellen105	

Abb. 3.24	Einfluss verschiedener Varianten des PIPKIγ-p90-C-Terminus auf die Endozytose, der an der neuronalen Plasmamembran expositionierten	
	SynaptopHluorin-Moleküle107	
Abb. 4.1	Hypothetisches Modell der Komplexbildung von PIPKI _γ -p90 und AP-2114	
Abb. 4.2	Phosphorylierungsstellen im p90-spezifischen Spliceinsert von PIPKIγ-p90118	

C)Tabellenverzeichnis

Tabelle 2.1	Verwendete synthetische Peptide
Tabelle 2.2	Monoklonale Mausantikörper40
Tabelle 2.3	Polyklonale Kaninchenantikörper41
Tabelle D.1	Verwendete Primer147
Tabelle E.1	Verwendete siRNA150
Tabelle F.1	Datensammlung für den Kokristall von AP-2-β2-Ohr mit dem minimalen PIPKIγ-p90 abgeleiteten Peptid PTDERSWVYSPLH151
Tabelle F.2	Datensammlung und Verfeinerungstatistiken für den Kokristall von AP-2-β2-Ohr mit dem PIPKIγ-p90 abgeleiteten Peptid YFPTDERSWVYSPLH152
Tabelle F.3	Datensammlung und Verfeinerungstatistiken für den Kokristall von AP-2-C-μ2 mit dem PIPKIγ-p90 abgeleiteten Peptid SWVYSPLH153
Tabelle F.4	Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (<i>buried surface area</i> , BSA) des Kokristalls von AP-2-β2-Ohr mit dem PIPKIγ-p90 abgeleiteten Peptid YFPTDERSWVYSPLH154
Tabelle F.5	Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von AP-2-β2-Ohr mit dem Eps15 Peptid SFGDGFADF155
Tabelle F.6	Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von Kokristalls von AP-2-β2-Ohr mit dem Eps15 Peptid SFGDGFADF
Tabelle F.6	Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von AP-2-C-μ2 mit dem YGYECL-Peptid aus der γ-Untereinheit des GABA _A -Rezeptors

D) Primer-Liste

Tabelle D.1 Verwendete Primer

Primer	Verwendung	Sequenz 5'-3'	Länge (bp)
9	hPIPK Ic Nf EcoRI	atccggaattcatggagctggaggtaccggacg	33
24	hPIPKIgNfSalI	atcggcgtcgacgatggagctggaggtaccg	31
25	mmü2NfSalI	ggtggcgtcgacgatgatcggaggcttattc	31
26	mmü2CrNotI	tatatcgcggccgcctagcagcgggtttcata	32
35	hPIPKIgp90CrNotI	aatatcgcggccgcttatgtgtcgctctcgccgtc	35
41	hp90_1-468CrNotI	aatatcgcggccgcttacggtttcacagctagcaaggc	38
42	hPIPKIgtailNfSalI	atcggcgtcgacgatggacctgcggggggccc	32
43	htalin1437NfSalI	atcggcgtcgacgatggttgcactttcactgaagatcag	39
44	htalin1437CrNotI	cggcaggcggccgcttagttgtattgctgctgcaggact	39
78	1_p90_tail_1-11	aattccccaccgatgagaggagctgggtgtactccccgtaac	42
79	2_p90_tail_1-11	tcgagttacggggggggagtacacccagctcctctcatcggtgggg	42
80	1_p90_tail_1-13	aattccccaccgatgagaggagctgggtgtactccccgctccactaac	48
81	2_p90_tail_1-13	tcgagttagtggagcgggggggggagtacacccagctcctctcatcggtgggg	48
82	1_p90_tail_5-13	aattcaggagctgggtgtactccccgctccactaac	36
83	2_p90_tail_5-13	tcgagttagtggagcggggggggagtacacccagctcctg	36
84	1_p90_tail_14-26	aattetatagegeecaggeecceeggeeteegaeggegagagetaa	48
85	2_p90_tail_14-26	tcgagttagctctcgccgtcggaggccggggggcctgggcgctata	48
102	hIgp90Δ451NfEcoRI	atcggcggaattcatgaagtcctcgccctccaagaag	37
103	hIgp90Δ451NfF640A	gccaccgacatctacgcccccaccgatgagagg	33
104	hIgp90Δ451CrF640A	cctctcatcggtggggggggggggggggggggggggggg	33
105	hIgp90∆451NfW647A	cccaccgatgagaggagcgccgtgtactccccgctccac	39
106	hIgp90∆451CrW647A	gtggagcggggggggagtacacggcgctcctctcatcggtggg	39
107	hIgp90Δ451NfW647A	cccaccgatgagaggagcttcgtgtactccccgctccac	39
108	hIgp90Δ451CrW647A	gtggagcggggggggagtacacgaagctcctctcatcggtggg	39
109	Igp90Δ451_Nf_F640A/W647F	atctacgcccccaccgatgagaggagcttcgtgtac	36
110	Igp90∆451_Cr_F640A/W647F	gtacacgaagctcctctcatcggtggggggggtagat	36

111	Igp90Δ451_Nf_W647F/S650A	gatgagaggagcttcgtgtacgccccgctccactat	36
112	Igp90Δ451_Cr_W647F/S650A	atagtggagcggggcgtacacgaagctcctctcatc	36
113	Igp90Δ451_Nf_W647A/L652A	gagaggagcgccgtgtactccccggcccactatagc	36
114	Igp90Δ451_Cr_W647A/L652A	gctatagtgggccggggagtacacggcgctcctctc	36
115	Igp90∆451_Nf_W647F/L652A	gagaggagcttcgtgtactccccggcccactatagc	36
116	Igp90∆451_Cr_W647F/L652A	gctatagtgggccgggggggtacacgaagctcctctc	36
117	Beta2 Δ 715_Nf_EcoRI	atcggcggaattcatgggcatggcacctggcggatatgtggct	43
118	beta2_Nf_K822A	ttgcaggtggctgttgccaacaatattgatgtc	33
119	beta2_Cr_K822A	gacatcaatattgttggcaacagccacctgcaa	33
120	Igp90Δ451_Nf_Y649A	gagaggagctgggtggcctccccgctccactat	33
121	Igp90Δ451_Cr_Y649A	atagtggagcgggggggggccacccagctcctctc	33
122	Igp90Δ451_Nf_W647A/Y649A	gatgagaggagcgccgtggcctccccgctccactat	36
123	Igp90Δ451_Cr_W647A/Y649A	atagtggagcgggggggggccacggcgctcctctcatc	36
124	Igp90Δ451_Nf_W647A/Y649A/L 652A	gagaggagcgccgtggcctccccggcccactatagc	36
125	Igp90Δ451_Cr_W647A/Y649A/L 652A	gct ata gtg ggc cgg gga ggc cac ggc gct cct ctc	36
130	Igp90∆451_Nf_ Y654A	gtg tac tee eeg ete eae gee age gee eag gee eee	36
131	Igp90Δ451_Cr_Y654A	gggggcctgggcgctggcgtggagcggggggtacac	36
132	Igp90∆451_Nf_Y497A	cggggggcccgcagcgccccacgctggaggacgaa	36
133	Igp90Δ451_Cr_Y497A	ttcgtcctccagcgtgggggggggggggggggggggggg	36
134	Igp90Δ451_Nf_Y497A/L500A	ggggcccgcagcgccccacggccgaggacgaaggc	36
135	Igp90Δ451_Cr_Y497A/L500A	gcettegteeteggeegtgggggegetgegggeecee	36
136	Igp90∆451_Nf_Y649A/L652A	aggagetgggtggcetecceggeceactatagegee	36
137	Igp90∆451_Cr_Y649A/L652A	ggcgctatagtgggccggggaggccacccagctcct	36
139	Igp90Δ451_Nf_Y649A/L652A/Y 654A	gtggcctccccggcccacgccagcgcccaggccccc	36
140	Igp90∆451_Cr_Y649A/L652A/Y 654A	gggggcctgggcgctggcgtgggccggggaggccac	36
141	Igp90Δ451_Nf_Y649A/L652A/Y 654A	gtgttctccccggcccacgccagcgcccaggccccc	36
142	Igp90Δ451_Cr_Y649A/L652A/Y 654A	gggggcctgggcgtggcgtgggccggggagaacac	36
143	Igp90∆451_Nf_W647F/Y649A/L 652A	gagaggagettegtggeeteeeggeeeactatage	36
144	Igp90Δ451_Cr_W647F/Y649A/L 652A	gctatagtgggccgggggggggccacgaagctcctctc	36

Die Nummer entsprechen den korrespondierenden Aminosäuren mit Ausnahme der Konstrukte p90_tail_1-11 bis einschließlich p90_tail_14-26. Hier beziehen sich die Zahlen auf die Aminosäurenreihenfolge im p90-spezifischen Spliceinsert. r: Ratte; h: human; m: Maus; N: PIPKI: Phosphatidylinositol4-Phosphat-5-Kinase Typ I; N: N-Terminus; C: C-Terminus; f: vorwärts; r: rückwärts.

E) siRNA-Liste

Tabelle E.1 Verwendete siRNA

Name	Sequenz	Zielgen
ΡΙΡΚΙγ	AUCAUCAAGACCGUCAUGCACTT	PIPKIγ (human)
AP-2µ	GUGGAUGCCUUUCGGGUCATT	AP-2µ (human)
scrambled	GUAACUGUCGGCUCGUGGUTT	Kontrolle AP-2µ (human)

PIPKIγ aus Padron *et al.*, 2003 Andere siRNAs beschrieben in Krauss *et al.*, 2003, 2006

F) Daten Kristallisation

Tabelle F.1 Datensammlung für den Kokristall von AP-2- β 2-Ohr mit dem minimalen PIPKI γ -p90 abgeleiteten Peptid PTDERSWVYSPLH

	$AP-2-\beta 2$ -Ohr + YFPTDERSWVYSPLH
Datensammlung	
Raumgruppe	P212121
Gitterkonstanten	
a, b, c (Å)	37.56, 83.47, 91.60
α,β,γ (°)	90.00, 90.00, 90.00
Auflösung (Å)	50 - 1.87
$R_{\rm sym}$ od. $R_{\rm merge}$	0.051(0.369) ^a
Ι / σΙ	25.49(3.89) ^a
Vollständigkeit (%)	95.2(72.7) ^a
Redundanz	5.8(4.2) ^a

^a Höchst aufgelöste Schale ist in Klammern angegeben.

Eine Verfeinerung der gesammelten Daten des Kristalls von AP-2-β2-Ohr mit dem minimalen PIPKIγ-p90 Peptid PTDERSWVYSPLH wurde nicht vorgenommen.

	$AP-2-\beta 2-Ohr + YFPTDERSWVYSPLH$
Datensammlung	
Raumgruppe	P212121
Gitterkonstanten	
<i>a</i> , <i>b</i> , <i>c</i> (Å)	37.56, 83.47, 91.60
α,β,γ (°)	90.00, 90.00, 90.00
Auflösung (Å)	50 - 1.83
$R_{\rm sym}$ od. $R_{\rm merge}$	0.060(0.461) ^a
Ι/σΙ	20.38(1.90) ^a
Vollständigkeit (%)	94.6(88.1) ^a
Redundanz	4.5(3.6) ^a
Verfeinerung	
Auflösung (Å)	60 - 1.83
Reflexzahl	24 729
$R_{\rm work}$ / $R_{\rm free}$	19.3 / 23.6
Anzahl Atome	
Protein	1881
Ligand	136
Wasser	253
B-Faktoren	
Protein	22.5
Ligand	23.3
Wasser	33.1
R.m.s Abweichung	
Bindungslänge (Å)	0.016
Bindungswinkel (°)	1.618

Tabelle F.2 Datensammlung und Verfeinerungstatistiken für den Kokristall von AP-2-β2-Ohr mit dem PIPKIγ-p90 abgeleiteten Peptid YFPTDERSWVYSPLH

^a Höchst aufgelöste Schale ist in Klammern angegeben.

	$AP-2-C-\mu 2 + SWVYSPLH$
Datensammlung	
Raumgruppe	P64
Gitterkonstanten	
a, b, c (Å)	125.30, 125.30, 74.55
α,β,γ (°)	90.00, 90.00, 120.00
Auflösung (Å)	50 - 2.60
$R_{\rm sym}$ od. $R_{\rm merge}$	0.069(0.484) ^a
Ι / σΙ	15.96(1.34) ^a
Vollständigkeit (%)	92.6(49.0) ^a
Redundanz	3.5(1.8) ^a
Verfeinerung	
Auflösung (Å)	41.01 - 2.60
Reflexzahl	18 278
$R_{\rm work}$ / $R_{\rm free}$	23.3 / 26.3
Anzahl Atome	
Protein	2039
Ligand	71
Wasser	33
B-Faktoren	
Protein	64.6
Ligand	64.3
Wasser	69.6
R.m.s Abweichung	
Bindungslänge (Å)	0.008
Bindungswinkel (°)	1.151

Tabelle F.3 Datensammlung und Verfeinerungstatistiken für den Kokristall von AP-2-C-μ2 mit dem PIPKIγ-p90 abgeleiteten Peptid SWVYSPLH

^a Höchst aufgelöste Schale ist in Klammern angegeben.

Pep	otid		Protei	in Interface	I		Protei	n Interface I	I
Rest	Atom	Rest	Atom	Dist. (Å)	BSA (Å ²)	Rest	Atom	Dist. (Å)	BSA (Å ²)
Tyr-1					53.80				
Phe-2					138.59				
Pro-3					2.32				
Thr-4					29.02				
Asp-5	Ν	Gln-756	OE1	3.74	2.75				
	0	Gln-756	NE2	2.94					
Glu-6	OE1	Lys-808	NZ	3.95	4.79				22.69
Arg-7									3.51
Ser-8					26.29				
Trp-9					119.93				
Val-10	Ν	Ile-755	0	2.79	106.97				
	0	Ile-755	Ν	3.17					
Tyr-11	OH	Lys-808	NZ	3.02	52.56				81.24
Ser-12	Ν	Phe-753	0	3.02	82.98				12.15
	OG	Leu-770	0	2.67					
Pro-13	0	His-773	ND1	3.00	42.92				60.91
Leu-14	Ν				66.10	Thr-840	OG1	2.99	95.42
His-15	Ν	His-773	0	2.74	62.43				119.13
	0	Thr-774	OG1	3.39					
	NE2					Asp-843	OD2	3.07	
	OXT					Trp-898	Ν	3.73	
Total				11				3	

Tabelle F.4 Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (*buried surface area*, BSA) des Kokristalls von AP-2-β2-Ohr mit dem PIPKIγ-p90 abgeleiteten Peptid YFPTDERSWVYSPLH

Pep	tid	•	Protei	n Interface	I		Protei	n Interface I	I
Rest	Atom	Rest	Atom	Dist. (Å)	BSA (Å ²)	Rest	Atom	Dist. (Å)	BSA ($Å^2$)
Ser-1					3.43				6.87
Phe-2					145.66				54.85
Gly-3					13.92				54.86
Asp-4	OD1					Trp-714	NE1	2.99	80.55
	OD1					Leu-819	Ν	2.87	
Gly-5	Ν	Tyr-815	OH	2.80	23.06				25.16
	0	Tyr-815	OH	3.82					123.61
Phe-6					67.26				35.91
Ala-7									
Asp-8	OD2	Tyr-815	OH	2.56	30.54				
Phe-9					144.94				
Total				3				2	

Tabelle F.5 Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von AP-2-β2-Ohr mit dem Eps15 Peptid SFGDGFADF

Tabelle F.6 Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von AP-2-C-µ2 mit dem PIPKIγ-p90 SWVYSPLH

Peptid		Protein Interface I				
Rest	Atom	Rest	Atom	Dist. (Å)	BSA (Å ²)	
Ser-1	Ν	Glu-391	OE1	3.43	87.74	
	Ν	Glu-391	OE2	3.31		
Trp-2	0	Arg-423	NH1	2.73	179.53	
Val-3					6.96	
Tyr-4	OH	Asp-176	OD1	2.65	137.40	
	OH	Lys-203	NZ	2.65		
	OH	Arg-423	NH2	3.40		
	OH	Arg-423	NE	3.16		
Ser-5	Ν	Val-422	0	2.93	38.78	
	0	Val-422	Ν	2.82		
Pro-6					29.96	
Leu-7	Ν	Lys-420	0	2.87	137.87	
His-8	NE2	Arg-402	0	3.25	45.78	
Total				11		

Peptid			Protein Interface I				
Rest	Atom	Rest	Atom	Dist. (Å)	BSA (Å ²)		
Asp-1					7.62		
Glu-2	OE2	Lys-319	NZ	2.94	43.56		
Glu-3							
Tyr-4	OH	Gln-318	NE2	3.78	131.47		
Gly-5					17.21		
Tyr-6	OH	Asp-176	OD1	2.53	136.77		
	OH	Lys-203	NZ	2.69			
Glu-7	Ν	Val-422	0	2.90	40.02		
	0	Val-422	Ν	2.84			
Cys-8					26.93		
Leu-9	Ν	Lys-420	0	2.84	149.11		
Asp-10					33.08		
Total				7			

Tabelle F.7 Wasserstoffbrückenbindungen/ Salzbrücken und die verdeckte Oberfläche (BSA) des Kokristalls von AP-2-C-μ2 mit dem YGYECL-Peptid aus der γ-Untereinheit des GABA_A-Rezeptors

Wissenschaftlicher Werdegang

10/2001 - 03/2006	Studium der Biologie an der Technischen Universität Braunschweig, Abschluss: Diplom
05/2006 - heute	Promotion im Fach Biochemie, Anfertigung der Dissertation in der Arbeitsgruppe Molekulare Zellbiologie und Membranbiochemie im Institut für Chemie und Biochemie der Freien Universität Berlin
Publikationen	
11/2009	Kahlfeldt N., Vahedi-Faridi A., Koo S. J., Schaefer J. G., Krainer G., Keller S., Saenger W., Krauss M., Haucke V.:

"Molecular basis for association of PIPKI gamma-p90 with clathrin adaptor AP-2." *J Biol Chem* **285**(4): 2734-49.

Hiermit versichere ich, Nina Kahlfeldt, dass ich meine Dissertation "PIPKIγ und AP-2 regulierte Phosphatidylinositol-(4,5)-bisphosphat-Synthese in der Clathrin-vermittelten Endozytose" nur unter Verwendung der angegebenen Hilfsmittel angefertigt habe.

Berlin, Februar 2010