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Abstract

The rat is an important animal model in biomedical research, but gene targeting technology is not established for this
species. Therefore, we aimed to produce transgenic knockdown rats using shRNA technology and pronuclear
microinjection. To this purpose, we employed a tetracycline-inducible shRNA expression system targeting the insulin
receptor (IR). Doxycycline (DOX) treatment of the resulting transgenic rats led to a dose-dependent and reversible increase
in blood glucose caused by ubiquitous inhibition of IR expression and signalling. We could neither detect an interferon
response nor disturbances in microRNA processing after DOX treatment excluding toxic effects of shRNA expression. Low
dose DOX treatment induced a chronic state of diabetes mellitus. In conclusion, we have developed a technology which
allows the specific, inducible, and reversible suppression of any gene of interest in the rat. Our first transgenic rat line
generated with this method represents an inducible model for diabetes mellitus.
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Introduction

The rat is the preferred animal model in several areas of research

including cardiovascular and neural biology. However, due to the

lack of gene targeting technology in this species, the rat has lost

ground compared to the mouse as experimental animal model in the

last two decades [1]. The advent of RNAi technology has opened

new routes to achieve gene knockdown in mammals. In particular,

new animal models have been generated with blunted expression of

a gene-of-interest by the use of expression cassettes for small hairpin

RNA (shRNA) [2–4]. However, these methods were again based on

germline-competent embryonic stem cells, which were not available

in rats until recently [5,6]. These problems seemed to be overcome

by two independent studies in which pronuclear-delivered shRNA

constructs were successfully used to knockdown genes in mice [7,8].

However, also failures of this technology have been reported such as

toxic effects or the lack of germline transmission [3,9]. In 2006, the

group of the late David Garbers described the first stable and

heritable shRNA-based knockdown of an endogenous gene in rats

using lentiviral transgene delivery [10]. However, the disadvantage

of viral transgenesis is the multiplicity and the mosaicism of

transgene integration into the genome rendering breeding of

genetically pure lines tedious and time-consuming.

We used pronuclear microinjection, which is a well established

methodology in rats [11], for the establishment of shRNA-induced

gene knockdown in this species. However, our first attempts using

transgene constructs driven by a permanently active U6 promoter

were completely unsuccessful (data not shown). Since we reasoned

that embryonic toxicity of high shRNA expression may be the

cause of this failure, we decided to use constructs with an H1

promoter blocked by the insertion of an operator (tetO) controlled

by the tetracycline-repressor (tetR) and the simultaneous and

ubiquitous expression of a codon-optimized tetR. The tetracycline

activation system from E. coli was established for cell culture and

later used in plants, fungi and protozoa [12]. It was originally

based on wild-type tetR, which in the absence of the antibiotic

tetracycline or its derivative doxycycline (DOX) binds to tetO and

represses gene transcription. Later, this system was modulated by

the fusion of tetR with a transactivator domain resulting in two

opposite gene activation systems, ‘tet-on’ and ‘tet-off’ [13].

Recently, systems allowing tetracycline inducible shRNA or

microRNA expression have been proven to be safe, controllable,

and effective tools for gene inhibition in mice [14,15].

As target for a proof-of-principle experiment to establish

inducible and reversible gene knockdown in rats we chose the

insulin receptor (IR) mRNA in order to create a model for diabetes

mellitus. An increasing part of the world population suffers from

diabetes mellitus and its complications. Animal models for this

disease yielded numerous insights into its pathogenesis and have

opened up new areas in drug discovery and development

(reviewed in [16]). The most frequently used model for diabetes

mellitus is based on the treatment of animals with streptozotocin,

which destroys pancreatic b-cells and creates a state of type 1

diabetes mellitus. However, there is no inducible rat model

established for type 2 diabetes mellitus characterized by the resistance

of most tissues to insulin.
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Here we show that the tetracycline-inducible promoter system

maintains a tight control on shRNA expression in all tissues of

transgenic rats. When released by DOX treatment, the ubiqui-

tously expressed shRNA leads to an effective knockdown of IR in

all tissues examined, to insulin resistance, and to diabetes mellitus.

These effects are reversible after DOX withdrawal indicating that

we have established an inducible and reversible system allowing

the knockdown of any gene-of-interest in the rat.

Results

Generation of IR-shRNA transgenic rats
A bimodal DNA construct harboring an shRNA cassette against

the IR under the control of an H1 promoter with a tetO site and a

cassette driving the expression of a codon-optimized tetR from the

CAGGS promoter [17] was used for pronuclear microinjection to

generate two transgenic rat lines, Tet14 and Tet29 (Figure 1A).

We first checked for the functionality of the tetracycline-inducible

shRNA expression system by treating animals with a relatively high

concentration of DOX (2 mg/mL). After 4 days of treatment,

shRNA expression was detected by ribonuclease protection assay

(RPA) in white adipose tissue (WAT) (Figure 1B), brown adipose

tissue (BAT), muscle, liver, kidney, heart, and brain (data not shown)

of both lines. No shRNAs were detectable in wild-type and untreated

transgenic rats (Figure 1B). TetR was expressed in all tested tissues of

transgenic rats, but not in WT rats, and remained unaffected by

DOX treatment (Figure 1C).

Downregulation of IR was assayed with Western blot analysis,

which monitored an efficient gene silencing in both transgenic

lines after DOX treatment (Figure 1C). The silencing effect of the

shRNA on IR expression occurred in all tissues but showed line

and organ specificity (Table 1). In most tissues, IR protein was

drastically downregulated with the exception of the brain in which

the effect was less pronounced. Accordingly, IR mRNA levels

measured by real-time PCR were decreased to a similar degree as

the protein, e.g., in heart (by 56.6% in Tet29 and 83.3% in Tet14

rats) and brain (by 27.7% in Tet29 and 36.3% in Tet14 rats).

During DOX treatment, blood was taken from the tail vein of

rats to measure blood glucose and plasma insulin. Drastic increases

of these parameters were detected after three days of DOX

treatment in Tet29 rats and one day later also in Tet14 rats

(Figures 2A,B). Blood glucose levels reached 3 fold higher levels

than in control animals. Correspondingly, plasma insulin levels

were enhanced more than 7 fold (Figure 2B). The plasma glucose

and insulin levels of WT and untreated transgenic rats were

indistinguishable. While body weight of untreated transgenic rats

was not different from the one of WT animals. it was markedly

reduced in both transgenic rat lines after 3 days of DOX treatment

(data not shown).

Insulin signaling in IR-shRNA transgenic rats
Next, we performed an insulin sensitivity test. Insulin injection

led to a significant decrease in glucose levels in both, wild-type and

untreated transgenic animals, but not in the DOX-treated

transgenic rats (Figure 2C). These data suggested a blunted IR

signal transduction in knockdown rats.

To further examine whether intracellular signaling of the IR is

altered in DOX-treated transgenic rats, we analyzed the

phosphorylation state of the Akt protein, a Ser/Thr kinase

activated through the cascade of reactions initiated by the IR after

insulin binding. Western blot analyses of proteins from BAT

(Figure 2D) and other tissues (not shown) showed increased

phosphorylation of Akt after insulin injection in all control rats. In

Figure 1. Generation of transgenic rats. The transgene construct,
pTet-shIR (A), contains two expression cassettes: One expresses shRNA
against the insulin receptor (shIR) under the control of the human H1
promoter carrying a tetracycline operator (tetO) sequence. The second
cassette consists of a tetracycline repressor (tetR) cDNA followed by a
polyadenylation site (pA) and is driven by the CAGGS promoter. An
RNase protection assay (RPA) probe was designed to bind to the loop
and antisense strand of the hairpin. Primers TetRfor and TetRrev
(arrowheads) were used for genotyping of rats. (B) Expression of the
shRNA was detected by RPA in 20 mg of total RNA isolated from white
adipose tissue (WAT) of wild-type (WT) and transgenic (Tet14 and Tet29)
rats treated with doxycycline (DOX, 2 mg/mL) for 4 days. M: RNA
Decade marker; Y: yeast RNA; Y-: yeast RNA without RNase digestion; nt:
nucleotides. (C) Expression of insulin receptor (IR), tetracycline repressor
(tetR), and ß-actin were detected by Western blot in 20 mg of WAT,
brain and heart protein from the same rats.
doi:10.1371/journal.pone.0005124.g001

Table 1. Tissue-specificity of IR knockdown.

Tet14 Tet29

Brain 31.6% 38.9%

Heart 62.3% 72.9%

WAT 89.5% 76.3%

Kidney 61.0% 58.9%

BAT 86.7% 78.9%

Different tissues of both transgenic lines, Tet14 and Tet29, and WT were
analysed for expression of IR by Western blot after treatment with doxycycline
(2 mg/mL for 4 days). Quantification of the protein band intensities was carried
out by the program TINA 2.08e and percentages of reduction of expression
were calculated (WT, 100%). WAT, white adipose tissue; BAT, brown adipose
tissue.
doi:10.1371/journal.pone.0005124.t001
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contrast, no or very weak Akt phosphorylation was seen in DOX-

treated transgenic rats even after insulin stimulation (Figure 2D).

These data provide strong evidence for an efficient functional IR

inactivation achieved by DOX-induced shRNA expression.

Reversibility of shRNA mediated IR knockdown
Next, we tested whether the IR knockdown was reversible.

Three groups of Tet29 rats were treated with different DOX doses

(20 mg/kg, 2 mg/kg and 0.5 mg/kg) until blood glucose levels

reached between 250 and 300 mg/dL (Figure 2E). Thereafter,

DOX was withdrawn from the drinking solution. Despite cessation

of the drug, blood glucose increased further in all tested groups

until reaching a plateau (350 mg/dL–450 mg/dL) and then

remained stable for 1–2 weeks. After that, the increased glucose

levels slowly returned back to normal levels in all examined groups

(Figure 2E).

Figure 2. Effect of shRNA expression on blood glucose levels and insulin signalling. Blood glucose (A) and plasma insulin levels (B) were
markedly increased in Tet14 and Tet29 transgenic rats after doxycyline treatment (DOX, 2 mg/mL for 4 days). Insulin sensitivity (C) and signalling (D)
were blunted by the treatment. Blood glucose was measured before (open bars, C) and 15 min after i.p. injection of insulin (10 U/kg) (closed bars, C)
after 4 days of DOX treatment. Values are given as % of baseline before insulin injection. In the same rats, total Akt and phospho Ser473-Akt (pAkt) (D)
were determined by Western blot in 20 mg protein from the interscapular brown adipose tissue. * p,0.05; ** p,0.01 vs. baseline; # p,0.05; ##
p,0.01 (Student’s t-test). (E) The reversibility of insulin receptor knockdown was shown in three groups of Tet29 transgenic rats treated with different
doses of DOX as indicated. DOX treatment was stopped when blood glucose levels reached values between 250 and 300 mg/dL and the further
development of blood glucose was monitored.
doi:10.1371/journal.pone.0005124.g002
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In parallel to the blood glucose level, drinking volume was

increased dose-dependently in all DOX-treated transgenic rats

and returned to normal levels after drug withdrawal (data not

shown). These data show that the shRNA mediated gene

knockdown is reversible after cessation of DOX.

Establishment of chronic diabetes mellitus model
In order to establish a chronic rat model of diabetes mellitus, a

group of Tet29 rats was treated daily with 5 mg/ml of DOX

solution for 8 days (until blood glucose reached 300 mg/dL).

Thereafter, the concentration was changed to 1 mg/mL DOX

solution for another 5 weeks. The long term treatment with these

low DOX doses resulted in moderate enhancements of blood

glucose and insulin levels and of the drinking volume in transgenic

rats (Figures 3A,C,D). Moreover, a progressive loss of body weight

was observed in the chronically diabetic animals (Figure 3B). In

these rats, we could also detect a high expression of shRNA and

efficient down regulation of IR (data not shown).

Chronic diabetes mellitus leads to permanent damage of different

tissues including heart, vessels, retina, and kidney. In order to test

whether renal pathologies appear in our model, we collected urine

to estimate albumin excretion once weekly in the last 3 weeks of

the study. These analyses revealed significant polyuria in

chronically treated Tet29 rats in the last 2 weeks of the treatment

(week 5 and 6) compared to the non treated Tet29 group

(Figure 3E). This was in accordance with the drinking volume

Figure 3. Chronic diabetes mellitus model in rats. Tet29 rats were treated with 5 mg/mL of doxycycline (DOX) for 8 days and with 1 mg/mL
thereafter for in total 40 days. Blood glucose (A), body weight (B, BW), and drinking volume (C) were measured every second day; plasma insulin (D)
was quantified by ELISA before and in the second week of DOX treatment, and urinary volume (E) and albumin (F) were determined weekly in the last
three weeks. * p,0.05; ** p,0.01; *** p,0.001 vs. untreated Tet29 rats (Student’s t-test).
doi:10.1371/journal.pone.0005124.g003
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described above (Figure 3D). Furthermore, albumin excretion was

markedly increased (Figure 3F). These data support the develop-

ment of renal damage in the chronic rat model for diabetes mellitus,

already after 5 weeks of low dose treatment with DOX.

Lack of toxicity
The reversibility of the phenotype after DOX withdrawal

(Figure 2E) already argued against a toxic effect of the shRNA

expression. Nevertheless, we checked for disturbances in the

biogenesis of endogenous microRNAs using RPA. We did not

observe any alterations in the expression of mir122 in the liver of

transgenic Tet29 rats after long term shRNA induction by low

dose DOX treatment (Figure 4A).

Furthermore, we tested whether shRNA expression triggers an

interferon response in DOX treated transgenic rats. For this

purpose, Western blotting was used to detect protein kinase R

(PKR), an interferon-inducible Ser/Thr specific protein kinase.

No PKR upregulation was detected in all tested tissues, such as

BAT (Figure 4B), WAT, and brain, after acute high dose

treatment with DOX as well as in the heart after chronic low

dose treatment (Figure 4C).

Discussion

Despite the recent successful generation of germline-competent

rat embryonic stem cells, gene targeting is still not possible since

homologous recombination does not yet work in these cells [5,6].

The only specific knockdowns of endogenous genes in rats were

achieved using lentiviral-mediated shRNA expression [10,18].

However, the mosaic pattern of transgene expression and the

frequent lack of germline transmission after lentiviral delivery

results in an extensive and time consuming procedure of

transgenic animal breeding. To avoid this problem, we chose

pronuclear microinjection for the delivery of a DNA construct

allowing shRNA expression to suppress genes in the rat. This

approach has never been shown to be successful to inhibit an

endogenous gene in rats while in mice there are conflicting results

about its feasibility [2–4,7–9]. The reason for the failure of some

groups [3,9] including us to get transgenic rodents with an shRNA

construct permanently active during the animal’s life time may be

that high shRNA expression causes embryotoxicity. It has been

shown that at least liver cells may get necrotic, when too many

shRNA molecules interfere with the cellular microRNA processing

machinery in vitro [19–21] and in vivo [22]. Furthermore,

exogenous shRNA expression has been shown to trigger an

interferon response [9]. Using a tetracycline-inducible system we

got transgenic offspring at normal efficiencies and in the resulting

lines the shRNA transgene was inherited by the rules of Mendel

indicating that there was no toxicity induced by the construct

during development. Together with our shRNA and tetR

expression data, these findings provide additional evidence that

tetR is ubiquitously present and keeps the shRNA expression

latent in all tissues at all stages of development.

In our model, no interferon response was found even after

shRNA induction by high dose/acute administration or low dose/

chronic treatment with DOX. Furthermore, mir122 processing

was unchanged in DOX treated rats in comparison to controls.

These data support the conclusion that there are also no toxic side

effects of shRNA induction at adult stage and confirm findings in

mice, in which conditional shRNA expression has already been

shown to be a very efficient tool for gene silencing [14,15,23,24]

There have been reports about inducible knockdown of genes in

transgenic mice using the Cre-lox system [25–27]. While this

technology allows tissue-specific gene silencing, it has the

disadvantage to be not reversible. Furthermore, the extent of

tetracycline-regulated gene knockdown can be titrated by the dose

of DOX given to the animals, while the Cre-lox system can not.

Thus, the tetR-tetO regulated system is more versatile for

conditional gene silencing.

The doses of DOX necessary to achieve effective shRNA

induction and consequent gene silencing are low and are not

expected to have any side effects per se [28,29]. However, induction

is not equally efficient in all tissues. In particular, the brain is

partially refractory to the effects of DOX probably due to the

blood-brain barrier. Studies in animals carrying the tet-on system

have yielded comparable results in the past [30]. The induction of

shRNA expression is completely reversible after withdrawal of

DOX in our rat model. However, the kinetics are very slow and

the complete recovery of the animals needs two to three weeks

probably due to the slow clearance of DOX from the circulation.

Also this has been reported before for animals carrying the tet-on

system [30].

Figure 4. Lack of toxicity of transgenic shRNA expression. (A) Tet29 rats were treated with doxycycline (DOX) as described in Figure 3. At the
end of the experiment, 20 mg of total RNA from liver was used in an RPA for detection of mir122. M: RNA Decade marker; Y: yeast RNA; Y-: yeast RNA
without RNase digestion; nt: nucleotides. Protein kinase R (PKR) expression was used as marker for interferon response in white adipose tissue of
acutely (B, as described in Figure 1) or in heart of chronically (C, as described in Figure 3) DOX treated wild-type (WT), Tet14, and Tet29 rats. PKR was
detected by Western blot in 20 mg protein; an unspecific band (indicated by *) was used as loading control. HEKi: positive control, 20 mg of protein of
HEK cells treated with 1 mM interferon-a2a for 24 hours.
doi:10.1371/journal.pone.0005124.g004
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In addition to contribute a new strategy for loss-of-function

experiments in rats, we provide a model of inducible and

reversible diabetes mellitus. Until DOX is added to the drinking

water, blood glucose as well as insulin levels are normal. After

DOX treatment, a cluster of phenotypes is observed that closely

resembles the pathophysiology of human diabetes mellitus, including

hyperglycemia, hyperinsulinemia, polyuria, and proteinuria.

Interestingly, despite the dramatic effects of DOX, drug

withdrawal restored normal physiological conditions in transgenic

rats. The kinetics of this phenotype reversion was, however,

dependent on the dose and the period of administration of DOX.

Not many models of insulin resistance-associated diabetes mellitus

have yet been described in rats [31,32]. The most well-known one

is the Zucker rat, which carries a null mutation in the leptin

receptor gene. As a consequence, the effects on insulin signalling

observed in this model are indirect and pleiotropic.

In conclusion, we present a robust strategy to achieve efficient

conditional gene knockdown in rats using pronuclear microinjec-

tion for transgenic animal generation by the use of a tetracycline-

inducible shRNA expression system. By targeting the IR, we

established an inducible and reversible model of diabetes mellitus,

which exhibits several hallmarks of the disease. Since there are not

many other suitable models of insulin resistance-associated diabetes

mellitus in rats, these transgenic animals represent an attractive

option for further investigations on the pathogenesis of the disease

and its complications and for the evaluation of novel therapeutic

concepts targeting IR signalling.

Materials and Methods

Ethics Statement
All experimental protocols were performed in accordance with

the guidelines for the humane use of laboratory animals by the

Max-Delbrück Center for Molecular Medicine and were approved

by local German authorities with standards corresponding to those

prescribed by the American Physiological Society.

Generation of transgenic rats
Rats were maintained in individually ventilated cages (Tecni-

plast) under standardized conditions (at a temperature of 2162uC,

a humidity of 6565% and with an artificial 12 h light/dark cycle)

with free access to standard chow (0.25% sodium; SSNIFF) and

drinking water ad libitum. Sprague-Dawley (SD) rats were obtained

from a commercial animal breeder (Taconic).

To generate transgenic rats a 4-kb DNA fragment containing

pTet-shIR (Figure 1A) was cut out with PacI and KpnI restriction

enzymes from the pIR5-tet exchange vector [14], cleaned from the

gel using a QIAquick Gel Extract Kit (Qiagen), dissolved at 3 ng/

ml with microinjection buffer (8 mM Tris-HCl, pH 7.4, 0.15 mM

EDTA), and microinjected into fertilized eggs of SD rats according

to established techniques [11]. Integration of the transgene was

detected by PCR on genomic DNA isolated from tail biopsies with

the primers TetRfor: 59-CAA GTT GCC AAG GAG GAG AG -

39 and TetRrev: 59-AAC CGG TCT AGA ATC GAT GG -39.

Two of 31 newborns were positive for the transgene and were bred

to generate the transgenic rat lines, Tet14 and Tet29. Two to 5

months old animals were used in all experiments; negative

littermates were used as wild type (WT) controls.

Animal treatment and experimental design
To induce expression of shRNA, animals were treated with

varying concentrations of doxycycline (DOX; Sigma) in the

drinking solution. The DOX solution was freshly prepared each

day and kept dark due to the light sensitivity of DOX. The

drinking solution contained various percentages of sucrose

depending on the DOX concentrations and was also given to

the control animals.

To check the functionality of the system animals were treated

with 2 mg/mL DOX in the drinking water containing 10%

sucrose for 4 days.

In the reversibility tests, animals received different doses of

DOX per day (20, 2 and 0.5 mg/kg body weight). To this end,

rats were offered their daily dose of DOX in about 20 ml of 1%

sucrose. After this volume was consumed they got normal water ad

libitum. Once plasma glucose levels reached 250 to 300 mg/dL in

the treated transgenic rats, DOX was withdrawn from their

drinking solution.

To establish a chronic model of diabetes mellitus, a group of rats

was treated daily with 5 mg/mL of DOX solution containing 1%

sucrose. When blood glucose reached 300 mg/dL (after 8 days of

treatment), the concentration was changed to 1 mg/mL DOX

solution (in 1% sucrose) for in total 40 days.

During all experiments animals were regularly checked for

drinking volume, body weight, blood glucose and insulin level. To

collect urine for validation of urinary volume and albuminuria,

experimental animals were kept in metabolic cages under

standardized conditions for one day per week during a period of

3 weeks. After 24 hours, the volume of collected urine was

determined. For quantification of albumin, the urine was

centrifuged (600 g, 10 min, 4uC) and analysed by CellTrend

using a specific ELISA.

Measurement of blood glucose and insulin level
Blood glucose was analysed in a drop of tail-vein blood from

freely feeding and conscious mice using Accu Chek Sensor

(Roche). Plasma insulin concentration was quantified using Rat/

Mouse Insulin ELISA kit (LINCO Research) according to the

manufacturer’s protocol. To determine insulin sensitivity the blood

glucose was measured in the same animal before and 15 min after

i.p. injection of insulin (10 U/kg) or saline as a control.

Molecular biology methods
After treatment, animals were killed by decapitation; organs

were rapidly isolated and snap-frozen in liquid nitrogen. Total

RNA was isolated from these organs using TRIZOL (Invitrogen).

Gene expression was analyzed by RNase Protection Assay

(RPA) using a commercially available RPA II kit (Ambion),

according to the protocol of the manufacturer. The RPA probe for

shIR was generated by cloning of annealed oligonucleotides (Sense

InsR 59- CGA CCA GAC CCG AAG ATT TCT TCA AGA GA-

3; Antisense InsR 59– CTA GTC TCT TGA AGA AAT CTT

CGG GTC TGG TCG GTA C -39) into pBluescript vector

(Stratagene). The probe for mir122 was generated by annealing

oligonucleotides rmir122a: 59- GTA ATA CGA CTC ACT ATA

GGG AAA CAC CAT TGT CAC ACT CCA GAG CTC TGC

TAA GG -39 and rmir122b: 59-CCT TAG CAG AGC TCT

GGA GTG TGA CAA TGG TGT TTC CCT ATA GTG AGT

CGT ATT AC -39, containing a T7 promoter. The labeled

antisense RNA probe was synthesized by T7 RNA polymerase in

the presence of [a-32P]-UTP as described [33]. The DecadeTM

Marker System kit (Ambion) was used to prepare radiolabeled

RNA marker with radioactive [c-32P]-dATP. 20 mg of total RNA

of different organs and 20 mg of yeast RNA as a control were

hybridized with 80.000 cpm of the radio-labeled RNA antisense

probe, digested with RNases A and T1, separated by electropho-

resis on a 15% acrylamide denaturing gel, and analyzed using a

FUJIX BAS 2000 Phospho-Imager system.
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The reduction of IR mRNA was determined by real-time

quantitative PCR. Three mg of total RNA were reverse transcribed

with Moloney murine leukemia virus (MMLV) reverse transcrip-

tase (Promega) using random hexamer primers according to the

protocol of the manufacturer. Detection of IR mRNA level was

carried out in a Bio-Rad detection instrument using SYBR Green

reagent (Qiagen) with the following primers: forward: 59-

CACCAATACGTCATTCACAAC -39 and reverse: 59- AG-

GATTTGGCAGACCTTAGG -39. The reaction started with

10 minutes at 95uC followed by 40 cycles of 95uC for 15 seconds,

58uC for 20 seconds, and 72uC for 20 seconds. Gene expression

was normalized to b-actin mRNA expression (forward primer: 59-

TACAATGAGCTGCGTGTG -39, reverse primer: 59- CA-

CAGCCTGGATGGCTAC -39). The method of Livak and

Schmittgen [34] was applied to compare gene expression levels

between groups, using the equation 2{DDCT

Immunoblotting was performed as described previously [35].

Briefly, solubilized protein was separated by electrophoresis (10%

polyacrylamide gel) and transferred to PVDF membranes.

Nonspecific binding was blocked by incubation with 5% non-fat

milk or 5% BSA and membranes were probed with the specific

antibodies (anti-IR (1:200, Santa Cruz Biotechnology), anti-TetR

(1:8000, Mo Bi Tec), anti-PKR (1:5000 Abcam), anti-Akt, anti-

phospho-Akt(Ser473), and anti-b-actin (Cell Signaling Technolo-

gy)), followed by incubation with horseradish peroxidase–conju-

gated secondary antibodies (Pierce). Immunoreactive bands were

visualized by the SuperSignal West Dura Extended Duration

Substrate kit (Pierce) and quantified by densitometry using TINA

2.08e software (Raytest).

Statistical Analysis
Results are expressed as mean6SEM. Tests of significance

(PRISM, GraphPad) were conducted by unpaired Student’s t-test,

and by two-way ANOVA for the analysis of time-dependent

curves.
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