3. ERGEBNISSE

Die Entwicklung des Celegans Toxchips verlief in drei Phasen, über welche die nachfolgende Abbildung 12 einen kurzen Überblick gibt. In Phase 1 wurde mit Hilfe des gesamtgenomischen DNA-Microarrays von *C. elegans* die Genauswahl für den in Phase 2 entwickelten Celegans Toxchip, einen Low-Density cDNA-Microarray, vorgenommen. In Phase 3 wurde der Celegans Toxchip im Hinblick auf seine Verwendbarkeit als ökotoxikologisches Testsystem mit verschiedenen Xenobiotika in drei Konzentrationen überprüft.

Entwicklung des Celegans Toxchips

Phase 1 - Auswahl relevanter Gene

- Induktionsexperimente und Aufnahme der Genexpressionsmuster mit Hilfe eines gesamtgenomischen *C. elegans* DNA-Microarrays
- Nutzung bereits bekannter Ergebnisse aus der Literatur und Verifizierung für C. elegans

Phase 2 - Entwicklung des Celegans Toxchips

- RT-PCR Amplifikation von 66 relevanten Genen
- Spotten des Celegans Toxchips

Phase 3 – Überprüfung der Verwendbarkeit des Celegans Toxchip

 Aufnahme der schadstoffabhängigen Genexpression durch den Einsatz verschiedener Xenobiotika in je drei Konzentrationen

Abb. 12: Übersicht über die einzelnen Entwicklungsphasen des Celegans Toxchips

3.1. Nachweis von Xenobiotika-induzierbaren Genen durch den gesamtgenomischen DNA-Microarray von *C. elegans*

Durch die Experimente mit dem gesamtgenomischen DNA-Microarray von $C.\ elegans$ konnten unter Verwendung der Xenobiotika Atrazin, β -Naphthoflavon (β -NF), Clofibrat, Diethylstilbestrol (DES) und Fluoranthen von 17.815 auf dem Array befindlichen Genen, 203 eindeutig als durch die eingesetzten Schadstoffe induzierbar gezeigt werden. Der stärkste Induktor war dabei Fluoranthen mit 79 überexpremierten Genen, gefolgt von Clofibrat mit 53 überexpremierten Genen, Atrazin mit 52 und β -NF mit 40 überexpremierten Genen. DES war der schwächste Wirkstoff in dieser Untersuchung und induzierte acht Gene. 26 der insgesamt 203 überexpremierten Gene wurden durch mindestens zwei Xenobiotika induziert. Für drei dieser Gene erfolgte eine Induktion durch drei unterschiedliche Xenobiotika.

Wie erwartet gehörten viele der durch die verwendeten Xenobiotika induzierten Gene zu Genfamilien, die bekannt dafür sind, dass sie in die Biotransformation von Schadstoffen involviert sind, z.B. die Cytochrom P450 Superfamilie (CYP).

In dieser Untersuchung konnten neun Gene, die zur CYP Genfamilie gehören durch die eingesetzten Xenobiotika induziert werden. Dabei zeigte sich, dass β -NF die stärkste Induktion hervorrief, gefolgt von Atrazin (siehe Tabelle 5). Das *vem-1* Gen (Cytochrom b5) wurde durch Clofibrat und β -NF induziert (Tabelle 5).

Von der Glutathion-S-Transferase Familie (GST) wurden vier Gene durch die fünf getesteten Xenobiotika überexpremiert, wobei das Gen Y48E1B.10 sowohl durch Fluoranthen als auch durch β-NF induziert wurde (Tabelle 5).

Für Mitglieder der UDP-Glucoronosyltransferase und Carboxyltransferase Familie zeigten sich jeweils drei Gene als induzierbar durch die verwendeten Xenobiotika β -NF, Clofibrat und Atrazin (Tabelle 5), wobei das Carboxylesterase Gen F13H6.3 sowohl durch β -NF als auch durch Clofibrat und das UDPGT Gen AC3.7 durch β -NF, Clofibrat und Atrazin induziert wurde. Für DES und Fluoranthen wurde keine Induktion in diesen beiden Genfamilien gefunden.

Tab. 5: Induktion von Genen des Biotransformationssystems durch die verwendeten Xenobiotika

Gen	Atrazin	Clofibrat	DES	Fla	β-NF	Name
		Cytochr	ome P450/ b5			•
C03G6.14	-	-	-	-	7.3 ± 3.8	35A1
C03G6.15	-	-	-	-	32.2 ± 23.5	35A2
C06B3.3	-	-	-	-	14.5 ± 9.6	35C1
F08F3.7	-	-	-	-	3.0 ± 0.4	14A5
F28G4.1	-	-	-	3.1 ± 0.6	-	37B1
K07C6.3	4.5 ± 0.8	-	-	-	-	35B2
K07C6.4	2.5 ± 0.2	-	-	-	-	35B1
K07C6.5	8.7 ± 3.1	-	-	-	-	35A5
T13C5.1	2.4 ± 0.2	-	-	-	-	22A
K07E3.8*	-	5.2 ± 1.0	-	-	3.9 ± 0.4	vem-1
	<u> </u>	Gluthation	-S-Transferasen			-
F35E8.8	6.3 ± 3.4	-	-	-	-	
F56A4.I	-	3.2 ± 0.6	-	-	-	
K08F4.7	-	-	2.1 ± 0.3	-	-	gst-4
Y48E1B.10*	-	-	-	2.6 ± 0.4	2.4 ± 0.1	
	<u>.</u>	Carbo	xylesterasen			
B0238.1	-	-	-	-	8.7 ± 5.3	
B0238.13	-	-	-	-	8.1 ± 3.4	
F13H6.3*	-	4.5 ± 0.8	-	-	6.0 ± 1.6	
	<u> </u>	UDP-Glucoro	nosyltransferas	en		-
AC3.7*	2.6 ± 0.3	3.0 ± 0.6	-	-	3.0 ± 0.3	
C23G10.6	-	-	-	-	3.0 ± 0.4	
ZC443.6	2.7 ± 0.5	-	-	-	-	

Neben den bereits genannten vier Genfamilien wurden weitere 61 Gene überexpremiert (Tabelle 6), die für Proteine kodieren, die zu unterschiedlichen Stoffwechselwegen gehören. 36 dieser Gene konnten durch Fluoranthen, 12 durch Clofibrat, 11 durch Atrazin und β-NF sowie zwei durch DES überexpremiert werden. Zwei der 61 Gene, C44H4.3 (sym-1) und K11G9.6 (mtl-1) waren sowohl durch Clofibrat als auch durch β-NF induzierbar (Tabelle 6).

Tab. 6: Induktion von Genen mit unterschiedlicher Funktion

Tab. 6: Indu	ab. 6: Induktion von Genen mit unterschiedlicher Funktion					
Gen	Atrazin	Clofibrat	DES	Fla	β-NF	Zugehörigkeit
C48C5.3	-	-	-	2.4 ± 0.2	-	ABC Transporter
T28F3.9	2.6 ± 0.1	-	-	-	-	Acetylglucosaminyltransferase
C50B6.7	-	-	-	15.3 ± 4.9	-	Amylase
ZK384.3	21.0 ± 9.2	-	-	-	-	Aspartylprotease
C07G2.2	-	-	-	5.3 ± 2.1	-	bZIP Transkriptionsfaktor
R05H10.6	3.9 ± 0.6	-	-	-	-	Cadherin Proteinfamilie
T20B3.1	-	-	-	-	3.3 ± 1.1	Carnitat Acyltransferase
C25B8.3 T13F2.8	-	3.2 ± 0.8	-	2.9 ± 0.5	-	Cathepsin B-like Cystein Protease Caveolin Proteinfamilie
F54A3_31.E	2.4 ± 0.3	-	-	2.9 ± 0.5	-	Caveoiin Proteiniamile Chaperonin Komplex Protein
C42D4.12	2.4 ± 0.5	-	-	3.8 ± 1.0	-	Chemorezeptor
C08H9.7		_	-	2.3 ± 0.2	_	Chitinase
F15A4.8	_	_	_	2.7 ± 0.4	_	Chitinase
F36D3.9	_	_	2.8 ± 0.0	-	_	Cystein Protease
F41E6.6	-	-	-	-		Cystein Protease
F54G8.2	-	-	-	2.7 ± 0.5		Diacylglycerol Kinase
W08D2.5	-	-	-	9.4 ± 5.9		E1-E2 (P-type) ATPase
F01G10.3	8.3 ± 5.5	-	-	-		Enoyl-CoA Hydratase
F15B9.1	-	5.5 ± 1.9	-	ı	-	Retinol bindendes Protein
F32H2.5	-	-	-	9.9 ± 7.2	-	Fettsäuresynthase
C05C8.3	-	5.8 ± 2.8	-	-	-	FK506 bindendes Protein
F26A1.2	2.3 ± 0.2	-	-	-	-	FKH Transkriptionsfaktor
F52H3.7	-	-	-	5.8 ± 1.0	-	Galectin
F57F4.3	2.4 ± 0.3	-	-	-	-	GEI-4 Interagierendes Protein
Y66A7A.6	-	4.5 ± 1.5	-	-	-	Glycosyltransferase
Y9C9A_52.A	3.5 ± 0.9	-	-	-	-	G-Protein gekoppelter Rezeptor
VW02B12L.1	-	-	-	3.6 ± 0.9		H+-ATPase
M163.3	-	-	-	-	2.5 ± 0.2	
F22F1.1	-	2.6 ± 0.5	-	-	-	Histon H1
K08B12.1	-	3.6 ± 0.9	-	-		Lipase
K11G9.6	-	3.8 ± 0.8	-	-		Metallothionein mtl-1
C24A8.3		-		2.6 ± 0.4		Methyltransferase
C02E7.1 C15H9.1	-	-	-	3.2 ± 0.6	3.4 ± 0.6	Na/K-Transport ATPase Transhydrogenase
M02H5.G	-	-	-	3.2 ± 0.0 2.4 ± 0.3	-	Nuklearer Hormon Rezeptor
C09D1.1	_	-	-	3.1 ± 0.7		Nuklearer Hormon Rezeptor
F53C11.3	_	_	_	J.1 I U.1		Oxidoreductase
ZK270.1	_	-	-	5.9 ± 3.5		Patched Familie
F18A12.8	_	_	_	2.4 ± 0.2		Peptidase
F42G9.2	-	6.0 ± 1.8	-	-		Peptidylprolyl cis-trans Isomerase
H23N18.5	-	-	-	-		Phospholipase
B0348.3	-	-	-	2.8 ± 0.4		Phospholipase C
F26H9.5	-	2.9 ± 0.3	-	-		Phosphoserin Aminotransferase
T05E11.6	-	-	-	3.0 ± 0.5	-	Protease
Y20C6A.1	-	-	-	4.6 ± 2.3	1	Protein
C24G7.5	-	-	-	2.9 ± 0.5	1	Proteinkinase
M176.6	3.0 ± 0.4	-	-	-	-	Proteinkinase
R155.3	-	-	-	3.5 ± 0.8	-	Protein-Tyrosine Phosphatase
T21C12.2	-	2.4 ± 0.3	-	-	-	Pyruvatdioxygenase
F26H9.6	-	2.3 ± 0.1	-	-		RAB Familie
C56E6.5	-	-	-	2.4 ± 0.2	-	Rhodopsin-like Rezeptor
W08D2.7	-	-	- 04:00	5.4 ± 0.9	-	RNA helicase
C39E9.2	-	-	2.1 ± 0.2	-		SCP-like extrazelluläres Protein
C04G6.1a	-	-	-	-		Serin/ Threonin Proteinkinase
Y40D12A.2	-	-	-	20.00		Serincarboxypeptidase
AH6.6	- 51+16	-	-	3.0 ± 0.3		Serpentin Rezeptor
D2062.10 Y113G7B.2	5.4 ± 1.6	-	-	-	<u>-</u>	Serpentin Rezeptor
R05F9.12	2.5 ± 0.2	-	-	- 12.3 ± 6.1		Serpentin Rezeptor Sucraseisomaltase
C44H4.3	-	3.2 ± 0.6	-	12.3 ± 0.1		SYM Genklasse
F17A2.1	-	3.2 ± 0.6	-	3.2 ± 0.5	2.0 ± 0.5	TRA-2 Genklasse
Y32F6B.1	<u>-</u>	-	-	3.2 ± 0.5 3.1 ± 0.4	-	Transporter
Y39A3A.1		-	-	2.7 ± 0.4	-	Transposase
C01G6.8	-	-	-	3.9 ± 1.2	-	Tyrosine Rezeptorkinase
F11C3.3	-	-	-	3.9 ± 1.2 3.9 ± 0.7	-	Uncoordinated Genklasse
F44C8.10	-	-	-	3.9 ± 0.7 3.1 ± 0.7	-	Uncoordinated Genklasse
M106.3	-	-	-	J. 1 ± U.1		Zinc-binding dehydrogenase
F28F9.1	_	_	_	4.0 ± 1.3		Zinc-finger Familie
T22F3.11	_	-	-	7.1 ± 3.0	_	Zuckertransporter
·· · · · ·	L	·		± 0.0	L	

Zusätzlich wurden 92 Gene, deren Funktion noch unklar ist, durch mindestens eines der verwendeten Xenobiotika induziert. Von diesen 92 Genen wurden 35 durch Fluoranthen, 28 durch Atrazin, 19 durch Clofibrat und 15 durch β-NF induziert. Diese Zahlen schließen die Induktion von sechs Genen durch zwei unterschiedliche sowie von zwei Genen durch drei unterschiedliche Xenobiotika mit ein (Tabelle 7). Eine tabellarische Aufstellung aller 92 Gene findet sich im Anhang, bzw. als Rohdaten in der SMD (http://genome-www5.stanford.edu/cgi-bin/login.pl).

Tab. 7: Gene unbekannter Funktion, die durch mehr als ein eingesetztes Xenobiotikum induzierbar waren

Gen	Atrazin	Clofibrat	DES	Fla	β-NF
C29F7.2	-	4.5 ± 0.5	-	6.9 ± 4.1	5.1 ± 1.0
F45D3.3	-	2.9 ± 0.5	-	-	2.8 ± 0.4
F58H1.2	-	4.3 ± 1.1	-	-	3.5 ± 0.5
ZC434.3	-	3.0 ± 0.3	-	-	3.2 ± 0.6
T16G1.6	3.0 ± 0.3	-	-	4.7 ± 1.7	3.7 ± 0.8
VC5.1	-	4.7 ± 1.8	-	-	3.4 ± 0.7
F08G5.6	6.2 ± 3.1	-	-	35.8 ± 18.6	-
T06D8.1	3.6 ± 0.7	-	-	5.7 ± 0.6	-

Interessanterweise konnten auch 24 Gene der Collagen Superfamilie sowie sechs Gene der C-type Lectine durch die verwendeten Xenobiotika überexpremiert werden (Tabelle 8a und b). Von den Collagen Genen wurden 17 durch Clofibrat, drei durch Atrazin und weitere drei durch Fluoranthen sowie zwei Gene durch β -NF (Tabelle 8a) induziert.

Tab. 8a: Induktion von Collagen Genen durch die verwendeten Xenobiotika

Gen	Atrazin	Clofibrat	DES	Fla	β-NF
B0222.6	2.4 ± 0.5	-	-	-	-
B0222.8	2.5 ± 0.6	-	-	-	-
B0491.2	-	5.9 ± 1.5	-	-	-
C09G5.6	-	-	-	-	3.4 ± 0.5
C35B8.1	-	4.4 ± 0.8	-	-	-
C46A5.3	-	6.0 ± 3.5	-	-	-
C52D10.13	-	4.2 ± 1.1	-	-	-
F14F7.1	2.5 ± 0.2	-	-	-	-
F23H12.4	-	2.8 ± 0.2	-	2.7 ± 0.4	-
F27C1.8	-	4.2 ± 1.4	-	-	-
F30B5.1	-	5.2 ± 1.6	-	-	-
F46C8.6	-	5.1 ± 1.6	-	-	-
F53F1.5	-	-	-	2.5 ± 0.4	-
F54C9.4	-	3.2 ± 0.7	-	-	-
K09H9.3	-	2.5 ± 0.1	-	-	-
T01B7.7	-	6.3 ± 2.0	-	-	-
T14B4.6	-	4.0 ± 0.9	-	-	-
T21D12.2	-	3.5 ± 1.0	-	-	-
W03G11.1	-	-	-	3.2 ± 0.6	-
Y41E3.2	-	6.3 ± 2.2	-	-	-
ZK1010.7	-	6.3 ± 2.1	-	-	-
ZK1290.3	-	4.7 ± 1.6	-	-	2.9 ± 0.4
ZK836.1	-	4.1 ± 0.2	-	-	-

Von den sechs C-type Lectin Genen wurden zwei durch Atrazin und weitere zwei durch Fluoranthen sowie ein Gen durch Clofibrat überexpremiert (Tabelle 8b). Das C-type Lectin Gen Y19D10A.J wurde durch Atrazin und Fluoranthen induziert.

Tab. 8b: Induktion von C-type Lectin Genen durch die verwendeten Xenobiotika

Gen	Atrazin	Clofibrat	DES	Fla	β-NF
B0218.8	-	3.9 ± 0.9	-	-	-
F08H9.6	2.5 ± 0.2	-	-	-	-
F15E11.9 = Y19D10A.9	15.4 ± 1.6	-	-	-	-
F17B5.2	-	-	-	5.8 ± 1.4	-
F56A4.J	-	-	-	42.3 ± 21.6	-
Y19D10A.J*	14.9 ± 2.0	-	-	39.8 ± 17.0	-

Für 153 Gene konnte eine Repression durch die applizierten Xenobiotika gefunden werden. Von diesen wurden lediglich zwei Gene durch mehr als ein Xenobiotikum repremiert, F32A5.5 und K08F4.7 wurden sowohl durch Atrazin, als auch durch Fluoranthen repremiert. Die übrigen Gene wurden jeweils nur durch eines der eingesetzten Xenobiotika repremiert. Atrazin unterdrückte die Transkription von 140 Genen, gefolgt von Fluoranthen mit neun Genen, DES mit sieben, β-NF mit zwei und Clofibrat von nur einem Gen. Wie in Tabelle 9 zu sehen ist, gehören 43 der repremierten Gene zu bereits klassifizierten Genfamilien, z.B. zu den Vitellogeninen im Fall von K09F5.2 (*vit-1*) und K07H8.6 (*vit-6*), zur Hitzeschock Proteinfamilie (F43D9.4), zur CYP P450 Familie (C36A4.1) und anderen. Die weiteren 110 Gene, deren Funktion bis dato noch unbekannt ist, konnten durch mindestens eines der eingesetzten Xenobiotika repremiert werden. Eine tabellarische Aufstellung dieser 110 Gene findet sich im Anhang, beziehungsweise als Rohdaten in der SMD (http://genome-www5.stanford.edu/cgi-bin/login.pl).

Interessanterweise fanden sich drei Gene (F26H9.5, kodiert für eine Aminotransferase; K08F4.7, eine GST und C39E.9.2, Mitglied der SCP-like extracellulären Proteinfamilie), die durch die verwendeten Xenobiotika entweder induziert, oder repremiert wurden. F26H9.5 und C39E9.2 wurden überexpremiert durch DES und repremiert durch Atrazin. K08F4.7 wurde ebenfalls durch DES überexpremiert, jedoch durch Fluoranthen und Atrazin repremiert.

Tab. 9: Gene mit bekannter Funktion, die durch die eingesetzten Xenobiotika repremiert wurden

Gen	Atrazin	Clofibrat	DES	Fla	β-NF	Zugehörigkeit
ZK816.5	-	-	-	2.2 ± 0.1	-	Alkoholdehydrogenasen
C30G12.2	_	_	_	2.9 ± 0.3	-	Alkoholdehydrogenasen
F26H9.5	2.8 ± 0.3	_	_	-	_	Aminotransferasen
F28F8.2	3.1 ± 0.7	_	_	_	_	AMP-bindende Enzyme
F49E12.2	3.7 ± 0.8	_	_	_	_	Calpainproteasen
C49C3.11	2.3 ± 0.1	_	_	_	_	C-type Lectin
F08H9.5	2.8 ± 0.3	_	_	_	_	C-type Lectin
F38A1.5	3.1 ± 0.5	-	_	_	-	C-type Lectin
F49H6.2	-	_	_	_	3.2 ± 1.0	C-type Lectin
C36A4.1	2.6 ± 0.3	_	_	_	-	CYP P450
T24D8.5	3.4 ± 0.2	-	_	_	-	Neurotransmitter
F31A3.1	3.9 ± 0.6	_	_	_	_	
K08F4.7	3.1 ± 0.5	_	_	6.4 ± 1.3	_	Glutathione S-transferasen
F43D9.4	2.4 ± 0.2	_	_	-	_	Hitzeschock Hsp20
R09B5.6	-	_	_	3.1 ± 0.3	_	Hydroxyacyl-CoA Dehydrogenasen
5C25B8.4	2.1 ± 0.0	_	_	-	_	Lectin
F32A5.5	4.9 ± 1.9	_	_	3.9 ± 1.0	_	Major Intrinsic Proteine
F44D12.7	2.7 ± 0.3	-	-	-	-	Major Sperm Protein Familie
T13F2.10	2.4 ± 0.2	-	-	-	-	Major Sperm Protein Familie
ZK1225.6	2.6 ± 0.1	-	-	-	-	Major Sperm Protein Familie
ZK1307.3	4.7 ± 1.6	-	-	-	-	Major Sperm Protein Familie
T11F9.6	2.8 ± 0.3	-	-	-	-	Metalloproteasen
F09E8.6	2.4 ± 0.2	-	-	-	-	Metalloproteasen
R05C11.3	-	-	3.3 ± 0.0	-	-	Nuklearer Transporter
T07G12.5	2.6 ± 0.6	-	-	-	-	Transporter Protein
Y38H8A.3	2.5 ± 0.2	-	-	-	-	Proteinkinasen
C04G2.2	2.2 ± 0.1	-	-	-	-	Proteinkinasen
T21E3.1	-	-	2.4 ± 0.2	-	-	Protein-Tyrosine Phosphatasen
K10H10.2	3.0 ± 0.2	-	-	-	-	·
C39E9.2	4.3 ± 0.8	-	-	-	-	SCP-like extrazelluläre Proteine
F09E8.5	5.3 ± 1.9	-	-	-	-	SCP-like extrazelluläre Proteine
F49E11.10	3.1 ± 0.6	-	-	-	-	SCP-like extrazelluläre Proteine
T05A10.5	3.2 ± 0.3	-	-	-	-	SCP-like extrazelluläre Proteine
F28D1.3	6.6 ± 1.6	-	-	-	-	Thaumatin
F28D1.4	5.4 ± 2.0	-	-	-	-	Thaumatin
F28D1.5	6.3 ± 1.8	-	-	-	-	Thaumatin
T02G5.7	-	-	-	4.6 ± 2.0	-	Thiolasen
T06G6.11	5.6 ± 2.7	-	-	-	-	Thioredoxin
T05A10.3	3.9 ± 0.7	-	-	-	-	Transthyretin-like
K09F5.2	-	-	3.6 ± 0.6	-	-	Vitellogenine (vit-1)
K07H8.6	4.5 ± 1.1	-	-	-	-	Vitellogenine (vit-6)
Y43F8C.1	2.4 ± 0.2	-	-	-	-	Neurotransmitter
T11F9.8	5.1 ± 1.3	-	-	-	-	Zink Metalloprotease

3.2. Celegans Toxchip

3.2.1. Genselektion für den Celegans Toxchip

Die Untersuchung mit dem gesamtgenomischen DNA-Microarray von C. elegans bildete die Grundlage für die Genselektion, die auf dem Celegans Toxchip eingesetzt wurde. Dabei wurden Gene ausgewählt, die sich durch die Xenobiotika Atrazin, β -Naphthoflavon (β -NF), Clofibrat, Diethylstilbestrol (DES) und Fluoranthen induzieren ließen.

Unter diesen ausgewählten Gene kodieren 15 Gene für Cytochrom P450, also für Phase I-Enzyme des Biotransformationssystems. Für Phase II-Enzyme kodieren fünf Gene für UDP-Glucoronosyltransferasen, vier für Glutathion-S-Transferasen und vier für Carboxylesterasen. Des weiteren kodieren 6 Gene für Hitzeschock Proteine und 6 für Vitellogenin. Weitere Gene kodieren für Enzyme wie Lipasen, P-type ATPasen und andere. Vier Gene, deren Funktion bis dato noch unbekannt ist, wurden ebenfalls mit in die Genauswahl für den Celegans Toxchip aufgenommen, da sie sich als besonders gut induzierbar durch die verwendeten Schadstoffe erwiesen.

Aufgrund der Ergebnisse der Untersuchungen von Thakurta et al. (2002) und Custodia et al. (2001) wurde der Genkatalog um fünf weitere Gene erweitert, wobei zwei Gene für Hitzeschock Proteine (Thakurta et al., 2002) und drei Gene für Vitellogenine kodieren (Custodia et al., 2001).

Für die Verwendung als interne Kontrollen wurden die beiden Housekeeping-Gene act-3 und ama-1 ausgewählt. Eine Auflistung aller 66 Gene zeigt Tabelle 10.

Tab. 10: Genauswahl für den Celegans Toxchip

1 ab. 10:	Genau	<u>ıswanı tur (</u>	den Celegans Toxchip		
Lfd. Nr.	GenID	Name	Zugehörigkeit	Größe [Bp]	induziert durch
1	54	F53C11.3	2,4-dienyl-CoA-Reduktase	749	Clofibrat/ β-NF/ DES
2	46	C44B7.9	ABC Transporter	1158	Clofibrat/ β-NF
3	64	T20B3.1	Acetyltransferase	701	Clofibrat/ Atrazin
4	33	T04C12.4	act-3 - Housekeeping Gen	800	
5	20	F36A4.7	ama-1 Housekeeping Gen	993	
6	47	C47E12.4	Anorgan. Pyrophosphatase	1074	Clofibrat/ β-NF
7	63	T18H9.2	Aspartyl Protease asp-2	1125	Atrazin/ Clofibrat
8	37	Y38A10A.5	Calreticulin crt-1	644	Atrazin/ β-NF
9	4	B0238.13	Carboxylesterase	839	β-NF/ Clofibrat
10	19	F13H6.3	Carboxylesterase	1375	Clofibrat/ β-NF
11	44	C17H12.4	Carboxylesterase	820	Clofibrat/ β-NF
12	61	K10C2.1	Carboxypeptidase	1094	FA/ Atrazin
13	55	F54C9.4	Collagen col-38	700	Atrazin/ Clofibrat/ β-NF
14	39	B0218.8	C-typ Lectin	748	Clofibrat/ Atrazin/ FA/ DES
15	52	F41E6.6	Cystein Protease	961	Clofibrat/ β-NF
16	29	K07E3.8	Cytochrom b5 vem-1	393	Clofibrat/ β-NF
17	25	K01D12.11	Glutathion S-transferase	599	Atrazin
18	38	Y48E1B.10	Glutathion S-transferase gst-20	565	β-NF/ Atrazin/ Clofibrat
19	21	F37B1.1	Glutathion S-transferase gst-24	932	Atrazin
20	32	R03D7.6	Glutathion S-transferase gst-5	454	β-NF/ Atrazin
21	50	F26H9.6	GTP-bindendes Protein rab-5	378	Clofibrat/ β-NF
22	49	F26D10.3	Hitzeschock hsp-1	694	Atrazin/ FA
23	35	T27E4.2	Hitzeschock hsp-16.1	301	Atrazin/ β-NF
24	36	T27E4.3	Hitzeschock hsp-16.48	301	Hitzestress (Thakurta et al., 2002)
25	43	C12C8.1	Hitzeschock Hsp-70	953	Atrazin
26	53	F44E5.4	Hitzeschock Hsp-70	928	Atrazin
27	69	F44E5.5	Hitzeschock Hsp-70	928	Hitzestress (Thakurta et al., 2002) β-NF/ Clofibrat/ FA
28	71 14	VC5 C44H4.3	Ladderprotein	905	
29 30	58	K08B12.1	Leucine Rich Repeat sym-1	1148 448	Clofibrat/ β-NF/ Atrazin
31	66	T21H3.1	Lipase Lipase	501	Clofibrat/ β-NF Atrazin/ DES
32	31	K11G9.6	Metallthionin <i>mtl-1</i>	227	Clofibrat/ β-NF
33	18	F08F3.7	P450 - 14A5	1159	β-NF
34	34	T19B10.1	P450 - 14A5	1090	β-NF
35	5	C01F6.3	P450 - 31A1	380	Clofibrat
36	24	H02I12.8	P450 - 31A2	380	Clofibrat
37	15	C49C8.4	P450 - 31A2	869	β-NF
38	2	B0213.15	P450 - 34A9	809	β-NF
39	7	C03G6.14	P450 - 35A1	1164	β-NF
40	8	C03G6.15	P450 - 35A2	1195	Clofibrat/ β-NF/ FA
41	30	K09D9.2	P450 - 35A3	1193	β-NF
42	16	C49G7.8	P450 - 35A4	1194	β-NF
43	28	K07C6.5	P450 - 35A5	1198	Atrazin
44	27	K07C6.4	P450 - 35B1	1352	Atrazin
45	26	K07C6.3	P450 - 35B2	1212	Atrazin
46	9	C06B3.3	P450 - 35C1	1203	β-NF
47	51	F28G4.1	P450 - 37B1	810	Clofibrat/ β-NF
48	62	T10B10.2	Peptidase	929	Atrazin/ FA
49	41	C02E7.1	P-type ATPase	816	Clofibrat/ β-NF
50	42	C09H5.2	P-type ATPase	842	Clofibrat/ β-NF
51	65	T21C12.2	Pyruvate Dioxygenase hpd-1	644	Clofibrat/ β-NF
52	10	C08F11.8	UDP-Glucoronosyltransferase	730	Clofibrat/ Atrazin
53	11	C10H11.3	UDP-Glucoronosyltransferase	823	β-NF/ Clofibrat
54	12	C23G10.6	UDP-Glucoronosyltransferase	1058	β-NF
55	17	F01D4.2	UDP-Glucoronosyltransferase	825	β-NF
56	1	AC3.7	UDP-Glucuronosyltransferase	899	β-NF/ Atrazin/ Clofibrat
57	13	C29F7.2	unbekannt	891	Clofibrat/ β-NF
58	22	F45D3.3	unbekannt	602	Clofibrat/ β-NF
59	23	F58H1.2	unbekannt	398	Clofibrat/ β-NF
60	70	T16G1.6	unbekannt	962	β-NF/ Atrazin/ FA
61	60	K09F5.2	Vitellogenin vit-1	702	FA
62	45	C42D8.2	Vitellogenin <i>vit-2</i>	798	Östrogen (Custodia et al., 2001)
63	56	F59D8.1	Vitellogenin vit-3	531	FA
64	56	F59D8.2	Vitellogenin vit-4	531	FA
65	56	C04F6.1	Vitellogenin <i>vit-5</i>	531	Östrogen (Custodia et al., 2001)
66	57	K07H8.6	Vitellogenin <i>vit-</i> 6	790	Östrogen (Custodia et al., 2001)
		,			

3.2.2. Qualitätsprüfung der auf den Celegans Toxchip aufgebrachten Gene

Die in Tabelle 10 aufgeführten Gene für den Celegans Toxchip wurden durch Polymerase-Ketten-Reaktion (PCR) und Klonierung hergestellt. Dabei musste jedoch zuerst für jedes ausgewählte Gen ein passendes Primerpaar entworfen werden (2.5.1.3.), welches dann bei der PCR eingesetzt, das entsprechende Genfragment amplifizierte. Für Genfragmente, die sich mit Hilfe der PCR nur schwierig amplifizieren ließen, wurde eine Klonierung (2.5.1.6.) in ein Plasmid vorgenommen, da sie sich dadurch anschließend deutlich leichter in ausreichender Konzentration herstellen ließen.

Mit Hilfe der Gelelektrophorese wurde die Qualität der gereinigten Fragmente im Hinblick auf Verunreinigungen, aber auch auf korrekte Fragmentlänge überprüft. Dazu wurden die Proben auf ein 1%iges Agarose-Gel aufgetragen.

Die folgenden Gelbilder (Abbildung 10 und 11) zeigen alle gereinigten PCR-Fragmente. Dabei ist zu erkennen, dass für jedes PCR-Produkt eine distinkte Bande existiert und es keinerlei Anzeichen für Verunreinigungen oder unerwünschte PCR-Nebenprodukte gibt. Die Banden wurden unter Verwendung einer 500 Bp-Leiter als Marker auf ihre korrekte Größe hin überprüft.

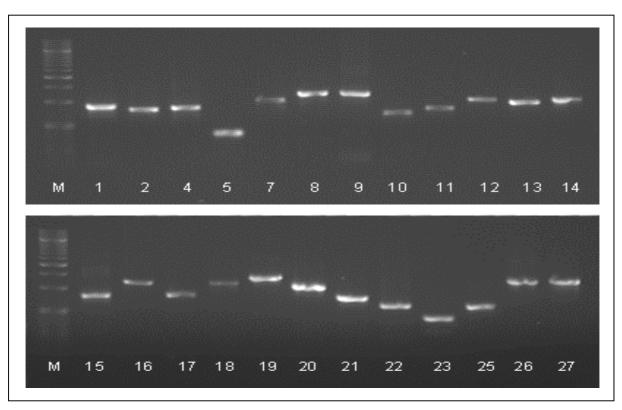


Abb. 13: Gereinigte Genfragmente der Gene 1–27, aufgetragen auf ein 1%iges Agarose-Gel. Die Nummern entsprechen der Genidentität (GenID) aus Tabelle 10, M bezeichnet den Marker.

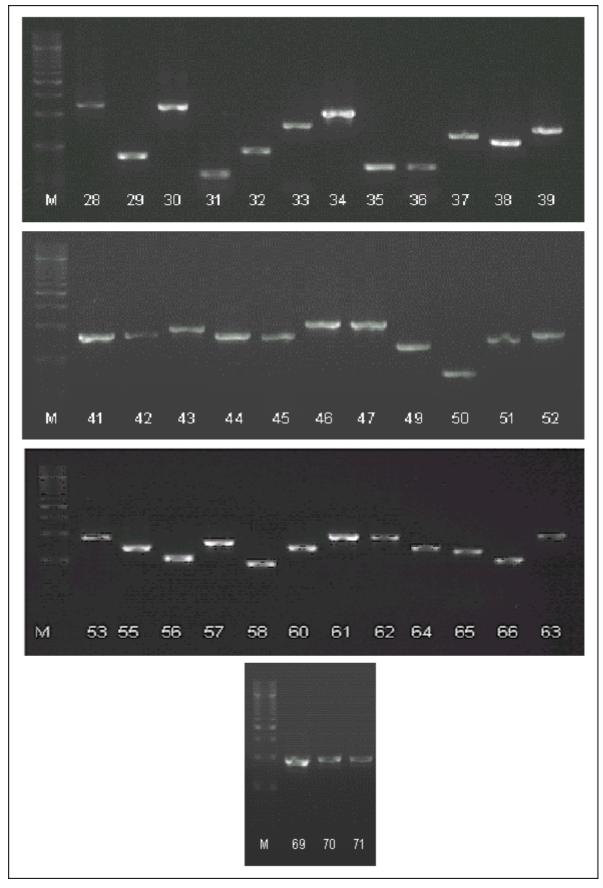


Abb. 14: Gereinigte Genfragmente der Gene 28–71, aufgetragen auf ein 1%iges Agarose-Gel. Die Nummern entsprechen der Genidentität (GenID) aus Tabelle 10, M bezeichnet den Marker.

3.2.3. Überprüfung der Funktionsfähigkeit des Celegans Toxchips

Die Funktionsfähigkeit des Celegans Toxchip wurde durch Verwendung der Xenobiotika β -Naphthoflavon (β -NF), Atrazin, Endosulfan, Fluoranthen, Clofibrat, Diethylstilbestrol (DES) und Tributylzinnchlorid (TBT) überprüft. Alle sieben Xenobiotika wurden in drei unterschiedlichen Konzentrationen eingesetzt, wobei sich die höchste gewählte Konzentration an der errechneten EC10 bezogen auf die Reproduktion orientierte. Für die beiden nächst geringeren Konzentrationen wurden Werte gewählt, die 20 % der jeweils höheren Konzentration entsprachen.

Für jedes Xenobiotikum wurden pro Konzentration mindestens drei unabhängige Kulturen von *C. elegans* sowie Kontrollen ohne Zusatz des Schadstoffs angesetzt. Aus diesen Kulturen wurde die RNA präpariert und für die Hybridisierungsexperimente mit dem Celegans Toxchip eingesetzt.

Von den 66 auf dem Array befindlichen Genen konnten 33 eindeutig durch die eingesetzten Schadstoffe induziert werden.

Im Folgenden sind die mit Hilfe des Scanners aufgenommenen Fotos (siehe Abbildungen 16-22) der Laserdetektion dargestellt. Für jedes Xenobiotikum und jede Konzentration wurde repräsentativ ein Scannerfoto ausgewählt. Eine Aussage über Induktionen kann jedoch anhand der Scannerfotos nicht gemacht werden, da alle Intensitätswerte gemittelt und auf das Housekeeping-Gens act-3 (GenID 33) normalisiert werden müssen. Dieses kann nur mit Hilfe der Computerprogramme erfolgen. Die ausgewerteten und gemittelten Daten der einzelnen Xenobiotika wurden schließlich zur besseren Übersicht nach überexpremierten und repremierten Genen selektiert und zusammengefasst (siehe Tabellen 11-17), rot markierte Bereiche in den Tabellen zeigen dabei eine Überexpression, grüne Bereiche eine Repression der entsprechenden Gene an. Mit Stern markierte Daten zeigen Werte, die durch die Berechnung der Mittelwerte scheinbar induziert sind. Dieses wurde jedoch durch extrem abweichende Einzelwerte bedingt und ist nicht relevant für die Einschätzung des Gens als induziert. Nicht aufgeführte Gene wurden durch Schadstoffzugabe nicht beeinflusst. Die Daten aller untersuchten Gene finden sich nach Xenobiotika sortiert als Rohdaten im Anhang.

Abbildung 15 zeigt am Beispiel des Xenobiotikums Endosulfan in der Konzentration von 0,06 mg/ I im Kulturmedium die Zuordnung der Gene zu den Spots der Scannerfotos. Die Bezeichnung der Gene und die Zuordnung zu den Genidentitäten (GenID) lassen sich Tabelle 10 entnehmen.

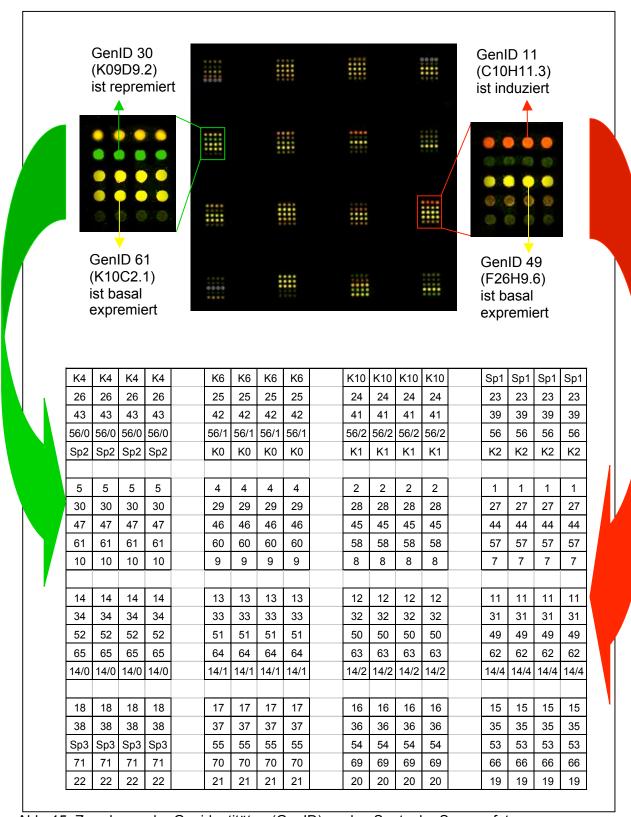


Abb. 15: Zuordnung der Genidentitäten (GenID) zu den Spots der Scannerfotos

3.2.3.1. β-Naphtoflavon

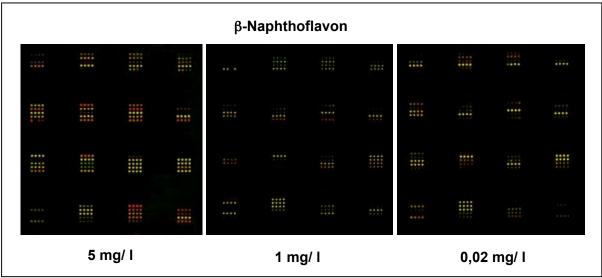


Abb. 16: Scannerfotos der Experimente mit dem Celegans Toxchip für β-Naphthoflavon

Die Hybridisierungsexperimente mit dem Celegans Toxchip für das Xenobiotikum β-Naphthoflavon konnten eine Induktion von 18 Genen für die höchste verwendete Konzentration von 5 mg/ I im Medium zeigen (siehe Tabelle 11 und Abbildung 16). Fast alle der induzierten Gene gehören zu Genfamilien die bekannt dafür sind, dass sie im Biotransformationssystem bei der Umsetzung von Schadstoffen und Xenobiotika beteiligt sind. So finden sich unter anderem sieben Cytochrom Gene, die für Enzyme der Phase I des Biotransformationssystem kodieren. Im Einzelnen sind dieses das Cytochrom b5 Gen *vem-1* und die CYP Gene 35A1, 35A2, 35A3, 35A4, 35B2 und 35C1.

Für Phase II des Biotransformationsystems konnten u.a. die beiden Gene B0238.13 und F13H6.3, kodierend für Carboxylesterasen, das Gen *gst-5*, kodierend für eine Glutathion-S-Transferase (GST), sowie die beiden Gene C08F11.8 und C10H11.3, kodierend für UDP-Glucoronosyltransferasen (UDPGT), überexpremiert werden. Weiterhin wurden die drei Gene T27E4.2, T27E4.3 und F44E5.5 induziert, die für Hitzeschock Proteine kodieren. Das Gen *mtl-1*, kodierend für ein Metallothionin, das Gen *vit-3* (welches auch für *vit-4* und *vit-5* steht), kodierend für ein Vitellogenin, sowie das Gen C29F7.2, dessen Funktion im Stoffwechsel noch unbekannt ist, konnten ebenfalls durch β-Naphthoflavon induziert werden.

Tab. 11: Zusammenfassung der durch β-Naphthoflavon induzierten Gene des Celegans Toxchips

	β-Naphthoflavon						
Gen	Zugehörigkeit	5 mg/ l	1 mg/ l	0,2 mg/ l			
B0238.13	Carboxylesterase	19,77 ± 3,24	0,51 ± 0,11	0,29 ± 0,06*			
F13H6.3	Carboxylesterase	10,38 ± 1,41	$0,53 \pm 0,06$	1,26 ± 0,41			
K07E3.8	Cytochrom b5 vem-1	6,60 ± 1,03	$0,51 \pm 0,09$	0.34 ± 0.06 *			
R03D7.6	GST gst-5	4,63 ± 0,61	$0,55 \pm 0,08$	0.33 ± 0.07 *			
T27E4.2	Hitzeschock hsp-16.11	$4,09 \pm 0,43$	0,52 ± 0,10	0,14 ± 0,03			
T27E4.3	Hitzeschock hsp-16.48	$4,98 \pm 0,31$	0.93 ± 0.11	0.89 ± 0.47			
F44E5.5	Hitzeschock Hsp70	$3,99 \pm 0,30$	$0,45 \pm 0,06$	$0,20 \pm 0,02$			
K11G9.6	Metallothionin <i>mtl-1</i>	4,20 ± 0,96	0,64 ± 0,06	$0,50 \pm 0,13$			
C03G6.14	P450 35A1	42,81 ± 9,52	$0,79 \pm 0,18$	2,06 ± 0,81			
C03G6.15	P450 35A2	103,42 ± 26,45	1,78 ± 0,60	$2,42 \pm 0,88$			
K09D9.2	P450 35A3	111,08 ± 38,00	0.34 ± 0.07	2,48 ± 1,01			
C49G7.8	P450 35A4	$84,86 \pm 30,16$	2,44 ± 1,05	0,29 ± 0,11*			
K07C6.3	P450 35B2	12,30 ± 2,73	$0,69 \pm 0,08$	0.73 ± 0.38			
C06B3.3	P450 35C1	129,25 ± 37,56	1,17 ± 0,27	5,01 ± 2,02*			
C08F11.8	UDPGT	$23,75 \pm 4,43$	$0,50 \pm 0,10$	2,25 ± 0,91			
C10H11.3	UDPGT	$4,86 \pm 0,44$	0.80 ± 0.03	0,36 ± 0,01*			
C29F7.2	unbekannt	8,27 ± 1,40	0.88 ± 0.15	0.82 ± 0.14			
F59D8.1	Vitellogenin vit-3 (= vit-4 = vit-5)	$4,73 \pm 0,69$	1,49 ± 0,21	4,56 ± 0,89*			

3.2.2. Atrazin

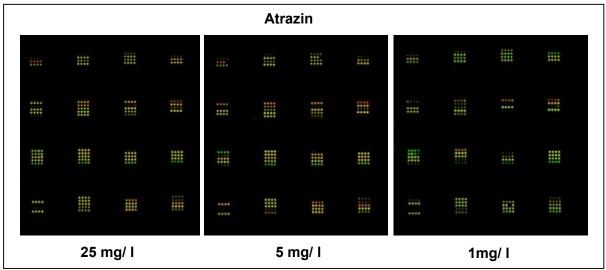


Abb. 17: Scannerfotos der Experimente mit dem Celegans Toxchip für Atrazin

Durch das Herbizid Atrazin wurden insgesamt fünf Gene in den Hybridisierungsexperimenten mit dem Celegans Toxchip induziert. Vier dieser Gene wurden dabei repremiert und ein Gen überexpremiert (Tabelle 12 und Abbildung 17). Zu den repremierten Genen gehören die beiden P450 Gene 35A5 und 35A3, die in allen drei untersuchten Konzentrationen repremiert waren, sowie das Gen C23G10.6, kodierend für die UDP-Glucoronosyltransferasen und das Gen F58H1.2, dessen Funktion im Stoffwechsel unbekannt ist. Diese beiden Gene konnten nicht durch die höchste verwendete Konzentration, jedoch durch die beiden niedrigeren repremiert werden. Das Gen Y48E1B.10, kodierend für Glutathion-S-Transferasen wurde durch Atrazin in den beiden höchsten Konzentrationen überexpremiert.

Tab. 12: Zusammenfassung der durch Atrazin induzierten Gene des Celegans Toxchips

	Atrazin						
Gen	Zugehörigkeit	25 mg/ l	5 mg/ l	1 mg/ l			
C23G10.6	UDPGT	0,45 ± 0,07	$0,20 \pm 0,02$	$0,26 \pm 0,07$			
F58H1.2	unbekannt	0,57 ± 0,12	0.30 ± 0.07	$0,19 \pm 0,02$			
K07C6.5	P450 35A5	0.35 ± 0.03	$0,20 \pm 0,03$	$0,13 \pm 0,02$			
K09D9.2	P450 35A3	$0,13 \pm 0,02$	0,15 ± 0,02	0,14 ± 0,08			
Y48E1B.10	GST	3,50 ± 1,66	$2,63 \pm 0,30$	1,47 ± 0,12			

3.2.3. Endosulfan

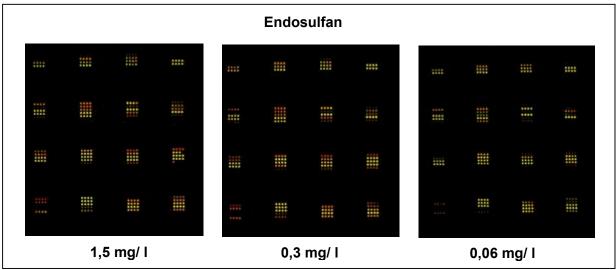


Abb. 18: Scannerfotos der Experimente mit dem Celegans Toxchip für Endosulfan

Durch Endosulfan wurden in den Celegans Toxchip Experimenten fünf Gene induziert, die alle für Enzyme kodieren, die am Biotransformationssystem beteiligt sind (Tabelle 13 und Abbildung 18). Dabei finden sich mit 14A5 und 34A9 zwei P450 Gene, mit C23G10.6 und C10H11.3 zwei Gene die für UDP-Glucoronosyltranserasen (UDPGT) kodieren und das Gen B0238.13, welches für Carboxylesterasen kodiert. Jedes der induzierten Gene wurde durch die beiden höchsten verwendeten Xenobiotikakonzentrationen überexpremiert, das P450 Gen 34A9 sogar in allen drei eingesetzten Konzentrationen.

Tab. 13: Zusammenfassung der durch Endosulfan induzierten Gene des Celegans Toxchips

	Endosulfan						
Gen	Zugehörigkeit	1,5 mg/ l	0,3 mg/ l	0,06 mg/ l			
B0238.13	Carboxylesterase	$7,00 \pm 1,59$	5,37 ± 1,30	0.84 ± 0.02			
F08F3.7	P450 14A5	12,84 ± 2,79	$6,82 \pm 0,69$	$1,53 \pm 0,38$			
B0213.15	P450 34A9	7,54 ± 1,84	9,29 ± 1,67	3,51 ± 0,29			
C23G10.6	UDPGT	$2,43 \pm 0,32$	2,11 ± 0,25	$0,80 \pm 0,10$			
C10H11.3	UDPGT	$17,49 \pm 6,69$	$7,89 \pm 2,06$	$2,17 \pm 0,61$			

3.2.4. Fluoranthen

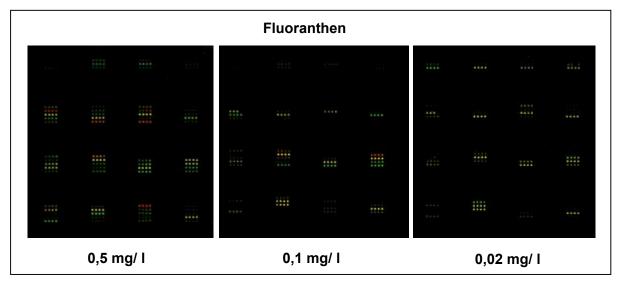


Abb. 19: Scannerfotos der Experimente mit dem Celegans Toxchip für Fluoranthen

Die Untersuchung der Auswirkungen von Fluoranthen auf die Genexpression von *C. elegans* mit Hilfe des Celegans Toxchips wurden durch Nadine Saul im Rahmen ihrer Diplomarbeit durchgeführt. Die hier dargestellten Ergebnisse repräsentieren Teile ihrer Arbeit.

Bei einer Fluoranthen-Konzentration von 0,5 mg/ I wurden in den Celegans Toxchip Experimenten insgesamt 10 Gene induziert, davon fünf überexpremiert und fünf repremiert (Tabelle 14 und Abbildung 19). Zu den überexpremierten Genen gehören das für Collagen kodierende Gen *col-38*, das Metallothionin *mtl-1* sowie die beiden P450 Gene 35C1 und 37B1 und das Gen C29F7.2. Zu den repremierten Genen gehören das *sym-1* Gen, das P450 Gen 35A3, das Gen C23G10.6, welches für eine UDP-Glucoronosyltransferase kodiert, das Vitellogenin Gen *vit-3* (= *vit4* und *vit-5*) und das Gen F58H1.2, dessen Funktion im Stoffwechsel noch unbekannt ist.

Tab. 14: Zusammenfassung der durch Fluoranthen induzierten Gene des Celegans Toxchips

	Fluoranthen						
Gen	Zugehörigkeit	0,5 mg/ l	0,1 mg/ l	0,02 mg/ l			
F54C9.4	Collagen col-38	2,45 ± 0,12	1,15 ± 0,07	1,12 ± 0,06			
K11G9.6	Metallothionin <i>mtl-1</i>	$3,58 \pm 0,38$	0.80 ± 0.10	0,86 ± 0,11			
C06B3.3	P450 35C1	$5,48 \pm 0,71$	0.85 ± 0.08	0.90 ± 0.09			
F28G4.1	P450 37B1	$2,39 \pm 0,24$	$0,64 \pm 0,05$	0.74 ± 0.07			
C29F7.2	unbekannt	$5,00 \pm 0,27$	1,65 ± 0,11	0.97 ± 0.10			
C44H4.3	Leucin Rich Repeat sym-1	$0,18 \pm 0,01$	$1,25 \pm 0,30$	$0,59 \pm 0,05$			
K09D9.2	P450 35A3	0.24 ± 0.02	$0,17 \pm 0,02$	0.08 ± 0.00			
C23G10.6	UDPGT	0.30 ± 0.01	$0,26 \pm 0,03$	0,25 ± 0,01			
F58H1.2	unbekannt	0.28 ± 0.03	$0,52 \pm 0,02$	0.25 ± 0.09 *			
F59D8.1	Vitellogenin vit-3 (= vit-4 = vit-5)	$0,22 \pm 0,01$	0.34 ± 0.06 *	0.53 ± 0.06			

3.2.5. Clofibrat

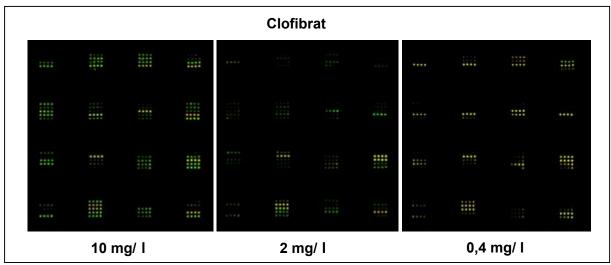


Abb. 20: Scannerfotos der Experimente mit dem Celegans Toxchip für Clofibrat

Durch eine Clofibrat Konzentration von 10 mg/ I wurden in den Celegans Toxchip Hybridisierungsexperimenten fünf Gene repremiert (Tabelle 15 und Abbildung 20). Für drei der Gene, nämlich die P450 Gene 35A3 und 35A5, sowie das Gen F58H1.2, zeigte sich eine Repression auch bei einer Clofibratkonzentration von 2 mg/ I und für 35A3 und 35A5 zusätzlich noch bei einer Konzentration von 0,4 mg/ I.

Tab. 15: Zusammenfassung der durch Clofibrat induzierten Gene des Celegans Toxchips

	Clofibrat							
Gen	Zugehörigkeit	10 mg/ l	2 mg/ l	0,4 mg/ l				
C17H12.4	Carboxylesterase	$0,20 \pm 0,04$	0.38 ± 0.04	$1,02 \pm 0,05$				
R03D7.6	GST gst-5	$0,19 \pm 0,04$	$0,63 \pm 0,06$	1,49 ± 0,26				
C03G6.14	P450 35A1	0.30 ± 0.03	0.37 ± 0.07	0,59 ± 0,14				
K09D9.2	P450 35A3	0,21 ± 0,02	$0,24 \pm 0,03$	0,26 ± 0,02				
K07C6.5	P450 35A5	$0,15 \pm 0,03$	$0,23 \pm 0,03$	0,22 ± 0,01				
F58H1.2	unbekannt	$0,23 \pm 0,05$	$0,19 \pm 0,03$	0,71 ± 0,05				

3.2.6. Diethylstilbestrol (DES)

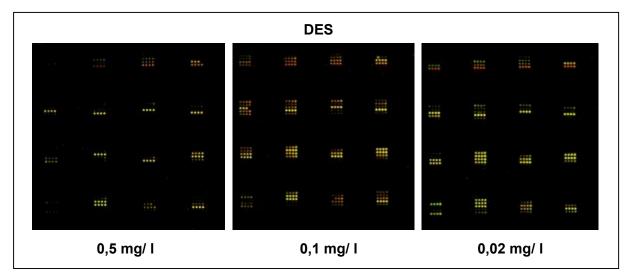


Abb. 21: Scannerfotos der Hybridisierungsexperimente mit dem Celegans Toxchip für DES

In den Celegans Toxchip Hybridisierungsexperimenten konnte für das Gen C29F7.2 sowie für das Vitellogenin Gen *vit-6* eine deutliche Induktion durch alle eingesetzten DES Konzentrationen gezeigt werden (Tabelle 16 und Abbildung 21).

Tab. 16: Zusammenfassung der durch DES induzierten Gene des Celegans Toxchips

DES						
Gen	Zugehörigkeit	0,5 mg/ l	0,1 mg/ I	0,02 mg/ l		
C29F7.2	unbekannt	$3,81 \pm 0,59$	$2,75 \pm 0,22$	$4,25 \pm 0,65$		
K07H8.6	Vitellogenin vit-6	$2,92 \pm 0,27$	$3,62 \pm 0,69$	$5,89 \pm 1,68$		

3.2.7. Tributylzinnchlorid (TBT)

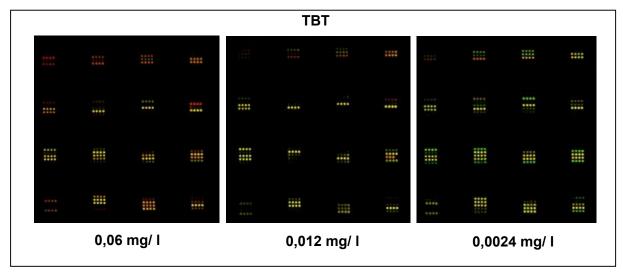


Abb. 22: Scannerfotos der Hybridisierungsexperimente mit dem Celegans Toxchip für TBT

Durch Tributylzinnchlorid konnten in den Celegans Toxchip Experimenten drei Gene induziert werden (Tabelle 17 und Abbildung 26). Das P450 Gen 35B2 wurde dabei durch alle drei eingesetzten Konzentrationen induziert, das P450 Gen 35B1 durch die beiden höchsten sowie das Vitellogenin Gen *vit-2* durch die höchste verwendete TBT Konzentration.

Tab. 17: Zusammenfassung der durch TBT induzierten Gene des Celegans Toxchips

TBT						
Gen	Zugehörigkeit	0,06 mg/ l	0,012 mg/ l	0,0024 mg/ l		
K07C6.3	P450 35B2	12,93 ± 3,22	17,60 ± 4,51	24,57 ± 3,26		
K07C6.4	P450 35B1	10,08 ± 2,88	$2,63 \pm 0,08$	1,73 ± 0,18		
C42D8.2	Vitellogenin vit-2	$2,67 \pm 0,23$	1,19 ± 0,11	1,79 ± 0,15		