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Abstract

We focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development
for application in Finite Volume Large Eddy Simulation (LES) codes. Our concept is based on the integral
conservation laws for mass, momentum and energy of a flow field. We model the space-time structure of the
flux correction terms to create a discrete formulation. Advanced methods of time series analysis for the data-
based construction of stochastic models with inherently non-stationary statistical properties and concepts
of information theory based on a modified Akaike information criterion and on the Bayesian information
criterion for the model discrimination are used to construct surrogate models for the non-resolved flux
fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling
approach. The reconstruction capabilities of the modelling ansatz are tested against fully 3D turbulent channel
flow data computed by direct numerical simulation and, in addition, against a turbulent Taylor-Green vortex
flow showing a transition from laminar to a turbulent flow state. The modelling approach for the LES closure
is different in both test cases. In the channel flow we consider an implicit LES ansatz. In the Taylor-Green
vortex flow, it follows an explicit closure approach. We present here the outcome of our reconstruction tests
and show specific results of the non-trivial time series data analysis. Started with a generally stochastic ansatz
we found, surprisingly, that the deterministic model part already yields small residuals and is, therefore, good
enough to fit the flux correction terms well. In the Taylor-Green vortex flow, we found additionally time-
dependent features confirming that our modelling approach is capable of detecting changes in the temporal
structure of the flow. The results encourage us to launch a more ambitious attempt at dynamic LES closure
along these lines.
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1 Introduction

The integral conservation laws for mass, momentum and
energy of a flow field are universally valid for arbitrary
control volumes. These laws describe the time evolution
of the integral values of the conserved quantities per
control volume as a function of the associated fluxes
across its bounding surfaces written as

fug,dx—i-gg F(u)ds =0,
0 00

with Q and dQ as the control volume and its surface,
respectively, u as the conserved quantity, F as its normal
flux across dQ, and the subscript d¢ denotes the time

(1.1)
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derivate. The exact evolution in time for the mean value
of u, denoted by i, is given by

1
i = —— O F(u)ds.
"o |Q|5§Q (w)ds

Thus, if the associated fluxes across its bounding sur-
faces are determined exactly, the equations capture the
underlying physics of conservation correctly and guar-
antee an accurate prediction of the temporal evolution
of the integral mean values. That is, in contrast to Finite
Difference, Finite Element or spectral methods, a Finite
Volume approach does not introduce any discretization
erTor per se.

(1.2)

In the discrete view, the discretization basis for the
Finite Volume approach generally reads

1
iy + —56 H@ut,a)ds =0, (1.3)
10l Jao
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with a numerical flux function H(ai*, i~), where the ar-
guments i and - result from a suitable spatial recon-
struction of the mean values, u again as the conserved
quantity and superscripts * and ~ as the specific cell face
side. Thus, a discretization error is introduced into the
evolution of u if H(u", ™) # F(u).

In terms of a coarse scale simulation method, a natu-
ral scale separation can be written as

u=u+u, (1.4)

with & (1) as quantity at the coarse scale (subgrid/small
scale). In the same spirit, an induced flux separation can
be written as

F(u) := H@i", ") + AF, (1.5)

with H(a*,u™) as the coarse flux, superscripts * and ~

denote the specific cell face side, and AF as the flux
correction term. Thus, it requires the reconstruction of
the flux correction terms, i.e. of the subgrid fluxes, to
get the exact evolution of the mean values.

Since the pioneering results by A.N. Kolmogorov,
KoLMoGoRrov (1941), KoLMoGOROV (1962), that small
eddies in high Reynolds number turbulent flows are uni-
versal, cf. also OBoukHOV (1962), LESIEUR (1987), sci-
entists are encouraged to model the SGS stress ten-
sor, which links the resolved eddies on the large scales
(larger than a specific filter width) and the unresolved
eddies on the small scales (smaller than that filter width),
see, €.2. SAGAUT (2006), and a number of models,
usually classified as eddy viscosity models and syn-
thetic field models were developed in the past. The for-
mer, e.g., the prominent Smagorinsky model approach,
SMAGORINSKY (1963), are constrained by the fact that
they are typically only poorly correlated with the real
physics of the subgrid scale flow. Moreover, they are not
able to represent the energy backscatter process which
can be of relevance in applications, especially in meteo-
rological flows. We refer to the paper e.g. by ROGALLO
and MoiIN (1984) for a thorough review of the require-
ments for the numerical simulations of turbulent flows.
Stochastic forcing approaches were developed to han-
dle the backscatter problem, e.g., LEITH (1990), SCHU-
MANN (1995). Synthetic field models consider the real
physics of the small scale eddies and, therefore, might
be more promising. There are a number of different syn-
thetic field modelling approaches, for example similar-
ity models, e.g., Liu etal. (1994), stretched vortex mod-
els, e.g., MisrRAa and PULLIN (1997), phase estimation
models, e.g., DoMARADZKI and SAIKI (1997), and fractal
models, e.g., ScoTTI and MENEVEAU (1999). A dynamic
procedure in LES based on a Finite Volume integral has
been recently introduced in DENARO and DE STEFANO
(2011), and a novel approach in LES modelling of tur-
bulent channel flow is the so-called LES with stochastic
subgrid acceleration models (LES-SSAM), ZAMANSKY
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etal. (2013), recently introduced by SABEL’NIKOV et al.
(2011). Despite the progress that has been made, deter-
mining a suitable subgrid scale model remains a chal-
lenging and intriguing task.

In this paper, we introduce a new promising method-
ology for data-based model extraction to LES-modelling
in preparation of a novel LES closure approach. The
method is based on a mixed deterministic-stochastic
modelling ansatz based on the integral conservation
laws. We demonstrate that this technique yields mean-
ingful results for well-established turbulence modelling
reference flows, that is, firstly, a turbulent channel flow
and, secondly, a Taylor-Green vortex (TGV) flow.

With respect to (1.5), we directly aim at flux correc-
tion terms, AF, to correct for the influence of the non-
resolved small scale information and model the temporal
structure of the fluxes to create a discrete formulation.
The approach is similar in spirit to earlier propositions,
e.g., Scorti and MENEVEAU (1999), but differs in terms
of both the stochastic modelling ansatz and of the un-
derlying combined Discontinuous Galerkin-Finite Vol-
ume approximation framework, e.g., GASSNER and BECK
(2013).

Moreover, our approach particularly allows for the
analysis of non-stationary and non-homogeneous data.
In contrast, stationary and homogeneous statistics, e.g.
first order (mean) and second order (variance) statistics,
often used in data analysis representations, do imply
constraints and could lead to biased results, as those
moments typically do not represent the characteristics
of inhomogeneous/non-stationary data.

We realize non-stationary statistical properties of
these models by allowing for time dependent switches
between different fluctuation regimes, also called and
hereafter referred to as local models, which are repre-
sented by different, but fixed, sets of model parameters.
Vector-valued Auto-Regressive models with eXternal
influences (VARX-models) form the basis for this ap-
proach. In constructing the VARX surrogate model us-
ing information criteria, our method corroborates the
central assumption of most LES schemes that local clo-
sures can safely rely on next-neighbor stencil informa-
tion only, that is the LES grid averaged conserved quan-
tities in the immediate vicinity of a given LES grid cell
interface are incorporated as external influences. In this
fashion our model ansatz incorporates the information
available from a typical numerical discretization sten-
cil as would be used, e.g., in formulating a classical
Smagorinsky closure.

The outline of the paper is as follows. In the next sec-
tion we describe the deterministic-stochastic data-based
modelling approach and the time series analysis frame-
work. The data generation and pre-processing procedure
for both test cases is part of Section 3. Results of the re-
construction tests are shown in Section 4 and are dis-
cussed in Section 5. The paper then ends with some
concluding remarks and an outlook onto future work
(Section 6).
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2 Modelling approach

Our approach, (cf. Horenko (2010a)), makes use of ad-
vanced methods of time series analysis based on the
family of VARX-models and used for the data-based
construction of stochastic models with inherently non-
stationary statistical properties. More precisely, the ap-
proach makes use of Finite-Element Method (FEM)-
based time series analysis with bounded variation (BV)
of model parameters, and it allows for the simultane-
ous dimension reduction and identification of dynamical
models with external factors.

The VARX model in its general form is a simple yet
sufficiently complex model widely used to investigate
dynamical multivariate time series, cf. KroLziG (2000).
It arises from the assumption that the dynamics of a
time series P = (py), pr € R*, ¢t = 0,...,T under
consideration is governed by a VARX function which
additionally depends on external factors U = (u;), u; €
R, +=0,...,T.Please note, that the subscript ¢ denotes
the time and not the time derivative.

Formally, the non-stationary non-linear VARX-model
reads

pr = pO+ADOG1(Pr-15 - - - Pr-m) TBOP2 () +&1, (2.1)

(t = m,...,T), and the most simple and straightfor-
ward form of the VARX-model is the linear autoregres-
sive factor model with ¢, then as the identity operator
(¢1(-) = Id(+)) (cf. BROCKWELL and Davis (2002))

P =D+ ) AfOpig + BOGa() + 8. (2.2)
q=1

In (2.1) and (2.2), & is a multivariate random variable
with zero expectation, E [¢,] = 0, allowing for the mod-
elling of noise, (u, A, B)(7) are time-dependent parame-
ters consistently sized with respect to the dimension of
the time series (p;), and ¢;(-) and ¢,(-) are (non-)linear
model ansatz functions. m denotes the memory-depth al-
lowing for consideration of the time series’ history.

Note, that the models are called stochastic because
the general model ansatz includes the above mentioned
stochastic noise term, &;, to model the statistics of the
residuals left when only considering the deterministic
part of the scheme. &; can be also interpreted as model-
data-discrepancy.

2.1 Specific FEM-BV-VX approach

As already mentioned, our specific modelling ansatz fo-
cuses on unresolved subgrid scale flux correction terms,
and we will use it to construct surrogate models for the
non-resolved flux fluctuations from specific time series.
Following (2.1), the VARX model, variable in time, f,
and space, X, now reads

AFexact = u(t, )?) + A1, )?)le(AFt—‘r, e AF )t
B(t, X)po(us ) + &5 (2.3)
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with AFexact as the exact flux corrections to be modelled
and AF as numerical flux corrections. (u, A, B) (¢, ¥) and
@1, ¢ are, again, the model parameters and the model
ansatz functions, and u, y and ¢, ; represents the external
influences and the random variable.

It is one key result of our work that, in the context
of our approach, it turned out after application of infor-
mation criteria described in the following that the gen-
eral model in (2.3) simplifies considerably. An exten-
sive study based on the mAIC-metric (described below)
shows that the optimal model for the two test cases is
the VX-approach instead of the VARX-ansatz. That is,
our modelling approach under consideration does not in-
clude auto-regressive terms as anticipated above.

Moreover, we surprisingly found that the residuals
left when only the deterministic part is considered are
very small so that there is no need to evaluate the term &,
in our ansatz. Regarding the modelling approach for the
flux correction per cell j, j as cell index, the employed
(customized) VX-model, i.e. without auto-regression,
then reads

AFea (1], 170, BY(1)) 1= 1/ () + BI (D)) (2.4)

where AFgieq now represents the RHS of (2.3). Here,
the function ¢(-)(= ¢,(-)) allows for linear or nonlinear
influences of the surrounding cell average on the flux
corrections. Note, that also the stochastic term g; is
dropped, now, as we are not interpreting it statistically.

Generally, choosing ¢(u) = u, u € R, results in an
affine linear VX-model taking only first order correla-
tions of the data into account. To incorporate second or-
der correlations, we consider

¢(1/£) = (Ml,"' s Uk, ULUL, U1UD, . . .,
k(k+1)

Uty Uplt3, - . ., ugy) € RKFT2 . (2.5)

The aim of our modelling ansatz is to find the optimal
parameters that describe the best-fit model which then
represents the time series of the exact flux correction
term. With the model parameters and the external influ-
ences given, our approach allows for the construction of
local models, each being represented by a particular set
of (fixed) model parameters and, also, for time depen-
dent switches between those local models to (best-)fit
the exact flux correction time series.

In that fashion, the model parameters, (u, B) (¢, ¥), are
represented by K local models of k (local) parameters
{0; =(O,..., ®k)l~}ll.§l, and the time dependent switches
between the local models are represented by model af-
filiation functions y;(t, %), also called time-dependent
weights.

In the line of the FEM-BV-approach, the average
cluster functional (an effective error measure) associated
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with (2.4) reads

LK, C) =
N K T . R ]
VO||AFL e ® = [AFseeatet] 1], B
=0

(2.6)

j=1i=1 1

with y{ (t) subject to the constraints (j = 1,...,N, i =
L,....,K, t=0,...,T)

T-1
i, =+ n-vose. @
=0
K
IRACESS 2.8)
i=1

yl(t) 2 0, (2.9)
C as persistence threshold and (2.7) denotes the persis-
tency condition in the time-discrete BV-sense. Note, that
the term L(K, C) in (2.6) denotes the likelihood and rep-
resents the model distance function expressed by a linear
combination of local model distance functions.

With this, the aim of the modelling approach now is
to find the optimal parameters and the optimal affilia-
tion functions, (®*,vy*), i.e. the optimal number of local
models K and the optimal persistence threshold C. With
a given set of parameters (k, K, C), we have, therefore,
to minimize

L(K, C), ; —» min (2.10)
' e

in determining the optimal parameters.

The model affiliation functions y;(z, ¥) are defined as
in (2.7) and are represented by the FEM-B V-method, i.e.
they are approximated in time by a linear combination of
functions, following the ansatz

N
Yit) = ) Qina(0),

n=1

2.11)

with ¢,(7) as Finite Element (piecewise constant) ansatz
functions, and regularized by (2.7-2.9). With this, we
are able to estimate the parameters of the local models
and the switching processes by the FE method.

The balance between the requirements of high rep-
resentation quality and low number of free parameters
(K, C) (Occam’s razor) is achieved by involving criteria
from information theory. In case of the channel flow, our
approach makes use of the so-called modified Akaike
Information Criterion (mAIC), METZNER et al. (2012),
to find the optimal model. The AIC has been originally
developed by AKAIKE (1974). Besides from other advan-
tages, the mAIC specifically allows for the simultaneous
identification of the optimal parameters, and the optimal
model is then related to that model which minimizes the
mAIC.
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The mAIC reads

mAICK, C) = 2In(L(K, C)) + 2IM(K, C)|, (2.12)
with |[M(K,C)| as the total number of the model’s
free parameter. For example, if K = 1 (stationar-
ity), IM(K,C)| = |9|. If K > 1 (non-stationarity),
IM(K,C)| = # local models x (# local parameters +
# basis functions of the FE) (K x (|0] + C)).

In addition to the mAIC, we also make use of
a second established information criterion that is the
Bayesian information criterion (BIC) to select a proper
model for the modelling ansatz. The BIC is generally
robust (MCQUARRIE and TsaI (1998)) and has been suc-
cessfully applied in a number of studies, e.g. MAIDA
etal. (2006), FRANZKE et al. (2007). For a local model i,
its general form reads (cf. HOReENkO (2010b))

T
BIC(i) = —21log(L;) + N;log [Z y,-(t)], (2.13)
=0

with N; as the number of model parameters in the local
model state i. Similar to the mAIC, the model with the
lowest value of BIC is the optimal model. Note, that both
information criteria are applied in evaluating the optimal
parameters in our test cases. We refer the reader also
to e.g. BURNAHM and ANDERSON (2002) for a detailed
description of AIC and BIC.

The algorithmic framework described here is ex-
tensively discussed in HORenko (2010b) and MET-
zZNER etal. (2012). It is worth mentioning that this
stochastic model approach has been successfully ap-
plied in the field of Meteorology and Climatology,
too, e.g. FRANZKE etal. (2009), Horenko (2010b),
BLUME etal. (2012), O’KANE etal. (2012), O’KANE
etal. (2013a), and O’KANE etal. (2013b).

3 Test cases: Data generation and
model parameters

The reconstruction capabilities of our modelling ap-
proach are tested against two turbulent flows, namely,
first, the 3D turbulent channel flow data computed by
DNS for an incompressible, isothermal fluid at Reynolds
number Re: = 590. Secondly, we test against the 3D
non-stationary Taylor-Green vortex (TGV) flow data at
Re = 1600. At this Reynolds number, the TGV flow
results in a transition from laminar to fully turbulent
flow and, therefore, is a well suited test case for a non-
stationary flow phenomena. In the TGV flow test case,
the flux correction terms are created during the DNS
simulation as the difference between the fully resolved
fluxes and their representation by an associated Finite
Volume approximation. The flux correction terms are
then approximated by different types of viscosity. There-
fore, this approach can be considered as an explicit LES
closure approach. In the turbulent channel flow test case,
the approach makes use of a combination of numerical
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flux functions of different order which are used for mod-
elling the exact flux correction term. It, therefore, is an
implicit ansatz which deals with the specific discretiza-
tion.

In context with Section 2.1, in the turbulent chan-
nel flow test case, we find that it is sufficient to fit the
cells’ time series of exact LES corrections AF éxm(t) by
means of an affine linear function that depends only on
the cells’ available LES observables u/(). With respect
to (2.4), the term B¢(u) then comprises the above men-
tioned flux correction terms derived from classical Fi-
nite Volume numerical flux functions of different order,
specifically 1st-, 2nd-, and 3rd-order (WENO-scheme),

Bo(u) =
(blAFlst + by AF?™ 4 py AFWENO bﬁnAth) (),
3.1

(here the cell index, j, is dropped) with a next-neighbour
stencil for AF'™(y), and the term (u) incorporates
coarse-grid stencil data as described in the next section.
Thus, the resulting best-fit model takes the form of a
stencil-based LES-closure that determines the flux cor-
rections in the turbulent flow regime just from the cell-
averages in a finite number of grid cells surrounding the
considered grid cell interface.

For the Taylor-Green vortex test case, the term B¢ (i)
incorporates the different dissipation fluxes, d*, com-
puted from the classical Smagorinsky eddy viscosity and
the dissipation matrices of commonly used Finite Vol-
ume flux functions. Following the ansatz for the turbu-
lent channel flow, (3.1), the mean velocities of the next-
neighbour stencil data are also included as an external
factor V, leading to

Bo(u) = (byd" + byd” + b3d® +b4V) ()  (3.2)
as the modelling ansatz for the Taylor-Green vortex flow
test.

3.1 Turbulent channel flow: Data generation

The turbulent channel flow data we use here for our
test bed were previously computed by M. UHLMANN,
cf. UHLMANN (2000b). A detailed description of data
production is out of the scope of this paper but is given
in UHLMANN (2000a). Hence, we give a summary here
only and refer the reader to the references.

The data are generated by 3D direct numerical sim-
ulation (DNS) of an incompressible, isothermal plane
channel flow. A pseudo-spectral Fourier-Chebyshev
method similar to JIMENEZ and MoIN (1991), Kim et al.
(1987) and MoskRr et al. (1999) with Chebyshev-tau for-
mulation in wall-normal direction and Fourier repre-
sentation in the other directions is used. A third order
Runge-Kutta based approach is used for time discretiza-
tion of the non-linear convective terms and an implicit
Euler approach is used for the viscous terms. The bound-
ary condition at the side walls in y-direction, normal to
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Figure 1: Sketch of the channel flow geometry. The in- and outflow
is in x-direction, and rigid wall boundaries are defined in y-direction,
and periodic boundaries are defined in x- and z-direction. The scaling
parameter A is setto h = 1.

the main flow in x-direction, are rigid wall no-slip con-
ditions, and periodic boundaries are defined along the
other two (x, z)-axes. Fig. 1 illustrates the channel geom-
etry and its boundary conditions. Details of the numeri-
cal approach are given in KLEIN and UHLMANN (2000)
and UHLMANN (2000c).

The corresponding parameters chosen in the simu-
lation run for computing the turbulent channel flow are
given in Table 1. For the purpose of generality, specific
Reynolds numbers Re, i.e. friction-velocity based (Re;),
centreline-velocity based (Re), and bulk-velocity based
(Reyp,), are defined as follows:

u: - h Up-h

ReT = N Reh = )
4 4

Uyp-h
Reg = ——,
v

(3.3)

with Uy as the centreline velocity and Uj as the bulk
velocity that reads

1 2h
U, b j(; U (y)dy

=5 (3.4)

Here, u; is the shear velocity, u. = +/t,,, with 7,, as the
wall shear stress, v is the kinematic viscosity of the fluid,
h is the channel half width, and U is the velocity.

The non-stationary Navier-Stokes equations are
solved for the wall normal vorticity n = d,u — d,w, with
(u,v,w) as the velocity components in (x,y,z), and the
Laplacian of the wall-normal velocity ¢ = V?(v). The
data set which we apply in this study consists of snap-
shots at 240 particular time steps in terms of the wall-

unit time Ar* = 1, where t* = # The spatial resolution
is 600 x 385 x 600 in (x,y, ).

In a first pre-processing step, the original 3D velocity
field is re-computed from the DNS data. This procedure
results in three velocity components in each grid point
with Chebyshev-distributed grid points in wall-normal
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Table 1: Parameters of the channel flow DNS data. Re,, Rey, and Re;, denote the friction-velocity-based, centreline-velocity-based and bulk-

velocity-based Reynolds number, L, and L, the length and width of the channel. N, . are the number of modes, and A}

are the equivalent

BAS

grid sizes (note, that A} is the maximum grid size close to the channel centre).

Re. Rey Re,, L, L,

N. N, N, AL ATA

X

590 12486 10972 2nh  n#h

600

385 600 6.1 3.0 48

direction (along the y-axis) and equidistant grid points in
the other spatial directions (x-, z-axis). With those data
at hand, we are able to compute, for a given LES-grid,
a so-called exact flux (Fe), a reference flux (Fr.) and
numerical fluxes of particular order (F'y, F3, F3).

In the line of our study, the approximated fluxes F1,
F>, F3 and F. are not computed on the original grid
but are determined based on average velocity data on a
Cartesian Finite Volume grid with equidistant spacing in
all coordinates, hereafter referred to as the coarse grid.
Fig. 2 shows exemplarily snapshots of the original ve-
locity data, and of the velocity data re-sampled on the
coarse grid. Note, that the exact flux is computed on the
original grid. The coarse grid’s resolution is similar to
that of a LES, whereas LES of wall bounded flows typ-
ically would use grid stretching in wall normal direc-
tion to satisfy Ay* ~ 1 with y* as the wall unit in wall
normal direction. In a second pre-processing procedure,
both the Finite Volume interface fluxes and the time in-
tegration are computed based on the recovered velocity
field. Then, flux corrections AF| = (F| — Fret), AF) =
(Fo—Fret), AF3 = (F3—Fref) and AFex = (Fex— Flref) can
be calculated. Though the pre-processing framework is
a crucial part in our work we skip its detailed description
here to retain the legibility of the manuscript and refer
the reader to Appendix A where specific details of that
procedure are given.

Having applied the pre-processing procedure, the
computed flux correction data for the channel flow test
case are now available and ready for analysis within the
stochastic model framework, and we will present the re-
sults in Section 4.1.

3.2 Taylor-Green vortex flow

3.2.1 Flow description

As the second test case for our stochastic approach, we
choose the well-known three-dimensional Taylor-Green
vortex flow. Originally proposed by TAYLOR and GREEN
(1937) as a mechanism of producing a scale cascade,
this flow evolves from laminar initial conditions through
transition into a turbulent field with a wide range of
temporal and spatial vortical scales. Beyond a Reynolds
number of Recyc ~ 1000, a turbulent kinetic energy

spectrum with the expected k3 -slope in the inertial sub-
range develops (cf. BRACHET etal. (1983)). Due to the
periodic boundary conditions on all outer sides of the

cubical domain, the flow field retains its initial symme-
tries and becomes homogeneous and isotropic in the x-
y-plane. Since no kinetic energy production at the large
scales exists due to the absence of a mean shear or forc-
ing term, the vortical structures finally decay and the en-
ergy cascade subsides.

The initial flow conditions in a triple periodic box of
length 27 are given by

p=po=1,
v1 = Vg sin(xp) cos(xy) cos(x3),
vy = — Vpcos(xy) sin(xp) cos(x3),
v3 =0,
V2
PO 0
p=po+ T (cos(2x1) + cos(2x7)) (cos(2x3) + 2),

3.5)

where p,v; with i = 1...3 and p denote the density,
the components of the velocity vector and the pressure,
respectively. While this initial field satisfies the incom-
pressible Navier-Stokes equations, we simulate the flow
with a compressible flow solver. We set the Mach num-
ber Ma to 0.1, thereby mimicking an essentially incom-
pressible behaviour. Comparisons with published data
of incompressible simulations (see GASSNER and BECK
(2013)) justify this approach. Fig. 3 shows the develop-
ment of this flow at Re = 5000 from an initial mono-
scale state to a full multi-scale problem with final dis-
sipative decay. As noted by BRACHET etal. (1983), the
initial development of the flow is governed by inviscid
roll-up and stretching of the vortical structures. At about
t = 3 in non-dimensional time units, an onset of instabil-
ity is observed, which leads to the successive breakdown
of the coherent structures. This breakdown is complete
at about + = 9, from whereon the flow is fully turbu-
lent and decays due to lack of large-scale production.
During the whole development, the flow retains its spa-
tial isotropy in the x-y-plane and exhibits a strong non-
stationary temporal behaviour, thereby complementing
the channel flow test case described in Section 3.1 which
shows anisotropy in space, but stationarity in time. Thus,
our test cases offer different challenges for the FEM-B V-
VX approach and allow an assessment of both its spatial
model identification features as well as its ability to ac-
count for non-stationarity.

Fig. 4 left depicts the spectrum of the turbulent ki-
netic energy after the transitional phase and shows the
multi-scale character of this flow with the development
of a distinct inertial subrange. The plot in Fig. 4 right
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Figure 2: x-y-slices of the velocity field at z = 7 (channel center) at t = 183.0932 5. Upper row: x-velocity component of the original
DNS data (left) and of coarse grid re-sampled data (right), middle panel: fine grid re-sampled data (cf. Appendix A). Lower row: DNS data
for the y- and z-component (left and centre), and re-sampled coarse grid data of the z-velocity component (right). The data are given in
non-dimensional units. The dimension on the fine (coarse) grid is 600 x 350 x 600 (25 x 25 x 25) in (x, y, ), the dimension of the original
grid is 600 x 385 x 600. Note the equal scaling of the velocity values at the panels in the upper row.

emphasizes the non-stationary behaviour of this flow by
showing the evolution of the kinetic energy dissipation
through the development of the scale cascade from the
laminar initial state through the transition to turbulence
and the final viscous decay.

Due to its easily reproducible initial and boundary
conditions yet complex physical behaviour, the Taylor-
Green vortex flow is a widely used benchmark for both
DNS and LES simulations (see, e.g., DRIKAKIS etal.
(2007) and BRACHET (1991)).
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Figure 3: Temporal evolution of the Taylor-Green vortex, from upper left to lower right at non-dimensional time r = 0.4,1.4,2.7,5.9,8.9

and 15.5 (Contours of vorticity, coloured by relative helicity).

TR |
10° 10 10
Wavenumber k

0.014

0.012

0.010

0.008

0.006

0.004

0.002

-dk/dt
L s e s e s e e ) B

0.0000

Figure 4: Taylor-Green vortex flow. Left: Spectrum of kinetic energy for Re = 5000 at t = 9.0, dashed line: k~>/3slope; Right: Rate of kinetic

energy dissipation for Re = 1600 over non-dimensional time.

3.2.2 Modelling approach

Our modelling approach for the LES closure is comple-
mentary to the approach described for the channel flow
in Section 3.1. Instead of modelling the LES flux correc-

tion term AF’_ . (7) based on the flux correction terms of
different order (see (3.1)), we choose different types of
viscosity to approximate the flux correction (see (3.2)).
In that sense, this approach is more akin to an explicit
LES closure which introduces explicit dissipation terms
to account for the unresolved scales, while the previous
approach for the modelling of the channel data veers to-
wards an implicit LES method, in which the discretiza-
tion itself in the form of numerical flux functions of dif-

ferent order is used as a subgrid closure.

As for the channel flow, we choose a FEM-BV-VX
approach to model the flux correction from available
data as

AF /(1)) = Fex W (£)) = F central (@/(1))
K
= Z Y@ () + B@(1)).  (3.6)
i=1

We compute the left hand side of (3.6) as the differ-
ence between the exact flux and its approximation by
a central Finite Volume flux based on a linear recon-
struction (3.11). Since a central flux formulation does
not introduce numerical dissipation, it is a natural refer-
ence flux for the evaluation of a closure strategy based
on explicitly added dissipation terms. As model input
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functions on the right hand side, we choose the dissi-
pation introduced by the numerical flux functions and
a Smagorinsky eddy viscosity model (cf. SMAGORINSKY
(1963)), along with the averaged velocities of the direct
neighbour cells:

2
B:()@ (1) = ) CK0) [5(@/*, #77) = Feem(@)] +
k=1
C(t) (Fsgs (@, Val) + Al() @™ (1)),

2
= Ckwp*(a)+
k=1

C(t) (Fsgs (@, Val) + Al() @™ (1)),
3.7

where C and A are the unknown model parameters, D* is
the dissipation matrix of the flux function k defined be-
low, j denotes the analysis cell in our discretization and
g represents a numerical flux function. The term Fsgs
denotes a subgrid scale model flux, in our case, we have
chosen the contribution of the classical Smagorinsky
model to the viscous fluxes:

0

T

21

T3/
TV — 41

Floo(@, Vi) = , 1=1,2,3. (3.8)

with the stress tensor based on the velocity field ¥ as

v o= psas(V+ (W) - 200D (39)

and the viscosity coefficient ysgs computed as proposed
by Smagorinsky as

pscs = p(CsAYIS|. (3.10)
S denotes the strain rate tensor, A a suitable filter width
and C a real constant. In (3.7), the term #*"(¢) denotes
the cell-averaged values of the velocity components
v1, v, v3 of the analysis cell j and of its directly adjacent
neighbours. In our approach, we formulate the Finite
Volume scheme for hexahedral elements of a Cartesian
grid, so each cell has two neighbouring cells per physical
dimension x, y, z, indicated by n € [x*, x7, y*,y7,z*,z7].
The central flux is computed as:

Feen (@) = %(F(af'*) + F@')) (3.11)
with F being the vector of the normal component of
the inviscid fluxes. For the numerical flux function
(@', w/™), we choose the local Lax-Friedrichs flux
(k = 1) (cf. Toro (1999)) and Roe’s approximate Rie-
mann solver (k = 2) (cf. Rokg (1981)).
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Local Lax-Friedrichs flux function

The Local Lax-Friedrichs or Rusanov flux function is
given by

gl(ﬁj‘*, ljtj_) —
% (F(ﬁj*) + F(af—)) - % B Amax [af'+ - af'—] . (3.12)

where F is again the outward pointing normal flux com-
ponent at an interface, 5 is a real number which allows
control over the amount of numerical viscosity (with
B = 1 being the classical LF definition) and Ay,x cor-
responds to the maximum eigenvalue of the Euler flux
matrix as

Amax ‘= Mmax (I + ¢, (3.13)

W i
Here, ¢ denotes the speed of sound waves computed
as ¢ := VkRT. For the local LF variant considered in
this work, the value of A« is computed from the local
flow field. It should be noted that this flux formulation
displays the structure of a central flux combined with a
D matrix term, so the dissipation matrix D! is

D'[a] = D'@/*, /") = _%mmax [uf+ - uf'-] . (3.14)

Roe’s approximate Riemann solver

For the approximate Riemann solver due to Roe, the ex-

act flux Jacobian A = ‘;—5 is replaced by a linearisation

A about an average Roe state. The underlying system
becomes linear with constant coefficients, i.e. instead of
the exact Riemann problem, an approximation is gener-
ated, which is then solved exactly. The numerical flux is
approximated as

g @, @) = = (F@'*) + F@'")) -

N —

1 m
5 B @MIR?,
2 .
i=1
(3.15)
where the ~ denotes the evaluation at the Roe state,
m stands for number of eigenvalues A;(i/*, /") of A,
@(@'*, /™) denote the wave strengths and RY are the
corresponding right eigenvectors. There are two differ-
ent approaches to find the intermediate state and from
there the wave strengths and eigenvectors, which are de-
tailed in Toro (1999). In our approach, we use the clas-
sical Roe formulation. The associated dissipation matrix

D? is given by
L 1 & e
D[] = D@, @) = -5 D EIRY,  (3.16)
i=1

Returning to Equation (3.7), the right hand side is
thus a function of grid resolved quantities #, which
serve as input parameters for the model determined by
B, K and y. The target quantity AF is computed as the
difference between the exact fluxes based on the fully
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Figure 5: Taylor-Green vortex at ¢t = 10, left: DNS solution, right: Finite Volume reconstruction. (Contours of 4, = —0.1, coloured by

relative helicity).

resolved flow field and their central evaluation based
on ii. For this approach, a hybrid high order Discontinu-
ous Galerkin-Finite Volume framework was developed,
which allows the highly efficient and parallel generation
of both the DNS and coarse grid data for the model train-
ing. Details of this framework and its implemenation can
be found in Appendix B.

Due to the symmetries of this flow problem detailed
in section 3.2.1, it is sufficient to analyse only one eighth
of the cubic domain, i.e. an equi-sided box of length 7.
The full domain is depicted in Fig. 5, with an eighth
of the computational grid and the associated analysis
box shown in the frontal lower right quadrant. Since
our framework includes a parallel implementation of the
Discontinuous Galerkin Spectral Element Method and a
Finite Volume based discretization, these schemes both
share this same grid, and the collecting of the FV coarse
grid data occurs during the DNS run. In Fig. 5, the left
subplot shows a time snapshot of the high resolution
solution, while the right subplot depicts the associated
second order FV reconstruction on the common grid.

The high order simulations were run on a grid with
643 elements, each of which contains a 6th-order ten-
sor product polynomial representation of the solution,
leading to a total of about 57 mio degrees of freedom.
The simulation was run from ¢+ = 0 to ¢t = 15, and
samples for the FEM-BV-VX were taken at an interval
of 0.00025, resulting in a time series of length 60000.
Within the analysis region shown in Fig 5, 8 equi-
spaced cells C/, j = 1...512, where flagged as analy-
sis cells. The analysis region is discretized by 323 cells,
so within this region, the distribution of the 83 anal-
ysis cells is given by the grid spanned by (i, j, k) €
[2 6 10 14 18 22 26 30]°, where (i, J, k) denotes the
cell index in the three coordinate directions. It should
be noted that no analysis cell is located directly at the
boundaries of the domain, due to the need for efficient
linear reconstruction based on the neighbouring values,

Table 2: Parameters of the specific cases A and B, CG as coarse grid.

Case CGresolution No of snapshots  No of cells
A 25x25x%x25 16 15625
B 50 x 50 x 50 33 125000

and that the distribution of the cells is not strictly sym-
metrical about the centre of the analysis box.

Within each analysis cell j, we consider only the
fluxes across those faces where the outward pointing
normal vector is aligned with the associated Cartesian
coordinate axis, i.e. the x*, y* and z* sides of the cell.

4 Model fitting results

4.1 Turbulent channel flow

We now present the FEM-BV-VX data analysis of the
flux correction data for the turbulent channel flow test
case. We focus on two particular coarse grid resolutions,
hereafter referred to as case A and case B, and the coarse
grid in case B has a finer resolution that is twice as in
case A. Table 2 shows the parameters for both cases. We
will first address to case A and will present the results of
case B afterwards.

Before doing the FEM-BV-VX analysis, the compu-
tations of the fluxes are checked for consistency. Partic-
ularly, a boundary cell has one cell face that represents
the (rigid) channel wall. At the wall face, the advection
part of the fluxes across the boundary should be zero.
In contrast, that flux should be non-zero at the opposite
cell face which is aligned towards the channel interior.
We found that the calculated time series of the exact flux
at these two cell faces confirm the just mentioned feature
(we waive a figure’s presentation here).
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Figure 6: Case A: exact flux corrections and numerical flux corrections for face 1 of three specific grid cells. Upper row: boundary cell
(index 12-1-12), middle row: near-boundary cell (index 12-3-12), lower row: cell located in the centre of the channel (index 12-12-12).
From left to right: x-, y-, z-component of the normal vector of the individual flux correction term. Note the different scaling of each figure.

For the discussion in the following sections it appears
worth reminding the reader that each grid cell consists
of 6 cell faces, and each flux correction term has 3
normal vector components at each face, resp. For each
cell j and each face a = 1,..., 6, the specific fluxes are
calculated as described in Appendix A and time series
of the following LES observables are calculated:

« exact flux correction AF%% (1) € R3,
e 1st order flux correction AF {’a(t) e R3,
* 2nd order flux correction AF;“(1) € R?,
¢ 3rd order flux correction AF é’a(t) e R3,

* Velocity field Vi(t) € RY consisting of the average
velocity field of cell j and of the average velocity
fields of all cells sharing a common face with j.

Formally, Vi (?) has the form

V) = (P00, 75 (0.7 (0.7 (00, 77 (0),
P, 7 (0) e RM,(4.1)

where the second superscript index indicates the rel-
ative position of the neighbour cells with respect to
grid cell j under consideration.

Thus, the dimension of the flux correction terms per
cell is

AFl(1) =

(AF @), AF () e RS i=1,...,3, (42)

and so (3.1) is of dimension

B (u) =
(AF(0), AF)(1), AF)(1), VI()) € RISFISFI821 (4 3)

per cell. Note, that the total number of model parameters
is 76 as the additive parameter y is considered, too
(cf. (2.4)).

We focus on face 1 and consider three particular grid
cells, that is a boundary cell, a near-boundary cell, and
a cell located in the centre of the channel. Note, that
cell face 1 is normal to the main flow direction. Fig. 6
shows time series of the exact flux corrections AFex,ct(?)
and of the numerical flux corrections AF(¢), AF(t) and
AF5(¢). In the figure, each row shows subfigures of the
respective normal vector component of the different flux
corrections.
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Figure 7: Case A: average cluster functional (left panel) and mAIC (right panel) as a function of the number of local models K and of the
persistence bound C. Note, that the computations were limited to K,x = 4, Cpax = 10. The optimal parameters are K = 2 and C = 0 as the

mAIC has its minimum there.

Figure 8: Case A: local models (cells’ cluster affiliations) based on the optimal (K = 2, C = 0)-VX-solution. Wall model coloured red, core

model coloured yellow. The arrow indicates the main flow direction.

In all panels, some mismatch is observed between
the Ist- and 2nd-order numerical flux corrections, and
good agreement between the exact flux correction and
the third order flux correction is especially given for all
components of the centred cell and of the near-boundary
cell. As observed for AF; and for AF,, some deviations
are found also for the third order flux correction term in
all components of the boundary cell.

We now look for the optimal model that best-fit
the time series of the exact flux correction terms. As
described in Section 2.1 the optimal model is linked
with a minimum of the mAIC given the number of local
models, K, and persistence, C. For case A, the analysis
of the mAIC (Fig. 7, right panel) shows a minimum at
K = 2,C = 0. Even if those mAIC-optimal parameters
do not result in an absolute minimum of the average
cluster functional, L, (Fig. 7, left panel), we conclude
that the optimal model parameters result in a stationary
case (C = 0) and two local models (K = 2) distributed
among the individual grid cells.

As shown in Fig. 8, one of these local models is
linked with the boundary cells located at the (rigid)
channel walls and on the other hand the flow interior is
represented by the second local model. This separation
in wall flow and interior flow holds for the channel

domain in total. For obvious reasons, we name the two
different local models wall model and core model.

Moreover, as indicated by C = 0, we found no
time-dependence but stationarity, i.e. there is no switch
between those two local models in time, and one and
only one of the two local models is assigned to the
individual cells.

With the two local models at hand, we now analyze
the best-fit model of the time series of the exact flux
corrections per cell. Modelling the exact flux correction
terms with the best-fit parameters results in the fitfed flux
correction term, AFfyeq, and Fig. 9 shows the results of
those fitted flux corrections for the same cells as pre-
sented in Fig. 6. The time series of the fitted flux cor-
rection and of the exact flux correction agree well, apart
from minor deviations, and particularly good agreement
is given in all components of the channel centre cell
(lower row in Fig. 9). Note, that in the boundary cell,
the time series of the fitted flux correction term has been
constructed with the use of the wall model, and the core
model has been used for computing the fitted flux cor-
rection time series in the near-wall cell as well as in the
centre cell, according to Fig. 8.

We now summarize the analysis of case B, which
consists of a coarse grid with 50° grid cells. We, again,
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Figure 9: Case A: exact flux correction, AFex,, vs. flux correction term, AFjgyeq, obtained from the mixture model using the optimal
parameter, (K = 2, C = 0)-VX-solution. Panels show the same cells and the same cell face as in Fig. 6.

determine at first the optimal reconstruction parameters
(cf. Fig. 10). Now, the minimum of the mAIC is found
at K = 3,C = 0, i.e. the optimal model-fit parameters
result in a stationary model as in case A, but in contrast
three different fluctuation regimes are obtained here.
Regarding the distribution of the local models among
the individual cells, as shown in Fig. 11, two of them are
assigned to wall cells and cells in the channel interior
as in case A, therefore again called wall model and core
model, and the third regime, hereafter called transition
model, is mainly assigned to cells which are located
close to the wall cells.

Considering the approximation of the exact flux cor-
rection term, i.e. the model-fit, see Fig. 12, the time se-
ries of the fitted flux correction term agrees well with
the exact flux correction at channel centered cells, and
only minor differences are observed at boundary cells as
well as at near-boundary cells. Furthermore, the best-fit
model represents the exact flux correction data more ac-
curate than it does in case A particularly at the boundary
and at the near-boundary cell.

In the next section, the results of the Taylor-Green
vortex flow test case will be presented. The results pre-
sented in this section for the turbulent channel flow test
case will then be discussed in Section 5.1.

4.2 Taylor-Green vortex flow

In this section, we present the results of the data analysis
framework described in Section 2 and 3.2 applied to the
Taylor-Green vortex flow. For each of the 8% analysis
cells j the time series £ = 0...59999 of the following
LES-observables is gathered and made available to the
FEM-BV-VX analysis tool chain:

* the flux corrections with respect to the Finite Vol-
ume central flux, containing the three momentum
fluxes across the x*, y* and z* sides, AF = Fex(u) —
Fcentral(ﬂ) € R9’

e the Lax-Friedrichs dissipation terms
R{(t) = Feentral(#8) — FLp(@™*, /7)) = Feengral(t) —
g'@t, ) e R

* the Roe dissipation terms
Ré(t) = Feentral(t) — FRoe(ﬁ‘H—’ W) = Feenal(it) —
g @, w/") e R®

 the Smagorinsky dissipation term R‘g(t) = Fygs € R?

* the mean velocity components
Vi(t)y = (u(®),v(t),w(t))) € R?! of the analysis cell
j and its direct neighbours, i.e. the six surrounding
cells sharing a common face with cell j.
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Figure 11: as in Fig. 8 but for case B, i.e. the optimal (K = 3, C = 0)-VX-solution. Wall model coloured brown, transition model red, and

core model coloured yellow.

We fitted the parameters of the non-stationary and non-
homogeneous VX-mixture model defined in 3.2

AF /(1)) =F ex(t! (1)) — F central (@ (1))

K
=3 70 (i) + Biga @ (1)) (4.4)
i=1

where the time series #/(f) of external factors is com-
posed as

(1) = (R](0). RY(1). R0, V() e R****21 45)

The involved model parameters are consistently sized.
For instance, applying the second order data manipula-
tion ¢, function defined in (2.5) results in y; € R%,B; €
R>124 i =1,... K

In Fig. 13, the flux correction and the associated dis-
sipation terms for the x-momentum flux across the x*
cell face are shown exemplarily for an arbitrary analy-
sis cell over the simulation time. In accordance with the
temporal development of the flow as described in Sec-
tion 3.2, the magnitude of flux correction AF remains
very small throughout the initial laminar and transitional
phase, as the coarse grid Finite Volume discretization
is capable of resolving the occurring flow features ade-
quately, and so Fex(#) = Feengal(it). It should however
be noted that the flux correction is not trivially zero, so

a non-trivial model exists in this region. As a side note,
even in this laminar region, the flux R3(¢) is non-zero due
to the well-known deficit of Smagorinsky’s model in this
situation. During the breakdown of the initial vortices of
the flow and the build-up of the scale cascade, the tur-
bulent flow can no longer be represented on the coarse
grid, and thus the flux correction becomes significant.
It shows a strong dynamic in the region between ¢t = 7
and ¢ = 13, where the scale energy transfer dominates
the flow. Due to the dissipative effects at later times, the
fluctuations are damped, which in turn results in a re-
duction of the flux correction terms during that period.
The dissipation fluxes Ry, R, are very similar and show a
high dynamic, while Smagorinsky term Rz exhibits less
fluctuations. This is not surprising, as the flux function
based dissipation terms (R;, R;) are directly related to
the difference in resolution between the exact flow and
its coarse grid approximation through the magnitude of
the jump term, while the Smagorinsky term Rj3 is only
governed by the reconstructed coarse grid velocity gra-
dients.

As supported by Fig. 13, the dynamics of the flow
mandate a sufficiently high temporal sampling rate to
capture the high frequencies accurately. Due to the ex-
plicit time integration of our framework, samples are
taken at intervals of r = 0.00025, a frequency well above
the one related to the theoretical limit of the smallest
eddies characterized by the Kolmogorov length. Due to
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Figure 12: as in Fig. 9 but for case B, i.e. optimal (K = 3, C = 0)-VX-solution. Upper row: boundary cell (index 25-1-25), middle row:
near-boundary cell (index 25-3-25), lower row: cell located in the centre of the channel (index 25-25-25).
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the limitations of computational resources, we could not
analyse the whole time series and thus sub-sampled it
by considering only, e.g., every 200th datum resulting
in a time series of length L = 300. To study the ef-
fect of this sub-sampling, we additionally analysed sub-

sampled time series of length L = 600 (every 100th da-
tum) and of length L = 1200 (every 50th datum).

Fig. 14 shows the results of our analysis with the
FEM-BV-VX approach in terms of the Bayesian infor-
mation criterion as a function of the sampling length L.



328

T. v. Larcher etal.:

Modelling of Subgrid Scale Fluxes for LES

Meteorol. Z., 24, 2015

«10° =300, m=0, phi=50 «10° L=600,m=0,phi=50 «10¢ L=1200,m =0, phi=50
-1.5 -©-K=1 ©-K=1 -6.8 ©-K=1
155 -x-K=2 —34 -x-K=2 7 -x-K=2
- K=3 +K=3 +K=3
L K=4 =35 K=4 -7.2 K=4
. v ¥
= -1.65 X @ -7.4
R Heommmmmeen P N - + 7.6
-1.75 e/ S S & ° Ry U
S K. M
-1.8 -38 > -8 D Thee- +
0 9 0 3 9 0 3 6 9

3 6
Persistence C

6
Persistence C

Persistence C

Figure 14: Taylor-Green vortex data: The Bayesian information criterion as a function of the number of clusters K € {1,2, 3,4}, the upper
bound for the persistence C € {0, 3, 6, 9}, the memory depth m = 0, and the time series length L € {300, 600, 1200}.

Table 3: For fixed time series length L, the minimum of the Bayesian
information criterion as a function of the memory depth m and
the data manipulator function ¢(-) is attained in m* = 0 and
¢*(-) =Second-Order function. The respective optimal value for the
number of clusters K and the persistence bound C is given in the
table.

L =300
K'=1,C=0)

L =600 L =1200

K"=3,C=9

K =2,C=3)

The number of possible clusters K was set to 4, and
the number of allowed temporal model changes (per-
sistence C) was limited by 9. Table 3 lists the optimal
parameter set for each L.

It is remarkable that as opposed to the channel flow
discussed above, a persistence C > 0 is found to be opti-
mal, i.e. the optimal fit to the given data requires a tem-
poral switching of the cell-local model cluster. While
this is to be expected from a physical standpoint, it is
remarkable that the modelling approach is capable of
adapting to the temporal change of solution structure.
Figs. 15 and 16 show the results of the optimal fitted
model for L = 1200 for all 9 flux correction terms
for two arbitrarily chosen analysis cells. The first cell
(Fig. 15) is located close to the centre of the vortex
core. The 9 flux components are of comparable magni-
tude, which is consistent with the assumption of spatial
isotropy in this region. There is also a general pairwise
similarity between the y-momentum and z-momentum
components on the x* face, and the the x-momentum and
y-momentum components on the z* face, which can also
be an indication of isotropy. In general, for this analysis
cell, the match between the exact flux correction and its
fitted counterpart is excellent.

For the second cell (Fig. 16), which is located
close to the periodic boundary of the flow, where the
anisotropic large scale structures persist, the fit quality
is less satisfactory. A number of high frequency fluctua-
tions in the exact flux correction are visible, which can-
not be captured by the fit. The off-diagonal components
generally show an inferior agreement, this is however
most likely due to the small amplitude of the exact flux
corrections themselves.

In Fig. 17, the cluster affiliations of two typical cells
over time are shown again for the optimal fit for L =
1200. Cell 236 is located again in the centre of the vor-
tex, while cell 241 is close to the periodic boundary. For
both cells, cluster 2 is active for the well-resolved initial
laminar period, and both cells return to this model at the
end of the observed time period, where the dissipation
action dominates. For cell 241 close to the boundary, this
model remains active almost all the time, which can be
explained by the prevalence of the large scale structures
in this region. Cell 236 shows a stable model change
from model 2 to 3 at around ¢ = 7, the time when the
turbulent scale spectrum begins to develop, leading to
severe under-resolution of the structures by the coarse
grid and thus the need for a different closure model. It is
remarkable that right when the solution changes is char-
acteristics from an ordered, small bandwidth state to a
chaotic, high bandwidth situation, the FEM-BV-VX de-
tects the need for a change in fitting strategy. Supporting
this observation is the fact that a return to the (laminar)
model 2 occurs in the later stages of dissipative decay (at
around ¢ = 13), when the representation on the coarse
grid becomes smoother again.

Figs. 18 and 19 put these two cells into their spatial
context. In these plots, the cluster affiliations of 8 x 8
analysis cells on a z = const. slice through the analy-
sis box are shown. The approximate centre of the vortex
core is marked, and it should be noted that due to the
location of the analysis cells, the outer layer of cells is
not directly located at the periodic boundaries. As ob-
served before, initially, model 2 is appropriate for all
cells during the laminar phase. With the onset of transi-
tion, model switches occur for the inner cells. After the
peak of the turbulent scale production, all but the inner
cells return to the initial model.

5 Discussion

5.1 Turbulent channel flow

In Section 4.1, we have presented the results of the
modelling approach of the fully turbulent channel flow
data. Two cases with particular coarse grid resolution,
denoted as case A, with 25 x 25 x 25 cells in (x, y, z) and
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Figure 15: Taylor-Green vortex data: Exact corrections AF vs. fitted corrections. Results for the (optimal) non-stationary and non-
homogeneous (K* = 3,C* = 9)-VX-solution with memory depth m = 0 and data manipulation function ¢(-) = S O(:) trained on sub-
samplings with length L = 1200 of the cell 100 time series. Solid black lines: AFexaet, dashed blue lines: AFjyeqd.

case B, with 50x50x 50 cells, were applied to the model
framework to model the exact flux correction term.

In case A, two particular fluctuation regimes, or lo-
cal models, a wall model and a core model, are ex-
plored by the model framework, and a third fluctua-
tion regime, the transition model, has been obtained in
case B. Thus, we found resolution-dependent closure
regimes. Furthermore, even though the data are clearly
non-homogeneous, as observed in the model-fit flux cor-
rection data, our results show no time-dependence, i.e.
the local models captured are stationary models.

Considering the physics of the turbulent channel
flow, it is generally accepted that the flow is statisti-
cally independent of z (at least away from the end-
walls) provided that the extent of the channel in span-
wise z-direction is large compared to the wall-normal
y-direction. Furthermore, in the fully developed region
of turbulent channel flows, the flow being considered is
statistically stationary and statistically one-dimensional,
with velocity statistics depending on the y-coordinate
only.

The (equidistant) grid resolution chosen for case A
(case B) leads to a grid size of A; =47.2 (23.6) in terms

of wall units (y* = (%, with ¢, as viscous lengthscale),

whereas the resolution of the auxiliary fine grid, N, =
350 (cf. Fig. 2), leads to Ay = 3.37. Considering the
various wall regions in the turbulent channel flow (see
e.g., Pope (2000) for a detailed description), it follows,
therefore, that the viscous wall region, y* < 50, where
the viscous contribution to the shear stress is significant,
is resolved with 1 grid cell in case A and with 2 grid
cells in case B, while the viscous sublayer (y* < 5)
is not resolved in both cases. Also the buffer layer is
fully immersed within the first cell for case A and within
two cells for case B. However, the viscous wall region
must be considered unresolved in case B, too, as 2
grid cells are not sufficient to capture the physics of
that region. Note, that the viscous wall region would
be indeed resolved with the equidistant fine grid but
the viscous sublayer would not. However, the original
DNS, from which the fine and the coarse grid data
were computed, has been performed such that sublayers
have been resolved, a Chebyshev-tau formulation in wall
normal direction was used for the grid generation.

The results found for the cells’ cluster affiliations of
both coarse grids support what has been just mentioned.
Only two general models were recognized by the model
framework for case A, while the inner layer and sub-
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Figure 16: Taylor-Green vortex data: Exact corrections AF vs. fitted corrections. Results for the (optimal) non-stationary and non-
homogeneous (K* = 3,C* = 9)-VX-solution with memory depth m = 0 and data manipulation function ¢(-) = S O(:) trained on sub-
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Figure 17: Taylor-Green vortex data: The cluster affiliations for a typical inner (cell no. 236, left) and boundary cell (cell no. 241, right).
Results for the optimal (K* = 3, C* = 9)-VX-solution of sub-sampling length L = 1200.

layers of the overall inner and outer wall region could
not be resolved due to the coarse grid size. In that fash-
ion, we interpret the so-called transition model observed
in case B as a model state representing the inner layer
which is generally influenced also by the log-law wall
region and overlapping with the outer layer. As the in-
ner layer is limited to ¥/» < 0.1 with & as the chan-

nel half width (cf. Pope (2000)), it is therefore com-
prehensible that the transition model is also assigned to
some cells that actually appear remote from the endwalls
(cf. Fig. 11).

As repeatedly mentioned in Section 2.1, our model
ansatz originally incorporates a deterministic-stochastic
approach but our analysis revealed that the deterministic
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Figure 19: Taylor-Green vortex data: The cluster affiliations for 8 X 8 analysis cells in the z = gn plane. The approximate location of the
vortex centre is denoted by a circle. Results for the optimal (K* = 3, C* = 9)-VX-solution of sub-sampling length L = 1200.

model part alone already yields surprisingly low residu-
als and the stochastic term, therefore, is not interpreted
here. Fig. 9 and Fig. 12 already provide a qualitative vi-
sual comparison of flux corrections with their reference
values for selected cells and might be provided to guide
reader’s intuition. Now, we evaluate a quantitative mea-
sure using error norms of the residuals as objective cri-
teria. For this purpose, we calculate the local and global
type of the Euclidian norm of the residuals and, for the
local type, evaluate the local maximum per time series.

The relative and absolute error in the local form of
the Euclidian norm reads

e (t) - ||AFexact(t) - AFﬁttcd(l‘)”
tocre IAF exaet (D]

(5.1)

and

eloc,abx(t) = ||AFexact(t) - AFﬁtted(t)Ha (52)

and the error in the global form of the Euclidian norm
reads

€global -= \/Z |AF exact — AFﬁtted|2- (5.3)
t

In general, when the values of the flux correction terms
are small, the relative error should get particular atten-
tion, a small absolute error would say little about the
quality of the fit. However, values very close to zero
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Table 4: Case A: relative and absolute local error, and global error of the residuals following (5.1)—(5.3).

(elm:,rel (t))

Cell (face 1) max (elm:,rel (t)) max (eloc,ab.v (t)) eglobal
dim=1 0.3203 0.1168 0.0178 0.0280
12-1-12  dim=2 5.8415 0.9101 0.0022 0.0045
dim=3 1.7936 0.4609 0.0061 0.0107
dim=1 1.0126 0.3252 0.0254 0.0367
12-3-12  dim=2 1.8322 0.5276 0.0071 0.0110
dim=3 12.9632 1.9502 0.0104 0.0173
dim=1 1.4090 0.2297 0.0051 0.0107
12-12-12  dim=2 0.6687 0.1848 0.0024 0.0041
dim=3 2.5993 0.3327 0.0020 0.0043

Table 5: Case B: relative and absolute local error, and global error of the residuals following (5.1)—(5.3).

Cell (face 1) max (elnc,rel ([)) (elnc,rel ([)) max (elozr,abs([)) eglobal
dim=1 1.5687 0.1515 0.0063 0.0169
25-1-25  dim=2 53.1293 2.3397 0.0019 0.0036
dim=3 24.3831 1.3463 0.0027 0.0064
dim=1 11.9546 1.1447 0.0128 0.0287
25-3-25  dim=2 9.5190 0.7604 0.0078 0.0125
dim=3 24.3804 1.0117 0.0046 0.0117
dim=1 9.7811 0.6584 0.0064 0.0130
25-25-25 dim=2 8.7102 0.3631 0.0021 0.0041
dim=3 1.0350 0.1699 0.0032 0.0064

could result in single peak values of the relative error
and in such cases the absolute error should gain impor-
tance. We, therefore, consider both type of local errors
and additionally calculate the arithmetic mean value of

the relative error, (e, /(f)) that might provide an addi-
tional indicator for the relative error.

The results for the different cells and directions
(x, v, z) according to the panels in Fig. 9 for case A and
in Fig. 12 for case B are shown in Table 4 and 5, resp.
For both cases, values of the maximal absolute local er-
ror as well as of the global error are much lower than 1
for all subsets, and the values of the relative error are
much larger than 1 for almost all cases. A number of
peak values partially much greater than 10 are given in
case B, just one peak event is observed in case A. Those
peak values have to be seen in relative terms regarding
the mean of the relative error which for each event is
significantly lower than its peak indicating that the peak
is a single event in the time series of the residuals. That
is in line with the global error that remains very much
lower than 1 at these datums, too. The analysis of the er-
ror norms confirm the previously mentioned statement,
that the residuals of the model-fit of the exact flux cor-
rection terms are small, and, therefore, justify our strat-
egy of considering the deterministic part of the model
approach only.

Finally, we are interested in the properties of the local
models. More precisely, we would like to describe the
significance of the input parameters that form the differ-
ent local models, cf. (4.3), i.e. the numerical flux correc-
tion terms of different order, AF; >3, and the averaged

.. =
velocities, V. We, here, concentrate on case A where two

local models, the wall model and the core model, are ob-
tained and pick again cell face 1 which is perpendicular
to the main flow (x-) direction of the turbulent flow field.
As a reminder, the time series of the best-fit flux correc-
tion term, AF'fyeq, according to an individual cell face,
cf. Fig. 9, is an outcome of the specific local model as-
sociated with that grid cell. However, even if we focus
on just one cell face, note that each local model con-
siders the best-fit approximation of the flux correction
terms across all 6 faces of all grid cells associated with
the local model under consideration.

Considering the core model, Fig. 20 shows a matrix
visualizing the contribution of the individual factors to
the fitted flux correction. The components of the fitted
flux correction term are plotted in the rows (top row,
middle row, and bottom row represent the x-, y-, and
z-component, resp.), and in the columns, the individ-
ual model parameters, i.e. the parameter u, the numer-

ical flux corrections AF > 3 and the velocity field, V, are
plotted. For the numerical flux corrections, x; and x_
denote the cell faces in upstream and downstream di-
rection of the cell under consideration, j, and y, and y_
denote the cell faces in y-direction and z; and z_ denote
the cell faces in z-direction. Note, that each flux across
a specific cell face is subdivided in its spatial (x,y,z)

components. Similar, the velocity field, V, is separated
in its components, i.e. the neighboured cells and the cell
under consideration itself, and, again, the velocity vec-
tor of each cell is subdivided in its spatial components,
too. According to (2.4) and (4.3), resp., that results in
76 components of the local model, each accounts for a
specific contribution.
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Figure 20: Case A, core model, face 1 (x,): significance of the model parameters to the fitted flux correction term. Dark color indicates
components that contribute much to the fitted flux correction term, components of no importance coloured white. The picture on the right
indicates the cell face notation (the arrow denotes the main flow direction).
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Figure 21: as in Fig. 20 but for the wall model.

To analyze the core model step-by-step, let us, at first,
pay attention to the velocity field. It, initially, is con-
spicuous that the cell under consideration, j, contributes
significantly to the local model. Apart from this, only
cell x_, located upstream of the main flow direction, ob-
viously contributes to some extent to that model while
cell x, as well as the other adjacent cells (those in y-
and z-direction) does not. Moreover, only the principal
component of the velocity term is of significance for the
respective component of the fitted flux correction term,
e.g., only the x-component of cell j and x_ contributes
to the x-component of AFfjeq, €tc.

Regarding the numerical flux corrections, a number
of secondary components of the three different order
flux corrections have a part in the local model, coloured
grey, and the major contribution comes from the x, and
x_ cell face of AF; followed by AF3. In both terms,
again, the respective main component is of greatest sig-
nificance in each case, similar to the findings for the ve-
locity field, which, in total, results in the stripe-shaded
look of the picture. A discrepancy is observed regard-
ing the contributions of AF;, where the y-component of

the y, and of the y_ cell face contributes also with a large
amount to the x-component of the fitted flux corrections.
It, finally, is noticeable that the model parameter y is of
no significance in all components.

Considering the wall model, Fig. 21, it is, first, inter-
esting to note, even though no real surprise after survey-
ing the core model, that, again, the specific main compo-
nent of each model parameter dominates the appropriate
component of the fitted flux correction term. That is pri-
marily true for the y-component of AFgyeq, Where all
model parameters contribute with its y-component only.
Again, that results in the stripe-shaded look similar to
the core model picture discussed above. As in the core
model, the model parameter u is of no significance in
the wall model. Comparing the properties of the veloc-
ity field of the core model, here, also the x, cell located
downstream in the main flow direction now contributes
to the wall model.

Comparing both model as such, it is remarkable that
the wall and the core model consists of similar features
and the major differences between the two models are
to a great extend in the x, cell of the velocity field as
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Figure 22: Taylor-Green vortex data: Cluster affiliation of analysis cells for different times ¢ € {2.5,6.75, 8.85, 11.1, 14.25, 15}. Results
for the optimal (K* = 3, C* = 9)-VX-solution of sub-sampling length L = 1200. The colours correspond to different clusters affiliations,

yellow: yy, light blue: y,, dark blue: ;.

in the secondary components of the numerical flux cor-
rection terms, which are almost of no significance in the
core model but have some influence in the wall model.
These contributions are small compared to the dominat-
ing main components, but, apparently, meaningful in the
sum.

5.2 Taylor-Green vortex flow

In Section 4.2, we have presented the results of the
FEM-BV-VX framework applied to the Taylor-Green
vortex flow of decaying turbulence. This flow is char-
acterized by a temporal breakdown of anisotropic vor-
tices, a development of turbulence and a final decay due
to lack of mean shear. Our analysis approach was able
to detect the structural changes in the flow patterns by
adjusting the best-fit model in time and space. Fig. 22
gives an impression of the temporal evolution of the
cluster association in the periodic box. It shows three
normal slices through the 8 X 8 X 8 cube of analysis cells,
coloured by their cluster association. In the initial lami-
nar phase, the model 2 is consistently active in all cells
of the flow. It should be noted that during this time, the
flux correction term is small, but not negligible, i.e. the
active model is non-trivial. With the breakdown of the
large vortices after around ¢ ~ 5-6, models 1 and 3 are
activated within the vortex, close to the core region. The
outer region remains mostly at model 2, since the sym-
metry enforced by the periodic boundary conditions sup-
presses the development of isotropic small scale struc-
tures. After the transition to turbulence when a fully
turbulent flow with inertial subrange according to Kol-
mogorov’s k=3 law has developed in the core region,
the cluster association fluctuates in time, with mainly

models 3 and 1 active. As the fluctuations subside with
ongoing time, a reversion to the (laminar) model 2 is ob-
served again.

A closer inspection of Fig. 22 and Figs. 18 and 19
raises two related issues that need to be investigated fur-
ther. Firstly, while most of the cells close to the bound-
aries show little model dynamic, some (e.g. cell 69 in
Fig. 18) show essentially the same behaviour as inner
cells. Secondly, since the flow is governed by (anti-)
symmetries about the centre and along planes aligned
with the box axes, these symmetries should translate
to the flux correction terms, the external factors and
thus into the model dynamics. In Fig. 18, the cells
{69,77,85,93} and {108, 116,124} as well as the x*
and x~ columns show these symmetries. At a different
z = const. position (Fig. 19), no obvious symmetries in
the model dynamics can be observed.

Fig. 23 shows the dependence of the fitted flux cor-
rections on the length of the sampling vector L. It should
be noted that while the fit indeed improves with a higher
sampling rate, it does not capture the high frequency os-
cillations in the exact flux correction. As indicated in
Table 3, the optimal model parameters depend strongly
on L. In particular, with increasing sampling rate, the op-
timal number of model switches increases, and reaches
the upper bound (imposed due to computational re-
sources) of C = 9 for L = 1200. This fact might indicate
that the global optimum in terms of L and C has not been
found yet. An increase in both L and the upper bound
on C is thus a possible candidate for a better model fit.
Thus, the incomplete symmetry of the setup (cf. Sec-
tion 3.2) and the differences in fitting quality between
cells might explain the general loss in model symmetry
and the behaviour in the boundary cells.



Meteorol. Z., 24, 2015

L =300, cell = 512, face = 3, dim =3

T. v. Larcher etal.: Modelling of Subgrid Scale Fluxes for LES

L =600, cell =512, face = 3, dim =3

335

L = 1200, cell = 512, face = 3, dim = 3

_AFExad
___AF

—A Fexad '
0.02f |---AFg 4 H 0.02

fitted|

-0.005|

—AF o
0.02f |- - = A Fjyq

-0.005|

0015 5 10 15
Time t

5

L =300, cell = 512, face = 1, dim =1

Time t

L =600, cell =512, face = 1, dim =1

-0.01
10 15 00 [ 5 10 15
Time t

L = 1200, cell =512, face = 1, dim = 1

—A Fexaa

_— Fﬁt\ed

AF
— exad
(o] ___AF

—A Fexan

. .AF,

fitted| fitted|

v
0 5 10 15 0 5
Time t

Time t

10

Timet

Figure 23: Taylor-Green vortex data: Exact corrections AF vs. fitted corrections. Results for the optimal parameters K* and C* as a function
of the sub-samplings L € {300,600, 1200} of the cell’s time series. fop row: z-momentum flux across z* face of cell 512, bottom row:

x-momentum flux across x* face of cell 512.

Overall, our investigations have shown that our mod-
elling approach through explicit dissipation terms can fit
the exact flux corrections successfully. In addition, the
analysis framework is capable of identifying changes in
solution structure, and thus trigger model switches. This
feature is of particular significance, as it allows the adap-
tation of the implicit or explicit modelling strategy based
on the current solution.

6 Conclusion and outlook

In this paper, we have presented our work towards a
stochastic LES closure approach. Our approach is based
on advanced time series analysis techniques leading to a
mixed deterministic-stochastic model formulation. The
concept of the FEM-BV-VARX-formulation was used to
reconstruct unresolved subgrid scale fluxes. This mod-
elling approach was applied to two typical test cases of
3D DNS fluid flow data, i.e. the turbulent channel flow
and the Taylor-Green vortex flow, to show its recon-
struction capabilities. The turbulent channel flow data
were computed by M. UHLMANN for an incompressible,
isothermal fluid at Reynolds number Re; = 590. For the
analysis of the Taylor-Green vortex flow, a hybrid frame-
work was created, that allows the simultaneous gener-
ation and comparison of DNS and LES data as model
training parameters.

We mention here that our model approach must
not be treated as an extended data analysis method
only. In fact, we have presented a method for a data-
based stochastic model-discrimination of implicit and
explicit LES closures. The modified Akaike informa-
tion criterion (mAIC), a further development of the AIC
method by HORENKO 2010b and METZNER etal. 2012

was used for identifying the best-fit stochastic subgrid
scale model. To give the reader an estimate of this time-
consuming procedure of model selection, 280,000 CPU-
hours at a high performance computing cluster have
been invested to identify the best model for the re-
construction of the subgrid scale fluxes from the high-
dimensional data-sets of the turbulent channel flow test
case. The features of the novel mAIC-metric particu-
larly allow for a simultaneous data-based measure of
quality and of complexity of the specific models with-
out any a priori assumptions of the stochastic terms in-
volved in. Furthermore, it allows us to identify details of
the coarse grid modelling approach. In the Taylor-Green
vortex flow test case, the Bayesian information criterion
(BIC) has been used as information criteria.

For both test cases, we have identified the VX-model
as the model of choice. This model does not consider
auto-regressive terms. In the turbulent channel flow the
model selection study resulted in a stationary, non-
homogeneous model as the best-fit model. Thus, the
channel flow data model deviates from standard mod-
els which are typically based on homogeneous statistical
approaches only.

For the Taylor-Green vortex flow, a non-homogen-
eous, non-stationary VX-model has been identified as
the best fit-model. It prescribes temporal changes of
the cell-local models to account for developing physi-
cal structure of the underlying flow field. This feature
highlights one of the strengths of our approach, in that a
solution-adaptive model change can be detected to guar-
antee an optimal reconstruction. We found that the sam-
pling frequency of the turbulent signal and the upper
bound on the model persistence strongly influence the
choice of optimal model. There are indications that due
to the high temporal dynamics of this specific flow, an
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increase in both the sampling frequency and the bound
on model switches might lead to an even better fit.

Considering the mixed deterministic-stochastic
model ansatz, it is called stochastic because the gen-
eral model ansatz includes a stochastic noise term to
model the statistics of the residuals left when only
considering the determinstic part of the scheme. We,
surprisingly, found that the deterministic part alone is
good enough to fit the flux correction terms well and
that the local stencil information may work well without
added stochastic noise. The best-fit deterministic flux
corrections agree very well despite the roughness of
the coarse-grid data. This non-trivial result mentions
also the role of deterministic LES closure approaches.
Moreover, we found that the linear contribution to the
closure incorporates a next-neighbour stencil on the
coarse grid, and data of more distant cells are of no
importance here.

As already stated above we here mention again that
we are not primarily proposing two closure models.
Rather, we are proposing a general approach to data-
based determination of LES closures and validate this on
two very different approaches related to standard LES
and implicit LES. As discussed, we obtained interest-
ing conclusions in both cases reflecting on both the flow
physics and the modelling approaches. In addition to the
above discussed topics, the outcome of our modelling
approach sheds light on implicit LES models in the
channel case, demonstrating that the generally success-
ful and similar Adaptive Local Deconvolution Method
(ALDM) approach may profit from explicit near-wall
adjustment of the reconstruction weights. It, too, sheds
light on classical LES closures in that we find reductions
of model-to-DNS discrepancies in the Taylor-Green vor-
tex flow case when time dependent regimes are explic-
itly accounted for.

The results which have been documented in this pa-
per encourage us for the ambitious attempt at dynamic
LES closure. As stated earlier, the paper describes sev-
eral important results. We, however, see possible criti-
cism as the optimization results are evaluated on a priori
basis by visually comparing predicted fluxes with exact
fluxes for selected cells and time steps. For the turbu-
lent channel flow test case we analyzed the quantitative
measure of the error norms. It is known that such re-
sults tell little about the nonlinear dynamic of a model
in actual simulations. We, therefore, foresee the neces-
sity of substantial further research into the construction
of such closure. We will continue our strategy to reduce
the classical closure problem to the faithful reconstruc-
tion of spatio-temporal fluctuations of the fluxes across
grid cell interfaces. We, also, will make further use of
the stochastic approach for the analysis of local flow
features and will conduct a thorough comparison of the
implicit-LES ansatz versus explicit-LES by coupling the
stochastic based flux correction model to Finite Volume
solvers.

In the future, we will continue our work on devel-
oping the closure strategy presented here for predictive
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modelling. Our route towards predictive modelling en-
visages a dynamic LES ansatz based on a multigrid clo-
sure approach similar to e.g., GERMANO et al. (1991) and
PORTE-AGEL (2004). Here, a dynamic learning process
would be able to autonomously select and operate model
parameters for the construction of the subgrid scale sur-
rogate closure models. The flux correction data would
then be modelled using the most recent simulation data
of the generated LES surrogate models instead of using
DNS reference data. With that, the LES simulation itself
would be the basis for determining the stochastic model
parameters, and the model would then operate in a self-
consistent way.
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Appendix

A Pre-Processing of the channel flow
data

To determine the cell averages in the coarse Finite Vol-
ume grid cell centres, a fine Cartesian auxiliary grid,
also with equidistant spacing in each spatial direction,
is used, hereafter referred to as fine grid. The spatial res-
olution of this fine grid is similar to the resolution of the
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Figure 24: Left: sketch of a 2D (x, y)-slice. Right: transformation from the original grid with Chebyshev-distributed grid points in y-direction
(left panel) to equidistant coarse grid cell average data (right panel) via fine grid cell average data (middle panel) with 3 x 3 fine grid cells

within one coarse grid cell.
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Figure 25: Re-sampling of fine grid cell average values of velocity data from non-equidistant grid points along the y-axis. Colours indicate

the different S -terms given in (A.5).

grid of the previously restored non-equidistant velocity
data and chosen such that an integer number of fine grid
cells fit one coarse grid cell. Fig. 24 shows an example
of the procedure for a 2D-sketch.

Finite Volume cell averages In the following we
describe the re-sampling process of the velocity data
which is used to determine the averaged velocity at
the cell centres on both, the fine and the coarse Finite
Volume grid, prior to the calculation of the particular
fluxes.

Re-sampling: fine grid velocity data To obtain an
equidistant distribution of the velocity data in wall-
normal direction (along the y-axis) as well, a one
dimensional 3-step operation, described in the fol-
lowing, is performed for each velocity component in
each fine grid cell (e.g. cell j in Fig. 25). Due to the
strong time consumption of this procedure, this pro-
cess needs to be executed by use of parallel compu-
tations.

1. Spline Interpolation: the continuous solution is
approximated via piecewise cubic spline interpo-
lation (e.g., MuNZz and WESTERMANN (2006)) of
the Chebyshev-distributed velocity values in wall-
normal direction. Due to this distribution of the
velocity data many sample points are usually lo-
cated within one fine grid cell close to the (solid)
wall boundaries while it might happen that there

is only one or even no sample point within a
fine grid cell near the centre. In general, that, of
course, depends strongly on the fine grid resolu-
tion.

Let négl be the number of samples within a spe-
cific fine grid cell j and niﬁl the number of cu-
bic spline segments used for approximation of the
solution within cell j. Then at least one natural
cubic spline segment is used to determine the in-
tegral average value of this fine grid cell in case
no sample is located within the cell. Five samples
and, thus, two cubic spline segments are used in

U= 1, six samples (three cubic spline

spi
segments)pin case of ni{))i = 2 (as illustrated in
Fig. 25) and so on. Consequently, ngé)s depends on
E‘I’; )1 as well as on the number of additional sam-
ples ng{,)o outside of cell j yielding

case of n

n

ndy = (0 + o) =3, (A1)
@ ._ D Dy
where ng, = (nSpi + Ngpo) 1s the total number of

samples used for cell j. In general, four samples,
two on each side of the fine grid cell, are used in

the process, and thus ng{,)o = 4 (cf. Fig. 25), and

then niﬁl = négl + 1.
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2. Integration: the integration of the i resulting cubic
spline segments

(’)(y) = a(j) >+ b(j)y2 + c Dy + d(j) (A.2)

is performed analytically yielding the integral

functions S l(." ) for the i spline segments of the cur-
rent fine grid cell j

(/) b( J) (/)

)] _ i
§70) = y+3y+2

y +d(])y+e(]) (A 3)
3. Integral Average Value: the integral average val-
ues of the velocity components in fine grid cell
j are determined via evaluation of the integral

functions S l(." ) obtained in the previous step in the
corresponding intervals within the interval [a, b]
(see Fig. 25). With the notation (*) [g(y)]Z
(g(g) — g(p)) this yields

), - ﬁ( sl + syl

WWMW h?wﬁ)<A®

This is also illustrated in Fig. 25 where négl =2
and the resulting average value is

5 1 NG
e = = 1SV 0L+

ﬁ@whw[ﬁWﬂf) (A5)

The undetermined constants e in (A.3) cancel
while the integral functions are evaluated accord-
ing to (*).

Re-sampling: coarse grid velocity data Once the ve-
locity data are re-sampled on the fine grid, the inte-
gral average values of the velocity components in the
coarse grid cells are determined by averaging the val-
ues in those fine grid cells which are located within
the specific coarse grid, cf. Fig. 24.

Coarse grid cell face fluxes on fine grid time lev-
els The re-sampling process described above results in
velocity data sets of Finite Volume cell averages on two
specific grids, a fine and a coarse grid, and enables us to
calculate fluxes and flux corrections. In this paragraph,
we describe the particular fluxes briefly, with F repre-
senting numerical fluxes (F, F», F3) or flux averages
(Fref, Fex) and f(u) indicating an evaluation of the phys-
ical flux function based on state u. Note, that the nu-
merical fluxes are all computed by using the same nu-
merical flux function proposed in HICKEL etal. (2006),
and only the construction of the boundary traces changes
with F' 1,2,3-

1.

4.

Exact Flux (Fe): to determine the exact flux Fey
across coarse grid cell faces

(a) the equidistant fine grid velocity data are inter-
polated to obtain velocity values u* at the coarse
grid cell faces,

(b) the non-linear part of the convective flux function
is evaluated on the fine grid at coarse grid cell
faces based on u*, and

(c) the fluxes at the coarse grid cell faces are deter-
mined via averaging over the K fine grid fluxes
belonging to each corresponding coarse grid cell
face

K

1
o = 2 0 S, (A.6)

k=1

This calculation is illustrated in Fig. 26 for a two
dimensional grid with 3 X 3 fine grid cells per coarse
grid cell.

. Reference Flux (Fpf): for the reference flux over a

cell face j + % no state reconstruction or specific

numerical flux function is used but the simple flux
average

1
Fur = 5[ ) + fujn)] (A7)

is calculated.

. 1st Order Flux (F;): as in standard first order Finite

Volume methods, here, the cell average state value is
assumed to cover the whole grid cell and, thus, the
values at the cell faces are assumed to be equal to the
cell centre value. Consequently, no state reconstruc-
tion is needed. Note, that the flux is of 1st order in
time but not in space as described below.

2nd Order Flux (F>): for obtaining the second order
flux, F3, piecewise linear state reconstruction at the
cell faces is performed direction by direction based
on the cell centre values as in standard second order
Finite Volume methods, using a monotonized central
limiter (VAN LEER, 1974) for slope limiting during
the reconstruction.

. 3rd Order Flux (F3): for the third order flux F5, state

recovery at the cell faces is obtained via a third order
WENO scheme by SHU (1997).

As already mentioned above, the numerical fluxes are

then calculated by using always the same numerical flux
function by Hickel et al.
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Figure 26: Example of exact flux (Fx) computations: determination of state at coarse grid cell face via interpolation (a), evaluation of fine
grid fluxes at coarse grid interface (b), and averaging to coarse grid cell face flux (c). Note, that in this example one coarse grid cell consists

of 3 x 3 fine grid cells.

Time integration: coarse grid cell face fluxes on
coarse grid time levels Although the different fluxes
are determined at coarse grid cell faces there are now
values for all these fluxes available at time levels corre-
sponding to the original fine grid. Due to the well-known
CFL-condition, cf. COURANT etal. (1928), a single time
step At for a numerical scheme can be larger on a coarser
grid. To obtain fluxes over a time step corresponding to
the coarse grid, integration is performed over the fluxes
at fine grid time levels which are within the correspond-
ing coarse grid time step. This is not necessary for the
first and second order fluxes: in case of F; a constant
flux over the whole coarse grid time step is assumed by
simply taking the flux at the beginning of the time step
as the average flux over the whole time step. For F»,
and also for Fy, the averages of the fluxes at the be-
ginning and at the end of the time step are calculated.
However, for the higher order fluxes numerical integra-
tion needs to be performed: in case of F3, first, a flux
at intermediate time level n + % is determined by third
order Lagrange interpolation (cf. MUNZ and WESTER-
MANN (2006)) to obtain a value at half time of time step
At = "1 — 1" Integration using the values at time levels
n,n+ % and n + 1 is then done using Simpson’s integra-
tion rule, c.f. ABRAMOWITZ and STEGUN (1964). For the
exact flux, F, time integration is performed by a com-
bination of Simpson’s integration rule and Simpson’s 3/8
integration rule, ABRAMOWITZ and STEGUN (1964), over
the coarse grid time step using all the fluxes at all fine
grid time levels available within the coarse grid time step
(including start and end level of the time step).

B A Hybrid Discontinuous
Galerkin-Finite Volume framework

For our modelling approach detailed in the Section 3.2
and described by (3.6) and (3.7), we need to determine a
time series of flux corrections based on the exact fluxes
and a number of quantities based on the grid resolved
solution. For the channel flow we re-used existing DNS
data, as described in Section 3.1. For the second test,
we compute the DNS solution and the flux correction
terms on the fly during the computation. This requires
the creation of a suitable hybrid code framework, but
allows a greater flexibility for the analysis of other flow
scenarios at a later stage.

Figure 27: 2D solution and flux points of the combined DGSEM-FV
framework for a reference cell: @ DG Gauss points, 0 DG boundary
flux points, v FV solution point, ¢ FV flux points

Since DNS computations of turbulent flows require
a highly efficient numerical and computational frame-
work with low approximation errors, we choose a high
order Discontinuous Galerkin Spectral Element method
(DGSEM) as proposed e.g. by Kopriva (2009) as the
base scheme for our DNS solver. In the method, the
computational domain is divided into non-overlapping
hexahedral elements. In each element, the solution vec-
tor U(X, f) containing the conserved variables is approx-
imated by a polynomial tensor-product basis with de-
gree N in each spatial direction

N
U ~UnE 0 = > Oge(ip(¥)
i, jk=0
Yi(X) =600 () (B.1)
with (7ijk(t) indicating the time-dependent nodal de-
grees of freedom, ¥ = (x,y, 2)! and ¢ being the one-
dimensional Lagrange interpolating polynomials of de-
gree N. We choose Gauss integration points for the in-
terpolation node set. Fig. 27 represents these points as
filled squares. It should be noted that this approxima-



340

T. v. Larcher etal.: Modelling of Subgrid Scale Fluxes for LES

Meteorol. Z., 24, 2015

Figure 28: Contours of u-velocity on z = const slice. Left: DNS solution, middle: FV O(2) solution, reconstructed from DNS, right: FV O(2)

solution

tion is continuous within each element, but allowed to
be discontinuous across element interfaces.

For a hyperbolic/parabolic evolution equation of the
form

U +V, F(UVU) =
U +V, FC(U)-V,-FY(UYVU)=0, (B.2)

— for example the compressible Navier-Stokes equations
with the solution vector U as the vector of the conserved
variables u = [p, pvi, pv2, pv3, pe] as described above —
the Discontinuous Galerkin formulation for the mixed
first order system, written for one element Q and its
surface 00, reads

f (Un), ¢(¥)d3 = - 55 ((F€-n) = (FV ) pdS +
o a0

fF(Uh, W) - Vip(X) dx,
Q

f W o(X)dx = SE (n* Up) pdS — f Up V(%) dX,
0 00 Q
(B.3)
where ¢ denotes the test function from the space of the
basis functions, n denotes the outward pointing normal
vector and * the dyadic product. The terms FC and FV
denote the Euler and viscous fluxes, respectively. The
separation of the boundary contribution by partial inte-
gration allows us to introduce the numerical approxima-

tion of the flux traces (.) at the grid cell interface. All flux
traces have to be approximated by suitable flux functions
for both the inviscid and viscous fluxes. Note that we
have to prolongate the approximate solution from the in-
terior Gauss points to integration points on cell surfaces
to compute the trace integrals. These points are indicated
by open squares in Fig. 27. Our code has been validated
extensively and has been applied successfully for DNS
and LES of turbulent flows. Extensive details about the
method, its properties and our implementation can be
found in HINDENLANG et al. (2012); GASSNER and BECK
(2013); GAssNER and Kopriva (2011).

Since we have thus established our code framework
for computing the exact (DNS) fluxes Fex(1), we now
need to evaluate the grid resolved quantities based on i
for the model training described by (3.6). We have thus
extended our code by including a second order Finite
Volume formulation with linear cell-wise slope recon-
struction. This Finite Volume formulation runs in paral-
lel with the DGSEM formulation. Both discretizations
share the same grid, i.e. each cell Q stores its associ-
ated DG solution and fluxes as well as their FV counter-
parts. Fig. 27 depicts this dualism of an exemplary cell.
The plot has been reduced to a two dimensional case for
a simpler visualization of the concept. The empty and
filled squares denote the position of the DG points and
the location of its boundary fluxes, while the triangle and
open diamonds indicate the FV solution and the FV sur-
face flux integration points. Thus, we realize the concept
of a fine grid solution and a coarse grid approach not by
using different meshes, but by changing the order of the
approximation per cell and thus the associated degrees
of freedom.

The general algorithm to compute the time series of
the grid-dependent quantities in (3.6) is comprised of the
following steps:

* For a given grid, the polynomial degree of the ansatz
for the DG scheme is chosen sufficiently high to
ensure a full resolution of the flow in a DNS sense.

» For each time step of the DG scheme Afpg which
advances the DG solution UPC(1) to UPC(t + Ar), the
exact fluxes Fex(u(?));; are computed on integration
points (i, j) of the faces dQrace (With face = 1...6
for sides of a hexahedral elements) of an analysis
cell Q. These exact fluxes are then integrated over
their associated face Qg ce to give one flux vector
Fex(u) per side.

* Parallel to this, the DG solution UP(r) in each
analysis cell and its neighbours is projected onto its
mean value U} V(1) by

fQ UPS(nd0 = U (110l (BA)

where the quadrature of the DG polynomial is
achieved by a sufficiently high order Gauss integra-
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tion rule. Fig. 28 shows a DG solution and its FV pro-
jection in the left and middle plane at a given time ¢,
while the right plot of Fig. 28 shows the FV O(2) so-
lution of an independent Finite Volume computation
on the same grid at this time for reference.

¢ From these cell mean values U 5 V(#), a linear recon-
struction operator computes (), which is then used
to compute all the model input parameters in (3.6)
and (3.7).

* In a final step, the flux correction is computed from
Fex(u(?)) and Fepq(i4(2)) and stored together with
the model input parameters in a file.

e The DG scheme then updates the DNS solution to
U }’?G(t + At), and the cycle repeats.
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