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SUMMARY

The rich mammalian cellular circadian output affects
thousands of genes in many cell types and has been
the subject of genome-wide transcriptome and
proteome studies. The results have been enigmatic
because transcript peak abundances do not always
follow the peaks of gene-expression activity in
time. We posited that circadian degradation of
mRNAs and proteins plays a pivotal role in setting
their peak times. To establish guiding principles, we
derived a theoretical framework that fully describes
the amplitudes and phases of biomolecules with
circadian half-lives. We were able to explain the
circadian transcriptome and proteome studies with
the same unifying theory, including cases in which
transcripts or proteins appeared before the onset
of increased production rates. Furthermore, we esti-
mate that 30% of the circadian transcripts in mouse
liver and Drosophila heads are affected by rhythmic
posttranscriptional regulation.
INTRODUCTION

Circadian rhythms in mammalian cells control a wide range of

cellular processes. These rhythms arise in genetic feedback

loops, which consist of clock genes that code for clock proteins.

Some of the clock proteins are transcription factors and tran-

scriptional coregulators that repress or activate their own

expression or that of other clock proteins, forming a small

network of feedback loops that is viewed as the core cellular

circadian clock (Zhang and Kay, 2010). A rich circadian output

is thought to arise partly through circadian transcriptional regu-

lation by clock transcription factors and coregulators, whose

target genes are termed clock-controlled genes (Doherty and

Kay, 2010; Asher and Schibler, 2011). Even more genes are

rhythmically expressed due to external circadian signaling to

the cell (e.g., circadian hormonal signaling), which affects

many cell types (Asher and Schibler, 2011). In mouse liver, for

instance, there are circadian rhythms in the mRNA expression

of thousands of genes (Hughes et al., 2009), and the charting

of how these rhythms orchestrate diverse cellular processes is

an active research area. For example, many aspects of meta-
C

bolism (Asher and Schibler, 2011; Bass and Takahashi, 2010),

as well as the cell cycle (Matsuo et al., 2003), are regulated by

the circadian clock.

While themechanismof the core circadian clock is understood

in some detail, the processes that govern the circadian output

are not as well characterized. However, it is clear that both tran-

scriptional and posttranscriptional mechanisms are at work (Ko-

jima et al., 2011; Doherty and Kay, 2012). Investigations into

the circadian regulation of intracellular processes are challenged

by the difficulty of separating transcriptional effects from post-

transcriptional regulation. Rhythmic mRNA abundance may be

caused by rhythmic transcriptional activity, rhythmic regulation

ofmRNA half-life, or a combination of these processes. Similarly,

rhythmic protein abundance may be caused by both rhythmic

translational activity (often due to rhythmic mRNA abundance)

and rhythmic protein half-life. It is not understood how a combi-

nation of rhythmic production and degradation affects the oscil-

lation amplitude and phase (peak time) in the abundance of a

regulated biomolecule, challenging the interpretation of experi-

mental results.

There aremany examples of circadian rhythmicity in regulators

of mRNA and protein stability. These include rhythmic poly(A) tail

lengths (Robinson et al., 1988; Baggs and Green, 2003; Kojima

et al., 2012), abundances of RNA-binding proteins (Liu et al.,

2013; Morf et al., 2012; Woo et al., 2010), and miRNAs (Vollmers

et al., 2012). The activity of autophagy, one of the major protein

degradation pathways in the cell, is circadian in mouse liver

(Ma et al., 2011). Moreover, strong evidence for posttranslational

circadian regulation comes fromproteome-wide studies of circa-

dian rhythms in protein abundances (Mauvoisin et al., 2014;

Reddy et al., 2006; Robles et al., 2014). The circadian phases

of rhythmic proteins are often distinct from thephases of the tran-

scripts; for example, protein abundance can peak a few hours

beforemRNA abundance (Reddy et al., 2006). This cannot be ex-

plained without additional mechanisms, as biochemical kinetics

dictates that the abundance of a rhythmically producedmolecule

with a constant half-life will peak between 0 and 6 hr after the

peak in production rate. Recent high-throughput studies of the

circadian transcriptome in mouse liver and Drosophila heads

raised similar questions (Koike et al., 2012; Le Martelot et al.,

2012; Menet et al., 2012; Rodriguez et al., 2013), since the phase

of circadian transcriptional activity is often a poor predictor of the

phase of the mature transcript abundance.

In this report, we show that such observations can be

completely explained by assuming rhythmic degradation in
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Figure 1. Phase Vectors Reveal Phase and Amplitude Relationships

(A) Model. A molecule x is produced and degraded with rate coefficients that

periodically change with the circadian frequency u = 2p/24 hr�1. In the model

equation, the production rate coefficient is marked in green and the degra-

dation rate coefficient is in red. k and g are the mean rate coefficients, which

experience a time modulation described by cosine-shaped functions with

relative (percentage) amplitudes Aprod and Adeg (values between 0 and 1), and

the phases 4prod and 4deg. Here, the phases are represented in circadian time

(CT) but have the unit radians in all equations. The abundance of x is described

by its magnitude (mean) Mx, relative amplitude Ax, and phase 4x.

(B) The analytical approximation (Experimental Procedures) describes Ax and

4x as a vector difference (see Equation 1): Aprod, 4prod and Adeg, 4deg are

represented by the lengths and angles of vectors in the circadian plane. The

vector difference between production and degradation is formed to obtain a

production-degradation vector (left circle). This vector is rotated by a half-life-

dependent phase lag (rounded arrow and Equation 1) and scaled by a half-life-

dependent factor (Equation 2). The resulting vector represents the phase and,

save for a correction factor C, the relative amplitude of x (right circle, see

Experimental Procedures).

(C) Range for the phase 4x given a certain production phase (green arrow),

depending on the ranges of the relative amplitudes. The actual phase within

this range also depends on the mean half-life and degradation phase.

See also Figure S1.
addition to rhythmic production. To this end, we derived a unify-

ing theoretical framework and developedmethods that provide a

comprehensive understanding of the dynamics of rhythmically

produced and rhythmically degraded molecules of any kind,
742 Cell Reports 9, 741–751, October 23, 2014 ª2014 The Authors
such as mRNAs and proteins. We show that the mean half-life

of a molecule is critical for significant rhythmicity and derive

analytical expressions for the amplitude, phase, and magnitude

in the abundance of a rhythmically degraded molecule. We

developed a freely available accompanying software package

designed to detect posttranscriptional rhythmic regulation in

genome-wide data sets. We then applied our tools to the

genome-wide data produced in studies by Menet et al. (2012)

and Rodriguez et al. (2013), and were able to quantify the extent

of rhythmic posttranscriptional regulation. In particular, we show

that rhythmic half-lives provide a possible explanation for the

observed large phase differences between transcriptional activ-

ity and mature mRNAs (Doherty and Kay, 2012), and between

mRNAs and proteins (Reddy et al., 2006), and present evidence

to support this notion.
RESULTS

The Phase Can Vary Arbitrarily if Production and
Degradation Are Rhythmic
If a molecule is rhythmically produced but degraded with a con-

stant degradation rate, it is intuitively clear that the abundance of

the molecule will have a later phase than the production rate.

However, if degradation is also rhythmic, the phase and ampli-

tude of the molecule will depend on the phases, amplitudes,

and magnitudes (average rate coefficients) of both produc-

tion and degradation. Intuition can be misled by this complexity,

and thus a quantitative formulation and analysis are needed. We

analyzed a simple mathematical model (Figures 1A and S1A;

Experimental Procedures) that describes the temporal concen-

tration profile of a given biomolecule being produced and

degraded with circadian rates, where the production and

degradation rate coefficients are modeled as time-dependent,

cosine-shaped functions (Figure 1A). We derived simple and

accurate expressions for phases, amplitudes, and magnitudes

by substituting a truncated Fourier series into x(t) and neglecting

small terms (Supplemental Experimental Procedures). Then, we

approximated the abundance x(t) by a cosine-shaped function

(Figure 1A). Moreover, we found an intuitive vector representa-

tion for the phase relationships (Figure 1B): rhythmic production,

degradation, and abundance of the molecule are represented by

a vector in the circadian phase plane, where the angle of the vec-

tor represents the phase and its length represents the amplitude.

We found that the phase of the molecule is determined by the

vector difference of the phases and amplitudes of production

and degradation rate coefficients (Figure 1B, left panel, ‘‘produc-

tion-degradation vector’’). Furthermore, we found that the phase

obtained by this vector difference must be shifted by a term

depending on the average half-life to obtain a good approxima-

tion of the phase of the molecule (Figure 1B, right panel). In

mathematical terms, this leads to the following equation (see

Supplemental Experimental Procedures as well)

4xz arg
�
Aprode

i4prod � Adege
i4deg

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
productiondegradation vector phase

+ arctan

�
u

g

�
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

phase shift determined by mean halflife

;

(Equation 1)
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Figure 2. Rhythmic Degradation Shapes Amplitude and Magnitude

(A–C) Solid lines are numerical solutions of the model (Figure 1A) and dashed lines are calculated from the analytical approximations unless otherwise stated.

Parameter values (if applicable): Aprod = 0.25, Adeg = 0.15, k = 1 hr�1, t1/2 = 2 hr (Equations 1–3).

(A) Dependence of relative amplitudes and phases on the half-life. The dotted line in the inset indicates a postulated threshold for the significance of oscillations.

(B) The relative amplitude increases with the phase difference and with production and degradation amplitudes, but is bounded by a value smaller than Aprod +

Adeg. The gray line indicates Aprod.

(C) MagnitudeMx compared with the corresponding value at constant degradation. The color key is the same as in (A). Time courses are scaled by 100/(k3 24 hr)

to show% of daily production. The gray solid line indicates points without magnitude amplification (Mx = k/g). Dashed gray lines in time courses are numerically

calculated magnitudes.

(D) Absolute amplitude MxAx compared with corresponding value at constant degradation. Dashed lines show only the amplification factor

2ðg2 +u2Þ=ð2ðg2 +u2Þ � g2A2
degÞ (see Experimental Procedures). In the numerical solutions, the input amplitude was kept constant, jAprode

i4prod � Adege
i4degj =

0.25, by choosing 4prod = 4deg.

See also Figure S2.
where all symbols are as described in Figure 1. Note that the

mean degradation rate coefficient g is related to the average

half-life by t1/2 = (ln 2)/g. When both degradation and produc-

tion are rhythmic, their relative amplitudes as well as their

phases determine the production-degradation vector and

therefore the phase of a molecule. In particular, if the phases

of degradation and production are similar, small changes in

the relative production and degradation amplitudes can cause

dramatic changes in phase of up to ±12 hr. We found a simple

general formula that describes this sensitivity of the phase to

changes in the relative amplitudes (Supplemental Results;

Figure S1B).

Another conclusion that can be drawn from Equation 1 is that

phases that occur 6–12 hr earlier than the production phase can

only be reached if the degradation rhythmdominates (Figure 1C).

For example, if translation follows the mRNA phase, a protein

appearing 6–12 hr before the mRNA would strongly suggest

rhythmic degradation. Such mRNA-protein phase relationships

have been observed in mouse liver (Reddy et al., 2006). When

only the degradation rate coefficient is rhythmic, the phase of

the molecule is fully confined to the phase interval between 12

and 6 hr earlier than the phase of the degradation rate coefficient,

and the degradation rate coefficient amplitude will have no effect

on the phase of the molecule.
C

Long Mean Half-Lives Imply Vanishing Amplitudes
When the mean half-life is long, oscillations are always lost. This

is well known in the case of constant degradation, but we found

that it still holds true if the half-life is rhythmic, no matter how

wildly it oscillates around its mean, and independently of all

other parameters. This result can be obtained directly from

the structure of the simple model by so-called scaling analysis,

independently of the approximated solutions (Supplemental

Results), as illustrated in Figure 2A. The relative amplitude de-

creases rapidly for mean half-lives longer than �1 hr, regard-

less of the degradation and production phases. The phase of

the rhythmically degraded molecule is shifted up to �6 hr by

long mean half-lives. However, such long phase lags always

coincide with vanishing amplitudes, so that in practice, only

phase shifts <6 hr can be realized by increasing the mean

half-life.

It is often difficult to detect small amplitudes in practice, since

they drown in both technical and biological noise, and can also

hardly be expected to have important biological functions.

Based on the model, we estimated maximal and typical mean

half-lives that would permit generation of more readily observ-

able relative amplitudes larger than 0.1 (Figure 1B, inset). We

found that only molecules with mean half-lives shorter than

50 hr are candidates (Figure S2A). A more marked relative
ell Reports 9, 741–751, October 23, 2014 ª2014 The Authors 743



amplitude of 0.25 can only be achieved with a mean half-life

of <10 hr (Figure S2A).

These limits can be compared with recent transcriptome- and

proteome-scale analyses indicating mean mRNA half-lives be-

tween 6 min and 50 hr and mean protein half-lives between

<1 hr and 1,000 hr (Friedel et al., 2009; Schwanhäusser et al.,

2011; Eden et al., 2011). Thus, most transcripts have the poten-

tial for circadian rhythmicity, whereas the half-lives of proteins

are much more restrictive. We analyzed the proteome-wide

data of Schwanhäusser et al. (2011) and found that 55% of the

measured proteins had half-lives of <50 hr, and only 7% had

half-lives of <10 hr (Figure S2B). In general, we expect that the

50 hr criterion can be used in future research as a first test to

rule out circadian abundance of a molecule before more labo-

rious experimental tests are applied (Supplemental Results;

Figure S2C).

Rhythmic Degradation Can Enhance Relative
Amplitudes, Magnitudes, and Absolute Amplitudes
From the analysis above, it follows that amplitudes typically

decrease in the course of biochemical reactions, due to the

long half-lives of many molecular species. Increasing relative

amplitudes is difficult and requires specific regulatory designs.

For example, transcriptional coactivation of a transcript by a

second circadian transcription factor binding to a given pro-

moter site does not alter the relative amplitude. Doubling a

sine wave doubles its magnitude as well as its absolute ampli-

tude, and its relative amplitude remains constant. Thus, a central

question is whether rhythmic degradation could boost the rela-

tive amplitude of a molecule.

The vector representation (Figure 1B) suggests that we can

find a simple expression for the relative amplitude of the mole-

cule, similar to the phase equation. This is the case, save for a

correction factor C (see Experimental Procedures as well):

Axz
��Aprode

i4prod � Adege
i4deg

��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
combined relative amplitude of
production and degradation

3
gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 +u2
p

� 1ffiffiffiffiffiffiffiffiffiffiffi
g2 +u2

p C|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
amplitude reduction
determined by mean halflife

:

(Equation 2)

Figure 2B shows the consequences of Equation 2: rhythmic

degradation enhances the relative amplitude if the degradation

phase falls between 6 and 12 hr before or after the production

phase. A maximal amplitude boost occurs if production and

degradation are in antiphase.

In addition to phase and amplitude, the mean abundance

(magnitudeMx) is also an important property of a circadian mole-

cule. Rhythmic production does not change the magnitude, i.e.,

Mx = k/g as for constant production and degradation (Experi-

mental Procedures). Surprisingly, we found that rhythmic degra-

dation does change the magnitude (Figure 2C), which is evident

in a magnitude modulation factor arising in our approximation:

Mxz
k

g|{z}
nonoscillatory mean

3
2ðg2 +u2 � CÞ

2ðg2 +u2Þ � g2A2
deg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

modulation factor

: (Equation 3)
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Here, C is the same correction term as in Equation 2 (Experi-

mental Procedures). Thus, solely an increase of the oscillation

amplitude of the half-life can result in an increase of the magni-

tude (switch from ‘‘a’’ to ‘‘b’’ in Figure 2C). We term this phenom-

enon the magnitude effect of rhythmic degradation.

Could this effect be exploited to boost circadian rhythms in

transcripts or proteins? In general, significant relative amplitudes

can only be obtained if the average half-lives are small (see Fig-

ure 2A), in which case also the magnitude goes down. If the

magnitude is too small, even rhythms with large relative ampli-

tudes are difficult to detect or exploit due to low-number effects

and the resulting transcriptional noise (Friedman et al., 2006;

Thattai and vanOudenaarden, 2001). This trade-off between suf-

ficient magnitude and amplitude is reflected in the absolute

amplitude MxAx, which measures the difference between peak

and trough in the absolute abundance, i.e., in the number of

molecules of a certain species.

We found that rhythmic degradation in itself increases abso-

lute amplitudes. A given degradation amplitude causes a larger

absolute amplitude in abundance than the same production

amplitude would (Figure 2D). We derived a simple formula that

shows that this effect only depends on the average half-life

(Experimental Procedures). The effect is relevant since in prac-

tice, rhythmic signals can be best distinguished from noise if

both the absolute and relative amplitudes are high. Thus, the

question arises as to whether the relative amplitude can be

increased without a considerable loss in absolute amplitude.

We found that this is possible if the degradation is rhythmic (Fig-

ure S2D). In this case, the absolute amplitude is robust to

changes in the half-life from 100 hr down to 3 hr. In this range,

the relative amplitude is increased by a factor of 25 (Figure 2A).

Notably, this value (t1/2 z3 hr) is close to a lower bound of

measured mRNA and protein half-lives (Schwanhäusser et al.,

2011; Eden et al., 2011; see Figure S1B). If only production is

rhythmic, the absolute amplitude is only robust to changes in

the half-life down to 10 hr (Figure S2D), so that the relative ampli-

tude can only be enhanced by a factor of 10 by a reduction in the

half-life (see Figure 2A).

In summary, the present analysis reveals a largely increased

plasticity induced by rhythmic production and degradation

compared with rhythmic production alone. Rhythmic degrada-

tion not only dramatically increases the range of possible phases

of the molecule (Figure 1C) but also enhances the average abun-

dances and both the relative and absolute amplitudes (Figures

2B–2D).

Rhythmic mRNA Degradation Rates Correlate with
Poly(A) Tail Lengths and Interactions with Cold-Induced
RNA-Binding Proteins
The mouse liver has a large circadian transcriptome, which is

often thought to be the result of circadian transcriptional activ-

ities (Hughes et al., 2009). Assuming constant mRNA half-lives,

transcript abundances should then be expected to have phases

slightly later than the corresponding transcriptional activities,

and also to have smaller relative amplitudes. However, this is

partly contradicted by genome-wide studies in which transcrip-

tional activities and mRNA abundances were both measured in

mouse liver (Koike et al., 2012; Le Martelot et al., 2012; Menet



et al., 2012). These studies revealed a large group of transcripts

with anomalous phase relationships between transcriptional

activity and mRNA abundance. In many cases, mRNA abun-

dances appear to peak before transcriptional activities, or tran-

scriptional activities do not seem to be rhythmic at all, with

mRNAs still exhibiting clear rhythms. It was concluded from

these studies that this suggests widespread circadian posttran-

scriptional regulation.

We set out to precisely quantify the extent to which the circa-

dian transcriptome is influenced by rhythmic posttranscrip-

tional processes. To do this, we started with the genome-wide

paired transcription and mRNA abundance data from Menet

et al. (2012), which provide a particularly clean separation be-

tween transcriptional activity, as assayed with nascent RNA

sequencing (RNA-seq) and mature mRNA abundance (assayed

with poly(A)+ RNA-seq). Based on the model shown in Figure 1A,

we developed a chi-square test that detects disagreements be-

tween the data and the standard model of rhythmic transcription

paired with constant mRNA half-lives (see Figure 3A; Experi-

mental Procedures, and the accompanying freely available R

package ‘‘patest’’ [File S2]). In particular, the test avoids detect-

ing disagreements solely due to the higher level of noise in tran-

scriptional activities (Figure 3B), which often causes standard al-

gorithms to classify transcriptional activities as arrhythmic. For

average mRNA half-lives and their standard errors, we used

data from Friedel et al. (2009) and Schwanhäusser et al. (2011)

(Supplemental Experimental Procedures; Figures S3A–3E). We

obtained 3,027 genes for which transcriptional activity, mature

mRNA abundance, and mRNA half-life data are available.

Using the accompanying R package ‘‘HarmonicRegression’’

(File S1), we estimated the relative amplitudes, phases, and error

ellipses for nascent mRNA transcription and mature mRNA

abundances, and found 1,291 mouse liver transcripts that

were rhythmic in nascent and/or mature mRNA abundances,

with a false discovery rate (FDR) of 25%.

We confirmed sinking relative amplitudes with longer mRNA

half-lives (Experimental Procedures; Figure S3D). Our chi-

square test then detected hundreds of anomalous rhythmic

transcript abundances that cannot be explained by rhythmic

transcription paired with constant half-lives, implying wide-

spread posttranscriptional regulation such as rhythmic half-lives.

A lower limit for the proportion of transcripts subject to rhythmic

posttranscriptional control can be derived directly from the p

values (Benjamini and Hochberg, 2000), leading to an estimate

that at least 30% of rhythmic mouse liver transcripts are affected

by rhythmic posttranscriptional regulation. Specifically, fixing the

FDR at 25%, our chi-square test found 493 transcripts under

rhythmic posttranscriptional regulation (Figure 3C; Table S1).

Three representative examples are shown in Figure 3D, in which

transcriptional activities peak either after mature mRNA abun-

dances (for the genes Eps8l2 and Insig2) or in antiphase (for

the gene Rbm3, whose protein we return to below).

The discrepancies between measured transcriptional activ-

ities and mature mRNA abundances detected by our method

could be explained by rhythmic half-lives. We computed the

phases and relative amplitudes of the rhythmic degradation

required to fully explain the observed nascent and mature

mRNA time courses, respectively (Experimental Procedures,
C

Equation 6; also implemented in the accompanying R package

‘‘patest’’ [File S2]), and obtained a phase distribution of rhythmic

degradation with a peak at around ZT6, in the middle of the

inactivity phase (Figure S3F).

If rhythmic degradation indeed plays a role in the mRNA abun-

dance rhythms of the transcripts detected by our test, there

should be an overrepresentation of circadian rhythms in the

molecular features of mRNA that determine half-lives in this

group of transcripts compared with circadian transcripts in gen-

eral. One such feature is the length of the 30 poly(A) tail, which is

regulated by deadenylases (Garneau et al., 2007), including the

circadian deadenylase nocturnin (Stubblefield et al., 2012). A

short poly(A) tail length generally increases degradation rates.

To investigate whether the poly(A) tail lengths of the transcripts

detected by our method tend to be rhythmic, we analyzed data

fromKojima et al. (2012). In that study, abundances of transcripts

with short (60–250 nt) and long (<60 nt) poly(A) tails in mouse liver

were assayed at different time points genome-wide.

Our chi-square test detected 12 rhythmic transcripts that

turned out to also have rhythmic poly(A) tail lengths (Table S1).

For these transcripts, phases of the predicted rhythmic degrada-

tion rates agreed well with measured times of short poly(A) tails

(p = 0.036, circular correlation test; Figure 3E). The transcripts

detected by our test were also generally strongly enriched for

rhythmic poly(A) tail lengths (p = 0.015, Fisher’s exact test; Fig-

ure 3F). Hence, mature mRNA rhythms that are not explained

by rhythmic transcription rates can be partly explained by rhyth-

mic mRNA half-lives regulated by the length of the poly(A) tail

(see also discussion in Supplemental Results).

mRNA half-lives may be regulated by circadian RNA-binding

proteins, such as the related cold-induced mRNA-binding pro-

teins CIRBP and RBM3 (Morf et al., 2012; Liu et al., 2013). We

compiled CIRBP–mRNA and RBM3–mRNA interaction data

from these two studies and found a clear enrichment for CIRBP-

and RBM3-binding transcripts among those detected by our

chi-square test (Figure 3F). Thus, our chi-square test also likely

detects many transcripts with rhythmic half-lives regulated by

cold-induced mRNA-binding proteins.

We also tested for enrichment of targets of circadian miRNAs

(Vollmers et al., 2012) as annotated in the miRTarBase database

(Hsu et al., 2014), but found no significant enrichment. Although

this may partly be due to incompleteness and false positives in

themiRNA target annotation, it is consistent with results showing

that the kinetics of miRNA–target interactions generally are too

slow to play a role in circadian regulation of half-lives (Hausser

et al., 2013).

The same nascent-seq and poly(A)+ RNA-seq protocols were

also applied in a study of Drosophila heads (Rodriguez et al.,

2013), with results similar to those obtained in the mouse liver

study (Kojima et al., 2012), i.e., nascent mRNA rhythms ap-

peared to be noisier and a group of rhythmic transcripts showed

weak or no rhythms in their nascent mRNA levels. We reanalyzed

these data and found 537 transcripts with diurnal rhythms in

either nascent ormaturemRNA (FDR= 25%; Table S2). Together

with genome-wide data for fly mRNA half-lives from Thomsen

et al. (2010), we applied our chi-square test with an FDR of

0.25 and detected 109 transcripts. Since the half-life estimates

are much more uncertain in this case, we used a conservative
ell Reports 9, 741–751, October 23, 2014 ª2014 The Authors 745
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Figure 3. Rhythmic Degradation Explains and Unifies the Observed Phase Distributions of mRNA

(A) Illustration of the detection method. To detect transcripts affected by rhythmic posttranscriptional regulation, the relative amplitudes and phases of nascent

(green, reflecting transcript production, ‘‘p’’) and mature mRNA abundances were estimated together with error ellipses. Mature mRNA abundances were

adjusted for average transcript half-lives to yield the production-degradation (pd) vector and its error ellipse, which becomes oblong due to uncertainties in half-

life measurements (Supplemental Experimental Procedures). This is the phase and relative amplitude of transcriptional activity, assuming a constant transcript

half-life (orange). The normalized difference between the p and pd vectors is asymptotically chi-square distributed (Supplemental Experimental Procedures),

enabling statistical testing for rhythmic posttranscriptional regulation. As a rule of thumb, statistical significance requires nonoverlapping orange and green error

ellipses.

(B) With previous methods, noisy transcriptional activities may cause false positives. For the Camk2b transcript, standard algorithms would result in a rhythmic

call for the mature mRNA but an arrhythmic call for the transcriptional activity, due to the noisy nature of the latter (large green error ellipse). Still, there is no real

evidence for rhythmic posttranscriptional regulation in these data (orange and green ellipses overlap). Transcriptome-wide, themedian SD of the residual after the

fit (noise level) was 21% of the mean for nascent mRNA, compared with 10% for mature mRNA.

(C) Extent of rhythmic posttranscriptional regulation in mouse liver and Drosophila heads.

(D) Three transcripts under rhythmic posttranscriptional regulation. Top: phases, relative amplitudes, and error ellipses for nascent RNA (green) and poly(A)+

mRNA (gray). The latter together with half-lives and their estimate variances yield the relative amplitudes and phases of the pd vector (orange). The transcriptional

activities are nascent RNA abundances (solid curves) from Menet et al. (2012) and the polymerase II gene body occupancy measurements (dashed curves,

double plotted) were obtained from Le Martelot et al. (2012). The values from Menet et al. (2012), rather than those from Le Martelot et al. (2012), were used

throughout the present study due to the higher number of samples, although the agreement between the studies is excellent (Figure S3F). The ratios of short-to-

long poly(A) tail lengths are fromKojima et al. (2012). Gray-shaded areas are the predicted phase ± 2 SD of the degradation rate based on the differences between

the pd and p vectors (green and orange, upper panel).

(E) Predicted rhythms in degradation rates agree with measured rhythms in poly(A) tail lengths. Error bars represent approximatively ± 2 SD calculated from the

error ellipses for the differences between the pd and p vectors, and from the time series of poly(A) tail lengths, respectively.

(F) Enrichment of rhythmic posttranscriptional regulators among detected transcripts. Among the 1,291 transcripts with circadian rhythms in transcriptional

activities and/or mature mRNA abundances, 18 have rhythmic poly(A) tail lengths (Kojima et al., 2012), 72 bind CIRBP according to Morf et al. (2012), 58 bind

CIRBP according to Liu et al. (2013), and 42 bind RBM3 (Liu et al., 2013). In each case, control represents the rest of the 1,291 circadian transcripts. Fractions

represent transcripts detected by our chi-square test (e.g., 12 out of the 18 transcripts with rhythmic poly(A) tail lengthswere recovered by our test, corresponding

to a fraction of 0.66); p values are given for Fisher’s exact test.
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Figure 4. The Nonuniform Phase Distribution of Protein Degradation Explains the Nonuniform Phase Distribution of the Proteome

(A) Model scheme: proteins are produced by rhythmic mRNA and degraded by rhythmic E3 ligases.

(B) Analysis of circadian genes and ubiquitin ligase genes from Hughes et al. (2009). More than one-third of expressed E3 ligase genes are circadian (p < 0.05,

Benjamini-Hochberg-corrected p values). The phases of circadian E3 ligase transcripts and the full circadian transcriptome, excluding E3 ligases (histograms),

are distributed differently (p < 0.01, Watson’s two-sample test) and can be described by a von Mises distribution and a circular uniform distribution, respectively

(colored densities).

(C) Prediction of the phase distribution of the circadian proteome (Experimental Procedures). Parameter values: Aprod = Adeg = 0.24, t1/2 = 2 hr.

(D and E) Parameter dependencies of the predicted phase distribution. Top: circular average and SD. Error bars were computed by sampling normal distributions

around the values for Aprod, Adeg, and t1/2. Solid vertical lines indicate standard values used in (D), and dashed vertical lines indicate the modified values used in

simulations (bottom).

(F) Phase distribution of 49 liver proteins published by Reddy et al. (2006). All phase distributions (B, C, and F) are plotted with the same density scaling.

(G and H) Circadian gene expression and analysis of targets of the ubiquitin E3 ligase FBXO6. Fbxo6 is rhythmically translated (data in G were obtained from

Jouffe et al., 2013). Circadian proteins under rhythmic posttranslational regulation are enriched for FBXO6 substrates compared with other circadian proteins (H,

p = 0.02, Fisher’s exact test, n = 50) or with the rest of the proteome (p = 0.0014, n = 4470).

See also Figure S4.
estimate of their variances (see Supplemental Experimental Pro-

cedures) and could still estimate that at least 34% of the fly head

transcriptome is under rhythmic posttranscriptional control.

In summary, we were able to estimate a lower limit of diurnal

posttranscriptional regulation in mouse liver and Drosophila

heads: 30% and 34% of rhythmic transcripts, respectively. The

transcripts detected were enriched for measured rhythmic

regulators of transcript half-lives, and our model successfully

predicted measured phases of rhythmic transcript poly(A) tail

lengths.

Opposite Nonuniform Phase Distributions of E3 Ligases
and the Circadian Proteome
Many proteins are degraded via the ubiquitin-proteasome

pathway (Clague and Urbé, 2010). E3 ligases play an important

role in this pathway by binding specifically to proteins and then

ubiquitinating them. We asked whether E3 ligases are rhythmic,

and how such rhythmicity would shape the phase distribution of

the circadian proteome. An analysis of mouse liver transcripts

from Hughes et al. (2009) revealed that �35% of all expressed

E3 ligase transcripts show circadian rhythms in abundance.

Moreover, we found that they have a nonuniform phase distribu-

tion with a pronounced peak around CT6, and close to a circular

normal (or vonMises) distribution (Figures 4B and S4A). This is in

contrast to the phase distribution of the full circadian transcrip-

tome (p < 0.01, Watson’s two-sample test), which is much closer

to a uniform distribution.

Based on these findings and equipped with the theory derived

above (Figures 1A and 1B), we sought to predict the phase dis-
C

tribution of the circadian proteome. For this purpose, we fixed

amplitudes and average half-lives, and sampled the phases

from the estimated probability distributions in Figure 4B and

applied Equation 1 to infer the protein phase distribution (Fig-

ure 4C). E3 ligase activity phase is identified with the phase of

E3 ligase mRNA, which is justified by the common rapid autou-

biquitination of E3 ligases (de Bie and Ciechanover, 2011). In

contrast to the analysis of mRNA phases above, this sampling

procedure uses only the shape and peak of the phase distribu-

tions. Furthermore, it is less dependent on half-lives and ampli-

tudes, which are difficult to measure for proteins. This approach

was possible due to the characteristic shapes of the transcrip-

tome and E3 ligase phase distributions, and necessary because

E3 ligase-substrate relationships are not known at the proteome

scale.

The predicted phase distribution has a pronounced maximum

around CT20 and is well described by a von Mises distribution

(Figures 4C and S4B). The predicted peak around CT20 is a

consequence of the general properties of rhythmic half-lives

captured by our model (see Figure 1B). Since the production

rate (the transcriptome) has no preferred phase, the location of

the protein peak is entirely determined by properties of the

degradation rate coefficient. The protein peaks in antiphase to

the E3 ligases (see Figure 4B), modulated by a phase shift de-

pending on the average half-life. Longer half-lives shift the phase

distribution to later circadian times (Figure 4D), whereas the

phase dispersion is unchanged (Figure S4C). On the other

hand, a smaller degradation amplitude causes an increased

phase dispersion (Figure 4E) without changing the phase
ell Reports 9, 741–751, October 23, 2014 ª2014 The Authors 747



average (Figure S4D). In the physiologic range (t1/2 = 2 . 10 hr,

Adeg = 0.1 . 0.25; Figure S1B), the peak phase and the phase

dispersion vary by less than 3 hr (Figures 4D and 4E), which

shows that the predicted phase distribution is robust to uncer-

tainty in these parameters.

For comparison, we evaluated the data of Reddy et al. (2006),

which contain phase information for 49 liver proteins (Figure 4F).

The histogram of those phases peaks at CT18, which is similar to

our prediction. In the same study, Reddy et al. also analyzed

mRNA rhythms, and found that only six out of the 49 proteins

had rhythmic mRNAs, suggesting a strong role for rhythmic

degradation. While our manuscript was in review, two genome-

wide studies of the circadian proteome were published (Robles

et al., 2014; Mauvoisin et al., 2014). The overlap between those

two studies is only 14 proteins, and Reddy et al. (2006) measured

an almost completely different set of proteins (Figure S4E). How-

ever, the phase distributions of all three studies are similar and

are well described by our model (Figure S4F).

Our prediction for the protein phase distribution is based on

the hypothesis that the circadian onset of degradation by ubiqui-

tin E3 ligases has a marked influence on the protein phase.

Although the measured phases of protein abundance are in

good agreement with our theory (see above), direct experimental

evidence for this hypothesis is currently not available and difficult

to obtain. It would require a proteome-wide assessment in

mouse liver of circadian degradation induced by ubiquitin ligases

and their targets. Nevertheless, we could make specific predic-

tions for the E3 ligase FBXO6, the targets of which have been

charted in several cell types (Liu et al., 2012), and which is trans-

latedwith a strong circadian rhythm (Figure 4G).We analyzed the

largest circadian proteome data set to date (Mauvoisin et al.,

2014), whose translational rhythms have been measured under

identical conditions (Jouffe et al., 2013). Proteins whose 95%

confidence interval of translational rhythms could not explain

the 95% confidence interval for rhythms in abundance for any

possible half-life were considered to show a strong indication

of rhythmic posttranslational control (Supplemental Experi-

mental Procedures). Interestingly, such proteins were enriched

for FBXO6 targets (p = 0.02; Figures 4H and S4G; Table S3; Sup-

plemental Experimental Procedures). This provides support for

the notion that rhythmic E3 ligase abundances shape the phase

distribution of the circadian proteome.

DISCUSSION

Properties of the cellular circadian clock, such as feedback regu-

lation, robustness, and cellular synchronization, have been stud-

ied carefully and successfully. Quantitative models of different

complexity have been successfully used to elucidate mecha-

nistic properties of it (Hogenesch and Ueda, 2011). However, it

is still difficult to predict the consequences of circadian rhythms

for cell physiology. Our approach is to analyze very simple

models, also called network motifs or modules (Milo et al.,

2002; Lim et al., 2013; Westermark and Herzel, 2013), that can

be expected to be recurrent building blocks in cell biology.

Here, we analyzed an important circadian motif: rhythmic pro-

duction and degradation of a molecule. Our results complete

the so-called phase-vector model, which describes the circa-
748 Cell Reports 9, 741–751, October 23, 2014 ª2014 The Authors
dian output (Ukai-Tadenuma et al., 2011; Westermark and Her-

zel, 2013) but only considers rhythmic production rates. We

found simple analytical formulae that led to a straightforward

protocol for analyzing genome-wide data. By applying these

methods, we could show that rhythmic degradation alone is

sufficient to explain several experimental findings that seem

paradoxical if only rhythmic production is accounted for. Howev-

er, this does not preclude the notion that other mechanisms

could cause large delays between production and abundance

phases; in particular, for proteins, multistep posttranslational

modifications followed by degradation provide another possible

explanation.

Given our analysis, the occurrence of phase differences of

more than 6 hr between production (e.g., transcription) and the

produced molecule (e.g., an mRNA), or even the appearance

of the product before the producer (Reddy et al., 2006; Doherty

and Kay, 2012; Menet et al., 2012), is not surprising. For the case

of posttranscriptional circadian regulation of the mouse liver

transcriptome, we estimated conservatively that 30% of the

rhythmic transcriptome is affected. Our estimate is lower than

what was initially thought (Koike et al., 2012; Doherty and Kay,

2012). The initial higher estimate could partly be ascribed to

higher experimental noise levels in assays of transcriptional

activity, an effect that is properly taken into account by the sta-

tistical test we developed and employed here.

Our analysis predicts a phase enrichment in the evening

(around CT18) for circadian proteins. This is because many E3

ligases are rhythmic with expression phases that are unusually

enriched for the morning hours. This prediction corresponds

well with measured phases of the circadian proteome, which

indeed are enriched for evening hours (Reddy et al., 2006).

Notably, autophagy, another process that contributes to protein

degradation (Clague and Urbé, 2010), is also strongly circadian

in mouse liver and peaks around CT6–CT9 (Ma et al., 2011),

similar to what was observed for the E3 ligases. Thus, rhythmic

E3 ligases and autophagy most likely play a crucial role in

shaping the phase distribution of the proteome, which should

be addressed in further research. We caution that we do not

expect, in general, a given degradation phase to be identical to

the phase of one particular E3 ligase or RNA-binding protein.

Just as multiple circadian transcription factors combine to pro-

duce an effective transcription phase (Ukai-Tadenuma et al.,

2011), multiple circadian RNA-binding proteins, E3 ligases (Yin

et al., 2010; Yoo et al., 2013), and other factors that contribute

to poly(A) tail length regulation or protein degradation likely

combine to produce an effective degradation phase.

Our model is general and can be applied to a variety of

biochemical motifs, such as phosphorylation-dephosphoryla-

tion cycles. One example is the phosphorylation state of the

response regulator RpaA in the cyanobacterium Synechococcus

elongatus: maximal phosphorylation of RpaA is reached 4 hr

before the maximal activity of its kinase SasA (Gutu and

O’Shea, 2013). Our phase-vector model (Figure 1) then predicts

rhythmic dephosphorylation with a maximal rate 4 hr after the

maximal phosphorylation of RpA, which was indeed measured

experimentally (Gutu and O’Shea, 2013).

We found that a low average half-life (typically <10 hr; see

Figures 1 and S2A) is absolutely necessary for oscillations, no



matter how strongly this half-life oscillates. A protein with a half-

life oscillating wildly between 10 min and 500 hr in a circadian

period will still appear virtually constant in abundance, since

the average half-life is �250 hr. A side effect of short half-lives

is that they imply lowmean abundances. These can be compen-

sated for by high mean synthesis rates, but this has an additional

energy cost. The magnitude effect (Figure 2) might provide an

alternative to increased amplitudes. We found that rhythmic

half-lives in themselves increase mean abundances without an

extra bioenergetic cost. Since circadian rhythms in mammals

might dampen in some peripheral tissues as animals age (Yama-

zaki et al., 2002), loss of rhythmic degradation may contribute to

lower abundances of proteins, such as in muscle atrophy (Vinci-

guerra et al., 2010).

Given a moderate half-life, the strongest oscillations can be

expected if production and degradation occur in antiphase,

i.e., if they have a phase difference of 12 hr in a 24 hr period.

Therefore, it can be advantageous if production and degradation

are regulated by different parts of the circadian core clock that

have different phases, emphasizing the need for a complex

and diverse machinery to generate circadian rhythms in

mammalian cells. This could help to elucidate the role of rhyth-

mic degradation in the core circadian clock. For instance, the

maximal activity of AMPK, which phosphorylates and destabi-

lizes the clock protein CRY1 in mouse liver, occurs roughly in

antiphase to the corresponding Cry1 mRNA abundance (Lamia

et al., 2009). Our method can be applied to predict the effects

of this (Figure 1): production and degradation in antiphase

should lead to a maximal amplitude boost and a minimal

phase-shift effect of AMPK. Consistently, smaller amplitudes

but similar phases were observed in AMPK knockout mutant

cells.

Many studies of biochemical processes focus on the produc-

tion properties of mRNAs and proteins, but it is well known that

degradation is equally important for the control of abundances

(Hargrove and Schmidt, 1989; Tippmann et al., 2012), and in

addition sets important properties such as the dynamic range

(Hargrove and Schmidt, 1989), synchronization of pathways

(Cookson et al., 2011), and the intensity of molecular noise (That-

tai and van Oudenaarden, 2001). We have shown in this report

that circadian control of degradation is on an equal footing

with circadian production, in terms of the effect on abundances.

Key properties needed for effective temporal compartmentaliza-

tion, such as evolutionary decisions regarding the best phase

and amplitude for a given process, can be realized by circadian

regulation of production and degradation alike.
EXPERIMENTAL PROCEDURES

Constant Degradation

In the case of constant degradation (i.e., Adeg = 0), the model equation (Fig-

ure1A) canbesolvedbystandardmethods (Supplemental Experimental Proce-

dures), and in steady statewe obtain a cosine curve x(t) =Mx(1 +Axcos(ut�4x))

with 4x = 4prod + arctan(u/g), Ax = Aprodg/(g
2 + u2),Mx = k/g.

Analytical Approximations

Wesubstituted the ansatz of a cosine-shaped function for themolecule x(t) into

the model equation (Figure 1A) and neglect terms proportional to AprodA
2
deg.

This is a good approximation for relative amplitudes smaller than 0.25, which
C

applies to almost all rhythmic transcripts evaluated by harmonic regression.

We then derive Equations 1 and 2, the accuracy of which we rigorously verified

numerically (Supplemental Experimental Procedures; Table S4). The ampli-

tude equation (Equation 2) contains a correction term, C = AprodAdegg/2 3

(usin(4deg � 4prod) + gcos(4deg � 4prod)), which ensures that Ax < Aprod +

Adeg even for high mean degradation rate coefficients (Figure 2B). The same

correction termC appears in themodulation factor for themagnitude (Equation

3), but it vanishes in the absolute amplitude, which can thus be written as a

linear function of product of the amplitude of the production-degradation

vector:

MxAxz
��Aprode

i4prod � Adege
i4deg

��|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
amplitude of productiondegradation vector

3
kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2 +u2
p 3

2ðg2 +u2Þ
2ðg2 +u2Þ � g2A2

deg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
amplitude amplification

:

(Equation 4)

We define absolute amplitude amplification by

½MxAx �Adeg>0

½MxAx�Adeg = 0

=
2ðg2 +u2Þ

2ðg2 +u2Þ � g2A2
deg|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

amplitude amplification

; (Equation 5)

where the amplitude of the production-degradation vector is kept constant

(see Figure 2D). The model can also be used to calculate the properties of

rhythmic degradation when the phases and relative amplitudes of themolecule

and its production rate, and the average half-life of the molecule are all given

(see Figure 1B and 3A, and Supplemental Experimental Procedures for numer-

ical verification):

4degzarg
�
Aprode

i4prod � Apde
i4pd

�
; (6)

where the relative amplitude Apd and phase 4pd of the production-degradation

vector are calculated using the half-life and the phase and relative amplitude of

the molecule, yielding Apd =Ax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 +u2

p
=g and 4pd = 4x � arctan(u/g). This

procedure is implemented in the accompanying R package ‘‘patest’’ (File

S2). Equation 6 is only valid if the correction term C is small, which is the

case for most observed amplitudes. Details of all the analytical calculations

are given in Supplemental Experimental Procedures.
Software and Data Analysis

Numerical computations for validation of the model and approximations were

performed using custom C programs. All data analysis and processing were

performed with R (R Development Core Team, 2011, http://www.r-project.

org) supported by the packages developed as part of the present work (‘‘Har-

monicRegression’’ [File S1] and ‘‘patest’’ [File S2], which are described in Sup-

plemental Experimental Procedures). Linearization and error propagation of

the abundance error ellipses together with variance estimates for half-lives

were used to derive the error ellipse for the production-degradation vector

(Figure 3A). The difference between the production-degradation and produc-

tion vectors approximately follows a 2D normal distribution with zero mean for

the model with constant degradation rate coefficient, which leads to a chi-

square test for this null model. The adaptive method of Benjamini and Hoch-

berg (2000) was used to estimate the proportion of non-null p values. The E3

ligase analysis was based on microarray data (Hughes et al., 2009) under

GEO accession number GSE11923. We identified circadian genes using

JTK_CYCLE (Hughes et al., 2010) for a period length of 24 hr, with a cutoff

of 0.05 for Benjamini-Hochberg-corrected p values, and estimated amplitudes

and phases using our ‘‘HarmonicRegression’’ package (File S1). E3 ligases

were selected by the Gene Ontology term GO:0004842 (molecular function:

ubiquitin-protein ligase activity) and its descendants.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Results, Supplemental

Experimental Procedures, four figures, and four tables and can be found

with this article online at http://dx.doi.org/10.1016/j.celrep.2014.09.021.
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