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Abstract

Do completely unpredictable events exist? Classical physics excludes fundamental randomness.
While quantum theory makes probabilistic predictions, this does not imply that nature is random,
as randomness should be certified without relying on the complete structure of the theory being
used. Bell tests approach the question from this perspective. However, they require prior perfect
randomness, falling into a circular reasoning. A Bell test that generates perfect random bits from
bits possessing high -but less than perfect- randomness has recently been obtained. Yet, the main
question remained open: does any initial randomness suffice to certify perfect randomness? We
answer this question affirmatively. We provide a Bell test that uses arbitrarily imperfect random bits
to produce bits that are, under the non-signalling principle assumption, perfectly random. This pro-
vides the first protocol attaining full randomness amplification. Our results have strong implications
onto the debate of whether there exist events that are fully random.

Understanding whether nature is deterministically pre-determined or there are intrinsically random
processes is a fundamental question that has attracted the interest of multiple thinkers, ranging from
philosophers and mathematicians to physicists or neuroscientists. Nowadays this question is also impor-
tant from a practical perspective, as random bits constitute a valuable resource for applications such as
cryptographic protocols, gambling, or the numerical simulation of physical and biological systems.

Classical physics is a deterministic theory. Perfect knowledge of the positions and velocities of a
system of classical particles at a given time, as well as of their interactions, allows one to predict their
future (and also past) behavior with total certainty [1]. Thus, any randomness observed in classical
systems is not intrinsic to the theory but just a manifestation of our imperfect description of the system.

The advent of quantum physics put into question this deterministic viewpoint, as there exist exper-
imental situations for which quantum theory gives predictions only in probabilistic terms, even if one
has a perfect description of the preparation and interactions of the system. A possible solution to this
classically counterintuitive fact was proposed in the early days of quantum physics: Quantum mechan-
ics had to be incomplete [2], and there should be a complete theory capable of providing deterministic
predictions for all conceivable experiments. There would thus be no room for intrinsic randomness, and
any apparent randomness would again be a consequence of our lack of control over hypothetical “hidden
variables" not contemplated by the quantum formalism.

Bell’s no-go theorem [3], however, implies that local hidden-variable theories are inconsistent with
quantum mechanics. Therefore, none of these could ever render a deterministic completion to the quan-
tum formalism. More precisely, all hidden-variable theories compatible with a local causal structure
predict that any correlations among space-like separated events satisfy a series of inequalities, known as
Bell inequalities. Bell inequalities, in turn, are violated by some correlations among quantum particles.
This form of correlations defines the phenomenon of quantum non-locality.

Now, it turns out that quantum non-locality does not necessarily imply the existence of fully unpre-
dictable processes in nature. The reasons behind this are subtle. First of all, unpredictable processes
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could be certified only if the no-signaling principle holds. This states that no instantaneous commu-
nication is possible, which imposes in turn a local causal structure on events, as in Einstein’s special
relativity. In fact, Bohm’s theory is both deterministic and able to reproduce all quantum predictions [4],
but it is incompatible with no-signaling at the level of the hidden variables. Thus, we assume throughout
the validity of the no-signaling principle. Yet, even within the no-signaling framework, it is still not
possible to infer the existence of fully random processes only from the mere observation of non-local
correlations. This is due to the fact that Bell tests require measurement settings chosen at random, but
the actual randomness in such choices can never be certified. The extremal example is given when the
settings are determined in advance. Then, any Bell violation can easily be explained in terms of deter-
ministic models. As a matter of fact, super-deterministic models, which postulate that all phenomena in
the universe, including our own mental processes, are fully pre-determined, are by definition impossible
to rule out. These considerations imply that the strongest result on the existence of randomness one can
hope for using quantum non-locality is stated by the following possibility: Given a source that produces
an arbitrarily small but non-zero amount of randomness, can one still certify the existence of completely
random processes?

In this work, we provide an affirmative answer to this question for a very general, and physically-
meaningful, set of randomness sources. This includes subsets of the well known Santha-Vazirani
sources [5] as particular cases. Besides the philosophical and physics-foundational implications, our
results provide a protocol for full randomness amplification using quantum non-locality. Randomness
amplification is an information-theoretic task whose goal is to use an input source of imperfectly random
bits to produce perfect random bits. Santha and Vazirani proved that randomness amplification is im-
possible using classical resources [5]. This is in a sense intuitive, in view of the absence of any intrinsic
randomness in classical physics. In the quantum regime, randomness amplification has been recently
studied by Colbeck and Renner [6]. They proved how input bits with very high initial randomness can
be mapped into arbitrarily pure random bits, and conjectured that randomness amplification should be
possible for any initial randomness [6]. Our results also solve this conjecture, as we show that quantum
non-locality can be exploited to attain full randomness amplification.

Before presenting our results, it is worth commenting on previous works on randomness in connec-
tion with quantum non-locality. In [7] it was shown how to bound the intrinsic randomness generated in a
Bell test. These bounds can be used for device-independent randomness expansion, following a proposal
by Colbeck [8], and to achieve a quadratic expansion of the amount of random bits (see [9, 10, 11, 12]
for further works on device-independent randomness expansion). Note however that, in randomness
expansion, one assumes instead, from the very beginning, the existence of an input seed of free random
bits, and the main goal is to expand this into a larger sequence. The figure of merit there is the ratio
between the length of the final and initial strings of free random bits. Finally, other recent works have
analyzed how a lack of randomness in the measurement choices affects a Bell test [13, 14, 15] and the
randomness generated in it [16].

Results

Definition of the scenario

From an information perspective, our goal is to construct a protocol for full randomness amplification
based on quantum non-locality. In randomness amplification, one aims at producing arbitrarily free
random bits from many uses of an input source S of imperfectly random bits.

A random bit b is said to be free if it is uncorrelated from any classical variables e generated outside
the future light-cone of b (of course, the bit b can be arbitrarily correlated with any event inside its
future light-cone). This requirement formalises the intuition that the only systems that may share some
correlation with b are the ones that are influenced by b. Note also that this definition of randomness
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Figure 1: Local causal structure and randomness amplification. A source S produces a sequence
x1, x2, . . . xj , . . . of imperfect random bits. The goal of randomness amplification is to produce a new
source Sf of perfect random bits, that is, to process the initial bits so as to get a final bit k fully uncor-
related (free) from all events outside the future light cone of all the bits xj produced by the source. In
other words k is free if it is uncorrelated from any event outside the lightcone shown in this figure. Any
such event can be modeled by a measurement z, with an outcome e, on some physical system. This
system may be under the control of an adversary Eve, interested in predicting the value of k.

is strictly stronger than the demand that b is uncorrelated with any classical variable generated in the
past light-cone of the process. This is crucial if the variable e and b are generated by measuring on a
correlated quantum system. In this case, even if both systems interacted somewhere in the past light-
cone of b, the variable e is not produced until the measurement is performed, possibly outside both past
and future light-cones. Furthermore, we say that a random bit is ε-free if any correlations with events
outside its future light-cone are bounded by ε, as explained in what follows.

Source S produces a sequence of bits x1, x2, . . . xj , . . ., with xj = 0 or 1 for all j, see Fig. 1,
which are ε-free. More precisely, each bit j contains some randomness, in the sense that the probability
P (xj |all other bits, e) that it takes a given value xj , conditioned on the values of all the other bits
produced by S, as well as the variable e, is such that

ε ≤ P (xj |all other bits, e) ≤ 1− ε (1)

for all j, where 0 < ε ≤ 1/2. Given our previous definition of ε-free bits, the variable e represents events
outside the future light-cone of all the xj’s. Free random bits correspond to ε = 1

2 ; while deterministic
ones to ε = 0. More precisely, when ε = 0 the bound (1) is trivial and no randomness can be certified.
We refer to S as an ε-source, and to any bit satisfying (1) as an ε-free bit.

The aim of randomness amplification is to generate, from arbitrarily many uses of S, a final source
Sf of εf arbitrarily close to 1/2. If this is possible, no cause e can be assigned to the bits produced
by Sf , which are then fully unpredictable. Note that, in our case, we require the final bits to be fully
uncorrelated from e. Efficiency issues, such as the rate of uses of S required per final bit generated by
Sf do not play any role in randomness amplification. The relevant figure of merit is just the quality,
measured by εf , of the final bits. Thus, without loss of generality, we restrict our analysis to the problem
of generating a single final free random bit k.

The randomness amplification protocols we consider exploit quantum non-locality. This idea was
introduced in [6], where a protocol was presented in which the source S is used to choose the mea-
surement settings by two distant observers, Alice and Bob, in a Bell test [17] involving two entangled
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quantum particles. The measurement outcome obtained by one of the observers, say Alice, in one of
the experimental runs (also chosen with S) defines the output random bit. Colbeck and Renner proved
how input bits with high randomness, of 0.442 < ε ≤ 0.5, can be mapped into arbitrarily free random
bits of εf → 1/2. In our case, the input ε-source S is used to choose the measurement settings in a
multipartite Bell test involving a number of observers that depends both on the input ε and the target εf .
After verifying that the expected Bell violation is obtained, the measurement outcomes are combined
to define the final bit k. For pedagogical reasons, we adopt a cryptographic perspective and assume the
worst-case scenario where all the devices we use may have been prepared by an adversary Eve equipped
with arbitrary non-signaling resources, possibly even supra-quantum ones. In the preparation, Eve may
have also had access to S and correlated the bits it produces with some physical system at her disposal,
represented by a black box in Fig. 1. Without loss of generality, we can assume that Eve can reveal the
value of e at any stage of the protocol by measuring this system. Full randomness amplification is then
equivalent to proving that Eve’s correlations with k can be made arbitrarily small.

An important comment is now in order that applies to all further discussion as well as the protocol
subsequently presented. For convenience we represent (see Figs. 1 and 2) S as a single source gener-
ating all the inputs and delivering them among the separated boxes without violating the no-signalling
principle. However, this is not the scenario in practice. Operationally, each user generates his input from
a local source in his lab. However, all these sources can be arbitrarily correlated the sources of the other
users with each other, without violating the bound on the correlations given by (1), and thus, can be seen
as a single ε-source S. With this understanding we proceed to discuss a single effective source in the
rest of the text.

Partial randomness from GHZ-type paradoxes

Bell tests for which quantum correlations achieve the maximal non-signaling violation, also known as
Greenberger-Horne-Zeilinger (GHZ)- type paradoxes [18], are necessary for full randomness amplifica-
tion. This is due to the fact that unless the maximal non-signaling violation is attained, for sufficiently
small ε, Eve may fake the observed correlations with classical deterministic resources. Nevertheless,
GHZ-type paradoxes are not sufficient. In fact, given any function of the measurement outcomes, it is al-
ways possible to find non-signaling correlations that (i) maximally violate the 3-party GHZ paradox[18]
but (ii) assign a deterministic value to that function of the measurement outcomes. This observation can
be checked for all unbiased functions mapping {0, 1}3 to {0, 1} (there are

(
8
4

)
of those) through a linear

program analogous to the one used in the proof of the Lemma below. As a simple example, consider
the particular function defined by the outcome bit of the first user. This can be fixed by using a tripartite
no-signaling probability distribution consisting on a deterministic distribution for the first party, and a
Popescu-Rohrlich (PR) box [19] for the second and third party.

For five parties though, the latter happens not to hold any longer. Consider now any correlations
attaining the maximal violation of the five-party Mermin inequality [?]. In each run of this Bell test,
measurements (inputs) x = (x1, . . . , x5) on five distant black boxes generate 5 outcomes (outputs)
a = (a1, . . . , a5), distributed according to a non-signaling conditional probability distribution P (a|x),
see Supplementary Note 1. Both inputs and outputs are bits, as they can take two possible values,
xi, ai ∈ {0, 1} with i = 1, . . . , 5.

The inequality can be written as ∑
a,x

I(a,x)P (a|x) ≥ 6 , (2)

with coefficients

I(a,x) = (a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5) δx∈X0 + (a1 ⊕ a2 ⊕ a3 ⊕ a4 ⊕ a5 ⊕ 1) δx∈X1 , (3)
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where

δx∈Xs =
{

1 if x ∈ Xs
0 if x /∈ Xs

,

X0 =
{
x
∣∣∣ 5∑

i=1

xi = 1
}
∪
{
x
∣∣∣ 5∑

i=1

xi = 5
}
, (4)

and

X1 =
{
x
∣∣∣ 5∑

i=1

xi = 3
}
. (5)

That is, only half of all possible combinations of inputs, namely those inX = X0∪X1, appear in the Bell
inequality. This inequality may be thought of as a non-local game in which the parties are required to
minimize the parity of their outputs when the sum of their inputs is 1 or 5 while minimizing the inverse
parity of the outputs when their inputs sum to 3. It turns out that the minimum achievable with classical
strategies is 6.

The maximal, non-signaling and algebraic, violation of the inequality corresponds to the situation in
which the left-hand side of (2) is zero. The key property of inequality (2) is that its maximal violation can
be attained by quantum correlations and furthermore, one can construct a function of the outcomes that
is not completely determined. Take the bit corresponding to the majority-vote function of the outcomes
of any subset of three out of the five observers, say the first three. This function is equal to zero if at least
two of the three bits are equal to zero, and equal to one otherwise. We show that Eve’s predictability on
this bit is at most 3/4. We state this result in the following Lemma:

Lemma. Let a five-party non-signaling conditional probability distribution P (a|x) in which inputs x =
(x1, . . . , x5) and outputs a = (a1, . . . , a5) are bits. Consider the bit maj(a) ∈ {0, 1} defined by the
majority-vote function of any subset consisting of three of the five measurement outcomes, say the first
three, a1, a2 and a3. Then, all non-signaling correlations attaining the maximal violation of the 5-party
Mermin inequality are such that the probability that maj(a) takes a given value, say 0, is bounded by

1/4 ≤ P (maj(a) = 0) ≤ 3/4. (6)

Proof. This result was obtained by solving a linear program. Therefore, the proof is numeric, but ex-
act. Formally, let P (a|x) be a 5-partite non-signaling probability distribution. For x = x0 ∈ X , we
performed the maximization,

Pmax = max
P

P (maj(a) = 0|x0)

subject to

I(a,x) · P (a|x) = 0

(7)

which yields the value Pmax = 3/4. Since the same result holds for P (maj(a) = 1|x0), we get the
bound 1/4 ≤ P (maj(a) = 0) ≤ 3/4.

As a further remark, note that a lower bound to Pmax can easily be obtained by noticing that one
can construct conditional probability distributions P (a|x) that maximally violate 5-partite Mermin in-
equality (2) for which at most one of the output bits (say a1) is deterministically fixed to either 0 or 1. If
the other two output bits (a2, a3) were to be completely random, the majority-vote of the three of them
maj(a1, a2, a3) could be guessed with a probability of 3/4. Our numerical results say that this turns out
to be an optimal strategy.

The previous lemma strongly suggests that, given an ε-source with any 0 < ε ≤ 1/2 and quantum
five-party non-local resources, it should be possible to design a protocol to obtain an εi-source of εi =
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1/4. We do not explore this possibility here, but rather use the partial unpredictability in the five-party
Mermin Bell test as building block of our protocol for full randomness amplification. To complete it, we
must equip it with two essential components: (i) an estimation procedure that verifies that the untrusted
devices do yield the required Bell violation; and (ii) a distillation procedure that, from sufficiently many
εi-bits generated in the 5-party Bell experiment, distills a single final εf -source of εf → 1/2. Towards
these ends, we consider a more complex Bell test involving N groups of five observers (quintuplets)
each.

A protocol for full randomness amplification

Our protocol for randomness amplification uses as resources the ε-source S and 5N quantum systems.
Each of the quantum systems is abstractly modeled by a black box with binary input x and output a. The
protocol processes classically the bits generated by S and by the quantum boxes. When the protocol is
not aborted it produces a bit k. The steps of the protocol are described in what follows (see also Fig. 2).

1. S is used to generate N quintuple-bits x1, . . .xN , which constitute the inputs for the 5N boxes
and are distributed among them without violating no-signaling. The boxes then provide N output
quintuple-bits a1, . . .aN .

2. The quintuplets such that x /∈ X are discarded. The protocol is aborted if the number of remaining
quintuplets is less than N/3. (Note that the constant factor 1/3 is arbitrary. In fact, it is enough
to demand that the number of remaining quintuplets is larger than N/c, with c > 1. See the
Supplementary Note 2.)

3. The quintuplets left after step 2 are organized in Nb blocks each one having Nd quintuplets. The
number Nb of blocks is chosen to be a power of 2. For the sake of simplicity, we relabel the
index running over the remaining quintuplets, namely x1, . . .xNbNd

and outputs a1, . . .aNbNd
.

The input and output of the j-th block are defined as yj = (x(j−1)Nd+1, . . .x(j−1)Nd+Nd
) and

bj = (a(j−1)Nd+1, . . .a(j−1)Nd+Nd
) respectively, with j ∈ {1, . . . , Nb}. The random variable

l ∈ {1, . . . Nb} is generated by using log2Nb further bits from S . The value of l specifies which
block (bl, yl) is chosen to generate k, i.e. the distilling block. We define (b̃, ỹ) = (bl, yl). The
other Nb − 1 blocks are used to check the Bell violation.

4. The function

r[b, y] =
{

1 if I(a1,x1) = · · · = I(aNd
,xNd

) = 0
0 otherwise

(8)

tells whether block (b, y) features the right correlations (r = 1) or the wrong ones (r = 0), in the
sense of being compatible with the maximal violation of inequality (2). This function is computed
for all blocks but the distilling one. The protocols is aborted unless all of them give the right
correlations,

g =
Nb∏

j=1,j 6=l
r[bj , yj ] =

{
1 not abort
0 abort

. (9)

Note that the abort/no-abort decision is independent of whether the distilling block l is right or
wrong.

5. If the protocol is not aborted then k is assigned a bit generated from bl = (a1, . . .aNd
) as

k = f(maj(a1), . . .maj(aNd
)) . (10)

Here f : {0, 1}Nd → {0, 1} is a function whose existence is proven in the Supplementary Note 2,
while maj(ai) ∈ {0, 1} is the majority-vote among the three first bits of the quintuple string ai.
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Figure 2: Protocol for full randomness amplification based on quantum non-locality. In the first two
steps, all N quintuplets measure their devices, where the choice of measurement is done using the ε-
source S. Although it is illustrated here as a single source for convenience we recall that it represents the
collection of sources that each space-like separated party locally possesses with all their outputs being
correlated to form an ε-source. The quintuplets whose settings happen not to take place in the five-party
Mermin inequality are discarded (in red). In steps 3 and 4, the remaining quintuplets are grouped into
blocks. One of the blocks is chosen as the distillation block, using again S, while the others are used to
check the Bell violation. In the fifth step, the random bit k is extracted from the distillation block.

At the end of the protocol, the bit k is potentially correlated with the settings of the distilling block
ỹ = yl, the bit g defined in (9), and the information

t = [l, (b1, y1), . . . (bl−1, yl−1), (bl+1, yl+1), . . . (bNb
, yNb

)].

Additionally, an eavesdropper Eve might have access to a physical system correlated with k, which
she can measure at any stage of the protocol. This system is not necessarily classical nor quantum,
the only assumption about it is that measuring it does not produce instantaneous signaling anywhere
else. The measurements that Eve can perform on her system are labeled by z, and the corresponding
outcomes by e. In summary, after performing the protocol all the relevant information is k, ỹ, t, g, e, z,
with statistics described by an unknown conditional probability distribution P (k, ỹ, t, g, e|z). When the
protocol is aborted (g = 0) there is no value for k. Therefore, in order to have a well defined distribution
P (k, ỹ, t, g, e|z) in all cases, we set k = 0 when g = 0—that is P (k, ỹ, t, g = 0, e|z) = δ0k P (ỹ, t, g =
0, e|z), where δ0k is the Kronecker tensor.

To assess the quality of our protocol for full randomness amplification we compare it with an ideal
protocol having the same marginal for the variables ỹ, t, g and the physical system described by e, z.
That is, the global distribution of the ideal protocol is

Pideal(k, ỹ, t, g, e|z) =
{

1
2P (ỹ, t, g, e|z) if g = 1
δ0kP (ỹ, t, g, e|z) if g = 0

, (11)
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where P (ỹ, t, g, e|z) is the marginal of the distribution P (k, ỹ, t, g, e|z) generated by the real protocol.
Note that, consistently, in the ideal distribution we also set k = 0 when g = 0.

Our goal is that the statistics of the real protocol P is indistinguishable from the ideal statistics Pideal.
We consider the optimal strategy to discriminate between P and Pideal, which obviously involves having
access to all possible information k, ỹ, t, g and the physical system e, z. As shown in [21], the optimal
probability for correctly guessing between these two distributions is

P (guess) =
1
2

+
1
4

∑
k,ỹ,t,g

max
z

∑
e

∣∣∣P (k, ỹ, t, g, e|z)− Pideal(k, ỹ, t, g, e|z)
∣∣∣ . (12)

Note that the second term can be understood as (one half of) the variational distance between P and
Pideal generalized to the case when the distributions are conditioned on an input z. The following
theorem is proven in the Supplementary Note 2.

Theorem. Let P (k, ỹ, t, g, e|z) be the probability distribution of the variables generated during the
protocol and the adversary’s physical system e, z; and let Pideal(k, ỹ, t, g, e|z) be the corresponding
ideal distribution (11). The optimal probability of correctly guessing between the distributions P and
Pideal satisfies

P (guess) ≤ 1
2

+
3
√
Nd

2

[
αNd + 2N log2(1−ε)

b

(
32βε−5

)Nd
]
, (13)

where the real numbers α, β fulfill 0 < α < 1 < β.

Now, the right-hand side of (13) can be made arbitrary close to 1/2, for instance by setting Nb =(
32β ε−5

)2Nd/| log2(1−ε)| and increasing Nd subject to the condition NdNb > N/3. [Note that log2(1−
ε) < 0.] In the limit of large Nd the probability P (guess) tends to 1/2, which implies that the optimal
strategy is as good as tossing a coin. In this case, the performance of the protocol is indistinguishable
from that of an ideal one. This is known as “universally-composable security”, and accounts for the
strongest notion of cryptographic security (see [22] and [21]).

Let us discuss the implications and limitations of our result. Note first that step 2 in the protocol
involves a possible abortion (a similar step can also be found in Ref. [6]). Hence, only those ε-sources
with a non-negligible probability of passing step 2 can be amplified by our protocol. The abortion step
can be relaxed by choosing a larger value of the constant c used for rejection. Yet, in principle, it could
possibly exclude some of the ε-sources defined in (1). Notice, however, that demanding that step 2 is
satisfied with non-negligible probability is just a restriction on the statistics seen by the honest parties
P (x1, . . . , xn) and does not imply any restriction on the value of ε in ε ≤ P (x1, . . . , xn|e) ≤ (1 − ε),
which can be arbitrarily small. Also, we identify at least two reasons why sources that fulfil step 2
with high probability are the most natural in the context of randomness amplification. First, from a
cryptographic perspective, if the observed sequence x1, . . . , xn does not fulfill step 2, then the honest
parties will abort any protocol, regardless of whether a condition similar to step 2 is included. The reason
is that such sequence would be extremely atypical in a fair source P (x1, . . . , xn) = 1/2n and thus the
honest players will conclude that the source is intervened by a malicious party or seriously damaged.
Moreover, as discussed in the Supplementary Note 3, imposing that the source has unbiased statistics
from the honest parties’ point of view does not imply any restriction on Eve’s predictability. Second,
from a more fundamental viewpoint, the question of whether truly random events exist in Nature is
interesting since the observable statistics of many physical processes look random, that is, they are such
that P (x1, . . . , xn) = 1/2n. If every process in nature was such the observable statistics does not fulfill
step 2, the problem of whether truly random processes exist would hardly have been considered relevant.
Finally, note that possible sources outside this subclass do not compromise the security of the protocol,
only its probability of being successfully implemented.
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Under the conditions demanded in step 2, our protocol actually goes through for sources more gen-
eral than those in (1). These are defined by the following restrictions,

G(n, ε) < P (x1, . . . , xn|e) ≤ F (n, ε), (14)

for any pair of functions G(n, ε), F (n, ε) defining the lower and upper bounds to Eve’s control on the
bias of each bit fulfilling the conditions G(n, ε) > 0 and limn→∞ F (n, ε) = 0. In fact, this condition is
sufficient for our amplification protocol to succeed, see also the Supplementary Note 2 and 3.

To complete the argument we must mention that, according to quantum mechanics, given a source
that passes step 2, we can in principle implement the protocol with success probability equal to one,
P (g = 1) = 1. It can be immediately verified that the qubit measurements X or Y on the quantum state
|Ψ〉 = 1√

2
(|00000〉+ |11111〉), with |0〉 and |1〉 the eigenstates of Z, yield correlations that maximally

violate the five-partite Mermin inequality in question. (In a realistic scenario the success probability
P (g = 1) might be lower than one, but our Theorem warrants that the protocol is still secure.)

We can now state the main result of our work.

Full randomness amplification: A perfect free random bit can be obtained from sources of arbitrarily
weak randomness using non-local quantum correlations.

We would like to conclude by explaining the main intuitions behind the proof of the previous the-
orem. As mentioned, the protocol builds on the 5-party Mermin inequality because it is the simplest
GHZ paradox allowing some randomness certification. The estimation part, given by step 4, is rather
standard and inspired by estimation techniques introduced in [23], which were also used in [6] in the
context of randomness amplification. The most subtle part is the distillation of the final bit in step 5.
Naively, and leaving aside estimation issues, one could argue that it is nothing but a classical processing
by means of the function f of the imperfect random bits obtained via the Nd quintuplets. But this seems
in contradiction with the result by Santha and Vazirani proving that it is impossible to extract by classical
means a perfect free random bit from imperfect ones [5]. This intuition is however misleading. Indeed,
the Bell certification allows applying techniques similar to those obtained in Ref. [21] in the context of
privacy amplification against non-signaling eavesdroppers. There, it was shown how to amplify the pri-
vacy, that is the unpredictability, of one of the measurement outcomes of bipartite correlations violating
a Bell inequality. The key point is that the amplification, or distillation, is attained in a deterministic
manner. That is, contrary to standard approaches, the privacy amplification process described in [21]
does not consume any randomness. Clearly, these deterministic techniques are extremely convenient for
our randomness amplification scenario. In fact, the distillation part in our protocol can be seen as the
translation of the privacy amplification techniques of Ref. [21] to our more complex scenario, involving
now 5-party non-local correlations and a function of three of the measurement outcomes.

Discussion

We have presented a protocol that, using quantum non-local resources, attains full randomness amplifica-
tion, a task known to be impossible classically. As our goal was to prove full randomness amplification,
our analysis focuses on the noise-free case. In fact, the noisy case only makes sense if one does not
aim at perfect random bits and bounds the amount of randomness in the final bit. Then, it should be
possible to adapt our protocol in order to get a bound on the noise it tolerates. Other open questions
that our results offer as challenges consist of extending randomness amplification to other randomness
sources, studying randomness amplification against quantum eavesdroppers, or the search of protocols
in the bipartite scenario.

From a more fundamental perspective, our results imply that there exist experiments whose out-
comes are fully unpredictable. The only two assumptions for this conclusion are the existence of events
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with an arbitrarily small but non-zero amount of randomness that pass step 2 of our protocol and the
validity of the no-signaling principle. Dropping the first assumption would lead to super-determinism,
or to accept that the only source of randomness in nature are those that do not pass step 2 of our protocol,
and in particular, that do not look unbiased. On the other hand, dropping the second assumption would
imply abandoning a local causal structure for events in space-time. However, this is one of the most
fundamental notions of special relativity.
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