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We haven’t got the money, so we’ve got to think!
— Ernest Rutherford, 1871–1937

Preface

A physics professor, teaching quantum mechanics, once said that one is not al-
lowed to ask where the electrons are during the transition between two states. But
nevertheless: How does a chemical bond such as a triple bond break? One knows
from chemisty or molecular physics courses that there are bonding and anti-bonding
states. But what happens exactly at which time. We know that the breaking of
bonds happens on a time-scale of hundreds of attoseconds, which is the time-scale
of the electrons. With the advance of attosecond spectroscopy, one might even be
able two answer some of these questions experimentally.

For tackling this problem, we describe the system using the density-functional theory
which enables us to calculate molecules with many electrons and propagate such a
system in time. We therefore give a short introduction into this theory in chapter 1,
which is necessarily short and incomplete.

Before we can ask how a chemical bond breaks, we need to know what actually
defines a bond. This is not as simple as it seems, in the real world the atom
does not know about orbitals which have been used to visualize and to understand
the concept of a bond. The orbitals that stem from calculations, however, can be
lineary combined or may be delocalized over several atoms. Using the density does
not help much, either: The only maxima of the density are located at the nuclei
and while there is density between bond atoms, it is hard to classify or even only to
visualize the chemical bonds. The solution is to make use of the localizability of the
electrons instead of utilizing the density directly. This does the the so-called electron
localization function (ELF) which we cover in chapter 2. Up to now, the ELF had
only been used for static systems or for those which can be described adiabatically.
We have devised a version which can be utilized for time-dependent systems. This
TDELF has then be used to scrutinize the effects of a strong laser (electric field)
on ethyne and for scattering of fast protons by ethene. We were able to see how a
transition from the π bonding to the π∗ anti-bonding state was building up, bonds
were breaking and re-forming, and lone-pairs emerging.

Preparing a certain state, such as the π∗ anti-bonding state, can be tricky if the
exact transition energy is unknown or, in other cases, intermediate states exists.
One possibility to create a tailored laser is provided by the various optimal control
theories. We look at a functional based on optimal control theory in chapter 3.
Since doing optimal control for a larger molecule requires a lot of book-keeping and
computational resources, we started with a simpler example: The HOMO–LUMO
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transition of a cylinder-symmetric diatomic molecule. Using a such tailored laser,
we achieved a population transfer of over eighty per cent from HOMO to LUMO in
lithium fluoride.

The final part of this thesis, chapter 4, contains conclusions and aspects which need
further investigation.

Throughout the thesis, two kind of units are used: the SI units and the atomic
units (see appendix D for the conversion factor). Using the former, the numbers
can easily be compared with experimental results. On the other hand, atomic units
drop a lot of constants and the numerical results of atomic calculations can usually
be written without exponentials. This makes atomic units ideal for both numerics
and lengthy calculations. I hope that I found the right balance between these two
common unit systems.
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1

A new scientific truth does not triumph by convincing its op-
ponents and making them see the light, but rather because its
opponents eventually die, and a new generation grows up that is
familiar with it. — Max Planck, 1858–1947

1 Density functional theory

While traditional many-particle wave-function methods perform well for a wide
range of systems, they come to their limits for non-symmetric or periodic systems
with many (chemically active) electrons. That is because the numerical effort to
calculate and store multi-particle wave functions grows exponentially with the num-
ber of electrons. Therefore, these methods can currently only be applied to systems
with about ten chemically active electrons [1]. A solution to this exponential wall is
density-functional theory (DFT). Several introductory texts on DFT can be found
in the literature. Among them are Kohn’s Nobel lecture [1], the lecture notes by
Perdew and Kurth [2], Burke’s ABC of DFT [3], or Taylor and Heinonen’s DFT
chapter in [4]. For time-dependent DFT, the TD-Review by Groß et al. [5] provides
a clear and in-depth introduction.

This chapter provides a short overview of the theory but is not meant to give a
complete and self-contained account about all aspects. The next section covers the
Hohenberg--Kohn theorem, which proves that every observable can be written as
a unique functional of the electron density. The Kohn--Sham theory, described in
section 1.2, states that the density of an interacting system can be obtained using
an effective single particle potential. This is then generalized to the time-dependent
regime by the Runge--Groß theorem in section 1.3. The numerical effort can be
further reduced by pseudopotentials described in section 1.4.

1.1 The Hohenberg--Kohn theorem

A quantum system of N particles can be completely described1 by its Hamiltonian
H = T + V +W . The Hamilton operator consists of the kinetic part

T = − ~2

2m

N∑
i=1

∇2
i , (1.1)

the interaction W , which – for the case of Coulomb interactions between electrons
– has the form

In this thesis we completely neglect effects which can only be described by quantum electrodynamics1

(QED).
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W =
1

4πε0

N∑
i,j=1
i<j

e2

|ri − rj |
=

1

2

1

4πε0

N∑
i,j=1
i 6=j

e2

|ri − rj |
, (1.2)

and of the so-called external potential V , which contains for instance the potential
created by the nuclei.

The ground-state wave function Ψ0, obtained by solving the static Schrödinger equa-
tion

HΨi = EiΨi, (1.3)

can be used to calculate the ground-state electron density

n(r) = N
∑

σ1,...,σN

∫
d3r2 · · ·

∫
d3rN |Ψ0(rσ1, x2, . . . , xN )|2, (1.4)

where xi is a short hand for spatial and spin variables. Hohenberg and Kohn have
shown [6] that one can also take the reverse route: the ground-state density de-
termines the external potential (and thus the Hamiltonian) which in turn can be
used to obtain the wave functions. Or mathematically rigorous: The ground-state
density n(r) of a bound system of interacting electrons in some external potential
V determines the potential uniquely (up to a purely additive constant).2 The im-
plication of this theorem is that we can in principle determine any observable and
all eigenfunctions Ψi (including excited states) from the ground-state density.

Note that the Hohenberg--Kohn theorem assumes non-degenerate ground states, a
version for degenerate ground states exists.

We first show by reductio ad absurdum that different potentials lead to different
wave functions. Be V and V ′ two potentials which differ by more than an additive
constant and Ψ0 and Ψ′

0 be their associated ground-state wave functions. The
Schrödinger equations for Ψ0 and Ψ′

0 are

H|Ψ0〉 = (T +W + V )|Ψ0〉 = E0|Ψ0〉 (1.5)
H ′|Ψ′

0〉 = (T +W + V ′)|Ψ′
0〉 = E′

0|Ψ′
0〉, (1.6)

where E0 and E′
0 are the respective ground-state energies. Suppose now that Ψ0

and Ψ′
0 are the same. We can then substract Eq. (1.6) from Eq. (1.5) to obtain

(V − V ′)|Ψ0〉 = (E − E′)|Ψ0〉. (1.7)

Starting from the density, one might ask whether any well-behaved, positive function n(r) is a2

possible ground-state density to some potential V , i. e. whether n is V -representable. While this
is indeed not the case, this issue has so far not imposed any limits on practical applications [1].
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But E − E′ is a real number, so that means that the two potentials differ at most
by a constant which is a contradiction to our hypothesis. We have thus shown that
if V 6= V ′ then Ψ0 6= Ψ′

0. We now look at the relation ship between the density
and the wave function. Be n the ground-state density in the potential V with its
corresponding ground-state wave function Ψ. Then the total energy is

E = 〈Ψ|H|Ψ〉 = 〈Ψ|(T +W )|Ψ〉+
∫
V (r)n(r) d3r. (1.8)

Be V ′ another potential which differs from V by more than an additive constant
and Ψ′ be its associated wave function, which yields the same density n as Ψ does.
The Rayleigh--Ritz minimal principle states that

E < 〈Ψ′|H|Ψ′〉 = 〈Ψ′|(T +W )|Ψ′〉+
∫
V (r)n(r) d3r

= E′ +

∫ (
V (r)− V ′(r)

)
n(r) d3r, (1.9)

where we have used that n′ ≡ n by assumption. Analogously we find for E′,

E′ < E +

∫ (
V ′(r)− V (r)

)
n(r) d3r. (1.10)

Adding Eq. (1.9) and Eq. (1.10), gives

E + E′ < E + E′ +

∫ (
V (r)− V ′(r) + V ′(r)− V (r)

)
n(r) d3r = E + E′. (1.11)

This is a contradiction to the assumption that both Ψ and Ψ′ have the same ground-
state density. We have thus established that two different, non-degenerate ground
states lead to different ground-state densities. We further know that different po-
tentials lead to different wave functions. Therefore, we proved that knowing the
ground-state density n(r) of a system is sufficient to construct the external poten-
tial (if n is V -representable).

There is also an important variational principle associated with the Hohenberg--
Kohn theorem. We know that the electronic ground-state energy can be obtained
by making use of the Rayleigh--Ritz principle,

E = min
Ψ̃∈{Ψ̃}

〈Ψ̃|H|Ψ̃〉, (1.12)

where {Ψ̃} is the set of all normalized, antisymmetric N -particle wave functions.
Hohenberg and Kohn showed that the Rayleigh--Ritz principle can also be applied
to the energy functional,
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E[n] = 〈Ψ0[n]|(T +W + V )|Ψ0[n]〉 = FHK[n] +

∫
V (r)n(r) d3r, (1.13)

where Ψ0 is the ground-state wave function and

FHK[n] = 〈Ψ0[n]|(T [n] +W [n])|Ψ0[n]〉. (1.14)

The ground-state energy can be found by varying the density, i. e.

E = min
ñ∈Ñ

(
FHK[ñ] +

∫
ñ(r)V (r) d3r

)
, (1.15)

where Ñ is the set of all V -representable trial densities. In other words, the minimum
of this functional can only be reached with the ground-state density corresponding
to the potential V (r). In this case the value of the functional is the ground-state
energy.

Note that the functional FHK[n] is a universal functional. By this we mean that it
is the same functional of the density n(r) for all N -particle systems, which have
the same kind of interaction (e. g. Coulomb). Especially, it is independent of the
external potential V . Therefore, we need to approximate it only once and can then
apply it to all systems.

1.2 The Kohn--Sham formalism

While the Hohenberg--Kohn theorem establishes that we may use the density alone
to find the ground-state energy of an N -electron problem, it does not provide us
with any useful computational scheme. This is accomplished by the Kohn--Sham
(KS) formalism [7]. The idea is to use an auxiliary, non-interacting system and to
find an external potential VKS such that this non-interacting system has the same
electron density as the real, interacting system. This density can then be used in the
energy functional (Eq. (1.13)). The ground-state of the Kohn--Sham system is given
by a Slater determinant of the N lowest, single-particle states of the Hamiltonian
which contains VKS. While this provides us with a route for calculations, there
is a drawback. The potential VKS depends on the electron density (see below).
Therefore, the potential has to be found iteratively in a self-consistent way.

Let us start with the non-interacting N -particle system described by the external
potential VKS. The Hamiltonian of the system is given by

H = T + VKS. (1.16)

The ground-state density of this system has the form
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n(r) =
N∑

i=1

|φi(r)|2, (1.17)

where the N single-particle orbitals φi in Eq. (1.17) satisfy the Schrödinger equation(
− ~2

2m
∇2 + vKS(r)

)
φi(r) = εiφi(r), (1.18)

and have the N lowest eigenenergies εi. The total energy of the ground-state of the
non-interacting system is therefore

EKS =
N∑

i=1

εi. (1.19)

Note that the value of this energy does not correspond to the ground-state energy
of the interacting system. According to the Hohenberg--Kohn theorem, it exists a
unique energy functional

EKS[n] = TKS[n] +

∫
VKS(r)n(r) d3r. (1.20)

We note that TKS[n] is the kinetic energy functional of the non-interacting system
and it is therefore different from the functional T [n] in Eq. (1.14). In order to solve
the interacting system, we need to find a form of VKS, so that the ground-state
densities of the non-interacting and the interacting system are the same. Since we
are really interested in the interacting system, we rewrite Eq. (1.13) as

E[n] = T [n] +W [n] +

∫
n(r)V (r) d3r (1.21)

= TKS[n] +
1

4πε0

e2

2

∫ ∫
n(r)n(r ′)
|r − r′|

d3r d3r′ +

∫
n(r)V (r) d3r + Exc[n].

Here, the second term is the direct, or Hartree, term and the last term is the so-called
exchange-correlation (xc) energy functional, defined as

Exc[n] = FHK[n]− 1

4πε0

e2

2

∫ ∫
n(r)n(r ′)
|r − r′|

d3r d3r′ − TKS[n]. (1.22)

With this formalism at hand, one only needs to develop reasonable approximations
for Exc, which contain the electron–electron interaction beyond the Hartree term
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and the difference in the kinetic energy functionals T [n]−TKS[n]. Since the ground-
state density n minimizes the functional E[n], we obtain by varying Eq. (1.21) in
terms of the density,3

δE[n]

δn(r)
=
δTKS[n]

δn(r)
+

1

4πε0
e2
∫

n(r ′)
|r − r′|

d3r′ + V (r) + vxc[n](r) = 0, (1.23)

where we defined the exchange-correlation potential as

vxc[n](r) :=
δExc[n]

δn(r)
. (1.24)

Analogously, for the auxiliary system we obtain from Eq. (1.20)

δTKS[n]

δn(r)
+ VKS(r) = 0. (1.25)

Subtracting Eq. (1.23) from Eq. (1.25), we see that the effective, or Kohn--Sham,
potential has to satisfy

VKS(r) = V (r) +
1

4πε0
e2
∫

n(r ′)
|r − r′|

d3r′ + vxc(r). (1.26)

Now we could start implementing the self-consistent Kohn--Sham scheme. Note
that this formalism is in principle exact, supposing that we find the exact exchange-
correlation potential vxc. Solving a Kohn--Sham system with single-particle orbitals
is feasible even for systems with a few hundred electrons (cf. [1, 4]). Formally,
the Kohn--Sham equations look similar to the self-consistent Hartree equations, the
only difference is the exchange-correlation potential. Neither φi nor εi have any
known, directly observable meaning, except that the φi yield (in principle) the true
ground-state density and that the magnitude of the highest occupied εi, relative to
the vacuum, equals the ionization energy [8].

One famous approximation for the exchange-correlation energy is the local density
approximation (LDA) by Kohn and Sham [7].

ELDA
xc [n] :=

∫
n(r)εuni(n(r)) d3r, (1.27)

where εuni denotes the exchange-correlation energy per particle of a uniform elec-
tron gas with the density n. εuni(n) can be obtained using quantum Monte Carlo
calculations [9].

Note though that ‘the KS scheme does not follow from the variational principle. [. . . ] The KS3

scheme follows from the basic 1-1 mapping (applied to non-interacting particles) and the assump-
tion of non-interacting V -representability.’ [5]
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1.3 Time-dependent DFT – the Runge--Groß theorem

The time-dependent density-functional theory (TDDFT) extends the stationary
DFT in a way that not only makes time-dependent phenomena available to com-
putation, but it also provides a natural way to calculate excitations of a system.
For static systems, we have seen how the Hohenberg--Kohn theorem establishes a
one-to-one correspondence between the external potential and the density. We now
look at systems, where the external potential V depends explicitly on time. We
start with the time-dependent Schrödinger equation

i~∂tΨ(t) = H(t)Ψ(t). (1.28)

For the theorem, a fixed initial state

Ψ(t0) = Ψ0 (1.29)

is required, which is not required to be an eigenstate of the initial Hamiltonian.
While the kinetic part T and the electron–electron interaction W remain unchanged
compared to static DFT, the potential V becomes time-dependent

V (t) =
N∑

i=1

v(ri, t). (1.30)

The theorem by Runge and Gross [10] now states: If the potentials V and V ′ (both
Taylor expandable around t0) differ by more than a purely time-dependent but
spatially uniform function, i. e.

V (r , t) 6= V ′(r , t) + c(t), (1.31)

then the densities n(r , t) and n′(r , t), evolving from the common initial state Ψ0

under the influence of the two potentials, are different. For the proof, both potentials
are Taylor expanded in time. Then a k ∈ N exists so that the difference beween
the k-th Taylor coefficients is not constant, i. e. the difference is r dependent. The
proof [5, 10] shows next that under these circumstances the current densities become
different and then that the densities are different.

For any given time-dependent density n (and initial state Ψ0) the external potential
can be determined uniquely up to an additive purely time-dependent function; and
this potential uniquely determines the wave function, up to a purely time-dependent
phase. This phase cancels if we calculate the expectation value of any quantum
mechanical operator O[n](t) = 〈Ψ[n](t)|O(t)|Ψ[n](t)〉. Thus any observable is a
unique functional of the time-dependent density and of the initial state Ψ0.
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Once the Runge--Groß theorem is established, one can continue and derive the
Kohn--Sham equations [5, 10]. The density of the interacting system can be ob-
tained from

n(r , t) =
N∑

i=1

|φi(r , t)|2 (1.32)

with the orbitals φi satisfying the time-dependent Kohn--Sham equation

i∂tφi(r , t) =

(
− ~2

2m
∇2 + vKS[n](r , t)

)
φi(r , t). (1.33)

The Kohn--Sham, or single-particle, potential can be written as

vKS[n](r , t) = V (r , t) +
e2

4πε0

∫
n(r ′, t)
|r − r′|

d3r + vxc[n](r , t) (1.34)

where V (r , t) is the time-dependent external field.

1.4 Pseudo potentials

Chemical reactions and excitations with energies below X-ray wavelengths hardly
affect closed inner shells. Therefore, the many-particle Schrödinger equation can be
simplified to a great extent by dividing the electrons into two groups: valence and
inner core electrons. Since the inner core electrons are strongly bound, the chemical
properties are almost completely determined by the valence electrons. Formally,
one can create an effective interaction of the valence electrons with the ionic core,
which consists of the nuclei and the inner core electrons. This pseudopotential
approximates the potential felt by the valence electrons. The main advantage of
pseudopotentials is the reduced numerical effort. This is the case since one has to
consider only the valence orbitals. In addition, the problems with the 1/r potential
(Coulomb singularity for r → 0) is eliminated. Therefore, a wider grid is viable.
The tutorial by Nogueira et al. [11] and Pickett’s article [12] are good primers on
pseudopotentials. In the following, a brief summary of the important properties and
downsides is given.

Modern pseudopotentials (PP) are obtained by inverting the Schrödinger equation
for a given reference electronic configuration and forcing the pseudo wave function
to coincide with the all-electron valence wave function beyond a certain distance rl.
The pseudo wave functions are also forced to have the same norm as the all-electron
wave functions. This can be written as
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RPP
l (r) = RAE

nl (r), if r > rl,∫ rl

0
r2|RPP

l (r)| dr =

∫ rl

0
r2|RAE

nl (r)| dr, if r < rl, (1.35)

where Rl(r) is the radial part of the wave function with angular momentum l. AE
denotes the all-electron wave function and the index n the valence level. Note that
the distance rl, beyond which the all-electron and the pseudo wave function are
equal, depends on the angular momentum l. Moreover, pseudo wave functions shall
not have nodal surfaces and the pseudo energy eigenvalues εPP

l should match the
all-electron valence eigenvalues εAE

nl . Potentials constructed in this way are called
norm conserving, and are semi-local potentials that depend on the energies of the
reference electronic levels εAE

l . Unfortunately, pseudopotentials may introduce new,
non-physical states (so called ghost states) into the calculation, so care must be
taken while generating the pseudopotential.

The choice of the cut-off radii establishes only the region where the pseudo and the
all-electron wave function coincide. They can thus be considered as a measure of
the quality of the pseudopotential. Their smallest possible value is determined by
the location of the outermost nodal surface of the all-electron wave functions. For
cut-off radii close to this minimum, the pseudopotential is very realistic and strong;
for large rl, the potential is smooth, almost independent of angular momentum, but
not very realistic. Since the pseudopotentials have no nodal surface and are smooth,
much fewer grid points are needed near the core and thus uniform grids are feasible.

octopus [13], which has been used for the ELF calculations in this work (see
section 2) and for obtaining a Kohn--Sham potential (optimal control, section 3),
supports the Hartwigsen--Goedecker--Hutter (HGH) [14] and the Troullier--Martins
(TM) [15] pseudopotentials. The HGH pseudopotentials are norm-conserving, dual-
space Gaussian pseudopotentials. The coefficients for all elements between H and
Rn can be found in [14]. Troullier and Martins defined the pseudo wave functions
as

RPP
l (r) :=

{
RAE

nl (r), if r > rl
rlep(r), if r < rl

, (1.36)

where

p(r) = c0 + c2r
2 + c4r

4 + c6r
6 + c8r

8 + c10r
10 + c12r

12. (1.37)

The coefficients of p(r) are adjusted by imposing norm conservation, the continuity
of the pseudo wave functions and their first derivative at r = rl. Furthermore, it is
required that the screened pseudopotential has zero curvature at the origin.
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What I cannot create, I do not understand.
— Richard Phillips Feynman, 1918–88

2 The time-dependent
electron localization function

The electron localization function (ELF) is used to classify and visualize chemical
bonds. In the next section, an introduction into the description of chemical bonds
and the usefulness of the ELF is given. Afterwards, we look at the definition of
the static ELF, constructed by Becke and Edgecombe, in section 2.2. Next, in
section 2.3 we derive a time-dependent generalization of the ELF. This TDELF is
then used to visualize the π–π∗ transition of ethyne in a strong laser pulse and the
breaking and formation of bonds in a scattering process of a proton with ethene in
section 2.4. Finally, the conclusions of this chapter can be found in section 2.5.

2.1 Introduction

Already in the chemistry classes of secondary schools chemical bonds are introduced.
The concept of a bond presented there and also in the undergraduate courses is
reasonable clear and comprehensive; they are typically defined [16] as:

chemical bond. A strong force of attraction holding atoms together in a
molecule or crystal. Typically chemical bonds have energies of about 1000 kJ·
mol−1 and are distinguished from the much weaker forces between molecules
([. . . ] van der Waals’ forces). There are various types. Ionic (or electrovalent)
bonds can be formed by transfer of electrons. [. . . ] Covalent bonds are formed
by sharing of valence electrons rather than by transfer. [. . . ] A particular type
of covalent bond is one in which one of the atoms supplies both the electrons.
These are known as coordinate (semipolar or dative) bonds [. . . ]. Covalent
or coordinate bonds in which one pair of electrons is shared are electron-pair
bonds and are known as single bonds. Atoms can also share two pairs of
electrons to form double bonds or three pairs in triple bonds.

The idea of a bond is thus the sharing of electrons of neighbouring atoms whose
orbitals overlap. This is the classical Lewis picture of bonding [17]. Transforming
this concept into a mathematically rigorous scheme for classifying chemical bonds
turns out to be astonishingly difficult. While using orbitals works well for small
systems, this becomes cumbersome for larger systems. Especially, since the one-
electron wave functions that stem from Hartree--Fock or density-functional theory
calculations are generally quite delocalized over several atoms and do not represent
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a unique bond. In addition, Hartree--Fock orbitals are ambiguous with regard to
unitary transformations among the occupied orbitals. The total energy does not
change under such transformations. Kohn--Sham orbitals are ambiguous only if
they are degenerate.

In the density, which contains all observable information, the bonds and their nature
are only barely visible; features like lone pairs are especially hidden. Moreover, the
density plots differ from the classical Lewis picture, where the charge is accumulated
in the mid of covalent-bond atoms. Density plots show no local maxima in the bond
region between the nuclei. There are basically two approaches which are nowadays
used to classify chemical bonds: The Laplacian of the density −∇2n introduced by
Bader in 1984 [18] and the electron localization function constructed by Becke and
Edgecombe in 1990 [19]. Both methods show essential similarities in their structure.
(For a comparison of the two, see Bader’s article [20].) The Laplacian of the electron
density seems to be superior for partial pairing of electrons as in acid–base reactions,
while the ELF is more useful for comparing bonds [20]. In the following we focus
on the ELF which is widely used in chemistry [21].

The ELF is a functional of the density and the orbitals, designed to visualize the
bonding properties. It was originally used for electronic shells of atoms, where it
shows all shells (while other methods like the Laplacian of the density −∇2n fail
to show more than five shells), and for covalent bonds [19]. Subsequently, it has
been used to analyze lone pairs, hydrogen bonds [22], surfaces [23], ionic and metal-
lic bonds [23], and solids [23–25]. In addition, the ELF has the nice property of
being rather insensitive to the method used to calculate the wave functions of the
system: Hartree--Fock, density-functional theory or even extended Hückel methods
yield quantitatively similar results [23]. The ELF can also be constructed from
experimentally measured electron densities using X-ray data [25], utilizing an ap-
proximate functional for the dependence of the kinetic energy density on the electron
density.

The (static) ELF as constructed by Becke and Edgecombe can only be used to study
systems in their ground state. Extending it to the time-dependent regime opens the
possibility to study the creation, breaking or changing of bonds [26]. Examples of
these include scattering processes (see section 2.4.2) and the excitation by a laser
(see section 2.4.1), where a wealth of non-linear phenomena such as multi-photon
ionization or high-harmonic generation can occur. Such phenomena happen on a
time-scale of few femtoseconds, which can be examined using ulta-short laser pulses
[27–29].
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2.2 The static electron localization function

The (static) electron localization function, developed by Becke and Edgecombe [19],
is a descriptor of chemical bonding based on the Pauli exclusion principle. The
correlation between the ELF and chemical bonding is a topological and not an
energetic one, i. e. the ELF represent the organization of chemical bonding in real
space [21, 30]. The local maxima of the function define localization attractors, which
can be attributed to bonds, lone pairs, atomic shells and other elements of chemical
bonding [21]. The resulting isosurfaces of the ELF densities tend to conform to the
classical Lewis picture of bonding.

In Slater determinant formulation4, the probability of finding two particles with the
same spin, located at r and r ′, is

Dσ(r , r ′) = nσ(r)nσ(r ′)−
∣∣nσ(r , r ′)

∣∣2 , (2.1)

where Dσ(r , r ′) is the same-spin pair probability and nσ(r) is the σ-spin single-
particle density matrix,

nσ(r , r ′) =
Nσ∑
i=1

φ∗iσ(r)φiσ(r ′). (2.2)

The probability to find an electron at r ′, knowing with certainty that a like-spin
reference electron is at r , is given by the conditional pair probability

Pσ(r , r ′) = nσ(r ′)− |nσ(r , r ′)|2

nσ(r)
, (2.3)

which is invariant with respect to unitary transformations. Since only the local,
short-range behaviour is of interest, the spherically averaged conditional pair prob-
ability pσ is Taylor expanded. We obtain

pσ(r , s) =
1

3

(
Nσ∑
i=1

|∇φiσ|2 −
1

4

|∇nσ|2

nσ

)
s2 +O(s3), (2.4)

where (r , s) denotes the spherical average on a shell of the radius s around the
reference point r . In the Taylor expansion, the first s-independent term vanishes
due to the Pauli principle, also the term linear in s vanishes (see section 2.3.1 or
[31]). We define τσ as the positive-definite kinetic energy density

This means, the wave function is written as determinant of single-particle wave functions; this4

single-particle picture encompasses the Kohn--Sham and Hartree--Fock formalism.
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τσ =
Nσ∑
i=1

|∇φiσ|2. (2.5)

and can now write the s2 coefficient of Eq. (2.4) as

Cσ(r) := τσ −
1

4

|∇nσ|2

nσ
. (2.6)

This function, evaluated at the reference point, contains information about the elec-
tron localization. The smaller the probability of finding a second like-spin electron
near r , the higher localized is this reference electron. Cσ is not bounded from above,
and approaches zero for strongly localized systems.

Becke and Edgecombe defined [19] the electron localization function as

ELF =
1

1 +
(
Cσ(r)

)2
/
(
Cuni

σ (r)
)2 , (2.7)

where Cuni
σ denotes the kinetic energy density of the uniform electron gas

Cuni
σ (r) =

3

5
(6π2)2/3 n

5/3
σ (r) =: τuni

σ (r). (2.8)

Contrary to Cσ, the ELF is restricted to values between zero and one. A value of
1 stands for perfect localization and 1/2 for the complete delocalization (uniform
electron gas).

Since this derivation [19] of the ELF assumes that the φiσ are real, Eq. (2.6) is only
valid for the static case, where the φiσ can be chosen to be real. In the next section,
we derive a Cσ and thus an ELF without this restriction.

2.3 Derivation of the time-dependent ELF

In this section, we generalize the static electron localization function to complex wave
functions, which is required for a time-dependent treatment. We follow essentially
the steps by Becke and Edgecombe [19], but do not assume Hartree--Fock, i. e. Slater
determinant, wave functions from the start (cf. [32]).

The reduced single-particle density matrix is defined as

nσ(r , r ′, t) = Nσ

∑
σ2···σN

∫
d3r2 · · ·

∫
d3rN Ψ∗(rσ, r2σ2, . . . , rNσN , t)

×Ψ(r ′σ, r2σ2, . . . , rNσN , t), (2.9)

where Ψ is an N -electron wave function. For r = r ′, it is known as spin density
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nσ(r , t) := nσ(r , r , t). (2.10)

Eq. (2.10) gives the probability of finding a particle with spin σ at r and is normal-
ized to the particle number Nσ. For the ELF we need the spin-diagonal (σ1 = σ2)
of the reduced two-particle density matrix

Dσ1σ2(r1, r2, t) = N(N − 1)
∑

σ3···σN

∫
d3r3 · · ·

∫
d3rN |Ψ(r1σ1, r2σ2, . . . , rNσN , t)|2,

(2.11)

which describes the probability of finding an electron with spin σ1 at r1 and another
electron at r2 with spin σ2. For σ1 = σ2, it is known as the same-spin pair probab-
ility. Central for the electron localization function is the so-called conditional pair
probability. It is defined analogously to the static case as

Pσ(r , r ′, t) :=
Dσσ(r , r ′, t)
nσ(r , t)

(2.12)

and gives the probability of finding an electron with spin σ at r ′ at time t knowing
with certainty that another electron with the same spin is at r at that time.

2.3.1 Spherical average and Taylor expansion of Pσ(r , r + s, t)

Since we are only interested in the probability of finding an electron in the vicinity
of r , we substitute r ′ by r + s and do a spherical average of the Taylor expansion
in s for small s, s := |s|.
Expanding the wave function in terms of s (in the second argument) gives

Ψ(rσ, (r + s)σ, . . . , rNσN , t) = Ψ(rσ, (r + s)σ, . . . , rNσN , t)
∣∣
s=0

+
3∑

i=1

si
∂Ψ

∂si

∣∣∣∣
si=0

+O(s2). (2.13)

The first term surely vanishes since two electrons with the same spin cannot be at
the same location (Pauli exclusion principle). Thus we get

|Ψ|2 ∝
3∑

i,k=1

siskcik +O(s3), (2.14)

where cik contains the factors and the s-independent derivative of Ψ and Ψ∗. s can
be written in spherical coordinates as s = (s1, s2, s3)

T = s (cosφs sin θs, sinφs sin θs, cos θs)
T.

Doing the spherical average of Eq. (2.14) leads to
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〈|Ψ|2〉sph.av. ∝
3∑

i=1

cii

∫
sisi dΩ +

3∑
i,k=1
i 6=k

cik

∫
sisk dΩ +O(s3). (2.15)

Evaluating the integrals gives

〈sisj〉sph.av. :=
1

4π

∫
sisj dΩ = 0, i 6= j (2.16)

and

〈s2i 〉sph.av. =
1

3
s2, (2.17)

and thus 〈|Ψ|2〉sph.av.∝̇s2. We define pσ as the spherical average of Pσ

pσ(r , s, t) := 〈Pσ(r , r + s, t)〉sph.av.. (2.18)

and do a Taylor expansion

pσ(r , s)

=
1

nσ(r , t)
N(N − 1)

∑
σ3,...,σN

∫
d3r3 · · ·

∫
d3rN 〈|Ψ|2〉sph.av. (2.19)

=̇
1

nσ(r , t)
N(N − 1)

∑
σ3,...,σN

∫
d3r3 · · ·

∫
d3rN

s2

3

3∑
i=1

(
∂

∂si
Ψ∗
)

s=0

(
∂

∂si
Ψ

)
s=0

.

Since Ψ|s=0 = 0 and hence

2
3∑

i=1

∂siΨ
∗∂siΨ

∣∣∣
s=0

= ∇2
s |Ψ|2

∣∣∣
s=0

= ∇2
r ′ |Ψ(rσ, r′σ, . . .)|2

∣∣∣
r=r ′

, (2.20)

Eq. (2.19) can be simplified to

pσ(r , s, t) =
1

3
s2
(

1

2

∇2
r ′Dσ(r , r ′, t)
nσ(r , t)

)∣∣∣∣
r=r ′

+O(s3) ≡ 1

3
s2Cσ(r , t) +O(s3). (2.21)

The term in the bracket

Cσ =
1

2

∇2
r ′Dσ(r , r ′, t)
nσ(r , t)

∣∣∣∣
r=r ′

,

(2.22)

is a measure of the electron localization (cf. section 2.2). A small value of Cσ(r)
denotes a small probability of finding another electron near r . Thus there is a high
electron localization at r which repels other like-spin electrons. In order to use Cσ
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in density-functional calculations, we need to express Dσ and nσ(r ′, r , t) in terms
of single-particle wave functions, which we do in the next sections.

2.3.2 Derivation of Dσ in the single-particle picture

We now evaluate Dσ and nσ using Slater determinant wave functions. In the fol-
lowing, π and µ denote permutations, πi and µi the i-th component of a given
permutation (i. e. π = (π1, . . . , πN )), and sgn π the sign of the permutation π.
With these definitions, a determinantal wave function containing N = Nσ orbitals,
Φiσ = Φi, is given by

Ψdet(r1, . . . , rN , t) =
1√
N !

det{φi(rj , t)} =
1√
N !

∣∣∣∣∣∣
φ1(r1, t) · · · φ1(rN , t)

... . . . ...
φN (r1, t) · · · φN (rN , t)

∣∣∣∣∣∣
=

1√
N !

∑
π

sgn π φ1(rπ1 , t) · · ·φN (rπN , t).

(2.23)

By definition, the following identities are true: (sgn π)2 = 1 and∫
φ∗i (r , t)φj(r , t) d3r = δij . (2.24)

We now insert the Slater determinant wave function into the single-particle density
matrix Eq. (2.9) and obtain

nσ(r , r ′, t)

=
N

N !

∫
d3r2 · · ·

∫
d3rN

∑
π,µ

sgn π sgn µ φ∗π1
(r1, t)φµ1(r1, t), · · ·φ∗πN

(rN , t)φµN (rN , t)

=
N

N !

∑
π,µ

sgn π sgn µ φ∗π1
(r ′, t)φµ1(r , t)

(∫
d3r2 φ

∗
π2

(r2, t)φµ2(r2, t)

)
︸ ︷︷ ︸

δπ2µ2

· · ·

×
(∫

d3rN φ∗πN
(rN , t)φµN (rN , t)

)
︸ ︷︷ ︸

δπN µN

. (2.25)

We therefore know that all terms with πi 6= µi, i = 2, . . . , N vanish, and due
to the definition of permutations, π1 and µ1 have to be identical. Thus π = µ,
sgn π = sgn µ, and Eq. (2.25) simplifies to
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nσ(r , r ′, t) =
N

N !

∑
π

φ∗π1
(r ′, t)φµ1(r , t)

N∏
i=2

δπiπi︸ ︷︷ ︸
N ! terms

=
N

N !
(N − 1)!

N∑
l=1

φ∗l (r
′, t)φl(r , t)︸ ︷︷ ︸

N terms

=
N∑

l=1

φ∗l (r
′, t)φl(r , t).

(2.26)

Following an analogous route for Dσ, we obtain

Dσ(r , r ′, t) =
N(N − 1)

N !

∑
π,µ

sgn π sgn µ φ∗π1
(r ′, t)φµ1(r , t)φ

∗
π2

(r ′, t)φµ2(r , t)

·
N∏

i=3

∫
d3ri φ

∗
πi

(r ′i , t)φµi(ri, t)︸ ︷︷ ︸
δπiµi

. (2.27)

There are only two types of permutations which contribute to this sum. They are:
π1 = µ1, π2 = µ2 (with sgn π sgn µ = 1) and π1 = µ2, π2 = µ1 (with sgn π sgn µ =
−1). Thus Eq. (2.27) simplifies to

Dσ(r , r ′, t) =
N(N − 1)

N !

(∑
π

|φπ1(r1, t)|2|φπ2(r2, t)|2
N∏

i=3

δπiπi

)
(2.28)

− N(N − 1)

N !

(∑
π

φ∗π1
(r1, t)φπ2(r1, t)φ

∗
π2

(r2, t)φπ1(r2, t)
N∏

i=3

δπiπi

)
.

Each sum has N ! terms, and we know that

nσ(r , t)nσ(r ′, t)=

(
N∑

i=1

|φi(r , t)|2
) N∑

j=1

|φj(r ′, t)|2
=

N∑
i,j=1
i 6=j

|φi(r , t)|2|φj(r ′, t)|2,

(2.29)

where i 6= j comes from the Pauli exclusion principle. The sum in Eq. (2.29)
therefore has N(N − 1) terms and the first term of Eq. (2.28) simplifies to

Dσ(r , r ′, t) = nσ(r , t)nσ(r ′, t) + (second term). (2.30)

We further know that
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(
nσ(r , r ′, t)

)∗(
nσ(r , r ′, t)

)
=
∑
i,j=1
i 6=j

φ∗j(r , t)φi(r , t)φ∗i (r , t)φj(r , t) (2.31)

has N(N − 1) terms which yields as final result of the derivation

Dσ(r , r ′, t) = nσ(r , t)nσ(r ′, t)− |nσ(r , r ′, t)|2. (2.32)

This is the same-spin pair probability in the single-particle picture. It gives the
probability of finding two particles with the same spin, located at r and r ′.

2.3.3 Calculation of Cσ

We now calculate Cσ (see Eq. (2.22)),

Cσ(r , t) =
1

2
∇2

r ′
Dσ(r ′, r , t)
nσ(r , t)

∣∣∣∣
r ′=r

(2.33)

using the single-particle formulation of nσ Eq. (2.26) and Dσ Eq. (2.32). In the
following, φiσ denotes the single-particle wave function and niσ := |φiσ|2.

Inserting Dσ from Eq. (2.32) gives

Cσ(r , t) =
1

2
∇2

r′nσ(r ′, t)
∣∣
r ′=r −

1

2
∇2

r′
|nσ(r ′, r , t)|2

nσ(r , t)

∣∣∣∣
r ′=r

(2.34)

The second term can be simplified as shown in appendix A, using this result we
obtain

Cσ(r , t) =
1

2

(
∇2nσ(r ′, t)

∣∣
r ′=r − ∇

2
r′
|nσ(r ′, r , t)|2

nσ(r , t)

∣∣∣∣
r ′=r

)
=

1

2

(
∇2nσ(r ′, t)−∇2nσ(r , t)︸ ︷︷ ︸

=0

−1

2

(
∇nσ(r , t)

)2
nσ(r , t)

− 2
j2σ(r , t)
nσ(r , t)

+ 2
Nσ∑
i=1

j2iσ(r , t)
niσ(r , t)

+
1

2

Nσ∑
i=1

(
∇niσ(r , t)

)2
n

1/2
iσ (r , t)

)
,

(2.35)

where jσ denotes the absolute value of the current density, j2σ/n = (∇α)2n. This
can be rewritten by introducing

τσ =
Nσ∑
i=1

|∇φiσ(r , t)|2 =
Nσ∑
i=1

(
1

4

(
∇niσ(r , t)

)2
niσ(r , t)

+

(
jiσ(r , t)

)2
niσ(r , t)

)
(2.36)

which represents the kinetic energy of a system of Nσ non-interacting electrons,
described by the single-particle orbitals φiσ. The final result is thus
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Cσ(r , t) = τσ −
1

4

(
∇nσ(r , t)

)2
nσ(r , t)

− j2σ(r , t)
nσ(r , t)

.

(2.37)

Cσ is a measure of the electron localization and ranges from zero (perfect local-
ization) to infinity. The main difference to the ground-state Cσ Eq. (2.6) is the
appearance of the term proportional to j2. The existence of this term can be made
plausible for a system with one electron (per spin channel): here, Dσ has to van-
ish by definition. If we evaluate τσ for Nσ = 0, the second and the third term of
Eq. (2.37) appear. Section A.2 of the appendix contains an alternative derivation
for a simplified, two electron case, which gives the same result.

The electron localization function itself is defined as before (cf. Eq. (2.7))

ELF =
1

1 +
(
Cσ(r, t)

)2
/
(
Cuni

σ (r)
)2 . (2.38)

where Cuni
σ denotes the kinetic energy density of the uniform gas,

Cuni
σ (r) =

3

5
(6π2)2/3 n

5/3
σ (r) =: τuni

σ (r). (2.39)

The ELF returns values between zero and one. One stands for perfect localization
and 1/2 for complete delocalization (uniform electron gas). (Note that only the ELF
not Cσ ‘shows all the exciting structuring in direct space that makes ELF such a
valuable tool.’ [21]). For systems with only one electron per spin channel (such as
H2 or parahelium) the ELF is meaningless since it is constant and equal to one.

As already stated above there is (counter-intuitively) no direct relation between the
electron density (the probability of finding an electron at point r) and the ELF (the
electron localization), in fact the density can be high when the ELF is low.

2.3.4 Comparison with the static ELF

For static problems, one can choose the wave function to be real, then α ≡ 0 and
thus j ≡ 0, in addition n(r , t)→ n(r). Therefore,

Cσ(r) = τσ −
1

4

(
∇nσ(r)

)2
nσ(r)

, τσ =
Nσ∑
i=1

|∇φiσ(r)|2 =
Nσ∑
i=1

1

4

(
∇niσ(r)

)2
niσ(r)

. (2.40)

This is exactly the same result which Becke and Edgecombe have obtained Eq. (2.6).
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2.4 Application of the TDELF

We shall now illustrate the time-dependent electron localization function by two
examples: The excitation of ethyne in a laser pulse and the scattering of a proton
with ethene (fig. 2.1). Supplementary information such as the movies of the ELF
and the density and more examples can be found at http://www.net-b.de/˜burnus
/thesis/.

H C C H

H

H

C C

H

H

(a) Ethyne (acetylene) (b) Ethene (etylene)

Fig. 2.1 Structure of used molecules.

All calculations have been performed in the framework of time-dependent density-
functional theory using the real-space, real-time program octopus [13] with a Troul-
lier--Martins pseudopotential (cf. section 1.4). The motion of the cores is treated
classically. There exists a kind of colour standard for ELF plots [23] which we fol-
low (see colourbar in fig. 2.3). The isosurfaces and the contourlines are drawn at
ELF = 0.8.

2.4.1 Excitation of molecules
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Fig. 2.2 Intensity of the laser, used to excite ethyne. The laser
has a frequency of 17.15 eV/h (λ = 72.3 nm) and a maximal
intensity of I0 = 1.19× 1014 W · cm−2.

We used a strong laser to excite ethyne (acetylene, fig. 2.1a) and observed the
reaction of the electron system, especially of the triple bond. The laser is polarized
along the molecular axis (see right image on the title page). The system has been

http://www.net-b.de/~burnus/thesis/
http://www.net-b.de/~burnus/thesis/
http://www.net-b.de/~burnus/thesis/
http://www.net-b.de/~burnus/thesis/
http://www.net-b.de/~burnus/thesis/
http://www.net-b.de/~burnus/thesis/
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excited using the following laser frequencies: (i) ν = 17.15 eV/h = 4146 THz, λ =
72.3 nm, (ii) ν = 13.35 eV/h = 3010 THz, λ = 99.6 nm and (iii) ν = 9.55 eV/h =
2309 THz, λ = 129.8 nm. The intensity of the laser was chosen to be either E0 =
3 eV/Å, I0 = 1.19× 1014 W · cm−2 or E0 = 0.5 eV/Å, I0 = 3.318× 1013 W · cm−2.
Since the resulting ELF movies show essentially the same features, only the results
using a laser with ν = 17.15 eV/h, E0 = 3 eV/Å (fig. 2.2) are shown.

Calculation settings: We used a spherical mesh with radius r = 8.2 Å and
∆ = 0.15 Å as spacing. The bond lengths (cf. [33]) are d(H–C) = 1.06 Å
and d(C–C) = 0.6612 Å. Absorbing boundaries with a mask of width 1.0 Å
were used. The calculation was done using the local-density approximation for
exchange and Perdew and Zunger’s parametrization of the correlation part [34].

For time-evolution the Suzuki--Trotter method [35] was used with a time-step of
∆t = 0.0008 ~/eV = 0.53× 10−18 s for T = 20 ~/eV = 13.2 fs. The laser had
the frequency ν = 17.15 eV/h = 4146 THz and the wavelength λ = 72.3 nm,
a maximal amplitude of E0 = 3 eV/Å and therefore a maximal intensity of
I0 = 1.19 × 1014 W · cm−2. The laser had a cosine envelope and was turned
on from t = 0 to Tlaser = 12 ~/eV = 7.9 fs, reaching its maximal intensity at
t = 6 ~/eV = 3.9 fs.

Fig. 2.3 Snapshots of the time-dependent ELF for the excitation of ethyne (acetylene) by
a 17.15 eV (λ = 72.3 nm) laser pulse. The pulse had a total length of 7 fs, a maximal
intensity of 1.2 × 1014 W cm−2, and was polarized along the molecular axis. Ionization and
the transition from the bonding π to the anti-bonding π∗ are clearly visible.

fig. 2.3 depicts snapshots of the ELF of acetylene in form of slabs through a plane of
the molecule. At the beginning (fig. 2.3a) the system is in the ground state and the
ELF visualizes these features: The torus between the carbon atoms, which is typical
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for triple bonds (in the Lewis picture, they are formed by the two π orbitals), and the
blobs around the hydrogen atoms (cf. [23]). As the intensity of the laser (fig. 2.2)
increases, the system starts to oscillate and then ionizes (fig. 2.3b,c). Note that
the ionized charge leaves the system in fairly localized packets (the blob on the left
in b and on the right in c). The central torus then starts to widen (fig. 2.6d) until
it breaks into two tori centered around the two carbon atoms (fig. 2.3e,f ). This
can be interpreted as a transition from the π bonding to the π∗ non-bonding state.
The system then remains in this excited state for some time after the laser has been
switched off.
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Fig. 2.4 Ethyne excited by a laser. (a) Total energy of the electron system which shows that about
60 eV are absorbed. (b) Number of electrons in the system, about 1.8 electrons are lost due to ionization.

The molecule absorbs about 60 eV of energy due to the laser (fig. 2.4a) and looses
1.8 electrons through ionization (this has to be interpreted statistically; fig. 2.4b).
The absorption spectra (fig. 2.5b) of ethyne, using a laser with ν = 17.15 eV/h,
shows a strong absorption at 16.5 eV/h below the laser frequency and a smaller peak
at ν = 18.5 eV/h which matches the calculated excitation energies (fig. 2.5a). Note
that the absorption spectra could be a bit distorted due to the ionization.

2.4.2 Proton scattering

In the second type of application, a fast (i. e. non-thermic), but still non-relativistic
proton (Ekin = 2 keV, v = 1.02 × 105 m/s) is sent against an ethene (etylene)
molecule. The proton is scattered by one of the carbon atoms (fig. 2.6). The
initial configuration is shown in fig. 2.6a. While the proton approaches the carbon,
it accumulates some charge around it (fig. 2.6b). It then scatters and leaves the
system (fig. 2.6c), taking some charge (about 0.2e) with it, i. e. in about every fifth
scattering process a hydrogen atom forms. The ethene molecule is thus excited and
the molecule starts to disintegrate. In panels d,e the leftmost carbon has already
broken the two bonds with the hydrogens (that will later form a H2 molecule (left)
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Fig. 2.5 (a) Excitation energies of ethyne. (b) The absorptions
when excited using a laser with ν = 17.15 eV/h.

and two CH molecules (middle and right). Finally, the rightmost CH molecule
breaks, yielding a carbon and a hydrogen atom. The ELF shows how the double
bond between the carbons is distorted, breaks and lone pairs form. The breaking of
the CH bond and the formation of a lone pair can be seen in panel (d).

The electronic system absorbs a bit less than 30 eV (fig. 2.8a). The peak around
7 fs is due to numerical errors in the time propagation when the proton comes close
to the carbon nucleus. Because of the rapid change of protonic momentum at this
point in time, a much finer time step is needed to prevent this error. In total, about
two electron charges get ionized (fig. 2.8b). During the first 1.5 fs, the time the
proton is in the box, about 0.2 electron charges are lost, mainly as electron cloud
around the proton. Towards the end of the simulation, electrons are also absorbed
because the nuclei are close to boundaries of the box.
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Fig. 2.6 Snapshots of the time-dependent ELF for the scattering of a fast, non-relativistic proton
(Ekin = 2 keV, white dot in the mid bottom of a) by ethene (etylene). The molecule breaks in several
pieces. During this fragmentation process, the breaking of bonds and the subsequent creation of
lone pairs becomes clearly visible.

If one carefully examines the moment when the proton hits the carbon (fig. 2.7), one
observes that even before the proton hits the carbon, ionization occurs (fig. 2.7a).
This blob of localized electrons leaves the system downwards, roughly into the dir-
ection of the approaching proton. Shortly after, another blob leaves the system
(fig. 2.7b,c) this time upwards. This is quite surprising since it seems as if the
proton repels the electrons while it attracts them in reality. We believe that this
phenomon is due to an overshooting of the electron oscillation between the approach-
ing proton and the ethene.

Calculation settings: We used a spherical mesh with a radius r = 7 Å and
∆ = 0.14 Å as spacing. The used bond lengths are d(C–C) = 1.339 Å and
d(C–H) = 1.085 Å. The angle between the hydrogen atoms was ](H–C–H) =
117.8◦. Absorbing boundaries with a mask of the width of 0.5 Å were used.
The calculation was done using the local-density approximation for exchange and
Perdew and Zunger’s parametrization of the correlation part [34].

For the time-evolution the Suzuki--Trotter method [35] was used with a time-
step of ∆t = 0.0005 ~/eV = 0.33 × 10−18 s for T = 150 ~/eV = 9.8 fs. The
ion movement used Newton dynamics with the velocity Verlet algorithm. The
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(a) (b) (c)

Fig. 2.7 Ionisation details scattering of a proton by ethene. (a) Even before the proton scatters,
ionization occurs which is roughly directed downwards, in the direction of the proton. Soon after (b,
c) one can also see ionization in the opposite direction.
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Fig. 2.8 Proton scattering by carbon. (a) The total energy of the electronic system is shown.
The peak around 7 fs is due to numerical errors when the proton is close to the carbon. The
proton transfers about 20 eV to the system. (b) Number of electrons in the box (using pseudo-
potentials), the drop by about 0.2 in the first 2 fs is mostly due to the charge picked up by the
proton; the drop by another 0.4 is mostly caused by ionization.

scattering proton was initially in the middle, 4 Å below the C–C axis of the
molecule and had an initial velocity of 4.67× 10−10 eV/~ = 0.709× 106 m/s.

2.5 Conclusions

These examples illustrate the wealth information which can be obtained from the
time-dependent electron localization function by simply looking at it. It visualizes
the π–π∗ transitions, the breaking and forming of bonds, the creation of lone pairs.
The time-dependent ELF is expected to be a valuable tool in the analysis of other
physical processes as well, such as creation and decay of collective excitations or
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the scattering of electrons by atoms and molecules. The key feature is the time-
resolved observation of the formation, modulation and creation of chemical bonds,
thus providing a visual understanding of the dynamics of excited electrons.
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It is more important to have beauty in one’s equations than to
have them fit experiment . . . It seems that if one is working from
the point of view of getting beauty in one’s equations, and if one
has a really sound insight, one is on a sure line of progress.
If there is not complete agreement between the results of one’s
work and experiment, one should not allow oneself to be too
discouraged, because the discrepancy may well be due to minor
features that are not properly taken into account and that will
get cleared up with further developments of the theory.

— Paul Dirac, 1902–84

3 Optimal control

We are interested in maximizing the transfer of population to a particular molecular
state, such as the π∗ state as depicted in the previous chapter (section 2.4.1). This
state optimization can be used not only to stimulate chemical reactions, but also to
trigger molecular switches. In this chapter, we concentrate on the HOMO–LUMO
transition of lithium fluoride, which bears some of the hallmarks needed for trans-
port. After a short introduction, we describe the used algorithm in section 3.2, which
is based on the idea to maximize a suitable functional. In section 3.3 we look at the
actual implementation of this algorithm for molecules having cylindrical symmetry.
This encompasses the discretization and the time-propagation. Section 3.4 contains
the results obtained for lithium fluoride and section 3.5 contains the conclusion and
an outlook.

3.1 Introduction

In subjects reaching from mathematics, engineering and physics to chemistry and
economics optimal control theories (OCT) are used. In physics, such theories are
applied to prepare quantum bits (qbits), align and orient molecules, select reaction
pathways, increase the yield of chemical reactions or to control molecular transport.
Several optimal control techniques are used [36], among them are genetic alogrithms,
feedback-control of experimental systems [37–38], and ab-initio, functional based
methods [39–40]. Coming from a density-functional theory background, we focus on
the last method in this chapter.

3.2 Algorithm

Since we want to use a laser for optimal control, we assume that the Hamilton
operator is of the following form
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H = T + V − εµ =: H0 − εµ, (3.1)

where ε = ε(t) denotes the electrical field and µ the dipole operator, which can be
written as

µ =
N∑

i=1

eri. (3.2)

Note that the dipole approximation is only valid if the system of regard is small
compared to the wavelength. Then the field is approximately constant in space.

The idea is that a tailored laser takes the system from the initial state Ψi to the
final state Φf within a given time T . In other words, the overlap |〈Ψi(T )|Φf〉|2 has
to be maximized. In order to reduce ionization, the energy of the laser should be as
small as possible, i. e. the energy density (energy per area)

E = cε0
1

2

∫ T

0
|ε(t)|2 dt, (3.3)

has to to be minimized. Here, c denotes the speed of the light and ε0 the electric
constant. Summarizing, we want to find a laser field which maximizes the overlap
of the propagated wave function with a given final state and minimizes the applied
laser energy. This can achieved by maximizing the following functional

J = |〈Ψi(T )|Φf〉|2 − α
∫ T

0
|ε(t)|2 dt, (3.4)

where α is a Lagrange multiplier which controls the importance of the energy min-
imization. Therefore, it is known as penalty factor. A wide range of values of α are
sensible, depending on the system. In order to make the second term dimensionless,
1/α has the unit of a squared electric field (V2 ·m−2) times the unit of time (s), in
atomic units α has therefore the unit e2a2

0/~Eh.

In order to tackle the problem of maximizing J , we subtract a carefully chosen zero.
Since Ψi is a wave function, it fulfils the Schrödinger equation

i~∂tΨi = HΨi

⇔ (−H + i~∂t)Ψi = 0

⇔
(

i

~
(H0 − µε) + ∂t

)
Ψi = 0 (3.5)

for all times and spatial coordinates. We multiply Eq. (3.5) from the left with an
arbitrary wave function Ψ∗

f and integrate. The functional is now
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J = |〈Ψi(T )|Φf〉|2 − α
∫ T

0
|ε(t)|2 dt−

∫ T

0
〈Ψf |

[ i

~
(H0 − µε) + ∂t

]
|Ψi(t)〉 dt, (3.6)

where Ψf can be viewed as a Lagrange multiplier density, ensuring that Ψf satisfies
the time-dependent Schrödinger equation at each point in space and time. In order
to determine a stationary point of J , we do a functional derivative and set it to
zero. Unfortunately, the differential equations obtained have coupled boundary
conditions. Zhu et al. [39] have therefore multiplied the third term of Eq. (3.6)
by 〈Ψi(T )|Φf〉. Then they subtract the complex conjugate of this term. The new
functional is therefore

J = J1 + J2 + J3, (3.7a)

J1 = |〈Ψi(T )|Φf〉|2 , (3.7b)

J2 = −α
∫ T

0

∣∣ε(t)∣∣2 dt, (3.7c)

J3 = −2 Re

[
〈Ψi(T )|Ψf(T )〉

∫ T

0

〈
Ψf(t)|

[ i

~
(
H − µε(t)

)
+ ∂t

]
|Ψi(t)

〉
dt

]
. (3.7d)

Before we continue, a few remarks are in order: α can be replaced by an α(t) to
impose time-dependent constraints on the laser shape, e.g. to force a cosine shaped
envelope. The Lagrange multiplier Ψf can be regarded as a backward propagated
wave function with Ψf(T ) = Φf (see below). In J3, the order of Ψi and Ψf in the
prefactor is reversed compared with the integral, which cancels time-independent
phases.

Calculating the derivative of the functional (for a detailed derivation, see [41]) and
setting it to zero (i. e. extremum of J), the following equations are obtained

i∂tΨi =
(
H0 − µε(t)

)
Ψi(t), Ψi(0) = Φi(0), (3.8)

i∂tΨf =
(
H0 − µε(t)

)
Ψf(t), Ψi(T ) = Φf(T ), (3.9)

ε(t) = − 1

α
Im
(
〈Ψi(t)|Ψf(t)〉〈Ψf(t)|µ|Ψi(t)〉

)
. (3.10)

This coupled system of non-linear equations can now be solved iteratively [37]. We
start with a guessed initial field ε(0)(t) which can be arbitrary.5

Using ε(0) ≡ 0 may lock the system in the initial state [42]. While using a constant field (i. e. a5

potential with the form of a wedge) seems to be a good starting point [private communication with
Jan Werschnik].
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3.2.1 Iteration algorithm

In the first step, Ψf , Ψf(T ) = Φf , is propagated backwards from t = T to t = 0 using
the guessed field. In the second step, Ψf(t) is propagated from t = 0 to T using the
same field ε(0). Concurrently, the new field

ε(1)(t) = − 1

α
Im
(
〈Ψi(t)|Ψf(t)〉〈Ψf(t)|µ|Ψi(t)〉

)
(3.11)

is calculated and used for the propagation of Ψi. In the third step, Ψi is propagated
backward from t = T to t = 0 using ε(1), the field is updated and used to propagate
Ψf . In the fourth step, Ψf is propagated back with ε(1), ε(2) is calculated and used
for propagating Ψi, and so on. Graphically,

Ψ(0)
f (0) ε(0)←−−−−−−−−−−−−−−−−−−−−−−−−− Ψ(0)

f (T ) := Φf

Ψ(0)
f (0) ε(0)−−−−−−−−−−−−−−−−−−−−−−−−−→ Ψ(0)

f (T )

Φi =: Ψ(1)
i (0)

ε1:=−α−1Im
(
〈ψ(1)

i
|ψ(0)

f
〉〈ψ(0)

f
|µ|ψ(1)

i
〉
)

−−−−−−−−−−−−−−−−−−−−−−−−−→ Ψ(1)
i (T )

Ψ(1)
i (0) ε(1)←−−−−−−−−−−−−−−−−−−−−−−−−− Ψ(1)

i (T )

Ψ(2)
f (0)

ε(2):=−α−1Im
(
〈ψ(1)

i
|ψ(2)

f
(T )〉〈ψ(2)

f
|µ|ψ(1)

i
(T )〉
)

←−−−−−−−−−−−−−−−−−−−−−−−−− Ψ(2)
f (T ) := Φf

etc.

Zhu et al. showed that this algorithm has the following convergence properties with
regard to the functional J [39]: (i) The iteration sequence converges monotonically
and quadratically in terms of the neighbouring field deviations. (ii) A larger devi-
ation of the field between neighbouring iteration steps leads to faster convergence
of the objective functional.

In fact, we could observe this behaviour in our calculations. In the first steps, the
overlap and the functional increases a lot, while later iteration steps introduce only
minor changes.

While we sticked to the above outlined algorithm, there are several modifications of
the algorithm possible. One modification proposed by Zhu et al. [39] is to evaluate
the first wave function bracket only at t = 0 and t = T ,

ε = − 1

α
Im
(
〈Φi|Ψf(0)〉〈Ψf(t)|µ|Ψi(t)〉

)
, First, third, . . . step,

ε = − 1

α
Im
(
〈Ψi(T )|Φf〉〈Ψf(t)|µ|Ψi(t)〉

)
, Second, fourth,. . . step. (3.12)
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Zhu et al. expect that this algorithm has generally a faster convergence. Another
possible modification is to revert the order of the propagations by first forward
propagating Ψi,6. In order to optimize 〈Ψi(T )|O|Φf〉, with O being a positive definite
operator, the functional [40]

J =〈Ψi(T )|O|Φf〉 − α
∫ T

0

∣∣ε(t)∣∣2 dt

− 2 Re

(∫ T

0

〈
Xf(t)|

[ i

~
(H0 − µε(t)) + ∂t

]
|ψi(t)

〉
dt

)
, (3.13)

can be used, where Xf(T ) = OΨi(T ). However, in the following we restrict ourselves
to the functional of Eq. (3.7).

3.3 Optimizing the HOMO–LUMO transition of LiF

We now apply the optimal control formalism, introduced in the last section, to a
system which is as small and as realistic as possible. Lithium fluoride is well suited
since it only contains two atoms and is rotationally invariant. This reduces the
three dimensional problem to an effective two dimensional one, which we describe
in cylindrical coordinates. To a certain extent, LiF also shows the hallmarks needed
for transport since the HOMO7 is located near the fluorine while the LUMO has an
appreciable contribution of the density near the lithium atom.

The Kohn--Sham potential of LiF has been calculated with octopus [13] using
pseudopotentials. The KS potential was then imported in optwo, a program which
has been written specially for this thesis to do the optimal control of molecules with
cylinderical symmetry. The potential exported by octopus lacks the non-local part
of the pseudopotential, which may yield wrong eigenvalues and orbitals. In addition,
in optwo we do not propagate the imported Kohn--Sham potential (it is therefore
frozen in time). As further simplification, no other orbitals are propagated.

3.3.1 Calculation of Hψi = εiψi

While we can simply calculate LiF with the octopus package, it cannot (yet) be used
to do optimal control. Therefore, the Kohn--Sham potential of octopus is exported
and the optimal control is done by an external program. In the following, we show
what is needed to do optimal control using the imported KS potential.

Initial results by Jan Werschnik show a slower convergence.6

HOMO stands for the highest occupied molecular orbital (‘ground state’) and LUMO for the lowest7

unoccupied molecular orbital (‘first excited state’).
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HOMO, E = −5.68 eV LUMO, E = −1.86 eV

Fig. 3.1 Isosurfaces of the HOMO and LUMO of lithium fluoride. (Lithium is on the
left, fluorine on the right.) The HOMO is doubly-degenerate and located near the fluorine
(combining both HOMOs makes the HOMO ϕ independent in cylindrical coordinates) while
the LUMO has some density located around the lithium atom. Note that the LUMO has
still parts close to the fluorine which are only barely visible in this isosurface plot. [Gaussian
calculations by courtesy of Angelica Zacarias.]

Orbital Energy (Ha) Energy (eV)

1 HOMO−4 −24.12993 −656.6088 m = 0

2 HOMO−3 −1.85919 −50.5911 m = 0

3 HOMO−2 −0.88686 −24.1327 m = 0

4 HOMO−1 −0.21886 −5.9555 m = 0

5, 6 HOMO −0.20891 −5.6847 m = ±1

7 LUMO −0.06841 −1.8615 m = 0

8, 9 LUMO−1 0.01082 0.2944 m = ±1

10 LUMO−2 0.03950 1.0748 m = 0

11 LUMO−3 0.11062 3.0101 m = 0

12, 13 LUMO−4 0.13091 3.5622 m = ±1

Table 3.1 Molecular orbital eigenvalues of lithium fluoride. LiF has twelve elec-
trons, four of which are inner core electrons. The orbitals with magnetic quantum
number |m| = 1 are doubly degenerate. [Gaussian calculations by courtesy of Angelica
Zacarias.]

First, we need to obtain the orbitals and eigenenergies. Since we use a KS potential,
a single-particle Schrödinger equation has to be solved. The Hamiltonian has the
form H = T + V + Vext, where T denotes the kinetic part, V the KS potential and
Vext the potential induced by the external laser. For the calculation of the states,
Vext = 0. The kinetic energy operator can be written as
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T =
p2

2me
= − ~2

2me
∇2 a.u.

= −1

2
∇2. (3.14)

In the remainder of this chapter, we use atomic units (cf. appendix D). Using
Eq. (3.14) and cylindrical coordinates, the following Schrödinger equation needs to
be solved

Hψ =

(
−1

2
∇2

cyl + V (r, z, φ)

)
ψ(r, z, φ) = εψ(r, z, φ). (3.15)

In cylindrical coordinates, the Laplacian has the form [43]

∇2
cyl =

1

r
∂r(r∂r) +

1

r2
∂2

φ + ∂2
z

= ∂2
r +

1

r
∂r +

1

r2
∂2

φ + ∂2
z . (3.16)

Inserting Eq. (3.16),

Hψ =

(
−1

2
∇2

cyl + V (r, z, ϕ)

)
[
−1

2

(
∂2

r +
1

r
∂r +

1

r2
∂2

ϕ + ∂2
z

)
+ V (r, z, ϕ)

]
ψ(r, z, ϕ) = εψ(r, z, ϕ).(3.17)

Since lithium fluoride is a molecule with cylinderical symmetry, i. e. the wave func-
tion is ϕ independent, we can replace ψ(r, z, ϕ) by ψ̃(r, z)eimϕ, m ∈ Z. Multiplying
Eq. (3.17) by e−imϕ, we obtain as new Schrödinger equation

Hψ̃(r, z) =

[
−1

2

(
∂2

r +
1

r
∂r + ∂2

z −
m2

r2

)
+ Ṽ (r, z)

]
ψ̃(r, z) = εψ̃(r, z). (3.18)

Note that the eigenvalues of Eq. (3.17) and (3.18) are the same. By writing ψ(r, z, ϕ)
as ψ̃(r, z)eimϕ, we can only do transitions were the magnetic quantum number m
does not change, transitions with ∆m = ±1 are thus not possible. This is because a
linearly polarized laser can only do ∆m = 0 transitions while a circularly polarized
one is needed for ∆m = ±1. By construction, our laser can only be polarized along
the cylinder axis, i. e. along the axis of the molecule. We now set ψ̃(r, z) =: ψ(r, z)
and Ṽ (r, z) =: V (r, z).

In order to discretize Eq. (3.18) properly, we need to look at the boundary conditions
and therefore at the asymptotics. For bound states, 〈ψ|ψ〉 has to be finite (namely
one) and therefore the wave function has to vanish for |r | → ∞, i. e. for |z| → ∞
and r →∞. Using cylindrical coordinates, we have also to look at r = 0 (cf. [44]).
As an ansatz, we use
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ψ(r, z) = rξψ̃(r, z). (3.19)

If we insert Eq. (3.19) in the Schrödinger equation, we obtain

Erξψ̃(r, z) = − 1

2

(
rξ−2ψ̃(r, z) (ξ2 −m2) + rξ−1∂rψ̃(r, z) (1 + 2ξ)

)
+ rξ

(
−1

2
∂2

r −
1

2
∂2

z + V (r, z)

)
ψ̃(r, z). (3.20)

Since we use pseudopotentials, the potential is smooth and V (r = 0, z) is finite.
Therefore, we may Taylor-expand V in r around r = 0

V (r, z) = V (r, z)
∣∣
r=0

+ ∂rV (r, z)
∣∣
r=0

r +
1

2
∂2

rV (r, z)
∣∣
r=0

r2 +O(r3). (3.21)

We also Taylor-expand the wave function ψ̃ in r around r = 0

ψ̃(r, z) = ψ̃(r, z)
∣∣
r=0

+ ∂rψ̃(r, z)
∣∣
r=0

r +
1

2
∂2

r ψ̃(r, z)
∣∣
r=0

r2 +O(r3). (3.22)

We now insert Eq. (3.22) and (3.21) in the Schrödinger equation (3.20), neglect terms
of higher order and collect the coefficients of the leading term, which is propotional
to rξ−2. One can then deduce

ξ = |m|. (3.23)

Reinserting this into Eq. (3.20), one obtains the boundary condition

ψ(r)
∣∣∣
r=0

= 0, m 6= 0. (3.24)

For m = 0, we need to look at the term proportional to rξ−1 and see then that
(dψ̃/dr)|r=0 = 0, therefore

dψ

dr

∣∣∣∣
r=0

= 0, m = 0. (3.25)

With these two boundary conditions, Eq. (3.24) and (3.25), and the condition that
ψ vanishes at infinity, the discretized Schrödinger equation will be solved.

3.3.2 Discretization

In order to solve the Schrödinger equation numerically in real-space, we have to
discretize the Hamiltonian. The coordinates are written as ri, i = 1, . . . , Nr and
zj , j = 1, . . . , Nz. We use a two dimensional, uniform grid with a mesh width of
∆ = |zj+1 − zj | = |ri+1 − ri| (fig. 3.28). The wave function will be written as
ψi,j := ψ(ri, zj) and the potential as
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Vi,j := V (ri, zj) +
m2

2r2i
. (3.26)

Since we do not want to calculate the kinetic part T of the Hamiltonian in momentum
space, the derivatives in T have to be approximated.

0
z

rmax

r

0
−zmax zmax

(1, 1)

(Nr, Nz)

Fig. 3.2 Used coordinates

Using the three-point discretization formula (e. g. [45]), namely

∂rψi,j =
1

2∆
(ψi+1,j − ψi−1,j) +O(∆3), (3.27a)

∂2
rψi,j =

1

∆2 (ψi+1,j − 2ψi,j + ψi−1,j) +O(∆4), (3.27b)

∂2
zψi,j =

1

∆2 (ψi,j+1 − 2ψi,j + ψi,j−1) +O(∆4), (3.27c)

yields the discretized Schrödinger equation

H(i, j)ψi,j =

(
−1

2

(
∂2

r +
1

r
∂r + ∂2

z

)
+ Vij

)
ψi,j (3.28)

=̇− 1

2

(
1

a2 (ψi+1,j + ψi−1,j + ψi,j+1 + ψi,j−1 − 4ψi,j) +
1

2a

1

r
(ψi+1,j − ψi−1,j)

)
+ Vi,jψi,j

=
(
−1

2
1
a2

)
ψi,j−1

+
(
−1

2

(
1
a2 − 1

2a
1
r

))
ψi−1,j +

(
1
2

4
a2 + Vi,j

)
ψi,j +

(
−1

2

(
1
a2 + 1

2a
1
r

))
ψi+1,j

+
(
−1

2
1
a2

)
ψi,j+1.

There is a tricky point in this equation: The resulting matrix is not symmetric
due to the different sign of ψi−1,j and ψi+1,j in the first derivative. Therefore,
the eigenvalues may be complex. In our calculations the imaginary part was zero,
though. However, one can symmetrize the matrix by substituting ψ by ψ

√
r but this

symmetization only works for the three-point formula (cf. [44]). In the following, we
only look at the non-symmetric matrix using three- and five-point finite-differences.
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Before we check the boundary conditions, we first construct a Hamilton matrix.
In principle, the eigenvectors are matrices of the size Nr × Nz, but since common
eigensolvers expect a vector, we transform ψi,j into a vector of the size N = NrNz.
We set

ψl := ψi,j with l(i, j) := Nz(i− 1) + j. (3.29)

The indices i and j can be regained from l using

i(l) = b(l − 1)/Nzc+ 1,

j(l) = (l − 1) modNz + 1. (3.30)

The resulting matrix has a band structure with tridiagonal entries and a sub-/super-
diagonal Nz rows below/above the diagonal (fig. 3.3). Since this is a sparse matrix
it should not be stored fully.

λ ν

ν λ ν

· · ·
· · ·
· · ·

ν λ ν

ν λ

λ ν

ν λ ν

· · ·
· · ·
· · ·

ν λ ν

ν λ

λ ν

ν λ ν

· · ·
· · ·
· · ·

ν λ ν

ν λ

µ+

·
·
·
·
·

µ+

µ−

·
·
·
·
·

µ−

µ+

·
·
·
·
·

µ+

µ−

·
·
·
·
·

µ−

N
=
N

z
N

r

N = NzNr

Nz

Fig. 3.3 Schematic Hamilton matrix using the three-point formula.
In this figure, λ = 2/∆2 + Vi,j , µ± = −1/2(1/∆2 ± 1/2ri∆) and
ν = −1/2∆2.

We now need to check the boundary conditions. For |z| → ∞ and r →∞ they are
automatically fulfilled since the matrix has a finite size. Since points outside the
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box are treated as zero, one has to to ensure that the box is big enough. We now
look at r → 0. The point r1 couples (Eq. (3.28)) to the non-existing point at r0.
We introduce an offset for the radial coordinate, and start at r1 = ∆r instead of at
r1 = 0 (i. e. ri = (i − 1)∆ + ∆r). We choose now ∆r = ∆/2 and evaluate Hψ1,j .
One observes then that the term with ψ0,j cancels. We therefore fulfil the boundary
conditions.

3.3.3 The five-point discretization

The accuracy of the obtained eigenvalues can be be enhanced by using a higher
order of finite-differences or going into Fourier space. But there is also a downside:
The numerical effort increases and new errors due to the transformation or the
larger matrices may occur. For the two-dimensional Harmonic oscillator in polar
coordinates, the three-point formula shows errors up to about one per cent and the
five-point up to 0.2 per mille [44]. In optwo both schemes are implemented, for the
results shown, the five-point formula has been used.

The expressions of the five-point finite difference (cf. [44]) are

∂rψi,j =
1

∆

(
− 1

12
ψi+2,j +

2

3
ψi+1,j −

2

3
ψi−1,j +

1

12
ψi−2,j

)
+O(∆5) (3.31)

for the first and

∂2
rψi,j =

1

∆2

(
− 1

12
ψi+2,j +

4

3
ψi+1,j −

5

2
ψi,j +

4

3
ψi−1,j −

1

12
ψi−2,j

)
+O(∆6)

(3.32)

for the second derivative. Analogously for ∂2
z . We now look at the boundary condi-

tions. As before, |r | → ∞ poses no problem. We now insert the five-point formula
(Eq. (3.32) and (3.32)) into the Schrödinger equation

Eψi,j =

(
1

24∆2 +
1

24ri∆

)
ψi+2,j +

(
− 2

3∆2 −
2

3ri∆

)
ψi+1,j

+

(
1

24∆2

)
ψi,j+2 +

(
− 2

3∆2

)
ψi,j+1 +

(
5

2∆2 + Vi,j +
m2

2r2i

)
ψi,j

+

(
− 2

3∆2

)
ψi,j−1 +

(
1

24∆2

)
ψi,j−2

+

(
− 2

3∆2 +
2

3ri∆

)
ψi−1,j +

(
1

24∆2 −
1

24ri∆

)
ψi−2,j . (3.33)

If one sets the offset ∆r to the spacing ∆ and evaluates Eq. (3.33) for r1, the
ψ−1,j term vanishes while −1/6∆2 ψ0,j remains. For m 6= 0 we need the boundary
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condition ψ0,j = 0 which is fulfilled due to the truncation of the matrix. (For m = 0
one can even construct a symmetric Hamilton matrix [44]). For m = 0 the first
derivative of ψ at r0 needs to vanish. As we show now, extra terms in the Hamilton
matrix are needed. We start by writing the condition explicitly using Eq. (3.31)

0 ≡ ∂ψ

∂r

∣∣∣∣
r=r0

=
1

∆

(
1

12
ψ−2,j −

2

3
ψ−1,j +

2

3
ψ1,j −

1

12
ψ2,j

)
⇔ ψ−2,j = 8ψ−1,j − 8ψ1,j + ψ2,j . (3.34)

Next we look for an expression for ψ−1,j . We take the second derivative of ψ0,j using
Eq. (3.34)

∂2ψ

∂r2

∣∣∣∣
r=r0

=
1

∆2

(
2

3
ψ−1,j −

6

5
ψ0,j + 2ψ1,j −

1

6
ψ2,j

)
. (3.35)

and use it in the next step. We express ψ1,j using the Taylor expansion of ψ in r
around r0

ψ(r1 = ∆, zj) = ψ0,j +
∂ψ(r, zj)

∂r

∣∣∣∣
r=r0

∆ +
1

2

∂2ψ(r, zj)

∂r2

∣∣∣∣
r=r0

∆2

⇔ ψ−1,j = −6

5
ψ0,j +

1

4
ψ2,j . (3.36)

Now we can use ψ−1,j to express ψ2,j using the Taylor expansion

ψ(r2 = 2∆, zj) = ψ0,j +
∂ψ(r, zj)

∂r

∣∣∣∣
r=r0

2∆ +
1

2

∂2ψ(r, zj)

∂r2

∣∣∣∣
r=r0

(2∆)2

and obtain an expression for ψ0,j

ψ0,j =
4

3
ψ1,j −

1

3
ψ2,j . (3.37)

If one inserts this in Eq. (3.33) for ψ1,j and ψ2,j , we get a modified Hamiltonian for
those points, namely

Eψ1,j =

(
5

2∆2 −
4

9∆2 + V1,j +
m2

2r21
)

)
ψ1,j +

(
− 2

3∆2 −
2

3r1∆
+

1

9∆2

)
ψ2,j

+

(
1

24∆2 +
1

24r1∆

)
ψ3,j +

(
− 1

24∆2

)
ψ1,j+2 +

(
2

3∆2

)
ψ1,j+1

+

(
2

3∆2

)
ψ1,j−1 +

(
− 1

24∆2

)
ψ1,j−2 (3.38)

and
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Eψ2,j =

(
− 2

3∆2 +
2

3r2∆
+

1

36∆2

)
ψ1,j +

(
− 5

2∆2 −
1

144∆2 + V2,j +
m2

2r22

)
ψ2,j

+

(
− 2

3∆2 −
2

3r2∆

)
ψ3,j +

(
1

24∆2 +
1

24r2∆

)
ψ3,j +

(
− 1

24∆2

)
ψ2,j+2

+

(
2

3∆2

)
ψ2,j+1 +

(
2

3∆2

)
ψ2,j−1 +

(
− 1

24∆2

)
ψ2,j−2, (3.39)

respectively. (Form = 0 the Hamiltonian cannot be symmetrized using ψij = ψ̃ij
√
ri

[44].)

3.3.4 Solving the eigenvalue problem

There exist several algorithms to solve eigenvalue problems of type encountered in
the previous section [46–47]. Two of which are implemented in optwo. One is the
dgeev routine which is part of LAPACK [48]. It expects a full matrix and is therefore
slow and has a high memory consumption for larger number of points N . dgeev
calculates always all N eigenvalues and, if requested, all eigenvectors.8 The other
solver which was used is dneupd. It is part of ARPACK [49]. dneupd implements the
implicitly restarted Arnoldi iteration. The Arnoldi iteration saves time and memory
by allowing to calculate only the n smallest or largest eigenvalues (and vectors). As
used, it only needs ψ(i+1) = Hψ(i) and is therefore quite memory efficient. Though,
for unknown reasons, dneupd as used in optwo has convergence problems and the
obtained eigenvalues are not close to the expected values. Therefore, for the results
presented here, only the LAPACK routine has been used. Alternative algorithms
for sparse matrices are conjugated gradient [50] and the Jacobi-Davidson algorithm
[51].

The discretization and the eigensolver have been tested using a three-dimensional
Harmonic oscillator whose potential is ϕ independent and whose analytic result is
known. The results had an absolute error of up to about one per cent using the three-
point formula and up to 0.2 per mille for the five-point formula. This is comparable
with the MatLab calculations in [44].

3.3.5 Time propagation

Knowing only the eigenstates of the static system (Vext ≡ 0) is not enough, we also
need to know how the system evolves in time under the influence of a laser. We
now need to find an explicit algorithm to calculate ψ(r, t) knowing its initial state

For symmetric matices LAPACK has routines for band matrices and one is able to calculate only8

the lowest N eigenvectors.
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ψ(r, t0) at the time t0. If the Hamiltonian does not depend explicitly on time, we can
integrate the Schrödinger equation and obtain the unitary time evolution operator

U(t, t0) = exp(− i

~
H (t− t0)). (3.40)

In the time-dependent case, we can deduce for infinitesimal time-steps dt that U(t0+
dt, t0) = (1− i/~H dt). We can now write U(t, t0) as product of infinitesimal time-
steps and obtain

U(t, t0) = lim
n→∞

n∏
i=1

exp

(
− i

~
H
(
t0 + i(t− t0)/n

)
(t− t0)/n

)
. (3.41)

If the Hamiltonian is time-independent then H(t) commutes with H(t′) and the
product of exponentials can be written as one exponential (as in Eq. (3.40)). For an
explicitly time-dependent Hamiltonian, we have [H(t), H(t′)] 6= 0 (for t 6= t′) and
Eq. (3.41) can symbolically be written as

ψ(r , t) = U(t, t0)ψ(r , t) = T̂

∫ t

t0

exp

(
− i

~
H(t′) dt′

)
(3.42)

where T̂ denotes the time-ordering operator.

A simple and crude approximation is to expand Eq. (3.40) for H(t0). Unfortunately,
this is numerically not stable since it breaks the reversal symmetry of the Schrödinger
equation [52], moreover such a time evolution operator is not unitary. The stability
can be improved by enforcing the symmetry using

ψ(r , t+ δt/2) ≈ exp

(
− i

~
H(t)

δt

2

)
ψ(r , t) ≈ exp

(
+

i

~
H(t+ δt)

δt

2

)
ψ(r , t+ δt).

(3.43)

A simple approach is to multiply Eq. (3.43) by exp
(
−i/~ δtH(t+ δt)

)
from the left,

resulting in

ψ(r , t+ δt) ≈ exp

(
− i

~
H(t+ δt)

δt

2

)
exp

(
+

i

~
H(t)

δt

2

)
ψ(r , t). (3.44)

The exponential functions of Eq. (3.44) can now be expanded. We used an expansion
up to the fourth order (cf. [53]). The advantage of this method is that the algorithm
is fast to implement and no matrix inversion is needed. This is the method which
we used.

An alternative method is Crank--Nicholson. The starting point is again Eq. (3.43).
Here, the exponential functions are expanded to the first order and multiplied by(
1 + i/~ δt/2H(t+ δt)

)−1, symbolically written (H is a matrix)
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ψ(x, t+ δt) ≈ 1− i/~ δt/2H(t)

1 + i/~ δtH(t+ δt)
ψ(x, t). (3.45)

Since the Crank--Nicholson algorithm requires a matrix inversion, it is not feasible
for large systems. A stability analysis of Crank--Nicholson can be found in [54].

For most calculations, further approximations need to be done since at time t the
Hamiltonian at time t + δt is usually not known. Since we do not propagate the
Kohn--Sham potential and the electric field ε(t) is known, we need not to predict
H(t+ δt).

The used time-propagation and its implementation can be tested using the driven
Harmonic oscillator since for this particular case an analytic solution exists [55]. At
least if the time-steps are not to long, the result should match perfectly (tested using
the sine function for the external field).

3.3.6 Absorbing boundaries

As soon as we use a strong laser, ionization occurs. That means that electron density
moves towards the boundary of the box. In the real world, it does not come back.
But in our system, the wave function is per construction zero at the boundary of
the box, i. e. there is an infinite potential which confines the particles. Therefore,
they are reflected and come back. One way to ‘absorb’ the density at the border is
to multiply the wave function ψ(r , t) with a so called masking function M(r) which
has to be smooth, otherwise reflections occur. The masking function is typically
defined (in one dimension) as

M(r) =

{
f(r), rab < |r| < rmax

1, r < rab
, (3.46)

where rmax is the extention of the box in r direction, rmax − rab is the width of the
absorbing boundaries and f(r) is a smooth function with f(rab) = 1. We used as
masking function

f(r) =

(
cos

π (r − rab)

2w

)1/4

, w := rmax − rab, (3.47)

which is depicted in fig. 3.4. Another possibility is to add an imaginary potential
which causes an exponential decay of the wave function (see e. g. [56]).

3.4 Application of the optimal control algorithm

As stated before, we want to find the optimal laser pulse to maximize the transition
from the HOMO to the LUMO in lithium fluoride. We therefore calculate first
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Fig. 3.4 Masking function f(r) = cos1/4
[
(r −

rab)π/2w
]

with w = 1 and rab = 0.

the Kohn--Sham potential in octopus and then use it in optwo to re-create the
eigenfunctions. Thereafter, the optimal control algorithm has been utilized with
several parameters.

For the calculation of the Kohn--Sham potential in octopus, two pseudopotentials
have been explored, the Hartwigsen--Goedecker--Hutter pseudopotential gave unsat-
isfactory results. With the Troullier--Martins potential, the calculated eigenvalues9

(table 3.2) match those of the all-electron calculation (table 3.1). There is one
pecularity, though: The first eigenvalue of the pseudopotential calculation matches
the second and not the third of the all-electron calculation, while consequently
the third one is missing. A reason for this might be that the Troullier--Martins
pseudopotential is not reliable in the inner regions. Furthermore the HOMO is non-
degenerate in the pseudopotential and the HOMO−1 is doubly degenerate, while in
the all-electron calculation this is reversed. Therefore we can indeed optimize the
HOMO–LUMO transition since both have the same m quantum number.

Since laser induced transport is one possible application of the work, we looked at
the charge transfer in lithium fluoride. We therefore calculated the electron density
for each half of the cylinder, i. e.

nl
i := 2π

∫ 0

−∞
dz

∫ ∞

−∞
dr|ψi(r, z)|2, (3.48a)

nr
i := 2π

∫ ∞

0
dz

∫ ∞

−∞
dr|ψi(r, z)|2, (3.48b)

Note that the eigenenergies of the Kohn--Sham system do not resemble those of the true system.9

Utilizing TDDFT one is able to calculate excitation energies. Since we do not propagate the
Kohn--Sham potential, in optwo the excitation energies are the differences of the eigenenergies.
For several systems this is a fair approximation.
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Fig. 3.5 Orbitals ψ(r, z) as calculated with optwo using Troullier--Martins pseudopotentials. The
eigenvalues shown are those of optwo. (a) shows an s-like wave function with finite value at r = 0, while
in (b) the wave function is p-like and vanishes at r = 0. The plot has been cut off at r = 5 bohr to make
the import features more visible.
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octpus optwo
Orbital Energy (Ha) Energy (eV) Energy (Ha) Energy (eV) nF

i

1 HOMO−2 −1.730969 −47.10206 −1.7291 −47.0510 m = 0 0.9933
2 HOMO−1 −0.216609 −5.89423 }

−0.2178 −5.9260 |m| = 1 0.9379
3 HOMO−1 −0.216587 −5.89363
4 HOMO −0.209679 −5.70566 −0.2085 −5.6733 m = 0 0.8156
5 LUMO −0.064099 −1.74422 −0.0652 −1.7736 m = 0 0.7180
6 LUMO−1 0.010326 0.28098 0.0084 0.2279 m = 0 0.5711
7 LUMO−2 0.037067 1.00864 }

0.0317 0.8630 |m| = 1 0.8891
8 LUMO−2 0.037067 1.00864
9 LUMO−3 0.064910 1.76629 0.0615 1.6730 m = 0 0.5697

Table 3.2 Eigenvalues obtained by octopus and optwo using a Troullier--Martins pseudopo-
tential. Note that in octopus the HOMO−1 and in optwo the HOMO is degenerate. (The
energy difference between HOMO and HOMO−1 is less than 1 eV.) m denotes the magnetic
quantum number used for the optwo calculation and nF

i how much density of that orbital is on
the side of the cylinder were fluorine is.

where nl
i + nr

i = ni = 〈ψi|ψi〉 = 1. Instead of left/right we use the element name
to denote either half of the cylinder: nLi

i := nl
i and nF

i := nr
i. The results for the

eigenstates are shown in table 3.2. One sees that the charge is largely concentrated
on the side of the fluorine.

Calculation settings: We used a cylindrical mesh with radius rmax = 8.25 bohr =
4.37 Å, a cylinder length of two times zmax = 14.75 bohr = 7.805 Å and a spa-
cing of ∆ = 0.25 bohr = 0.13 Å. In optwo we have Nr = 34, Nz = 119
and N = 4046. The bondlength is d(Li–F) = 2.95 bohr = 1.56 Å. We
used a time-step of ∆t = 0.01 a.u.time = 2.4 × 10−19 s and propagated for
T = 400 a.u.time = 9.7 fs. The initial laser field was set to ε(0) = 0.01 ~/Eh =
5.14 GV m−1 or in terms of intensity I0 = 0.5 cε0 |ε|2 = 3.51 × 1012 W cm−2,
integrated over time we obtain Elaser = 0.034 J · cm−2. A mask of the form
cos1/4 has been used (for the width, see figure caption of each example). (Using
a mask and propagating for fifty iterations takes about two days; one iteration
denotes one forward and one backward propagation.)

First, we look at the results using a hard wall, i. e. no absorbing boundaries. Since
especially the LUMO is only weakly bound and the laser has a high energy, one can
expect a lot of ionization and, consequently, reflections which alter the spectrum of
the optimized laser. The overlap and the laser energy are depicted in fig. 3.6 for the
penalty factors α = 0.1, 1.0 and 2.0. With higher values of α, not only the energy of
the laser is lower but the convergence is faster and the overlap approaches 100 per
cent. This is a bit different from the harmonic oscillator where smaller α tend to
give faster convergence (own tests, cf. also [57]). For α = 0.1 the convergence is not
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Fig. 3.6 Overlap and laser intensity for penalty factors α = 0.1, 1.0 and 2.0 using a hard wall (no
absorbing boundaries). (a, b) At the 25th iteration step using α = 0.1 the laser energy shoots upwards.
This is believed to be due to numerical inaccuracy in the time-propagation.

monotonic after the 25th iteration (fig. 3.6a,b), indicating a numerical instability.
Hence the results for α = 0.1 are not reliable.

In order to remove the reflections, one can use absorbing boundaries. Typically they
have a width of 10 % to 20 % of the box-size. Unfortunately, hardly any density was
left using absorbing boundaries of 1.75 Å and a small α. In the worst case, the norm
of ψf(T ) was only 10−7 (after a backward/forward cycle), while the norm of ψi(T )
(after forward propagation) was about fifty per cent. For different parameters, the
loss could be reduced to 10 to 15 per cent for ψi and 45 per cent for ψf . Having the
first case, the overlap and the energy zigzagged through the plot. In the second case,
overlaps of over 70 % could be achived, while the overlap only oscillated smoothly.
Interestingly, the laser energy had always the tendency to rise (or to slowly oscillate)
rather than to fall. One possible attempt to improve the situation is to renormalize
the laser field by the norm of the two wave functions,



Chapter 3: Optimal control

48

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0 5 10 15 20 25 30 35 40 45 50
1.2

1.4

1.6

1.8

2

2.2

O
ve

rl
ap
|〈Ψ

i(
T

)|Ψ
f
〉|2

L
as

er
en

er
gy

pe
r

ar
ea

[J
·c

m
−

2
]

Iterations

Overlap Laser energy

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

O
ve

rl
ap
|〈Ψ

i(
T

)|Ψ
f
〉|2

L
as

er
en

er
gy

pe
r

ar
ea

[J
·c

m
−

2
]

Iterations

Overlap Laser energy

(a) α = 0.1 (b) α = 0.5

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 5 10 15 20 25 30 35 40 45 50
0.16
0.18
0.2
0.22
0.24
0.26
0.28
0.3
0.32
0.34
0.36

O
ve

rl
ap
|〈Ψ

i(
T

)|Ψ
f
〉|2

L
as

er
en

er
gy

pe
r

ar
ea

[J
·c

m
−

2
]

Iterations

Overlap Laser energy

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

0 5 10 15 20 25 30 35 40 45 50
0.14

0.16

0.18

0.2

0.22

0.24

0.26

O
ve

rl
ap
|〈Ψ

i(
T

)|Ψ
f
〉|2

L
as

er
en

er
gy

pe
r

ar
ea

[J
·c

m
−

2
]

Iterations

Overlap Laser energy

(c) α = 1.0 (d) α = 2.0

Fig. 3.7 Overlap and laser energy for penalty factors α = 0.1, 0.5, 1.0 and 2.0 using absorbing
boundaries with a width of 0.25 bohr = 0.15 Å. (a) At the 33rd step of the iteration, the surge up to
500 W · cm−2 is presumably due to numerical inaccuracy in the time propagation. Norm of ψi and ψf

at t = T : (a) 80–90 % for α = 0.1, (b) 85–95 % for α = 0.5, (c) 85–95 % for α = 0.5 and (d) ≈ 95 % for
α = 2.0.

ε = − 1

α
Im
〈Ψi|Ψf〉〈Ψf |µ|Ψf〉
〈Ψi|Ψi〉〈Ψf |Ψf〉

. (3.49)

This changes qualitatively the result since the laser energy now tends to fall as
expected for the optimal control algorithm. Both, overlap and laser energy, are
still slightly oscillating. In conclusion, the result using the renormalization is less
promising: The overlap is slightly smaller then before and the laser energy is higher.
The latter is probably the consequence of dividing the electric field by a number
smaller than zero.

If we reduce the absorption to four to seven per cent, the algorithm starts to have
the normal convergence behaviour. This can be seen in fig. 3.7. In this example, we
set the absorbing boundaries to the tiny value of 0.25 bohr = 0.15 Å, which means
that only the edge points reduce the wave functions. We therefore can still expect
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(c) Hard wall, α = 2.0 (d) Absorbing boundaries, α = 2.0

Fig. 3.8 Optimized laser for α = 2.0 after 50 iteration steps. (a) Using hard walls. (b) Using
0.25 bohr = 0.15 Å absorbing boundaries.

that reflections occur. Note that we cannot easily increase the box by a substantial
amount due to memory constraints.10

Comparing the resulting optimized laser pulses, one sees (fig. 3.8) that for hard
walls the laser is much smoother than for absorbing boundaries. Using α = 1 the
laser is rougher than for α = 2. All lasers have a strong peak within the first femto-
second (for α = 1 with hard walls this is less visible). Looking at the frequencies of
the lasers fig. 3.9, one sees a strong peak at the HOMO–LUMO transition energy
of ν = 3.9eV/h, except for the α = 2 case with absorbing boundaries which is a
bit distorted. While α = 2 with hard walls shows a direct and almost complete
transition into the HOMO (fig. 3.10c), the other examples in fig. 3.10 show that

Using 17.15 bohr instead of 14.75 bohr in the z direction caused octopus to die on memory10

allocation. The computer had 1 gibibyte of memory.
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Fig. 3.9 Frequency spectra of the optimized laser for α = 1.0 and 2.0 after 50 iteration steps. (a)
Using hard walls. (b) Using 0.25 bohr = 0.15 Å absorbing boundaries. The transition energy of
HOMO–LUMO is ∆E = 3.9 eV.

intermediate states are populated (fortunately only those which are unoccupied).
In case of absorbing boundaries, the sum of all occupation numbers is about ninety
per cent. A comparison of the overlap and the laser energies in dependence on α
can be found in table 3.3.

One possible method to reduce the ionization and thus the absorption of electron
density is to start with the forward propagation of Ψi instead of the backward
propagation of Ψf . Since the same strong laser is applied for forward and backward
propagation, the energetically higher state Ψf is much more prone to ionization. The
reversed first iteration step might result in a better tailored laser and therefore a
reduction of ionization already for the second step. Initial results show no significant
improvement, though.
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Fig. 3.10 Time evolution of the level population using the optimized laser with α = 1.0 and 2.0
after 50 iteration steps. (a) Using hard walls. (b) Using 0.25 bohr = 0.15 Å absorbing boundaries.
Orbitals with m 6= 1 omitted since they cannot be populated. Since we use absorbing boundaries in
(a) and (d), the sum of those populations is less than one.

Hard walls Absorbing boundaries
E

∫
|ε|2dt E

∫
|ε|2dt Norm

α [J · cm−2] [a.u.] Overlap [J · cm−2] [a.u.] Overlap 〈ψi|ψf〉(T )
0.1 1.309 987 0.925 1.433 1080 0.759 0.879
0.5 0.247 186.3 0.908 0.953
1.0 0.150 112.9 0.909 0.173 130.3 0.908 0.961
2.0 0.0784 59.1 0.993 0.149 112.6 0.922 0.975

Table 3.3 Overview about the overlap and the energy of the electric field for the different
values of α with and without absorbing boundaries. The result is shown for the 50th iteration
(for α = 0.1, after 20 iteration due to the surge in the laser energy). The

∫
|ε|2dt is measured

in a.u.2el.fielda.u.time = ~2E2
h/e

2a2
0.

3.5 Conclusions

We have shown how a tailored laser can be used to optimize the population of a
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final state. Using hard walls, one observes that larger penalty factors α (α ≥ 2)
lead to higher overlaps, smaller laser intensities and faster convergence than lower
(α ≤ 1). While this tendency is visible for α = 0.1, the results for α = 0.1 are not
reliable due to numerical problems. For α = 2.0 an almost complete transition could
be achieved. Note that using a monochromatic laser of the transition energy also
depopulates the final state and can therefore not produce such a high polulation.
The resonance frequency is nevertheless a strong component in the spectrum.

In a real system, transitions between bound states and ionization are competing
processes. For the calculation, we need to mimic ionization and prevent reflection
by absorbing boundaries, otherwise the laser spectrum is not realistic. The optimal
control algorithm tries to reduce the ionization in order to maximize the overlap.
If a lot of ionization happens, a much smaller laser is tried in the next iteration.
Nevertheless, convergency problems may occur when a large amount of density is
absorbed.

In our calculations with slightly absorbing boundaries, the same behaviour with
regard to α could be observed as with hard walls. Except for α = 0.1 the convergence
is monotonic (at least after the tenth iteration) and rather reliable. Using a too
small box, density which, in the real world, would not be ionized is absorbed. This
is presumably the case in the calculation. The only proper remedy of this numerical
dilemma is to increase the size of the simulation box while simultaniously keeping a
sizable absorption at the boundaries. This, however, turned out not to be possible
on our present computer platforms due to memory constrains running octopus.

The artificial ionization can also be reduced by using a self-interaction-free functional
such as the KLI (Krieger--Li--Iafrate) approximation. If the ionization is still to
strong to prevent convergence, one could try to start with a hard wall and then turn
on adiabatially the absorbing boundaries.

We did a spin-restricted calculation neglecting all but one orbital. The next logical
step is to take the also other orbitals into account and, in addition, propagate
the Kohn--Sham potential. In appendix B, we derive the expressions needed to
calculate the new electric field, namely the overlap and the dipole moment using
Slater wave functions. Of special interest is the spin-unrestricted calculation, where
only one electron of an orbital is excited as it happens in nature. (If both are excited,
autoionization occurs.) Such an excited state can only be written as the sum of two
Slater determinants, requiring a generalization of the Kohn--Sham scheme.
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I think it is a general rule that the originator of a new idea is
not the most suitable person to develop it, because his fears of
something going wrong are really too strong.

— Paul Dirac, 1902–84

4 Conclusion

In this thesis we have investigated the time evolution of chemical bonds and orbitals
within the framework of time-dependent density-functional theory. Therefore we
gave a short overview of the fundamentals of time-dependent DFT. We showed
then how the electron localization function can be utilized to classify and visualize
chemical bonds. Using its time-dependent generalization, which we derived, we were
able to visualize the transition to anti-bonding orbitals and the stretching, breaking,
and re-forming of chemical bonds. We further observed that ionization happens in
localized blobs. While one can utilize the TDELF as a tool to obtain quantitative
numbers, the main merit of the time-dependent electron localization function is that
it creates meaningful pictures of complex reactions or structures in molecules and
condensed matter which aid in understanding the physical phenomena behind.

We then looked at optimal control theory which can be used to prepare certain states
in molecules or quantum dots. While this theory in its application to multi-electron
systems is still in its infancy, it has advantages over genetic algorithm methods
which are more prone to get locked in local minima or to experimental loop-back
systems which require a huge apparatus. Until this method is fully competitive
to those methods, some obstacles have to be overcome. One of the next steps
will be the optimization of a multi-particle molecule in the time-dependent Kohn--
Sham formalism, which can be excellently visualized using the ELF. Possible future
applications encompass chemical reactions, photoisomerization, optical switches or
quantum dots.



54



55

The trivial round, the common task,
Would furnish all we ought to ask. — John Keble, 1792-1866

A TDELF auxiliary calculations

In order to save some space of lengthy but trivial calculations in the main part, the
following auxiliary calculations have been moved into the appendix.

A.1 Simplification of Cσ

In this section, we use these conventions: The complex single-particle wave function
and the single-particle density are written as

φiσ(r , t) := χiσ(r , t)eiαiσ(r ,t),

niσ(r , t) := |φiσ(r , t)|2;
(A.1)

here χ and α are real functions. The wave functions can now be expressed in terms
of the density and the phase α

φiσ(r , t) = n
1/2
iσ (r , t)eiα(r ,t). (A.2)

The second term of Cσ in Eq. (2.34) of section 2.3.3 can be transformed to

1
2
∇2

r ′
|nσ(r ′, r , t)|2

nσ(r , t)

∣∣∣∣
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1
2
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We now calculate ∇r ′n and ∇r ′n
∗. In the following, nσ is associated with the upper,

n∗σ with the lower sign of ± and ∓.
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∇r′n(∗)
σ (r ′, r , t) =

Nσ∑
i=1

∇r ′
(
φ∗iσ(r

′, t)φiσ(r , t)
)(∗)

=
Nσ∑
i=1

∇r ′
(
niσ(r ′, t)e∓iαiσ(r ′,t))niσ(r , t)e±iαiσ(r ′,t)

=
Nσ∑
i=1

niσ(r , t)e±iαiσ(r ′,t)

×

(
1
2
∇r ′niσ(r , t)

n
1/2
iσ (r ′, t)

e∓iαiσ(r ′,t) ∓ in1/2
iσ (r ′, t)e∓iαiσ(r ′,t)∇r ′αiσ(r ′, t)

)

=
Nσ∑
i=1

(
1
2
∇n1/2

iσ (r , t)∓ in1/2
iσ (r ′, t)αiσ(r ′, t)

)

=
1
2
∇n1/2

σ (r , t)∓ iNσ

Nσ∑
i=1

n
1/2
iσ (r ′, t)αiσ(r ′, t) (A.4)

Therefore, the second term of Eq. (A.3) is
2

nσ(r , t)
∇r′n∗σ(r ′, r , t)∇r′nσ(r ′, r , t)

=
2

nσ(r , t)

1
4
(
∇nσ(r , t)

)2 +

(
Nσ∑
i=1

niσ(r ′, t)∇αiσ(r ′, t)
nσ(r , t)

)2


=
1
2

(
∇nσ(r , t)

)2
nσ(r , t)

+ 2

(
jσ(r , t)

)2
nσ(r , t)

. (A.5)

We now calculate the second derivative of n,

∇2
r′n

(∗)
σ (r ′, r , t)

=
Nσ∑
i=1

∇r ′
(
∇r ′
(
n

1/2
iσ (r ′, t)e∓iα(r ′,t)))n1/2

iσ (r , t)e±iα(r ,t)

=
Nσ∑
i=1

∇r′
(

1
2
∇niσ(r , t)
n

1/2
iσ (r , t)

e∓iα(r ,t) ∓ in1/2
iσ (r , t)e∓iα(r ′,t)∇αiσ(r , t)

)
n

1/2
iσ (r , t)e±iα(r ,t)

=
Nσ∑
i=1

(
n

1/2
iσ (r , t)e±iα(r ,t)

)(1
2
∇2niσ(r , t)

n
1/2
iσ (r , t)

e∓iα(r ′,t) +
1
2

(
−1

2

) (∇niσ(r , t))2
n

1/2
iσ (r , t)

e∓iα(r ′,t)

∓ i
1
2
∇niσ(r , t)
n

1/2
iσ (r , t)

e∓iα(r ′,t)∇αiσ(r , t)∓ i
∇niσ(r , t)
n

1/2
iσ (r , t)

e∓iα(r ′,t)∇αiσ(r , t)

− n1/2
iσ (r , t)e∓iα(r ′,t)(∇αiσ(r , t))2 ∓ in1/2

iσ (r , t)e∓iα(r ′,t)∇2αiσ(r , t)

)
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=
Nσ∑
i=1

1
2
∇2niσ(r , t)−

1
4

Nσ∑
i=1

(
∇niσ(r , t)

)2
n

1/2
iσ (r , t)

∓ i
Nσ∑
i=1

(
∇niσ(r , t)∇αiσ(r , t)

)
−

Nσ∑
i=1

niσ(r , t)
(
∇αiσ(r , t)

)2 (A.6)

=
1
2
∇2nσ(r , t)−

1
4

Nσ∑
i=1

(
∇niσ(r , t)

)2
n

1/2
iσ (r , t)

∓ i
Nσ∑
i=1

(
∇niσ(r , t)∇αiσ(r , t)

)
−

Nσ∑
i=1

(
jiσ(r , t)

)2
niσ(r , t)

.

For ∇2
r′n

∗
σ(r ′, r , t) + ∇2

r′nσ(r ′, r , t) the imaginary parts cancel, the first term of
Eq. (A.3) is thus

∇2
r′n

∗
σ(r ′, r , t) +∇2

r′nσ(r ′, r , t) =∇2nσ(r , t)− 1

2

Nσ∑
i=1

(
∇niσ(r , t)

)2
n

1/2
iσ (r , t)

(A.7)

− 2
Nσ∑
i=1

(
jiσ(r , t)

)2
niσ(r , t)

.

A.2 Deriving the time-dependent ELF for a simplified,
two-particle case

In this section, we derive the time-dependent electron localization function on a
different route for a two-electron system with opposite spin. The kinetic energy of
a non-interacting system

TKS =
~2

2m

∑
σ

∫
d3r

Nσ∑
i=1

φ∗iσ(r , t) (−∇2)φiσ(r , t). (A.8)

Using Green’s theorem (also known as Green’s first identity) this can be changed to

TKS =
~2

2m

∑
σ

∫
d3r

Nσ∑
i=1

(
∇φ∗iσ(r , t)

)(
∇φiσ(r , t)

)
. (A.9)

We now define the kinetic energy density

τσ(r , t) =
Nσ∑
i=1

|∇φiσ(r , t)|2. (A.10)

Since we assume a two-electron system with opposite spin, Nσ = 1. Using the
following definition for the wave function and density

nσ(r , t) = |φσ(r , t)|2, φσ(r , t) = χσ(r)eiασ(r ,t), (A.11)
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where α and χ are real functions, the wave function can be written as

φσ(r , t) = n
1/2
σ (r , t)eiασ(r ,t). (A.12)

Now, we insert φ and n in the definition of Cσ Eq. (2.22) of section 2.3.1. Using

|∇φσ(r , t)|2 = e−iασ(r ,t)

(
1

2

∇nσ(r , t)

n
1/2
σ (r , t)

)
eiασ(r ,t)

(
1

2

∇nσ(r , t)

n
1/2
σ (r , t)

)

=
1

4

(
∇nσ(r , t)

)2
n

1/2
σ (r , t)

+ nσ(r , t)
(
ασ(r , t)

)2
=

1

4

(
∇nσ(r , t)

)2
nσ(r , t)

+
j2σ(r , t)
nσ(r , t)

,

(A.13)

where j2σ = (∇α)2n2 denotes the current density, one obtains

Cσ(r , t) = |∇φσ(r , t)|2 − 1

4

(
∇nσ(r , t)

)2
nσ(r , t)

− j2σ(r , t)
nσ(r , t)

. (A.14)

This is conform with the result from the long derivation Eq. (2.37). Assuming real
wave functions (α ≡ 0 and thus j ≡ 0) we get again the result obtained by Becke
and Edgecombe Eq. (2.6).
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An expert is someone who knows some of the worst mistakes
that can be made in his subject and who manages to avoid them.

— Werner Heisenberg, 1901–76

B Optimal control for many-particle systems

While the optimal control algorithm (Eq. (3.7)) allows the optimazation of many-
particle systems, so far we have only looked at one-particle systems. The essential
difference to the single-particle case is the way the overlap and the laser field are
calculated. We derive now the necessary expressions to explicitly calculate the
overlap, assuming that the wave functions are Slater determinants.

B.1 Calculation of the overlap 〈Ψ̃|Ψ〉

As in appendix C is shown, the overlap of two wave functions of this form

Ψ(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣ , xi = (r , σi), (B.1)

is given by

〈Ψ̃|Ψ〉 = detij 〈Ψ̃i|Ψj〉 =
∑
π

sgn π
N∏

i=1

〈Ψ̃i|Ψπi〉. (B.2)

The single-particle wave functions can be split into a spatial part φ±i and into a spin
part χ±, i. e.

ψ+
i (x) = φ+

i (r)χ+(σ), i = 1, . . . , N+,

ψ−i (x) = φ−i (r)χ−(σ), i = 1, . . . , N−, N = N− +N+. (B.3)

We can now define

ψi(x) :=

{
ψ+

i (x), 1 ≤ i ≤ N+

ψ−i−N+
(x), N+ < i ≤ N

(B.4)

and obtain
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ψ(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣

=
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ+
1 (r1)χ+(σ1) · · · ψ+

1 (rN )χ+(σN )
... . . . ...

ψ+
N+

(r1)χ+(σ1) · · · ψ+
N+

(rN )χ+(σN )

ψ−1 (r1)χ−(σ1) · · · ψ−1 (rN )χ−(σN )
... . . . ...

ψ−N−
(r1)χ−(σ1) · · · ψ−N−

(rN )χ−(σN )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (B.5)

Using Eq. (B.5) the overlap can be calculated

〈Ψ̃|Ψ〉 = detij 〈ψ̃i|ψj〉

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

〈ψ̃+
1 |ψ

+
1 〉 · · · 〈ψ̃+

1 |ψN+〉 〈ψ̃+
1 |ψ

−
1 〉 · · · 〈ψ̃+

1 |ψ
−
N−
〉

... . . . ...
... . . . ...

〈ψ̃+
N+
|ψ+

1 〉 · · · 〈ψ̃
+
N+
|ψN+〉 〈ψ̃

+
N+
|ψ−1 〉 · · · 〈ψ̃

+
N+
|ψ−N−

〉
〈ψ̃−1 |ψ

+
1 〉 · · · 〈ψ̃−1 |ψN+〉 〈ψ̃−1 |ψ

−
1 〉 · · · 〈ψ̃−1 |ψ

−
N−
〉

... . . . ...
... . . . ...

〈ψ̃−N−
|ψ+

1 〉 · · · 〈ψ̃
−
N−
|ψN+〉 〈ψ̃

−
N−
|ψ−1 〉 · · · 〈ψ̃

−
N−
|ψ−N−

〉

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=:

∣∣∣∣Φ++ Φ+−
Φ−+ Φ−−

∣∣∣∣ , (B.6)

where 〈ψ̃σ̃
i |ψσ

j 〉 = 〈φσ̃
i |φσ

j 〉〈χ̃σ̃|χσ〉. Assuming no spin flip, i. e. χ̃± ≡ χ±, we can
make use of the orthonormality of χ and obtain thus the following sparse matrix

〈Ψ̃|Ψ〉 =

∣∣∣∣Φ++ 0
0 Φ−−

∣∣∣∣ = det〈ϕ+
i |ϕ

+
j 〉 det〈ϕ−i |ϕ

−
j 〉. (B.7)

And if furtherN+ = N− = N/2 and φ+
i ≡ φ−i , i = 1, . . . , N/2 (e. g. in spin-restricted

calculations), this simplifies to

〈ψ̃|ψ〉 =
(
det〈ϕ+

i |ϕ
+
j 〉
)2
. (B.8)

B.2 Calculation of the dipole moment 〈ψ̃|X̂ |ψ〉

The electric dipole moment is p = 〈Ψ| (
∑

i qr̂i) |Ψ〉 and since q = e
a.u.
= 1 we have to

calculate
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N∑
i=1

〈Ψ̃|r̂i|Ψ〉, Ψ = Ψ̃. (B.9)

The used algorithm for optimal control requires that ψ = ψ̃ cannot be assumed;
strictly speaking Eq. (B.9) is then no longer an electric dipole moment, but we will
use the term nevertheless. The wave function shall have the form Eq. (B.1). We
define now

X̂ :=
N∑

i=1

x̂i, x̂i := r̂i. (B.10)

Plugging the Slater determinant into Eq. (B.9), the explicitly written equation is

〈ψ̃|X̂ |ψ〉 =
1

N !

∫
d3(r1, . . . , rN )

∑
{σl}

N∑
i=1

×

∣∣∣∣∣∣
ψ̃∗1(x1) · · · ψ̃∗1(xN )

... . . . ...
ψ̃∗N (x1) · · · ψ̃∗N (xN )

∣∣∣∣∣∣ x̂i

∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣ .
(B.11)

This can be simplified since∫
d3(r1, . . . , rN )

∑
{σl}

∣∣∣∣∣∣
ψ̃∗1(x1) ψ̃∗2(x1) · · ·
ψ̃∗1(x2) ψ̃∗2(x2) · · ·

...
... . . .

∣∣∣∣∣∣ x̂2

∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · ·
ψ1(x2) ψ2(x2) · · ·

...
... . . .

∣∣∣∣∣∣
=

∫
d3(r1, . . . , rN )

∑
{σl}

∣∣∣∣∣∣
ψ̃∗1(x2) ψ̃∗2(x2) · · ·
ψ̃∗1(x1) ψ̃∗2(x1) · · ·

...
... . . .

∣∣∣∣∣∣ x̂2

∣∣∣∣∣∣
ψ1(x2) ψ2(x2) · · ·
ψ1(x1) ψ2(x1) · · ·

...
... . . .

∣∣∣∣∣∣
=

∫
d3(r1, . . . , rN )

∑
{σl}

∣∣∣∣∣∣
ψ̃∗1(x1) ψ̃∗2(x1) · · ·
ψ̃∗1(x2) ψ̃∗2(x2) · · ·

...
... . . .

∣∣∣∣∣∣ x̂1

∣∣∣∣∣∣
ψ1(x1) ψ2(x1) · · ·
ψ1(x2) ψ2(x2) · · ·

...
... . . .

∣∣∣∣∣∣ .
(B.12)

In the last step we have renamed x2 → x1 and x1 → x2. We now arbitrarily choose
x̂i := x̂1, i = 2, . . . , N , and obtain
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〈ψ̃|X̂ |ψ〉 =
N

N !

∫
d3(r1, . . . , rN )

∑
{σl}

×

∣∣∣∣∣∣
ψ̃∗1(x1) · · · ψ̃∗1(xN )

... . . . ...
ψ̃∗N (x1) · · · ψ̃∗N (xN )

∣∣∣∣∣∣ x̂1

∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣ , (B.13)

which we now expand with respect to the first row (= x1). Mij denotes the minor,
i. e. the determinant where row i and column j have been cancelled.

〈ψ̃|X̂ |ψ〉 =
N

N !

∫
d3(r1, . . . , rN )

∑
{σl}

( N∑
i=1

(−1)1+iψ̃∗i (x1)M̃
∗
1i(x2, . . . , xN )

)
x̂1

×
( N∑

j=1

(−1)1+jψj(x1)M1j(x2, . . . , xN )
)

=
1

(N − 1)!

∫
d3{rl}

∑
{σl}

( N∑
i,j=1

(−1)i+j

× 〈ψ̃i(x1)|x̂1|ψj(x1)〉M̃∗
1i(x2, . . . , xN )M1j(x2, . . . , xN )

)
=

N∑
ij

(−1)i+j〈ψi(x1)|x̂1|ψj(x1)〉
1

(N − 1)!

∫
d3(r2, . . . , rN )

×
∑

(σ2,...,σN )

M̃∗
1i(x2, . . . , xN )M1j(x2, . . . , xN ). (B.14)

Knowing that

〈ψ̃|ψ〉 =
1

N !

∫
d3(r1 . . . , rN )

∑
(σ1,...,σN )

detij ψ̃
∗
i (xj) · detij ψi(xj) = detij 〈ψ̃i|ψj〉,

(B.15)

we can write the integral in Eq. (B.14) as

1

(N − 1)!

∫
d3(r2, . . . , rN )

∑
(σ2,...,σN )

M̃∗
1i(x2, . . . , xN )M1j(x2, . . . , xN )

=
(
detlm 〈ψ̃l|ψm〉

)
ij

:= detl′m′ 〈ψ̃l′ |ψm′〉, l′,m′ = 1, . . . , N, and l′ 6= i, m′ 6= j. (B.16)
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Here
(
detlm 〈ψ̃l|ψm〉

)
ij

denotes the determinant in which row i and column j are
deleted; therefore is M1j(x2, . . . , xN ) =

(
detlm ψl(xm)

)
1j

. We finally obtain

〈ψ̃|X̂|ψ〉 =
N∑

i,j=1

(−1)i+j〈ψ̃i|x̂1|ψj〉
(
detlm 〈ψ̃l|ψm〉

)
ij
. (B.17)

We define analogously to the overlap calculation(
detlm 〈ψ̃l|ψm〉

)
ij

=:

(∣∣∣∣Φ′
++ Φ′

+−
Φ′
−+ Φ′

−−

∣∣∣∣)
ij

; (B.18)

this can be simplified for χ̃i ≡ χi, where ψi(r , σ) = ϕi(r)χi(σ). Assuming again
that no spin flip occurs, i. e. Φ′

−+ = Φ′
+− = 0, the reduced determinant has these

properties

(
detlm 〈ψ̃l|ψm〉

)
ij

=

(∣∣∣∣Φ′
++ 0
0 Φ′

−−

∣∣∣∣)
ij

=


det Φ++M

++
ij , i, j ∈ {1, . . . , N+}

det Φ−−M
−−
ij , i, j ∈ {1, . . . , N+}

0, otherwise
.

(B.19)

Hence

〈ψ̃|X̂ |ψ〉 =

N+∑
i,j=1

(−1)i+j〈ϕ̃i|x̂1 |ϕj〉M++
ij det Φ−−

+

N−∑
i,j=1

(−1)i+j〈ϕ̃i|x̂1 |ϕj〉M−−
ij det Φ++. (B.20)

In the spin-restricted case, we have N− = N+ = N/2 and ϕi ≡ ϕ+
i and consequently

Φ++ = Φ−−, thus (
detlm 〈ψ̃l|ψm〉

)
ij

= det Φ
(
det Φ

)
ij
. (B.21)

The spin-restricted electric dipole moment is thus given by

〈ψ̃|X̂ |ψ〉 = 2

N/2∑
i,j=1

(−1)i+j〈ϕ̃i|x̂1|ϕj〉 det Φ (det Φ)ij (B.22)

= 2
( N/2∑

i,j=1

〈ψ̃i|x̂1|ψj〉 detl,m〈ψ̃l|ψm〉
)

detl,m 〈ψ̃l|ψm〉, l,m = 1, . . . , N/2.
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Mathematics is an experimental science, and definitions do not
come first, but later on. — Oliver Heaviside, 1850–1925

C Proof for the overlap of two Slater wave func-
tions

We now show that for two wave functions Ψ and Ψ̃ which can be written as Slater
determinants of single-particle wave functions ψi and ψ̃i,

Ψ(x1, . . . , xN ) =
1√
N !

∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣ =:
1√
N !

detij ψi(xj), (C.1)

this identity holds true

〈Ψ̃|Ψ〉 = detij 〈ψ̃i|ψj〉. (C.2)

In the following we calculate spin-restricted, i. e. x = r , which saves us the sum
over the spins; the full, spin-unrestricted calculation is analogous.

〈Ψ̃|Ψ〉 =
1

N !

∫
d3{xl} ψ̃∗(x1, . . . , xN )ψ(x1, . . . , xN )

=
1

N !

∫
d3{xl}

∣∣∣∣∣∣
ψ̃∗1(x1) · · · ψ̃∗1(xN )

... . . . ...
ψ̃∗N (x1) · · · ψ̃∗N (xN )

∣∣∣∣∣∣
∣∣∣∣∣∣
ψ1(x1) · · · ψ1(xN )

... . . . ...
ψN (x1) · · · ψN (xN )

∣∣∣∣∣∣
=

1

N !

∫
d3{xl}

(∑
π

sgn π
∏

i

ψ̃∗i (xπi)

)(∑
µ

sgn µ
∏

i

ψi(xµi)

)

=
1

N !

∫
d3{xl}

∑
π,µ

sgn π sgn µ

(∏
i

ψ̃∗i (xπi)

)∏
j

ψj(xµj )


=

1

N !

∫
d3{xl}

∑
π,µ

sgn π sgn µ
∏

i

ψ̃∗i (xπi)ψi(xµi)

=
1

N !

∫
d3{xl}

∑
π,µ

sgn π sgn µ
∏

i

ψ̃∗πi
(xi)ψµi(xi)

=
1

N !

∑
π,µ

sgn π sgn µ
∏

i

∫
d3xi ψ̃

∗
πi

(xi)ψµi(xi). (C.3)

The last integral is independent of the variable xi. Thus we can replace xi by x and
obtain
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〈Ψ̃|Ψ〉 =
1

N !

∑
π,µ

sgn π sgn µ
∏

i

〈ψ̃∗πi
|ψi〉. (C.4)

Since the terms of the product commute, they can be ordered in a way that µi ≡ i.
Then sgn µ ≡ 1 and this yields the final result

〈Ψ̃|Ψ〉 =
∑
π

sgn π
∏

i

〈ψ̃πi |ψi〉
∑
µ

1︸ ︷︷ ︸
N !

= detij 〈ψ̃i|ψj〉. (C.5)
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Never express yourself more clearly than you think.
— Niels Bohr, 1885–1962

D Atomic, ‘convenient’ and SI Units

In atomic and molecular physics several unit systems are used, each having its
advantages and disadvantages:

− The International System of Units, universally abbreviated SI (from the French
Le Système International d’Unités). This system covers all areas of physics, it
widely used and standardized (ISO 1000, DIN 1301) and is the only legal unit
in the EU (ECC directives 80/181 and 89/617).

But SI units have two disadvantages: The numbers for typical observables of
atoms are usually tiny and one has to carry a lot of constants through the
calculation.

− For ‘convenient units’ a different frame of reference for some units is used. This
is done in order to get numbers which can be expressed without exponentials.

− The atomic units simplify the equations by setting several units to one; for atoms
the numbers are usually also usable without exponentials. The drawback is that
converting these units into SI is not trivial since one has to replace several ones
by constants.

There exist several primers about SI units, for instance at the Bureau International
des Poids et Mesures (http://www.bipm.org/) or at the physics page of the NIST
[58].

D.1 Atomic Units

When using atomic units (a. u.), the Planck constant is 2π (~ = 1) and those
constants are one: electron mass (me = 1; atomic unit of mass), elementary charge
(e = 1; atomic unit of charge) and the Bohr radius (1 = a0 = 4πε0~2/mee

2; atomic
unit of length). Therefore the electric constant has to be ε0 = 1/4π and since
α = e2/4πε0~c ≈ 1/137, the vacuum speed of light is c = 1/α. The energy is
measured in hartree (EH = e2/4πε0a0 = α2mec

2 = 1) and the atomic unit of time
is ~/EH = 1.

http://www.bipm.org/
http://www.bipm.org/
http://www.bipm.org/
http://www.bipm.org/
http://www.bipm.org/
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D.2 ‘Convenient units’

This is not a official system of units since the problem defines what is conveni-
ent. The advantage is that one can use all SI units and replace only a few by a
different frame of reference; typically these are length and energy. The length is
then measured in Ångströms (1 Å = 10−10 m) and the energy in electron volts
(1 eV = 1 e J/C). One may also choose to measure the mass in electron volts using
this relation: E = mc2 ⇒ m = E/c2.

D.3 Comparison and conversion

Here we give a short overview, for further conversion factors, see next section and
reference [58].

SI units convenient units atomic units

Length Metre: 1 m Ångström: Bohr radius: 1 bohr = 1 a0

1 Å = 10−10 m
Time Second: 1 s – a. u. of time: 1 a. u.time = 1 ~/Eh

Mass Kilogram: 1 kg – a. u. of mass: 1 a.u.mass = 1 me

Charge Coulomb: 1 C – a. u. of mass: 1 a.u.charge = 1 e
Energy Joule: 1 J Electron volt: Hartree: 1 hartree = 1 e2/4πε0a0

1 eV = 1 e J/C

D.4 Constants

Taken from the ‘NIST Reference on Constants, Units, and Uncertainty’ [58].

− Speed of light in vacuum: c ≡ c0 = 299 792 458 m s−1 (exact)
− Electric constant: ε0 = 1/µ0c

2 = 8.854 187 817 . . .× 10−12 F m−1 (exact)
− Magnetic constant: µ0 = 4π×10−7 N A−2 = 12.566 370 614 . . . N A−2 (exact)
− Planck constant:

h = 6.626 068 76(52) · 10−34 J s = 4.135 667 27(16) · 10−15 eV s
~ = h/2π = 1.054 571 596(82)× 10−34 J s = 6.582 118 89(26)× 10−16 eV s

− Elementary charge: e = 1.602 176 462(63)× 10−19 C
− Electron mass: me = 9.109 381 88(72)× 10−31 kg
− Proton mass: mp = 1.672 621 58(13)× 10−27 kg
− Proton-electron mass ratio: mp/me = 1 836.152 6675(39)
− Fine-structure constant:

α = e2/4πε0~c = 7.297 352 533(27)× 10−3

α−1 = 137.035 999 76(50)
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Non-SI units excepted for use with the SI

− Electron volt: 1 eV = 1 e J/C = 1.602 176 462(63)× 10−19 J

Atomic units

− a. u. of charge: elementary charge: e = 1.602 176 462(63)× 10−19 C
− a. u. of mass: electron mass: me = 9.109 381 88(72)× 10−31 kg
− a. u. of action: reduced Planck constant: ~ = h/2π = 1.054 571 596(82)×

10−34

− a. u. unit of length: Bohr radius (bohr): a0 = 0.529 177 2083(19)×10−10m
− a. u. of energy, Hartree energy (hartree, Ha): Eh = e2/4πε0a0 = 2R∞ =

α2mec
2 = 4.359 743 81(34)× 10−18 J

− a. u. of time: ~/Eh = 2.418 884 326 500(18)× 10−17 s
− a. u. of force: Eh/a0 = 8.238 721 81(64)× 10−8 N
− a. u. of velocity: a0Eh/~ = αc = 2.187 691 2529(80)× 106 m s−1

− a. u. of momentum: ~/a0 = 1.992 851 51.16)× 1024 kg m s−1

− a. u. of current: eEh/~ = 6.623 617 53(26)× 10−3 A
− a. u. of charge density: e/a3

0 = 1.081 202 285(43)× 1012 C m−3

− a. u. of electric potential: Eh/e = 27.211 3834(11) V
− a. u. of electric field: Eh/ea0 = 5.142 206 24(20)× 1011 V m−1

− a. u. of electric field gradient: Eh/ea
2
0 = 9.717 361 53(39)× 1021 V m−2

− a. u. of electric dipole moment: ea0 = 8.478 352 67(33)× 10−30 C m
− a. u. of electric quadrupole moment: ea2

0 = 4.486 551 00(18)× 10−40 C m2

− a. u. of electric polarizability: e2a2
0/Eh = 1.648 777 251(18)×10−41 C2 m2 J−1
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Dictum sapienti sat est. A sentence is enough for a sensible
man. — Plautus, c. 250-184 BC

Abbreviations and Acronyms

a. u. Atomic unit

DFT Density functional theory

ELF Electron localization function

gs Ground state

HF Hartree--Fock

HOMO Highest occupied molecular orbital

KS Kohn--Sham

LUMO Lowest unoccupied molecular orbital

OCT Optimal Control Theory

octopus This is not (yet) an acronym but refers to the animal (Optimal
Control, . . . , Universal Solution).

TD Time dependent
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I know of only one rule: style cannot be too clear, too simple.
— Stendhal, 1783–1842

Used symbols

Symbols of common physical constants can be found in section D.4.

∂n
x = ∂n

∂xn n-th partial derivation in x
dn

dxn n-th total derivation in x

α a weight factor
C the set of complex numbers
∆ mesh width
ε the eigenenergy of a wave function
εi the eigenenergy of the i-th wave function

ε, ε(t) the electric field, assumed to be constant in space∫
d3(r1, . . . , rN ) short for

∫
d3r1

∫
d3r2 · · ·

∫
d3rN

H = T + V the Hamiltonian of a system
i, j usually running variables in sums
i imaginary unit, i2 = −1
J a functional
N the number of the particles of the system
N the set of natural numbers: {1, 2, 3, . . .}
N0 the set of natural numbers and zero: {0, 1, 2, 3, . . .}
n density or density matrix
π, µ in sums: a permutation; πi and µi are the i-th items of the tuple

π and µ
Ψ an N -particle wave function
ψ, φ a single-particle wave function
ψi, φi the i-th single-particle wave function, the i-th orbital
σ the spin, here restricted to σ ∈ {−1

2 ,
1
2}

r a spatial coordinate, usually in three dimensions
R the set of real numbers

sgn signum (or sign) of a permutation
T the kinetic energy part of a Hamiltonian
T̂ Time-order operator
V a potential
Vext an external potential
W interaction, e. g. Coulomb interaction between electrons
x a coordinate, comprises the spatial and the spin part
∝ proportional
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∝̇ proportional in leading order
=̇ equivalent in leading order
AT A transposed
A∗ A complex conjugated
A† A adjoint
d·e round to the nearest higher integer (‘ceiling’)
b·c round to the nearest lower integer (‘floor’)
O(·) this Landau symbol is defined as f = O(φ) :⇔ |f(x)| < Aφ(x)

for a constant A and all x
o(·) this Landau symbol is defined as f = o(φ) :⇔ f/φ→ 0
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I don’t mind your thinking slowly: I mind your publishing faster
than you think. — Wolfgang Pauli, 1900–58
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