7 ZUSAMMENFASSUNG

Die heterotrimeren G-Proteine bestehen aus α -, β -, und γ -Untereinheiten und vermitteln die Signalübertragung von transmembranalen Rezeptoren auf intrazelluläre Effektoren. Die Signalübertragung erfolgt über die Aktivierung des G-Proteinkomplexes, wobei die G α -Untereinheit von dem G $\beta\gamma$ -Komplex dissoziiert. Beide Komponenten können nachgeschaltete Effektoren modulieren. Während G α - und G γ -Proteinfamilien zahlreiche Mitglieder zählen, werden die G β -Proteine in Säugetieren nur durch 5 Gene kodiert. Die G β -Untereinheiten 1-4 sind stark konserviert und weisen auf der Aminosäurenebene eine Homologie von 79 - 90% auf. Die zuletzt identifizierte fünfte G β -Untereinheit weist dagegen nur ca. 50% Übereinstimmung in der Primärstruktur zu den anderen G β -Isoformen auf. Es wurde daher angenommen, dass diese strukturellen Abweichungen eine Basis für Eigenschaften und Funktionen sein kann, die bislang bei den G β -Proteinen nicht beobachtetet wurden. Aus diesem Grund war es wichtig, das G-Protein β_5 biochemisch und funktionell zu charakterisieren.

Zusammenfassung

Durch Koexpression in *Sf9*-Zellen und Koisolationsexperimente konnte zunächst gezeigt werden, dass G-Protein β_5 typische funktionelle Eigenschaften einer G β -Untereinheit aufweist. Es bildet einen funktionellen Komplex mit G α_{i1} - und G γ -Untereinheiten und aktiviert in Komplex mit G γ_2 einen typischen G $\beta\gamma$ -sensitiven Effektor, PLC β_2 .

Während der Isolation der $G\beta_5\gamma$ -Heterodimere wurde ihre Dissoziation beobachtet, die in Anwesenheit von ionischen Detergenzien besonders ausgeprägt ist. Nach der Dissoziation der $G\beta_5\gamma$ -Heterodimeren bleiben beide komplexbildende Proteine stabil und löslich. Durch Gelfiltration-Untersuchungen wurde gezeigt, dass die $G\gamma$ -freie $G\beta_5$ -Untereinheit in einer monomeren globulären Konformation vorliegt. Des weiteren können dissoziierte Untereinheiten zu einem funktionellen $G\beta_5\gamma$ -Heterodimer reassoziieren. Die bislang nicht beobachtete reversible Dissoziation scheint unter allen $G\beta_7$ -Komplexen nur auf $G\beta_5\gamma$ -Dimere beschränkt zu sein. Damit übereinstimmend wurde mittels einer $G\gamma_2$ -Affinitätssäule das G-Protein β_5 aus Hirnlysaten isoliert, das aus dissoziierbaren Komplexen freigesetzt wurde.

Durch eine mehrstufige chromatographische Aufreinigung von G β_5 -haltigen Komplexen aus dem Gehirn konnten bereits publizierte Beobachtungen bestätigt werden, wonach G β_5 im neuralen Gewebe mit RGS-Proteinen der R7 Subfamilie assoziiert vorkommt. Weiterhin konnte mittels Koisolations- sowie Rekonstitutionsansätzen zum ersten Mal eine Dissoziierbarkeit der sowohl aus dem Gewebe gereinigten als auch rekombinanten G β_5 /RGS6- bzw. G β_5 /RGS7-Komplexen demonstriert werden. Die dabei freigesetzte G β_5 -Untereinheit kann mit der G γ_2 -Untereinheit zu einem funktionellen Komplex reassoziieren.

Zusammenfassend lässt sich die Dissoziierbarkeit als eine grundsätzliche und spezifische Eigenschaft der $G\beta_5$ -haltigen Komplexe feststellen, die dynamische Wechselwirkungen des G-Proteins β_5 mit mehreren Molekülen ermöglicht.