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Abstract. In this note, we provide a short and self-contained proof that the
braid group on n strands acts transitively on the set of reduced factorizations
of a Coxeter element in a Coxeter group of finite rank n into products of reflec-
tions. We moreover use the same argument to also show that all factorizations
of an element in a parabolic subgroup of W also lie in this parabolic subgroup.

1. Introduction

Let (W,T ) be a dual Coxeter system of finite rank m in the sense of [Bes03]. This
is to say that there is a subset S ⊆ T with |S| = m such that (W,S) is a Coxeter
system, and T =

{
wsw−1 : w ∈ W, s ∈ S

}
is the set of reflections for the Coxeter

system (W,S). We then call (W,S) a simple system for (W,T ) and S a set of simple
reflections. Such simple systems for (W,T ) were studied by several authors, see
e.g. [FHM06] and the references therein. In particular, if S is a simple system for
(W,T ) then so is wSw−1 for any w ∈ W . It is moreover shown in [FHM06] that
for important classes, all simple systems for (W,T ) are conjugate to one another in
this sense.

A reflection subgroup W ′ is a subgroup of W generated by reflections. It is well
known that (W ′,W ′ ∩ T ) is again a dual Coxeter system, see e.g. [Dye90]. For
w ∈ W , a reduced T -factorization of w is a shortest length factorization of w into
reflections, and we denote by RedT (w) the set of all such reduced T -factorizations.
Similarly for a given simple system (W,S), a reduced S-factorization of w is a
shortest length factorization of w into simple reflections. An element c ∈ W is called
a parabolic Coxeter element for (W,T ) if there is a simple system S = {s1, . . . , sm}
such that c = s1 · · · sn for some n ≤ m. We call the reflection subgroup generated
by {s1, . . . , sn} a parabolic subgroup. The element c is moreover called a standard
parabolic Coxeter element for the Coxeter system (W,S).

Remark 1.1. Observe that this definition of parabolic Coxeter elements and para-
bolic subgroups is more general than usual. The simplest Coxeter group for which
this definition is indeed more general than considering conjugates of a fixed simple
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system is the finite Coxeter group of type H2 = I2(5) given by all linear trans-
formations of the plane that leave a regular pentagon invariant. One choice for a
simple system is given by two reflections through two consecutive vertices of the
pentagon, another choice is the product of two reflections through two vertices with
distance two. Both choices of simple systems generate the same set of reflections,
even though they are not conjugate.

The braid group on n strands is the group Bn with generators σ1, . . . , σn−1 subject
to the relations

σiσj = σjσi for |i− j| > 1,

σiσi+1σi = σi+1σiσi+1.

It acts on the set Tn of n-tuples of reflections as

σi(t1, . . . , tn) = (t1, . . . , ti−1, titi+1ti, ti , ti+2, . . . , tn),

σ−1
i (t1, . . . , tn) = (t1, . . . , ti−1, ti+1 , ti+1titi+1, ti+2, . . . , tn).

For example, if n = 2, then the action of σ1 is described by

. . . �→ (srs, srsrs) �→ (s, srs) �→ (r, s) �→ (rsr, r) �→ (rsrsr, rsr) �→ . . .

for any r, s ∈ T . Note that in this case, the B2-orbit of (r, s) is the set of all pairs
(t1, t2) of reflections of the subgroup 〈r, s〉, such that t1t2 = rs.

The following lemma is a direct consequence of the definition.

Lemma 1.2. Let W ′ be a reflection subgroup of W and let T ′ = T ∩ W ′ be the
set of reflections in W ′. For an element w ∈ W ′ with reduced T -factorization
w = t1 · · · tn, the braid group on n strands acts on RedT ′(w).

Proof. Let σi(t1, . . . , tn) = (t′1, . . . , t
′
n). The lemma follows from the two observa-

tions that t1 · · · tn = t′1 · · · t′n and {t1, . . . , tn} ⊆ T ′ if and only if {t′1, . . . , t′n} ⊆
T ′. �

This action on RedT ′(w) is also known as the Hurwitz action. For finite Coxeter
systems, the Hurwitz action was first shown to act transitively on RedT (c) for
a Coxeter element c in a letter from P. Deligne to E. Looijenga [Del74]. The
first published proof is due to D. Bessis and can be found in [Bes03]. K. Igusa
and R. Schiffler generalized this result to arbitrary Coxeter groups of finite rank;
see [IS10, Theorem 1.4]. This transitivity has important applications in the theory
of Artin groups, see [Bes03,Dig06], and as well as in the representation theory of
algebras; see [IS10, Igu11,HK13].

The aim of this note is to provide a simple proof of K. Igusa and R. Schiffler’s
theorem, based on arguments similar to those in [Dye01]. We moreover emphasize
that the condition on the Coxeter element c ∈ W in this note is slightly relaxed
from the condition in the original theorem; compare [IS10, Theorem 1.4].

Theorem 1.3. Let (W,T ) be a dual Coxeter system of finite rank m and let c =
s1 · · · sn be a parabolic Coxeter element in W . The Hurwitz action on RedT (c) is
transitive. In symbols, for each (t1, . . . , tn) ∈ Tn such that c = t1 · · · tn, there is a
braid group element b ∈ Bn such that

b(t1, . . . , tn) = (s1, . . . , sn).
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By the observation in Lemma 1.2, this theorem has the direct consequence that
the parabolic subgroup 〈s1, . . . , sn〉 of W does indeed not depend on the particular
S-factorization c = s1 · · · sn but only on the parabolic Coxeter element c itself. We
thus denote this parabolic by Wc := 〈t1, . . . , tn〉 for any T -factorization c = t1 · · · tn.
We moreover obtain that RedT (c) = RedT ′(c) with T ′ = Wc ∩ T being the set of
reflections in the parabolic subgroup Wc. The main argument in the proof of this
theorem (see Proposition 2.2 below) will also imply the following theorem that
extends this direct consequence to all elements in a parabolic subgroup.

Theorem 1.4. Let W ′ be a parabolic subgroup of W . Then for any w ∈ W ′,

RedT (w) = RedT ′(w),

where T ′ = W ′ ∩ T is the set of reflections in W ′.

2. The proof

For the proof of the two theorems, we fix a Coxeter system (W,S). Denote by � =
�S and by �T the length function on W with respect to the simple generators S
and with respect to the generating set T , respectively. Since S ⊆ T , we have that
�T (w) ≤ �(w) for all w ∈ W .

The following lemma provides an alternative description of standard parabolic
Coxeter elements.

Lemma 2.1. An element w ∈ W is a standard parabolic Coxeter element for (W,S)
if and only if �T (w) = �(w).

Proof. Given a reduced S-factorization w = si1 . . . sik , it was shown in [Dye01,
Theorem 1.1] that �T (w) is given by the minimal number of simple generators that
can be removed from si1 . . . sik to obtain the identity. This yields that �T (w) =
k = �(w) if and only if si1 . . . sik does not contain any generator twice. �

Define the Bruhat graph Ω for the dual Coxeter system (W,T ) as the undirected
graph on vertex set W with edges given by w wt for t ∈ T . For any factorization
w = t1 · · · tn ∈ W with ti ∈ T and any x ∈ W , there is a corresponding path

x xt1 xt1t2 . . . xt1 · · · tn = xw

from x to xw in Ω. It is clear that this T -factorization of w is reduced if and only
if the corresponding path from x to xw has minimal length among paths from x
to xw for some (equivalently, every) x ∈ W . The simple system (W,S) induces an
orientation on Ω given by w wt if �(w) < �(wt). We denote the resulting directed
Bruhat graph by Ωdir.

The proof of the two main results is based on the case x = e of the following
proposition.

Proposition 2.2. Let (W,S) be a Coxeter system. Moreover, let w = t1 · · · tn ∈ W
be a reduced T -factorization of an element in W , and let

x xt1 xt1t2 . . . xt1 · · · tn = xw

be the corresponding path in Ω starting at an element x ∈ W . Then there is a T -
factorization w = t′1 · · · t′n in the Hurwitz orbit of the T -factorization t1 · · · tn such
that the corresponding path in Ωdir starting at x is first decreasing in length, then
increasing; more precisely, it is of the form

x xt′1 xt′1t
′
2 . . . xt′1 · · · t′i . . . xt′1 · · · t′n = xw
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for some (unique) integer i with 0 ≤ i ≤ n. In the special case x = e, this gives a
directed path

e t′1 t′1t
′
2 . . . t′1 · · · t′n = w

in Ωdir.

Proof. First consider two distinct reflections t1 and t2 and an element z ∈ W such
that z zt1 zt1t2 in Ωdir. We claim that there exist reflections t′1, t

′
2 ∈ 〈t1, t2〉

with t1t2 = t′1t
′
2 such that z zt′1 zt′1t

′
2 or z zt′1 zt′1t

′
2 or z zt′1 zt′1t

′
2. This

implies, by the comment before Lemma 1.2, that one can get from the factorization
t1t2 to the factorization t′1t

′
2 inside W ′ = 〈t1, t2〉 by braid moves, and hence in

particular that W ′ = 〈t′1, t′2〉. Moreover, one has �(zt′1) < max(�(z), �(zt1t2)) <
�(zt1).

To prove the claim, consider the coset z〈t1, t2〉 in W . By [Dye01, Theorem 2.1],
the proof immediately reduces to the case z = e and W ′ = 〈t1, t2〉 dihedral. We
check this case directly. To this end, let s′1, s

′
2 be the Coxeter generators of W ′,

and observe that any reflection (element of odd length) and any rotation (element
of even length) in W ′ are joined by an edge in Ω, which in Ωdir is oriented towards
the element of greater length with respect to the generating set s′1, s

′
2. Given

z ∈ W ′, there are three situations: either �(z) < �(zt1t2), or �(z) > �(zt1t2), or
�(z) = �(zt1t2). This implies that one can choose t′1 and t′2 with t′1t

′
2 = t1t2 in

the three situations such that z zt′1 zt′1t
′
2, z zt′1 zt′1t

′
2 or z zt′1 zt′1t

′
2

respectively (note that in the third case, one has z 
= e or else l(zt1t2) = l(z) implies
t1 = t2, contrary to assumption).

Consider the path in Ω attached to w = t1 · · · tn and beginning at x. Any
subpath z zt1 zt1t2 as in the claim may be replaced by a path z zt′1 zt′1t

′
2

as there, to give a new path from x to xw of the same length n; we call this a
“replacement.” Apply to the original path a sequence of successive replacements.
Any path so obtained corresponds to the path beginning at x attached to some
reduced T -factorization of w in the same Hurwitz orbit as t1 · · · tn, and is a shortest
path in Ω from x to xw. Note that a replacement of any subpath z zt′1 zt′1t

′
2 of

such a path is possible since the path’s minimal length implies that t′1 
= t′2. Each
replacement decreases the total sum of the �-lengths of the vertices of the path,
so eventually one obtains a path in which no further replacements are possible i.e.
of the desired decreasing-then-increasing form. Finally, if x = e, then i = 0 since
there are no paths e t. �

Given this proposition, we are finally in the position to prove the two main
results of this note.

Proof of Theorem 1.4. Consider a Coxeter system (W,S), a reflection subgroup
W ′ of W . It is known that the directed Bruhat graph for W ′ corresponding to the
simple system of W ′ induced by S is the full subgraph Ωdir

∣∣
W ′ of Ωdir on vertex

set W ′; see [Dye01, Theorem 2.1].
Let w ∈ W ′. Then Lemma 1.2, Proposition 2.2 (with x = e), and the discussion

before Proposition 2.2 imply that RedT (w) = RedT ′(w) if and only if every shortest
directed path from e to w in Ωdir lies inside Ωdir

∣
∣
W ′ .

Now assume that W ′ is a standard parabolic subgroup generated by some subset
of S. Then it is well known that every reduced S-factorization for w ∈ W ′ is
actually inside W ′. (To see this, recall that Coxeter systems have the property
that all reduced S-factorizations for w are related by braid relations.) It therefore
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follows that in this situation any shortest directed path from e to w in Ωdir indeed
lies inside Ωdir

∣
∣
W ′ . The theorem follows by the above equivalence. �

Proof of Theorem 1.3. Again, fix a parabolic Coxeter element c = s1 · · · sn ∈ W
and a corresponding simple system (W,S), and denote by Ω and Ωdir the undirected
and directed version of the Bruhat graph for (W,S). By Proposition 2.2, it is left
to show that any two directed paths from e to c in Ωdir are in the same Hurwitz
orbit. Let therefore

e t1 t1t2 . . . t1 · · · tn = c

be such a path. We have seen in Lemma 2.1 that �(c) = �T (c) = n. It thus
follows that �(t1 · · · ti) = �T (t1 · · · ti) = i for any i. The strong exchange condition,
see e.g. [Hum90, Theorem 5.8], then yields that t1 · · · ti+1 is obtained from t1 · · · ti
by adding a single simple generator into its position within s1 · · · sn. Therefore,
such a path is (bijectively) encoded by a permutation π = [π1, . . . , πn] where πi is
the index of the simple generator added at the i-th step. Given the factorization
corresponding to such a path, it is straightforward to see that the embedding of
the permutation into the braid group (by sending a simple transposition (i, i + 1)
to the generator σi of Bn) yields a braid that turns the given factorization into the
factorization s1 · · · sn. To this end, observe that given two factorizations encoded by
two permutations π1 and π2 with �(π1) = �(π2) + 1 and such that these differ only
by a single simple transposition π−1

2 π1 = (i, i+1) for some index i. Then the given
factorizations are obtained from each other by applying the braid group generator σi

to the factorization corresponding to π1 to obtain the factorization corresponding
to π2. As the factorization corresponding to the identity permutation [1, . . . , n] is
(s1, . . . , sn), the claim follows. �

As an example of the construction in the previous proof, consider the path

e s2 s2s5 s2s3s5 s1s2s3s5 s1s2s3s4s5 = c.

The corresponding factorization of c is given by

c = s2 · s5 · s5s3s5 · s5s3s2s1s2s3s5 · s5s4s5,
and the permutation is π = [2, 5, 3, 1, 4] = (1, 2)(2, 3)(4, 5)(3, 4)(2, 3). On the other
hand,

σ1σ2σ4σ3σ2(s2, s5, s5s3s5, s5s3s2s1s2s3s5, s5s4s5) = (s1, s2, s3, s4, s5),

as desired.
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