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Raised above the substrate and elastically deformed areas of graphene in the form of bubbles are

found on different substrates. They come in a variety of shapes, including those which allow strong

modification of the electronic properties of graphene. We show that the shape of the bubble can be

controlled by an external electric field. This effect can be used to make graphene-based adaptive

focus lenses. VC 2011 American Institute of Physics. [doi:10.1063/1.3631632]

Graphene is a remarkable material with a number of

unique properties.1,2 Recently, most of the research was con-

centrated on its electronic3 and optical properties,4–6 which

is indeed justified as graphene is expected to have a big

impact in the semiconductor industry. However, there are a

number of other characteristics of this two-dimensional (2D)

crystal which are unique or far superior to those in other

materials. For instance, graphene is impermeable to all

gases7 and it is very elastic (can be stretched up to 20%)8,9

and optically transparent.4 These properties allow creating

graphene bubbles of various shapes. It has been shown that

the electronic properties of such curved graphene are

strongly modified by strain, which might be used for band-

structure engineering.10–13 In this letter, we demonstrate a

possible use of circular bubbles with controllable shape for

optical lenses with variable focal length.

Many modern optical systems require adaptive focus

lenses. Such lenses are highly sought after in the mobile

phone industry for use in cameras, with applications also in

webcameras, automatic beam steering, and auto-focusing

eyeglasses. Miniaturization of components makes it difficult

to decrease the size of conventional, mechanically moving

elements as this increases their cost and fragility and

decreases the performance, rendering them unacceptable for

low-cost consumer products. The current technologies for

tunable-focus lenses range from liquid-crystal14,15 to fluid-

filled lenses.16,17 However, their fabrication is rather com-

plex and usually includes two or more liquids or a liquid

crystal layer sandwiched between two indium tin oxide

(ITO, In2O3:Sn) layers that serve as the electrodes.

Graphene-based optics can provide simplified fabrication

methods, and as fabrication of large scale graphene reaches

maturity, scalability should not be a problem.

Graphene flakes were produced by micro-mechanical

exfoliation of single-crystal graphite18,19 and deposited on

oxidized silicon wafer, previously cleaned with oxygen

plasma. The bubbles were identified by optical

FIG. 1. (Color online) (a) Optical micrograph under white light of a gra-

phene bubble deposited on silicon. The Newton rings are well visible;

(b) optical micrograph under monochromatic light of a graphene bubble

deposited on silicon: the Newton rings appear as a series of bright and dark

fringes. Inset: intensity profile; (c), (d) AFM topography scan of triangular

and square bubbles on BN substrate; (e) 3 lm� 3 lm topography AFM scan

of a bubble; (f) schematic diagram of the substrate and cross-section of the

bubble, obtained by AFM. Squares––experimental data, the full line is the fit

of the cross-section by assuming spherical shape.a)Electronic mail: kostya@manchester.ac.uk.
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microscopy.20–22 Monolayer and bilayer graphene flakes were

identified by Raman spectroscopy.23 A Renishaw Raman

spectrometer equipped with 514 nm laser line and power well

below 1 mW was used. The shape of the bubble was investi-

gated by Atomic Force Microscopy (AFM) in tapping mode.

Bubbles are regularly found at the silicon-oxide/gra-

phene interface in large flakes (lateral size above 0.1 mm),

obtained by micromechanical cleavage.24 The origin of these

bubbles is not completely understood: they probably arise

from air or hydrocarbon residuals trapped between graphene

and the substrate. The bubbles are well visible under the op-

tical microscope: a monolayer reflects enough light to gener-

ate characteristic fringes of different colors, so-called

Newton rings.25 Such graphene blisters come in various sizes

(from a few tens of nanometers to tens of microns) and

shapes. In particular, bubbles with triangular cross-section

can be very interesting from the electronic perspective since

such deformation of a graphene membrane can generate a

quasiconstant pseudo-magnetic field, which leads to the

opening of a sizable gap in the electronic spectrum.10–13 On

the other hand, circular bubbles can find use in optics. Here

we show that it is possible to control the curvature of a

spherical graphene bubble by applying an electric field. This

allows making a graphene-based lens with adaptive focus.

Figure 1(a) shows the optical micrograph of a single-

layer bubble deposited on oxidized silicon. The Newton

rings are well visible: they are the result of light interference

of the reflected and transmitted light between the spherical

surface of the bubble and the reflective silicon substrate.

Under monochromatic light, the Newton rings appear as a se-

ries of bright and dark fringes (Fig. 1(b)).

We have also observed small bubbles when microme-

chanically cleaved graphene is deposited on very flat sub-

strates, such as crystalline boron nitride (BN).26 Figures 1(c)

and 1(d) show the AFM images of two bubbles on BN with

square and triangular cross-sections.

Figure 1(e) shows a 3D AFM image of a bubble on a sil-

icon substrate. The height profile of the bubble can be accu-

rately fitted by a sphere, as predicted by simple elasticity

theory27 (Fig. 1(f)).

Using the fit from Fig. 1(f), we can calculate the strain

in the bubble: assuming no strain when graphene is in con-

tact with the substrate, i.e., when there is no bubble, the

strain is given by e¼ (l�a)/a, where l is the length of the arc

and a is the width of the bubble. We found that the strain in

the graphene bubble is 1%. This is in agreement with Raman

spectroscopy measurements on graphene bubbles, which

indicate a strain of �1%.28

We prepared several graphene devices which contained

bubbles of about 5 to 20 lm in width: contacts are made by

evaporating Ti/Au (5 nm/50 nm) through a stencil mask to

avoid the use of resists and hence reducing contamination.

This enables us to apply a gate voltage (Vg) in back-gating

configuration. Optical pictures of the bubble, with a 50x

objective and a narrow-band green filter with k¼ 510 nm,

were recorded while tuning Vg from �35 to þ35 V.

Figure 2(a) shows the intensity profiles of the rings as a

function of Vg. This figure shows that the position of the

maxima and minima of the intensity profile changes with Vg.

In particular, at negative voltage the radius of the rings

decreases, i.e., the bubble shrinks. Figure 2(b) shows the ra-

dius of each of the Newton rings as a function of Vg.

Since the position of the Newton rings depends on the

local height of the bubble, we can now reconstruct the shape

of the bubble at every Vg. We calculate the height corre-

sponding to every ring by using a four-interface interference

Fresnel law-based model for incident light of k¼ 510 nm.20

We found that the bright fringes occur at the bubble height

of 866, 612, 355, and 102 nm, while the dark fringes occur at

740, 482, and 229 nm. The reconstructed shape of the bubble

at every Vg is shown in Fig. 3. This figure shows that the ra-

dius of curvature of the bubble changes from 31.3 lm at 0 V

to 26.7 lm at �35 V.

One can create a lens out of such bubbles either by fill-

ing them up with some liquid or by covering a bubble with a

flat layer of liquid (in both cases the liquid should have high

refractive index). By considering such system as a thin lens,

the focal length, f, can be approximated as f � R/(n2-n1),

where R is the radius of curvature of the bubble and n1 and

n2 are the refractive index of the material inside and outside

FIG. 2. (Color online) (a) Intensity pro-

file of the Newton rings across the width

of the bubble for different gate voltages.

Maxima and minima correspond to

bright and dark fringes, respectively. (b)

Radii of bright and dark Newton rings as

a function of gate voltage. The radius of

the rings is clearly decreasing for nega-

tive Vg.
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the bubble, respectively. Thus, we achieved a tuning ratio of

the focal length of Df/f � 15% at Vg¼�35 V.

In first approximation, one would expect the bubbles to

have the largest size at zero applied bias, while they should

shrink for both positive and negative gate voltages because

of electrostatic interaction: the charge on the gate would be

exactly opposite to that on graphene and thus create an

attractive potential. In our experiment, however, the point of

the maximum size is shifted to approximately þ15 V, and

the bubble does not change the shape at positive voltage

(Fig. 2(b)). This indicates that our graphene layer is p-doped,

as observed also by Raman spectroscopy.28 We attribute this

to the presence of a water layer trapped between graphene

and the substrate, which is known to be p-dope graphene.29

Since graphene is hydrophobic, such water layer is not pres-

ent inside the bubble. Nevertheless, one expects the edge of

the bubble to still be positively charged due to finite screen-

ing length.

In conclusion, we have shown that graphene, being very

elastic and impermeable to gases, can form bubbles of vari-

ous shapes and sizes. In particular, circular bubbles can be

used in optics as adaptive-focus lenses. We have shown that

it is possible to control the curvature of the bubble by elec-

trostatic interaction produced by an external electric field.

Graphene-based lenses have high transmittance throughout

the visible range, and they are light, robust, and require low

operating voltage.
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