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Spin-flip phonon-mediated charge relaxation in double quantum dots
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We theoretically study the (1,1) triplet to (0,2) singlet relaxation rate in a lateral gate-defined double quantum
dot tuned to the regime of Pauli spin blockade. We present a detailed derivation of the effective phonon density
of states for this specific charge transition, keeping track of the contribution from piezoelectric as well as
deformation potential electron-phonon coupling. We further investigate two different spin-mixing mechanisms
which can couple the triplet and singlet states: a magnetic field gradient over the double dot (relevant at low
external magnetic field) and spin-orbit interaction (relevant at high field), and we also indicate how the two
processes could interfere at intermediate magnetic field. Finally, we show how to combine all results and evaluate
the relaxation rate for realistic system parameters.
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I. INTRODUCTION

The last decade has seen a great interest in spin qubits hosted
in semiconductor quantum dots, motivated by the prospects
of easy scalability, weak coupling to external perturbations,
and flexible tunability.1,2 Experimental advance has been
substantial in the past years, and essential operations including
qubit initialization, manipulation, and readout have been con-
vincingly demonstrated.3–5 This progress is not only exciting
in the context of quantum computation and information, but
it also provides a unique platform for studying fundamental
quantum properties of nanoscale systems. Ongoing effort is
therefore directed at improving the quality of the spin qubits,
mainly by trying to reduce qubit dephasing6 and increase the
measurement fidelity.7

A common method to read out a quantum dot spin qubit
relies on the so-called Pauli spin blockade:8 A double quantum
dot is tuned to a (1,1) charge state, meaning that each dot
contains exactly one excess electron,9 and two of the four
resulting (1,1) spin states are used as a qubit basis. After
qubit manipulation, the double-dot potential is tilted such that
a (0,2) charge state becomes the two-electron ground state.
For not too strong tilting, the only accessible (0,2) state is
a spin singlet, which makes the (1,1) → (0,2) charge relax-
ation spin selective. If the two qubit basis states contain a
different spin-singlet component, then one can use charge
detection to measure the qubit’s final state before tilting,
either by doing transport measurements coupling the doubly
occupied dot strongly to an outgoing lead,3,10 or by detecting
the charge state with a nearby charge sensor.11–13

The accuracy of such a readout depends crucially on the
effectiveness of the spin blockade: Any leakage out of the
blocked triplet states reduces the readout visibility and thereby
distorts the measurement.7 A detailed understanding of the
spin-flip charge relaxation responsible for such triplet leakage
is thus essential in the context of spin qubit measurement.
Most existing theoretical work along these lines was done for
single-dot spin relaxation14–16 or consists of numerical studies
of the relaxation rates.17,18 A thorough analytical study of
interdot spin-flip charge relaxation in double quantum dots is
still missing.

Here, we study in detail the (1,1) triplet to (0,2) singlet
decay rate for a lateral double quantum dot. We investigate two
spin-mixing mechanisms which provide a coupling between
the otherwise orthogonal states: (i) For small externally applied
magnetic fields, the coupling is believed to be dominated by
the effective magnetic field gradient over the two dots caused
by the hyperfine coupling of the electron spins to the randomly
fluctuating nuclear spins in the host material.7,11 (ii) At larger
fields, this coupling is suppressed for the two polarized
triplet states for which spin-orbit interaction takes over as
dominating spin-mixing mechanism.19 The second ingredient
necessary for a finite leakage rate is the dissipation of the
energy difference � between the initial (1,1) triplet and final
(0,2) singlet states, which we assume to be provided by the
coupling to acoustical phonons in the host material. We derive
the function P1(�) for this specific charge transition, which
gives the probability that the transition is accompanied by the
dissipation of energy � by a single phonon (alternatively, one
could call this function the effective phonon density of states
for the charge transition). We include the contribution from
piezoelectric as well as deformation potential electron-phonon
coupling, and we find that the piezoelectric contribution to
P1(�) is linear at low energies and ∝�−5 at high energies,
whereas the coupling to the deformation potential leads to
a contribution ∝�3 for low energies and ∝�−1 for high
energies. We finally evaluate explicit relaxation rates using
parameters of the experiment of Ref. 19. We find a decay rate
∼MHz, which agrees with experimental observations.20

Our results are not only relevant for spin qubit readout.
In Ref. 19, it was suggested that the spin-orbit coupling of
the (1,1) triplet and (0,2) singlet states could also be utilized
to drive off-resonant microwave-stimulated Raman transitions
within the (1,1) space. In that case, transitions between the
(1,1) and (0,2) states would contribute to qubit dephasing, and
a detailed understanding of the mechanisms responsible for
these transitions would be essential in this context as well.

The rest of this paper is structured as follows. In Sec. II, we
introduce our model of the double quantum dot and present an
effective Hamiltonian defining the basis we will work in. In
Sec. III, we then investigate the two spin-mixing mechanisms
(spin-orbit interaction and a magnetic field gradient over the
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double dot) and we derive the matrix elements needed to
calculate the leakage rate. In Sec. IV, we study the coupling
to the phonon bath in detail. We start from the standard
Hamiltonian describing the electron-phonon coupling and
derive from it P1(�) for the (1,1) to (0,2) spin-flip charge
transition. Finally, in Sec. V, we evaluate the leakage rate
explicitly with realistic experimental parameters.

II. MODEL

We consider a lateral double quantum dot, gate defined in a
two-dimensional electron gas (2DEG) formed at the interface
of an AlGaAs/GaAs heterostructure which has been grown in
the crystallographic (001) direction. The setup we have in mind
is sketched in Fig. 1(a): The two dots (gray circular areas) are
separated by a distance d. Each dot is locally approximated to
be a two-dimensional harmonic potential well with a typical
width a, corresponding to a single-dot level spacing h̄ω =
h̄2/2ma2 where m is the effective electron mass (m ≈ 0.067me

in GaAs). Nearby gate electrodes with applied voltages VL and
VR couple capacitively to the dots and can change the potential
offset of the two dots. We choose the z axis to be parallel to
the interdot axis and assume an external magnetic field Bext

to be applied in the same z direction (as was the case in the
experiment of Ref. 19). Two nearby leads, labeled L and R,
are tunnel coupled to the two dots and act thereby as electron
reservoirs.

Part of the few-electron charge stability diagram of such a
double dot is shown in Fig. 1(b). In the plane (VL,VR) regions
of stable charge configuration (nL,nR) have a hexagonal shape,
where nL(R) denotes the number of excess electrons on the
left (right) dot.21 The regime we want to investigate in this
work is the shaded triangle close to the (1,1)-(0,2) boundary.
Here, the ground state of the system is a (0,2) charge state,
but excited (1,1) states are also stable in the sense that they
can not decay through sequential tunneling processes such as
(1,1) → (0,1) → (0,2). We also assume the tunnel barriers to
the leads to be high enough that the corresponding cotunneling
processes do not contribute significantly to charge relaxation.
In that case, we can regard the double dot to be a closed
system containing two electrons which have either a (1,1) or
(0,2) charge configuration.

The single-dot orbital level spacing h̄ω ∼ meV ∼ 10 K is
typically comparable to the charging energy of the dot, i.e., the
Coulomb energy it costs to add an extra electron to the dot. This
is such a large energy scale that we can disregard all electronic
states involving higher orbital states and focus on electrons
in the orbital ground state. Explicitly, the two-dimensional
ground-state wave functions in the left and right potential
wells read as ψL(r) = (1/

√
2πa) exp{−[x2 + (z + d)2]/4a2}

and ψR(r) = (1/
√

2πa) exp{−[x2 + z2]/4a2}. Using a Hund-
Mulliken approach, we orthonormalize these two wave func-
tions, resulting in the basis states22

�L(R)(r) = ψL(R)(r) − gψR(L)(r)√
1 − 2gs + g2

, (1)

with the factor g = (1 − √
1 − s2)/s and the overlap integral

s = ∫
dr ψ∗

L(r)ψR(r) = exp{−d2/8a2}.
Including spin into the picture, we can construct from

these basis states a (1,1) spin-singlet state |S〉, three (1,1)

spin-triplet states |T0〉 and |T±〉, and a (0,2) spin-singlet state
|S02〉. We assume that in the basis spanned by these five states,
the Hamiltonian describing the kinetic and potential energy of
the two electrons as well as their Coulomb interaction can be
written as22

Ĥ = Ĥ0 + Ĥt, (2)

Ĥ0 = Bext{|T−〉〈T−| − |T+〉〈T+|} − ε|S02〉〈S02|, (3)

Ĥt = t{|S〉〈S02| + |S02〉〈S|}, (4)

where we included a Zeeman term coupling to the spin of
the two electrons. The in-plane field Bext is written in units
of energy (the sign chosen reflects the fact that the g factor
in GaAs is negative, so that a positive Bext corresponds to a
positive field along the spin quantization axis) and ε describes
the detuning between |S02〉 and the unpolarized (1,1) states.23

Increasing ε can be effected by changing VL and VR as
indicated with the arrow in Fig. 1(b). The phenomenological
parameter t describes the mixing of the (1,1) and (0,2)
spin-singlet states and can in experiment be identified with
the splitting between |T0〉 and the singlet states at ε = 0.

In Fig. 1(c), we plot the spectrum of Ĥ as a function of the
detuning ε, where we chose t = 0.2 (all energies in units of
Bext). Our regime of interest [the gray area in Fig. 1(b)] is where
|S02〉 is the ground state, indicated with the red dotted rectangle
in Fig. 1(c). We assume that in this regime ε 
 t , so that the
tunneling Hamiltonian Ĥt can be treated as a perturbation.

An excited (1,1) state can only decay to the (0,2) ground
state if its wave function is a spin singlet (or contains a singlet
component). If the system is in a pure (1,1) spin triplet, it can
not decay and stays blocked in the excited state. We now focus
on such a spin-blocked situation and assume that the system
is initially in |T+〉. The purpose is to calculate the relaxation
rate from |T+〉 to |S02〉 [see the wiggly line in Fig. 1(c)]. For
this we need two ingredients, which we will investigate in
detail in the next two sections: (i) We need a perturbation
Ĥsm with a finite matrix element between the states |T+〉 and
|S02〉. (ii) The energy difference between initial and final states
ET+ − ES02 ≡ � has to be dissipated by the environment of
the double dot, for which we assume the coupling to acoustic
phonons to be responsible.

As noted before, |T+〉 and |S02〉 are orthogonal in spin space,
and the perturbation Ĥsm thus has to be of a spin-mixing nature.
We will investigate two such perturbations: (i) spin-orbit
interaction, which mixes the spin and orbital parts of the
electrons’ wave functions, and (ii) a magnetic field gradient
over the double dot, i.e., a difference between the effective
magnetic fields at the positions of the left and right dots. In
Sec. III, we will introduce the two perturbations and calculate
the resulting matrix elements coupling |T+〉 and |S02〉.24

III. SPIN-MIXING PERTURBATIONS

A. Spin-orbit interaction

Spin-orbit interaction perturbs single-particle states in the
two dots resulting in mixed spin-orbital eigenstates instead of
pure spin states.2 Thereby, it can give rise to “spin-flip” tunnel
coupling of states with apparent opposite spin.19,25,26 For each
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FIG. 1. (Color online) (a) A lateral double quantum dot tunnel
coupled to a left and right lead. Two nearby gate electrodes with
applied voltages VL,R can change the potential offset of the dots. An
in-plane external magnetic field Bext is applied in a direction parallel
to the double-dot axis. (b) Charge stability diagram of a few-electron
double dot. We investigate the gray region, where both (1,1) and
(0,2) can be stable charge states. (c) The spectrum of the electronic
Hamiltonian Ĥ as a function of the detuning ε, where we chose
t = 0.2 (all energies in units of Bext). The detuning axis ε is also
indicated in (b). We will focus on the regime indicated with the red
rectangle, where the two lowest-energy states are |S02〉 and |T+〉.

electron, the spin-orbit Hamiltonian reads as

ˆ̃H so = α(−p̂ỹ σ̂x̃ + p̂x̃ σ̂ỹ) + β(−p̂x̃ σ̂x̃ + p̂ỹ σ̂ỹ), (5)

where p̂ is the momentum of the electron and σ̂x,y,z are the three
Pauli matrices. The first term in (5) is the so-called Rashba term
and the second the Dresselhaus term. For typical 2DEG’s in
GaAs, the corresponding spin-orbit length lso, i.e., the distance
an electron has to travel to have its spin rotated by ∼1, is of
the order lso ∼ 1–10 μm, usually much larger than the size
of the dots.2,27 The ratio of the two parameters, α/β, depends
on the detailed confining potential of the 2DEG and can in
practice be smaller as well as larger than 1.

The spin-orbit Hamiltonian (5) is written such that the x̃, ỹ,
and z̃ axes point, respectively, along the (100), (010), and (001)
crystallographic axes, and it is assumed that the 2DEG lies in
the x̃ỹ plane. Transforming this Hamiltonian to the coordinate
system of Fig. 1 we find

Ĥso = α[−p̂x σ̂z + p̂zσ̂x] + β[p̂z(σ̂x sin 2χ − σ̂z cos 2χ )

+ p̂x(σ̂x cos 2χ + σ̂z sin 2χ )], (6)

where χ is the angle between the double-dot axis and the
(100) crystallographic direction (see Fig. 2). Since we need a
spin flip to couple |T+〉 and |S02〉, we can focus on the terms
proportional to σ̂x :

Ĥ ′
so = (α + β sin 2χ )p̂zσ̂x + β cos 2χ p̂xσ̂x . (7)

We find, including both electrons, to leading order in the
perturbation Ĥ ′ = Ĥt + Ĥ ′

so

Tso = 〈S02|Ĥ ′|T+〉 = t

−Bext
〈S|Ĥ ′

so|T+〉 . (8)

We then write the momentum of each electron as a commutator
p̂ = i

h̄
m[Ĥ0,r̂], which allows for an explicit evaluation of the

FIG. 2. The orientation of our xz plane with respect to the (100)
and (010) crystallographic directions.

last matrix element in (8).28,29 For well-localized electron
states, we find

Tso = it√
2

d

lzso
, (9)

where lzso = h̄/m(α + β sin 2χ ). The matrix element is thus
conveniently expressed in terms of the phenomenological
parameter t , and it scales (as expected) with d/lso. We see
that Tso depends nontrivially on the angle χ . For a double dot
with its interdot axis pointing in the crystal (110) direction,
the two spin-orbit terms add constructively and Tso ∝ (α + β),
whereas dots with the interdot axis along the (1̄10) direction
have Tso ∝ (α − β).

We also note here that the direction of the external field Bext

can have a great influence on the effectiveness of the coupling.
For instance, for a double dot with the interdot axis constructed
along the (110) direction (i.e., χ = π/4), the Hamiltonian (6)
reads as

Ĥso = α(−p̂x σ̂z + p̂zσ̂x) + β(p̂zσ̂x + p̂x σ̂z). (10)

If the external field now points in the x direction, then all terms
with p̂z come with σ̂x , which can not provide a spin flip. In this
case, we have thus Tso = 0. Similar directional dependencies
are known to exist for the single-dot spin relaxation rate.30

There is, however, another spin-orbit-mediated process
which can take place: Ĥ ′

so couples the ground state |T+〉 to
a (1,1) spin singlet which involves an excited orbital state.
This excited state can be assumed to be coupled to |S02〉 with
a coupling energy of ∼ t . The spin flip now takes place inside
one of the dots, and does not depend on the orientation of the
interdot axis. An estimate of the magnitude of the resulting
matrix element gives

Tso,2 ∼ (α + β)
h̄

a

t

h̄ω
∼ t

a

lso
, (11)

which is smaller than Tso by a factor a/d. In the explicit
evaluations in Sec. V we will assume a/d small enough
for Tso to dominate. Of course, if Tso = 0 (due to a special
orientation of the interdot axis and Bext) or d ≈ a, then Tso,2

can be important and must be included in the evaluation of the
relaxation rate as well.

B. Magnetic field gradient

A magnetic field gradient over the two dots generally mixes
all four (1,1) states. All triplet states acquire a spin-singlet
component, and thus are coupled to |S02〉 by the tunneling
Hamiltonian Ĥt. Such gradients could be due to a deliberately
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fabricated on-chip micromagnet5,19 or to the effective magnetic
fields set up by the randomly fluctuating nuclear spins of the
host material.10,31

The Hamiltonian describing the coupling of two different
effective magnetic fields δBL and δBR to the two electrons
reads as

Ĥgr = −δBL · ŜL − δBR · ŜR, (12)

where we again have set gμB = −1 for convenience, and ŜL(R)

is the (dimensionless) spin operator for the electron in the left
(right) dot. In the basis of the (1,1) singlet and triplet states,
this Hamiltonian reads as31

Ĥgr =
∑
±

{
− δB±

s√
2

|T0〉〈T±| ± δB±
a√
2

|S〉〈T±| + H.c.

}

− δBz
s {|T+〉〈T+| − |T−〉〈T−|}

− δBz
a{|S〉〈T0| + |T0〉〈S|}, (13)

where we used the notation δB±
s,a = δBx

s,a ± iδB
y
s,a . The

symmetric and antisymmetric fields we used are defined as
δBs = 1

2 (δBL + δBR) and δBa = 1
2 (δBL − δBR).

We assume that the fields δBL and δBR are much smaller
than the externally applied field. Then, we can use first-order
perturbation theory to find the singlet admixture in |T+〉
caused by Ĥgr, which yields |T+〉 ≈ |T+〉 − (δB+

a /
√

2Bext)|S〉.
Therefore, the spin-flip matrix element due to the perturbation
Ĥ ′ = Ĥt + Ĥgr reads to leading order as

Tgr = 〈S02|Ĥ ′|T+〉 = −t
δB+

a√
2Bext

. (14)

If the gradients are caused by randomly fluctuating nuclear
spins, the typical magnitude of the effective fields is approx-
imately δBL,R ∼ A/

√
N , where A is the material-specific

hyperfine coupling energy and N is the number of nuclei in
each dot. For GaAs dots A ∼ 100 μeV and typically N ∼ 106,
implying that δBL,R is in the regime of 1–5 mT, which has been
confirmed experimentally.10

IV. ELECTRON-PHONON COUPLING:
SINGLE-PHONON PROBABILITY

Both perturbations outlined above provide effectively a
coupling between |T+〉 and |S02〉 and can thus cause relaxation.
The only ingredient still missing to fully describe transitions
between the two levels is a mechanism dissipating the
energy difference � between initial and final states, typically
50–500 μeV. We assume that this energy is absorbed by
the (acoustical) phonon bath in the host material. Often,
the contribution to the electron-phonon coupling from the
deformation potential is neglected, which is generally justified
for phonons with energies below ∼10 K.32 However, phonons
with a wave vector larger than the inverse in-plane dot size 1/a

are emitted almost exclusively in the y direction (perpendicular
to the plane of the 2DEG), and emission of piezoelectric
phonons in this direction is strongly suppressed by the
crystalline anisotropy.14,15 Since for a typical GaAs-hosted
double quantum dot system a phonon wave vector of 1/a

corresponds to an energy of ∼100 μeV, we will keep in our
calculation both the coupling to piezoelectric phonons and
deformation phonons.

The Hamiltonian describing the coupling between the
electrons (density operator ρ̂) and phonons (creation and
annihilation operators â(†)) reads as

Ĥe-ph =
∑
q,p

λq,pρ̂q[âq,p + â
†
−q,p], (15)

where λq,p are the coupling matrix elements and ρ̂q =∫
dr e−iq·rρ̂(r) is the Fourier transform of the electronic

density operator. The sum runs over all allowed phonon wave
vectors q and includes three polarizations (one longitudinal
and two transversal), labeled by p = l,t1,t2. We will neglect
the mismatch of phonon velocities at the GaAs-AlGaAs
interface, and treat the phonon bath as that of bulk GaAs.

The matrix elements for electron-phonon coupling read as

λq,p = M
(p)
ph

√
h̄

2ρVωq,p

, (16)

where ρ is the mass density (ρ = 5.3 × 103 kg/m3 for GaAs),
V the normalization volume, and we will assume that the
phonons have an isotropic linear dispersion relation at all
energies of interest, i.e., ωq,p = vpq, with vp the polarization-
dependent sound velocity.

The constant M
(p)
ph = M

(p)
pe + Mdef contains a contribution

from both types of electron-phonon coupling,33

M (p)
pe = ieh14Aq,p, (17)

Mdef = �q δp,l, (18)

where the coupling to the deformation potential only involves
longitudinal phonons, expressed by the Kronecker δ in (18).
We used here the piezoelectric constant h14 = 1.38 × 109 V/m
in GaAs, and the deformation potential, which is � = 13.7 eV
for GaAs.33 The coupling to piezoelectric phonons involves
the anisotropy factors

Aq,p = 2

q2

[
qx̃qỹe

(p)
z̃ + qz̃qx̃e

(p)
ỹ + qỹqz̃e

(p)
x̃

]
, (19)

where e(p) is the unit polarization vector for the polarization p.
The factors as written in (19) are in the coordinate system of
the crystal structure, i.e., the x̃ direction along (100), ỹ along
(010), and z̃ along (001). We would like to relate the factors to
the coordinate system of Fig. 1(a). We thus write in terms of
the spherical coordinates of q

Aq,l = 9 cos2(θ ) sin4(θ ) sin2(2φ + 2χ ), (20)

Aq,t1 = 1
4 [1 + 3 cos(2θ )]2 sin2(θ ) sin2(2φ + 2χ ), (21)

Aq,t2 = sin2(2θ ) cos2(2φ + 2χ ), (22)

where θ = 0 corresponds to q parallel to our y axis, and φ

gives the azimuthal angle of q in our xz plane. The angle χ is
the angle between the double-dot axis and the crystallographic
(100) direction: A wave vector q with given φ thus has an
azimuthal angle φ + χ in the crystal’s coordinate system (see
Fig. 2).

We see that we can write

|λq,p|2 = h̄2π2v2
p

qV
(
g(p)

pe Aq,p + gdefq
2δp,l

)
, (23)

075306-4



SPIN-FLIP PHONON-MEDIATED CHARGE RELAXATION . . . PHYSICAL REVIEW B 88, 075306 (2013)

with the two dimensionless coupling constants

g(p)
pe ≡ (eh14)2

2π2h̄ρv3
p

and gdef ≡ �2

2π2h̄ρv3
l a

2
, (24)

the latter being dependent on the dot size a.
The relaxation rate � of the excited (1,1) triplet state to

the (0,2) ground state will be calculated using a second-order
Fermi’s golden rule

� =
∑
f

2π

h̄

∣∣∣∣∣
∑

v

〈f |Ĥ ′|v〉〈v|Ĥ ′|i〉
Ei − Ev

∣∣∣∣∣
2

δ(Ef − Ei), (25)

where Ĥ ′ = Ĥe-ph + Ĥsm, with Ĥsm being one (or both) of the
spin-mixing Hamiltonians presented in Sec. III. The energy
difference � between initial state |T+〉 and final state |S02〉
(which is equal to the energy of the emitted phonon) is assumed
much larger than the temperature and we therefore take as
initial state a direct product of |T+〉 and the phonon vacuum
|vac〉, and as final state |S02〉 ⊗ |1q,p〉, where one phonon with
wave vector q and polarization p has been created.

From the explicit wave functions of |T+〉 and |S02〉,
〈r1,2|T+〉 = 1√

2
{�L↑(r1)�R↑(r2) − �R↑(r1)�L↑(r2)},

〈r1,2|S02〉 = 1√
2
{�R↑(r1)�R↓(r2) − �R↓(r1)�R↑(r2)},

we calculate the diagonal matrix elements 〈T+|Ĥe-ph|T+〉 and
〈S02|Ĥe-ph|S02〉, and find34

� =
∑
q,p

2π

h̄
|T λq,p|2

∣∣∣∣2Fq

�
+ Fq + eiq·dF ∗

q

−h̄ωq,p

∣∣∣∣
2

δ(h̄ωq,p − �),

(26)

where the spin-mixing matrix element T = 〈S02|Ĥsm|T+〉 and
we used the Fourier transform of the squared electronic
wave function Fq = ∫

dr e−iq·r|�R(r)|2. We can evaluate
this Fourier transform explicitly and, anticipating that the δ

function enforces h̄ωq,p = �, we write

� = 2π

h̄

4

1 − s2

∑
q,p

|T |2
�2

|λq,p|2e−a2(q2
x+q2

z )

× sin

(
1

2
qzd

)2

δ(h̄ωq,p − �). (27)

The exponential function exp{−a2(q2
x + q2

z )} suppresses the
contribution from phonons having a wave vector with in-plane
components larger than the inverse system size 1/a. Indeed,
the electronic density profile Fq is exponentially small for
these wave vectors. The sine function sin( 1

2qzd)2 describes the
interference between the coupling to an electron in the left and
right dots: A phonon wave with given wave vector q has a
phase difference δφ = qzd between the two dot positions.35

We convert the sum over q into an integral and then finally
find that we can write for the relaxation rate

� = 2π

h̄
|T |2P1(�), (28)

where the function P1(�) gives the total probability that
the energy � is absorbed by a single phonon, either by
piezoelectric coupling or by coupling to the deformation

potential. Alternatively, one could call this function the
effective phonon density of states for the (1,1) triplet to (0,2)
singlet charge transition.

The total single-phonon probability is the sum of the
contributions from the different types of phonons:

P1(�) = P1,def(�) +
∑

p

P
(p)
1,pe(�). (29)

For the piezoelectric phonons, we find

P
(p)
1,pe(�) = g

(p)
pe

�

∫ π/2

0
dθ

sin θ

1 − s2
fp

(
�d sin θ

h̄vp

)

× exp

{
− �2a2

h̄2v2
p

sin2 θ

}
, (30)

where the dimensionless functions fp(x) are

fl(x) = 9
2 cos2(θ ) sin4(θ )g−(x), (31)

ft1(x) = 1
8 [1 + 3 cos(2θ )]2 sin2(θ )g−(x), (32)

ft2(x) = 1
2 sin2(2θ )g+(x), (33)

in terms of the function

g±(x) = 1 − J0(x) ±
(

24

x2
− 1

)
cos(4χ )J0(x)

±
(

8

x
− 48

x3

)
cos(4χ )J1(x), (34)

with Jn(x) the nth-order Bessel function of the first kind. The
contribution from the coupling to the deformation potential
similarly reads as

P1,def(�) = gdef

�

∫ π/2

0
dθ

sin θ

1 − s2

[
1 − J0

(
�d sin θ

h̄vl

)]

× �2a2

h̄2v2
l

exp

{
− �2a2

h̄2v2
l

sin2 θ

}
. (35)

The remaining integral over the polar angle θ has to be
evaluated numerically. We can, however, arrive at analytical
results in the limits of small and large phonon energies.
For small energies, meaning h̄v/� 
 a,d, the single-phonon
probabilities P1 can be expanded in �. Setting vt1 = vt2 ≡ vt ,
we then find to leading order

P
(l)
1,pe(�) = 6

105(1 − s2)

g(l)
pe

�

(
d�

h̄vl

)2

, (36)

P
(t)
1,pe(�) = 8

105(1 − s2)

g(t)
pe

�

(
d�

h̄vt

)2

, (37)

P1,def(�) = 1

6(1 − s2)

gdef

�

(
a�

h̄vl

)2(
d�

h̄vl

)2

, (38)

where P
(t)
1,pe = P

(t1)
1,pe + P

(t2)
1,pe. We find for small energies a linear

piezoelectric P1,pe(�) and a cubic deformation P1,def(�),
meaning that the phonon bath is super-Ohmic in this setup. The
result for the piezoelectric phonons agrees up to a prefactor
with previous calculations of the phonon density of states for
the (1,0) to (0,1) charge transition where all anisotropy factors
were set to one.32
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In the opposite limit of large energies h̄v/� � a, we find
qualitatively different results compared to Ref. 32. We see from
the exponential factors in (30) and (35) that in this regime
only very small angles θ are relevant. Indeed, in this case
only the confinement in the y direction is strong enough to
create an electronic density profile with nonvanishing Fourier
components of the order ∼ �/h̄v, and phonon emission
takes place almost exclusively in the y direction. For the
piezoelectric coupling, the anisotropy factors Aq,p now bring
in small factors of θ which can not be ignored (see also Ref. 14).
Since in this limit Al ∝ θ4 and At1,At2 ∝ θ2, we expect the
dominating piezoelectric contribution for large energies to
come from transversal phonons.

To evaluate the single-boson probabilities in this limit, we
expand sin θ ≈ θ and extend the range of integration over θ

from 0 to ∞. Then, we find that to leading order

P
(t)
1,pe(�) =

[
2 + d2

2a2

s2

(1 − s2)

]
g(t)

pe

�

(
h̄vt

a�

)4

, (39)

P1,def(�) = gdef

2�
. (40)

The contribution from longitudinal piezoelectric phonons
is P1,l ∼ (g(l)

pe/�)(h̄vl/a�)6, which is much smaller than

P
(t)
1,pe and therefore ignored. The large-energy result (39) for

the piezoelectric phonons is qualitatively different from the
results presented in Ref. 32, which predicted that P1(�) ∼
(gpe/�)(h̄v/a�)2, the difference arising from the inclusion of
the anisotropy factors.

We see from (39) and (40) that the contribution from
deformation phonons becomes important when �

√
a ∼

h̄vt

√
v3

l eh14/v
3
t �, which is approximately 1.4 meV nm1/2

using realistic parameters for GaAs.33 For a dot size of
a = 20 nm (an orbital level spacing of h̄ω ≈ 1.4 meV), we
find that the relevant energy scale is � ∼ 300 μeV, which
indeed lies inside our regime of interest.

In Fig. 3, we plot the single-phonon probability P1(�) for
typical double-dot parameters. In all plots, � is renormalized
to units of �a ≡ h̄vt/a and P1 is plotted in units of Pa ≡
a(eh14)2/h̄2v4

t ρ. For vt = 3.0 × 103 m/s and a = 20 nm,
we find �a = 99 μeV. The parameter vl/vt was set to 1.73
and the ratio �/aeh14 to 0.50. In Fig. 3(a), we show the
total P1 at χ = 0 for three different size ratios d/a. The
maximum of P1 always occurs on the scale � ∼ �a , where
the wavelength of the emitted phonon is comparable to
the system’s in-plane dimensions. At low energies, P1 is
approximately linear and at high energies it is suppressed,
ultimately being dominated by the deformation contribution
making P1 ∝ �−1. In Fig. 3(b), we plot the total P1 as well as
the two separate contributions on logarithmic scales (for χ = 0
and d/a = 5), and we added guides to the eye corresponding
to the power laws expected in the different limits. The blue
dotted line shows the piezoelectric contribution. Up to a few
�a , this contribution indeed dominates, being linear at very
small energies. For � � �a , it becomes suppressed as ∝ �−5

and at higher energies the dominating contribution comes from
the coupling to the deformation potential, the green dotted line
[see also Eqs. (39) and (40)]. The inset of Fig. 3(a) shows
the dependence of the maximum of P1 on the angle χ (for
d/a = 5). We see that the density of states depends on the

FIG. 3. (Color online) The total single-phonon probability P1 =
P1,pe + P1,def as a function of �. The phonon energy � is plotted
in units of �a ≡ h̄vt /a and P1 in units of Pa ≡ a(eh14)2/h̄2v4

t ρ.
For all plots, we have set vl/vt = 1.73 and �/aeh14 = 0.50. (a)
The total P1(�) at χ = 0 for three different size ratios d/a. (Inset)
The dependence of the maximum P1 for d/a = 5 on the angle χ .
(b) The total P1(�), as well as the separate contributions from
piezoelectric and deformation phonons, for χ = 0 and d/a = 5 on
logarithmic scales. The expected power laws are included as guides
to the eye.

relative orientation of the double-dot axis and the (100) crystal
direction, its variation being, however, only ∼1%.

V. SPIN-FLIP CHARGE RELAXATION RATE

Now we can use Eqs. (28)–(34) to evaluate explicit
relaxation rates for the T+ → S02 transition. For a specific
experimental setup, one can estimate the relative magnitude
of the matrix elements given in Eqs. (9) and (14), and decide
which process dominates. Here, we will focus on the case of
a large external magnetic field, such as was the case in the
experiments of Ref. 19. We assume that Bext is large enough
so that |Tso| 
 |Tgr|. In that case, the relaxation from |T+〉 to
|S02〉 is mainly caused by spin-orbit interaction.

We thus use Tso in (28) and take typical material parameters
for GaAs. For the dot size, we take again a = 20 nm and the
interdot distance is set five times as large, d = 100 nm. In
the experiment of Ref. 19, the interdot axis was fabricated
along the crystal (110) direction, so we set χ = π/4. For this
angle, the two spin-orbit terms add constructively, and we
choose α = β = 500 m/s, such that lzso ≈ 1.7 μm, and we set
t = 8.84 μeV. In Fig. 4(a), we plot the resulting relaxation
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FIG. 4. (Color online) Relaxation time Trel from |T+〉 to |S02〉
when relaxation is mediated by spin-orbit interaction. To make this
plot, we used vl = 5.2 × 103 m/s, vt = 3.0 × 103 m/s, h14 = 1.38 ×
109 V/m, ρ = 5.3 × 103 kg/m3, χ = π/4, t = 8.84 μeV, and α =
β = 500 m/s. (a) Trel for a = 20 nm and d = 100 nm. (Inset) The
relaxation rate � for the same parameters calculated at � = 50 μeV
as a function of χ . (b) Trel as a function of d/a at two different energies
for fixed a = 20 nm (solid lines) and d = 150 nm (dashed lines). It
is assumed here that t ∝ h̄ωs.

time Trel = �−1, which is found to be typically Trel ∼ 1 μs,
the order of magnitude of which agrees with experimental
observations.20 The inset to Fig. 4(a) shows the dependence
of the relaxation rate � on the angle χ at � = 50 μeV, close
to the minimum relaxation time. We see that the rate indeed
vanishes for the angles χ = 3π/4,7π/4, where the Rashba
and Dresselhaus terms add destructively.

We can also investigate how the relaxation time depends
on the size ratio d/a. For this we assume the tunnel coupling
parameter t to scale with the orbital energy splitting of the
dots as well as with the overlap integral, t ∝ h̄ωs (cf. Ref. 22).
We then fix the prefactor so that t = 8.84 μeV for a = 20 nm
and d = 100 nm, as we had before. In Fig. 4(b), we plot the
resulting relaxation time for two different energy differences
(phonon energies) � = 50 μeV (red lines) and � = 250 μeV
(blue lines). The dashed lines have a fixed interdot distance d =
150 nm and the solid lines have a fixed dot radius a = 20 nm.
All other parameters are the same as in Fig. 4(a). We see that a
large-size ratio d/a suppresses the relaxation efficiently: For
widely separated dots, the overlap of the two single-dot wave
functions becomes exponentially small, and this suppresses
the tunnel coupling t and thereby the matrix element Tso. In

the limit of strongly overlapping wave functions, i.e., d/a

going towards 1, we see that relaxation is more efficient for
the smaller system with d = a = 20 nm. Indeed, for d = a =
150 nm, we find �a ≈ 13 μeV, so in this case both phonon
energies considered (50 and 250 μeV) are much larger than
�a where the electron-phonon coupling matrix elements are
suppressed. For d = a = 20 nm, we have �a ≈ 100 μeV and
the two energies are roughly of the same order of magnitude,
leading to more efficient relaxation.

For smaller external magnetic fields, or other angles χ , one
could be in the situation where the spin orbit and field gradient
give rise to matrix elements of the same order of magnitude
|Tso| ∼ |Tgr|. In this case, one has to use in (28) the total matrix
element Ttot = Tso + Tgr, which possibly includes interference
terms between the two mechanisms

Ttot = it√
2

{
iδBx

a − δB
y
a

Bext
+ d

lzso

}
. (41)

We see that the spin-orbit mechanism interferes with the y

component of the difference field δBa . By tuning δB
y
a or Bext,

one could thus enhance or counteract the spin-flip tunneling
enabled by spin-orbit interaction. One word of caution,
however, is required here: If the field gradients are caused
by the effective hyperfine fields, then the final state |f 〉 in (25)
is different for a spin-orbit and a hyperfine-mediated transition.
Indeed, in the course of hyperfine-induced spin-flip tunneling,
the spin of one of the nuclei is raised by h̄, which does not
happen during a spin-orbit-mediated transition. In that case,
one has to calculate separately the two contributions to the
relaxation rate (28) or, equivalently, use |T |2 = |Tso|2 + |Tgr|2.

VI. CONCLUSION

We have studied the (1,1) triplet to (0,2) singlet relaxation
rate in a lateral gate-defined double quantum dot tuned to
the Pauli spin blockade regime. We first derived an effective
phonon density of states P1(�) for this charge transition,
and found that at small energies P1 is linear in energy,
∝ �, and dominated by the piezoelectric electron-phonon
coupling, whereas at large energies the P1 is dominated
by the coupling to the deformation potential and is ∝�−1.
Then, we investigated two different spin-mixing mechanisms
coupling the spin-triplet and -singlet states: a magnetic field
gradient over the double dot (relevant at low external magnetic
field) and spin-orbit interaction (relevant at high field). We
showed how the spin-orbit-mediated coupling depends on
the device geometry as well as on the in-plane direction of
the applied magnetic field. We finally combined all results
and took realistic system parameters to evaluate the explicit
detuning-dependent relaxation rate, which we found to be of
the order of ∼MHz.
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