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Abstract

The celebrated Erdős-Ko-Rado theorem shows that for n > 2k the largest inter-
secting k-uniform set family on [n] has size

(
n−1
k−1

)
. It is natural to ask how far from

intersecting larger set families must be. Katona, Katona and Katona introduced
the notion of most probably intersecting families, which maximise the probability
of random subfamilies being intersecting.

We consider the most probably intersecting problem for k-uniform set families.
We provide a rough structural characterisation of the most probably intersecting
families and, for families of particular sizes, show that the initial segment of the
lexicographic order is optimal.

1 Introduction

A family of sets F is said to be intersecting if F1 ∩ F2 6= ∅ for all F1, F2 ∈ F . A central
result in extremal set theory is the Erdős-Ko-Rado theorem, which determines the largest
size of an intersecting k-uniform family over [n]. Given this extremal result, one may then
investigate the appearance of disjoint pairs in larger families of sets.

Recently Katona, Katona and Katona introduced a probabilistic version of this super-
saturation problem. Given a set family F , let Fp denote the random subfamily obtained
by keeping each set independently with probability p. They asked, for a given p, n and
m, which set families on [n] with m sets maximise the probability of Fp forming an inter-
secting family. We study this problem for k-uniform set families. In the case k = 2, we
determine the optimal graphs when they are not too dense. In the hypergraph setting,
we provide an approximate structural result, and are able to determine the extremal hy-
pergraphs exactly for some ranges of values of m. These mark the first general results for
the probabilistic supersaturation problem for k-uniform set families.

∗Research supported in part by SNSF grant 200021-149111 and by a USA-Israel BSF grant.
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We now discuss the history of the supersaturation problem for intersecting families,
before introducing the probabilistic version of Katona, Katona and Katona and presenting
our new results.

1.1 Supersaturation for intersecting families

The typical extremal problem asks how large a structure can be without containing some
forbidden configuration. A classic example is that of the Erdős-Ko-Rado Theorem [7],
which shows that when n > 2k the largest k-uniform intersecting family of sets on [n]
has size

(
n−1
k−1

)
. This theorem has been central to extremal set theory, inspiring many

extensions and applications over the years; see Anderson’s book [4] for a brief survey.
One may rephrase the extremal question as asserting that larger structures must con-

tain a forbidden configuration. This naturally leads to what is known as a supersaturation
problem: how many such configurations appear in larger structures? In the context of
intersecting families, this amounts to asking how many disjoint pairs of sets must appear
in large families. In the non-uniform setting, this was first studied by Frankl [8] and,
independently, Ahlswede [2], who showed that the number of disjoint pairs is minimised
by taking sets as large as possible.

Theorem 1 (Frankl [8], 1977; Ahlswede [2], 1980). If
∑n

i=k+1

(
n
i

)
6 m 6

∑n
i=k

(
n
i

)
, then

the minimum number of disjoint pairs of sets in a family of m subsets of [n] is attained
by some family F with ∪i>k

(
[n]
i

)
⊂ F ⊂ ∪i>k

(
[n]
i

)
.

Note that this theorem describes the approximate structure of the extremal families,
but does not specify which sets of size k should be chosen. Since every set of size k is
disjoint from the same number of sets in ∪i>k

(
[n]
i

)
, in light of the above result, minimising

the total number of disjoint pairs is equivalent to minimising the number of disjoint pairs
amongst sets of size k, a problem that was first explicitly posed by Ahlswede [2] in 1980.
In the k = 2 case, this translates to determining which graphs have the minimum number
of disjoint pairs of edges, and had in fact been resolved earlier by Ahlswede and Katona
[3].

The extremal graphs are best described by the lexicographic order. Under this or-
der, we say A < B if min(A4B) ∈ A; that is, sets with smaller elements are preferred.
Denote by Ln,k(m) the first m sets in

(
[n]
k

)
under the lexicographic order. The comple-

ment of Ln,k(m) is isomorphic to the corresponding initial segment of the colexicographic
order, where A < B if max(A4B) ∈ B. Let Cn,k(m) denote the initial segment of the
colexicographic order.

Theorem 2 (Ahlswede-Katona [3], 1978). Over all graphs on n vertices with m edges,
either Ln,2(m) or Cn,2(m) minimises the number of disjoint pairs of edges. Moreover, if
m < 1

2

(
n
2

)
− n

2
, then Ln,2(m) is optimal, while if m > 1

2

(
n
2

)
+ n

2
, then Cn,2(m) is optimal.

The optimal graphs for 1
2

(
n
2

)
6 m 6 1

2

(
n
2

)
+ n

2
depend on the arithmetic properties of n;

a complete solution to the problem was obtained independently by Wagner and Wang [13]
and by Ábrego, Fernández-Merchant, Neubauer and Watkins [1].
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In 2003, Bollobás and Leader [5] offered a conjecture for the solution to the problem
for general k, which in particular implies that Ln,k(m) is optimal for small families. By
taking complements, this further implies that Cn,k(m) is optimal for large families. In an
earlier paper with Gan [6], we were able to verify their conjecture for small m.

1.2 Probabilistic supersaturation

In 2012, Katona, Katona and Katona [10] introduced a probabilistic measure of super-
saturation for large families. Rather than minimising the total number of disjoint pairs
in large families, they sought to maximise the probability of a random subfamily being
intersecting. More formally, given a (not necessarily uniform) family F of sets, and some
p ∈ [0, 1], let Fp denote the random subfamily of F , where each set is retained indepen-
dently with probability p. For a given 0 6 m 6 2n, they asked for the families F of m
subsets of [n] maximising P(Fp is intersecting).

Clearly, if F is intersecting, then Fp must also be intersecting, and hence one should
take an intersecting family if possible. Thus, as in the case of the counting supersaturation
problem, one is interested in families larger than the extremal bound.

We observe here that the probabilistic problem is in fact stronger than the counting
version described before. Indeed, by conditioning on the number of sets in Fp, we have

P(Fp is intersecting) =
m∑
t=0

P (Fp is intersecting | |Fp| = t)P (|Fp| = t)

=
m∑
t=0

int(F , t)pt(1− p)m−t, (1)

where int(F , t) denotes the number of intersecting subfamilies of F of size t. In particular,
it follows that int(F , t) < 2m for all t. If we take p = o(2−m), then 2mp3 = o(p2), and so
expanding the first few terms of the sum on the right-hand side gives

P(Fp is intersecting) = (1− p)m +mp(1− p)m−1 + int(F , 2)p2(1− p)m−2 + o(p2).

This quantity is maximised if and only if the number of intersecting pairs of sets in F is
maximised, and thus the number of disjoint pairs must be minimised. Hence a solution to
the probabilistic problem for all values of p provides a solution to the counting problem
as well.

Katona, Katona and Katona [10] determined the extremal families for m 6 2n−1 +(
n−1

d(n−3)/2e

)
. In particular, they showed that for all 0 6 p 6 1, it is optimal to take all

sets of size larger than n
2
, with the remaining sets of size

⌊
n
2

⌋
chosen to minimise the

number of disjoint pairs. They further conjectured the existence of a nested sequence
F0 ⊂ F1 ⊂ . . . ⊂ F2n of families such that Fm is the most probably intersecting family of
size m.

In the same year, Russell [11] provided some evidence towards this conjecture, by
proving a result similar to Theorem 1, showing that there is a most probably intersecting
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family consisting of sets that are as large as possible. However, in a later paper with
Walters [12], they used the non-nestedness of the extremal graphs in Theorem 2 to show
that the most probably intersecting families are not nested for

∑n
i=3

(
n
i

)
6 m 6

∑n
i=2

(
n
i

)
.

While the above results hold for non-uniform families, much less was known in the
uniform setting. By the Erdős-Ko-Rado theorem [7], when n > 2k, the largest k-uniform
intersecting family has size

(
n−1
k−1

)
, a bound attained when we take all sets containing some

fixed element. We call such a structure a star ; note that for m 6
(
n−1
k−1

)
, Ln,k(m) is a star

consisting of m sets containing 1.
Hence it follows that for m 6

(
n−1
k−1

)
, Ln,k(m) is an intersecting family, and thus a

most probably intersecting family. Once we have m >
(
n−1
k−1

)
, we can no longer take an

intersecting family. Katona, Katona and Katona showed in [10] that for m =
(
n−1
k−1

)
+ 1,

it is optimal to add any set to a full star, and thus Ln,k(m) is again optimal. By applying
i, j-compressions, Russell and Walters [12] were able to show that for any m, there is a left-
compressed most probably intersecting family, but were unable to show which compressed
family is optimal.

1.3 Our results

We apply the shifting arguments developed in [6] to this probabilistic supersaturation for
k-uniform set families. In the case k = 2, we show that the lexicographic order provides
the most probably intersecting graphs for all sizes up to c

(
n
2

)
, with c approximately 1

17
.

Theorem 3. For n, ` and m satisfying n > 32` and 0 6 m 6
(
n
2

)
−
(
n−`

2

)
, the lexicographic

graph Ln,2(m) is the most probably intersecting graph on [n] with m edges.

When k > 3, the situation is rather more intricate. The following theorem gives
a rough structural description of hypergraphs maximising the number of t-intersecting
subhypergraphs. We say a star in F is full if it contains

(
n−1
k−1

)
sets, and almost full if it

has (1− o(1))
(
n−1
k−1

)
sets.

Theorem 4. Let k, ` and t > 2 be integers, and suppose n > n0(k, `) and
(
n
k

)
−
(
n−`
k

)
6

m 6
(
n
k

)
−
(
n−`−1
k

)
. If F is a k-uniform set family on [n] of size m maximising the number

of intersecting subfamilies of size t, then either

(i) F contains ` full stars, or

(ii) F consists of `+ 1 almost-full stars.

Using Theorem 4, we are able to determine exactly the most probably intersecting
hypergraphs of some particular sizes, as given below.

Corollary 5. Let k and ` be integers, and suppose n > n0(k, `) and
(
n
k

)
−
(
n−`
k

)
6 m 6(

n
k

)
−
(
n−`
k

)
+ n − ` − k + 1. For this range of parameters, Ln,k(m) is the most probably

intersecting k-uniform hypergraph on [n] with m sets.
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We note that for both graphs and hypergraphs we actually prove something stronger,
showing Ln,k(m) simultaneously maximises the number of intersecting subfamilies of size
t for all t, as stated in Propositions 1 and 3. In particular, this implies the most probably
intersecting families in these ranges do not depend on the underlying probability p. Our
proofs also extend to show the most probably intersecting hypergraphs are essentially
unique.

1.4 Outline and notation

The remainder of this paper is organised as follows. In Section 2, we study the most
probably intersecting graphs, proving Theorem 3. In Section 3, we extend these methods
to hypergraphs, and prove Theorem 4. Finally, in Section 4, we provide some concluding
remarks and open questions.

Our notation is fairly standard. We denote by [n] the first n positive integers, and for
any set X, we write

(
X
k

)
for the subsets of X of size k. Ln,k(m) represents the first m

sets in
(

[n]
k

)
in the lexicographic order, while Cn,k(m) is the corresponding initial segment

of the colexicographic order; see the paragraph preceding Theorem 2 for a description of
these orders.

If F is a k-uniform family of subsets of [n], then for any vertex i ∈ [n], we write di for
its degree; that is, the number of sets containing i. A subset X ⊂ [n] of elements covers
F if for every set F ∈ F , we have F ∩ X 6= ∅. We let int(F , t) denote the number of
intersecting subfamilies of F of size t. We say that an intersecting family G is trivially
intersecting if ∩G∈GG 6= ∅, and we call such a family a star with centre ∩G∈GG.

2 Intersecting graphs

In this section we prove Theorem 3, thus showing the initial segment of the lexicographic
order is the most probably intersecting graph when the graphs in question are not too
dense. We recall the statement below.

Theorem 3. For n, ` and m satisfying n > 32` and 0 6 m 6
(
n
2

)
−
(
n−`

2

)
, the lexicographic

graph Ln,2(m) is the most probably intersecting graph on [n] with m edges.

In order to prove this theorem, we use (1) to convert the problem into one of counting
intersecting subgraphs of a given size. At the heart of the proof, therefore, is the following
proposition, which shows that in this range of densities, Ln,2(m) maximises the number
of intersecting subgraphs of size t for any t. Proposition 1 can be viewed as an extension
of Theorem 2 to larger intersecting subgraphs.

Proposition 1. Suppose t > 0, and n and ` satisfy n > 22+6/(t−1)`. Then, for any
0 6 m 6

(
n
2

)
−
(
n−`

2

)
, the lexicographic graph Ln,2(m) maximises int(G, t) over all graphs

G on [n] with m edges.

Note that in the case of graphs, there are only two possible intersecting structures: the
star and, when t = 3, the triangle. We will show that there are relatively few triangles,
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and hence the number of intersecting subgraphs is essentially determined by the number
of stars. By considering the central vertex of a star, we find that, for t > 2, the number of
stars in a graph G is given by

∑
i∈V (G)

(
di
t

)
. As it is cleaner to first count only the stars,

we separate this (main) case into the following proposition.

Proposition 2. Suppose t > 0, and n and ` satisfy n > 22+6/(t−1)`. Then, for any
0 6 m 6

(
n
2

)
−
(
n−`

2

)
, the lexicographic graph Ln,2(m) maximises f(G, t) =

∑
i

(
di
t

)
over

all graphs G on [n] with m edges.

We now begin by showing how Theorem 3 follows easily from Proposition 1.

Proof of Theorem 3. We wish to find a graph G on [n] with m edges that maximises
P(Gp is intersecting). Recall Equation (1):

P(Gp is intersecting) =
m∑
t=0

int(G, t)pt(1− p)m−t.

By Theorem 2 for t = 2 and Proposition 1 otherwise, among all graphs on [n] with m
edges, int(G, t) is maximised by Ln,2(m) for all t > 0. Thus we have

P(Gp is intersecting) =
m∑
t=0

int(G, t)pt(1− p)m−t

6
m∑
t=0

int(Ln,2(m), t)pt(1− p)m−t

= P(Ln,2(m)p is intersecting),

and so Ln,2(m) is the most probably intersecting graph, as claimed.

In the remainder of this section, we seek to prove Proposition 1. We begin by dealing
with the cleaner case of counting stars, namely Proposition 2.

Proof of Proposition 2. Our proof is by induction on m + t. Note that when t = 0, the
statement is obvious, and for t = 1, f(G, 1) =

∑
i

(
di
1

)
=
∑

i di = 2m, and is thus
maximised by Ln,2(m) and, indeed, by any other graph with m edges.

For the case t = 2, note that since ` 6 2−2−6/(t−1)n 6 1
4
n, we have at most

(
n
2

)
−
(

3n/4
2

)
<

1
2

(
n
2

)
− 1

2
n edges. Hence, by Theorem 2, it is known that Ln,2(m) maximises the number

of intersecting pairs of edges, which is precisely the quantity f(G, 2).
Moreover, when m 6 n − 1, it is easy to see that Ln,2(m) is again optimal. Indeed,

f(G, t) =
∑

i

(
di
t

)
counts the number of t-edge stars in G. For m 6 n− 1, Ln,2(m) is itself

a star, and thus all subgraphs of t edges are stars. Clearly, f(Ln,2(m), t) =
(
m
t

)
is optimal.

Hence we may assume t > 3 and m > n. Suppose first that G is an extremal graph
containing a full star; without loss of generality, we may assume it has all edges containing
the vertex n. Let G̃ be the induced subgraph of G on the vertices [n− 1]. Note that for
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all 1 6 i 6 n − 1, the degrees in G̃ are given by d̃i = di − 1, as we lose the edge to n.
Thus we have

f(G, t) =
∑
i

(
di
t

)
=

n−1∑
i=1

(
d̃i + 1

t

)
+

(
n− 1

t

)

=
n−1∑
i=1

((
d̃i
t

)
+

(
d̃i

t− 1

))
+

(
n− 1

t

)
= f(G̃, t) + f(G̃, t− 1) +

(
n− 1

t

)
.

By the induction hypothesis, both f(G̃, t) and f(G̃, t − 1) are maximised by G̃ =
Ln−1,2(m− (n− 1)). Adding to this the full star with centre n, we obtain Ln,2(m), thus
proving its optimality.

Now suppose G is an extremal graph with the largest possible maximum degree ∆,
and that ∆ 6 n − 2. This means for any edge e and vertex i, we can replace e by an
edge containing i. This shifting operation, coupled with the assumption of optimality,
will allow us to determine the structure of G, and eventually derive a contradiction.

To begin with, we establish a lower bound for f(G, t). Let 1 6 r 6 `− 1 be such that(
n
2

)
−
(
n−r

2

)
< m 6

(
n
2

)
−
(
n−r−1

2

)
. In this range, Ln,2(m) consists of r full stars and a partial

star. Thus if G is extremal, we must have f(G, t) > f(Ln,2(m), t) > r
(
n−1
t

)
+ (n− r)

(
r
t

)
>

r
(
n−1
t

)
.

We shall now double-count to deduce the existence of a high-degree vertex. Since
every star we count in f(G, t) contains t edges, and the number of stars an edge is in is
determined by the degrees of its endpoints, we have

tf(G, t) =
∑

e={i,j}∈E(G)

((
di − 1

t− 1

)
+

(
dj − 1

t− 1

))
6 2m

(
∆− 1

t− 1

)
,

where ∆ is the maximum degree in G. Applying the previous lower bound on f(G, t) gives(
∆−1
t−1

)
> rt

2m

(
n−1
t

)
= r(n−1)

2m

(
n−2
t−1

)
> 1

4

(
n−2
t−1

)
, since m < (r + 1)(n − 1). Since

(
αp
q

)
6 αq

(
p
q

)
for 0 6 α 6 1 (see Lemma 2), it follows that ∆ > 4−1/(t−1)(n − 2) + 1 > 4−1/(t−1)n − 1.
Without loss of generality, suppose 1 is a vertex of maximum degree.

Consider any edge e = {i, j} ∈ E(G), and suppose without loss of generality di > dj.
The edge e is in

(
di−1
t−1

)
+
(
dj−1
t−1

)
6 2
(
di−1
t−1

)
stars of size t. On the other hand, if we replace

e with an edge containing 1, we would create at least
(

∆
t−1

)
new stars. Hence, by the

extremality of G, we must have 2
(
di−1
t−1

)
>
(

∆
t−1

)
, so di − 1 > 2−1/(t−1)∆ > 2−3/(t−1)n− 1.

This implies that X = {x ∈ [n] : dx > 2−3/(t−1)n} forms a vertex cover of G. This
cover cannot be too large, as we have the bound

2(r + 1)(n− 1) > 2m =
∑
i

di >
∑
x∈X

dx > 2−3/(t−1)n |X| ,

and so s = |X| < 21+3/(t−1)(r + 1).

the electronic journal of combinatorics 22(1) (2015), #P1.80 7



Moreover, let j be any vertex not adjacent to 1. We claim that j must in fact be
isolated. Suppose to the contrary there were some vertex i 6= 1 with the edge {i, j} ∈
E(G). This edge is contained in

(
di−1
t−1

)
+
(
dj−1
t−1

)
stars of t edges. If we were to replace {i, j}

with the edge {1, j}, we would create
(

∆
t−1

)
+
(
dj−1
t−1

)
>
(
di−1
t−1

)
+
(
dj−1
t−1

)
stars, contradicting

the optimality of G.
Thus it follows that all the edges of G are supported on the ∆ + 1 vertices in the

closed neighbourhood of 1, and that G has a cover X of size s < 21+3/(t−1)(r+ 1) vertices,
all of which have degree at least 2−3/(t−1)n. Note that the vertices outside the cover have
degree at most s, as they can only be adjacent to vertices in X.

To complete the argument, we shall show by shifting some edges that a graph with
isolated vertices cannot be optimal. Without loss of generality, let X = [s] be the cover
mentioned above, and further assume that v has the lowest degree in X. Note that v has
at least 2−3/(t−1)n− (s− 1) > s− 1 neighbours outside X, since s < 21+3/(t−1)(r+ 1). Let
G′ be the graph obtained from G by removing s− 1 edges from v to neighbours N ⊂ Xc,
and replacing them with s−1 edges from a previously isolated vertex w to the other s−1
vertices in X. Note that these vertices all have degree at least dv.

Comparing degrees in G′ to those in G, we find that the s− 1 vertices in X \ {v} have
degree one larger, the degree of v has decreased by s− 1, the degrees of the s− 1 vertices
in N , which were previously at most s, have decreased by 1, and w now has degree s− 1.
The change in the number of intersecting subgraphs is thus

f(G′, t)− f(G, t) =
∑
i

(
d′i
t

)
−
∑
i

(
di
t

)
=

∑
i∈X\{v}

((
di + 1

t

)
−
(
di
t

))
+
∑
i∈N

((
di − 1

t

)
−
(
di
t

))
+

(
d′w
t

)

+

((
dv − s+ 1

t

)
−
(
dv
t

))
=

∑
i∈X\{v}

(
di

t− 1

)
−

s−1∑
j=1

((
dv − j + 1

t

)
−
(
dv − j
t

))
−
∑
i∈N

(
di − 1

t− 1

)
+

(
s− 1

t

)

>
∑

i∈X\{v}

(
dv
t− 1

)
−

s−1∑
j=1

(
dv − j
t− 1

)
− (s− 1)

(
s− 1

t− 1

)

=
s−1∑
j=1

((
dv
t− 1

)
−
(
dv − j
t− 1

))
− (s− 1)

(
s− 1

t− 1

)

>
s−1∑
j=1

j

(
dv − j
t− 2

)
− (s− 1)

(
s− 1

t− 1

)
(2)

>
s−1∑
j=1

j

(
dv − s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
=

(
s

2

)(
dv − s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
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>

(
s

2

)(
s+ 1

t− 2

)
− (s− 1)

(
s− 1

t− 1

)
[since dv > 2−3/(t−1)n > 22+3/(t−1)(r + 1) > 2s]

=

(
s

2

)(
s+ 1

t− 2

)
− (s− 1)2

t− 1

(
s− 2

t− 2

)
>

(
s

2

)((
s+ 1

t− 2

)
−
(
s− 2

t− 2

))
> 0,

since t > 3. Hence, by shifting edges, we can increase the maximum degree of G without
decreasing the objective function. This contradicts the assumption that G was optimal
with the largest maximum degree.

Finally, we show how to deduce the general case of Proposition 1 from this result.
This requires only minor modifications of the above proof, which we highlight below.

Proof of Proposition 1. Note that f(G, t) counts precisely the number of stars of t edges
in the graph G (except when t = 0, when the empty graph is counted n times, and t = 1,
in which case the single edges are counted twice). When t 6= 3, these stars are the only
intersecting graphs of t edges, and thus Proposition 1 follows directly from Proposition 2.

When t = 3, we must augment the proof of Proposition 2 to also account for the
triangles in the graph. However, the number of possible triangles is a lower order term
that can be taken care of by slightly altering the argument.

We begin by observing that the base case of the inductive argument still holds. The
proposition holds for m 6 n−1, as every 3-edge subgraph of Ln,2(m) is intersecting, which
is clearly the best possible. Moreover, suppose G contains a full star, and let G′ denote
the subgraph with the full star removed. Then each edge in G′ induces one triangle with
edges from the full star. Thus we can again write the number of intersecting subgraphs
of 3 edges as a constant term, independent of the structure of G′, plus the corresponding
terms from G′, and can then apply the inductive hypothesis.

We next need a lower bound on the maximum degree ∆. Note that an edge {i, j} can
be involved in at most min{di− 1, dj − 1} triangles, and thus in at most

(
di−1

2

)
+
(
dj−1

2

)
+

min{di − 1, dj − 1} intersecting subgraphs of three edges in total. Hence we have

3int(G, 3) 6
∑

{i,j}∈E(G)

((
di − 1

2

)
+

(
dj − 1

2

)
+ min{di − 1, dj − 1}

)

6 2m

((
∆− 1

2

)
+ ∆− 1

)
= 2m

(
∆

2

)
.

On the other hand, we have int(G, 3) > int(Ln,2(m)) > r
(
n−1

3

)
. From these inequalities,

we can deduce ∆(∆−1) > 1
4
(n−2)(n−3). Again, assume that 1 is a vertex of maximum

degree.
Now if we have the edge e = {i, j} with di > dj, then e is contained in at most(

di−1
2

)
+
(
dj−1

2

)
+ dj − 1 6

(
di−1

2

)
+
(
dj
2

)
6
(
di−1

2

)
+
(
di
2

)
intersecting families of three edges.

Since replacing e with an edge containing 1 would create at least
(

∆
2

)
new stars of three

edges, we must have
(
di−1

2

)
+
(
di
2

)
>
(

∆
2

)
, which, given our above bound on ∆, shows

X = {i : di > 1
2
√

2
n} is a cover for G. In fact, these shifting arguments also show that X
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must be a clique. As before, we can also show that if v is not adjacent to 1, then v must
in fact be an isolated vertex.

To complete the argument, we show that graphs with isolated vertices cannot be
optimal by shifting s− 1 edges to an isolated vertex, where |X| = s > 2. In the proof of
Proposition 2, we saw that such a shift results in a gain of at least

(
s
2

) ((
s+1
t−2

)
−
(
s−2
t−2

))
=

3
(
s
2

)
stars of three edges. On the other hand, as V (G) \ X is an independent set, we

lose at most (s − 1)2 triangles, since every edge removed can only form a triangle with
another vertex from X. However, by adding s−1 edges from a clique to a new vertex, we
create

(
s−1

2

)
new triangles. Hence we incur a net loss of at most

(
s
2

)
triangles. For s > 3

we have 3
(
s−1

2

)
>
(
s
2

)
, and so shifting the edges increases the maximum degree without

decreasing int(G, 3), contradicting our choice of G. If s = 2, then we are shifting one
edge from the vertex of second-highest degree, say 2, to the vertex of maximum degree.
By performing the preceding calculations more carefully, we find that we gain at least
d2 − 2 > 0 intersecting subgraphs of three edges, again contradicting the optimality of
G.

This completes the proof of Theorem 3, showing that the initial segment of the lexico-
graphic order is the most probably intersecting graph up to moderate densities. Note that,
as in all previously obtained results in [10] and [12], these graphs actually simultaneously
maximise the number of intersecting subgraphs of all sizes, and hence the most probably
intersecting graphs do not depend on p. This phenomenon fails to hold for denser graphs,
but we defer this discussion until Section 4.

We conclude with some remarks on the uniqueness of the extremal graphs. To have
equality, we must in particular have equality in (2), namely that

(
dv
t−1

)
−
(
dv−j
t−1

)
= j
(
dv−j
t−1

)
for all 1 6 j 6 s − 1. There are only three possible cases: t 6 2, t > dv + 2 or s = 2.
In the first case, if t = 0 or t = 1 it is trivial that there is no uniqueness, as any graph
with m edges will be extremal. When t = 2, this reduces to the question of uniqueness in
Theorem 2. In this case, the extremal graphs are completely characterised by Ábrego et
al [1], where it is shown that they are closely related to Ln,2(m).

If s = 2 and t 6 dv, it is easy to see that shifting an edge to the vertex of highest
degree increases the number of intersecting subgraphs. For t > dv (and t 6

(
n−1
k−1

)
), the

edges meeting the cover X only at v are not contained in any intersecting subgraphs
of size t, and hence we may remove them to complete a star and increase the number
of intersecting subgraphs. Thus in these cases it follows that the extremal graph must
contain r full stars, and Ln,2(m) is uniquely extremal if the number of additional edges is
at least t− r.

3 Intersecting hypergraphs

We now seek to extend these results to the hypergraph setting and prove Theorem 4,
restated below.

Theorem 4. Let k, ` and t > 2 be integers, and suppose n > n0(k, `) and
(
n
k

)
−
(
n−`
k

)
6
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m 6
(
n
k

)
−
(
n−`−1
k

)
. If F is a k-uniform set family on [n] of size m maximising the number

of intersecting subfamilies of size t, then either

(i) F contains ` full stars, or

(ii) F consists of `+ 1 almost-full stars.

In contrast to the graph case, there is a rich variety of non-isomorphic intersecting
structures we shall have to account for. We call intersecting families that are not stars
non-trivially intersecting. Despite the wide range of non-trivially intersecting families,
these are very small families when k = o(

√
n), as the Hilton-Milner theorem [9] shows

that the largest non-trivially intersecting family has size
(
n−1
k−1

)
−
(
n−k−1
k−1

)
+1 = o

((
n−1
k−1

))
. It

remains the case that most intersecting subfamilies are stars, as we show in the following
lemma.

Lemma 1. For F ∈ F , the number of non-trivially intersecting families of size t in

F containing F is O
(
n−t/4k

((n−1
k−1)
t−1

))
, and the total number of such families in F is

O
(
n−t/4k

((n−1
k−1)
t

))
.

While the bounds required on n can be explicitly calculated, we have chosen to simplify
the presentation through the use of asymptotic notation, where we fix k and ` and let n
tend to infinity. Note, however, that we make no assumption on the relative magnitudes
of n and t; t may be as large as

(
n−1
k−1

)
.

The proof of Lemma 1 is slightly technical, and so we defer it until the end of this
section. However, throughout this section we shall require some estimates on binomial
coefficients, which we collect below.

Lemma 2. Suppose we have integers 0 6 a 6 b 6 c and 0 < M 6 S. Then

(i)
(
b
r

)
6
(
b
c

)r (c
r

)
,

(ii) for r > 1, if
∑

i ni = S and 0 6 ni 6M for all i, then
∑

i

(
ni

r

)
6 S

M

(
M
r

)
, and

(iii) for r > 2,
[(
b−a
r

)
+
(
c+a
r

)]
−
[(
b
r

)
+
(
c
r

)]
>
(
1− b−a

c

)
ar

c−r+1

(
c
r

)
.

Proof of Lemma 2. (i) By definition, we have(
b

r

)
=

1

r!

r−1∏
j=0

(b− j) 6 1

r!

r−1∏
j=0

b

c
(c− j) =

(
b

c

)r (
c

r

)
.

(ii) Suppose we had i and j such that 0 < nj 6 ni < M . Fixing the other variables, we
have(
nj − 1

r

)
+

(
ni + 1

r

)
=

(
nj
r

)
−
(
nj − 1

r − 1

)
+

(
ni
r

)
+

(
ni

r − 1

)
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=

(
nj
r

)
+

(
ni
r

)
+

(
ni

r − 1

)
−
(
nj − 1

r − 1

)
>

(
nj
r

)
+

(
ni
r

)
.

This shows we may assume there is at most one i for which 0 < ni < M . Since∑
i ni = S, this implies we have m =

⌊
S
M

⌋
variables nj = M , with one variable

equal to S −mM . Hence, using (i),∑
i

(
ni
r

)
6 m

(
M

r

)
+

(
S −mM

r

)
6 m

(
M

r

)
+

(
S −mM

M

)r (
M

r

)
6

(
m+

S −mM
M

)(
M

r

)
=

S

M

(
M

r

)
.

(iii) We rearrange and telescope the sums[(
b− a
r

)
+

(
c+ a

r

)]
−
[(

b

r

)
+

(
c

r

)]
=

[(
c+ a

r

)
−
(
c

r

)]
−
[(

b

r

)
−
(
b− a
r

)]
=

a∑
j=1

([(
c+ j

r

)
−
(
c+ j − 1

r

)]
−
[(
b− a+ j

r

)
−
(
b− a+ j − 1

r

)])

=
a∑
j=1

[(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

r − 1

)]
.

Using (i), we can estimate these differences(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

r − 1

)
>

(
c+ j − 1

r − 1

)
−
(
b− a+ j − 1

c+ j − 1

)r−1(
c+ j − 1

r − 1

)
>

(
1− b− a+ j − 1

c+ j − 1

)(
c+ j − 1

r − 1

)
>

(
1− b− a

c

)(
c

r − 1

)
.

Thus we have[(
b− a
r

)
+

(
c+ a

r

)]
−
[(

b

r

)
+

(
c

r

)]
>

(
1− b− a

c

) a∑
j=1

(
c

r − 1

)
=

(
1− b− a

c

)
ar

c− r + 1

(
c

r

)
.

Armed with these lemmas, we may now proceed to deduce our counting result. In
particular, Lemma 1 implies that when counting intersecting subfamilies of size t, the non-
trivially intersecting families are a lower order term, and so we may focus on the number
of stars with t edges. Applying similar shifting arguments to those in Section 2, we shall
deduce the rough structural characterisation of optimal families given in Theorem 4.

Before we begin to prove Theorem 4, we first analyse the initial segment of the lexi-
cographic order to obtain a lower bound on the number of intersecting subfamilies in an
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optimal family. Note that, for m in the above range, Ln,k(m) consists of all sets inter-
secting [`], with m−

(
n
k

)
+
(
n−`
k

)
additional sets all containing `+ 1. Hence Ln,k(m) falls

under case (i) of the theorem.
When counting the intersecting subfamilies of size t in Ln,k(m), we consider only the

stars with centre i for some 1 6 i 6 `. There are ` choices for the centre of the star, and
then for each star we must choose t of the

(
n−1
k−1

)
possible sets. A star is overcounted only

if all its sets contain at least two elements from [`], giving at most
(
n−2
k−2

)
sets for each

choice of elements from [`]. By the Bonferroni Inequalities and Lemma 2, we have

int(Ln,k(m), t) > `

((n−1
k−1

)
t

)
−
(
`

2

)((n−2
k−2

)
t

)
>

[
`−

(
`

2

)(
k − 1

n− 1

)t]((n−1
k−1

)
t

)
= (`− o(1))

((n−1
k−1

)
t

)
.

This gives us a lower bound on int(F , t) for any optimal family F . We now proceed
with the proof of Theorem 4.

Proof of Theorem 4. Suppose F is optimal for the given parameters. Note that we may
assume ` > 1, as (i) is trivially satisfied for ` = 0.

Let di denote the degree of vertex i. Our goal is to show that either di =
(
n−1
k−1

)
for `

vertices i, or di = (1− o(1))
(
n−1
k−1

)
for ` + 1 vertices that cover F . Suppose F has p full

stars, which we may assume have centres 1 6 i 6 p. If p = ` we are done, so assume
p 6 `− 1.

Note that for i > p, none of the vertices have full degree, and so we may replace any
set in F with a set containing i. In order to fully utilise this shifting, we will first show
there is a vertex of relatively large degree. From this, we shall deduce the existence of a
small set of vertices covering all the edges. Finally, we shall shift sets in this small cover
to obtain the desired result.

To begin, note that by optimality we must have

int(F , t) > int(Ln,k(m), t) > (`− o(1))

((n−1
k−1

)
t

)
.

By Lemma 1, it follows that almost all of these intersecting subfamilies should be
stars. Let di denote the degree of vertex i. Then, counting over the centres of the stars,
we have

int(F , t) 6
∑
i

(
di
t

)
+ o

(((n−1
k−1

)
t

))
= (p+ o(1))

((n−1
k−1

)
t

)
+
∑
i>p

(
di
t

)
,

and so ∑
i>p

(
di
t

)
> (`− p− o(1))

((n−1
k−1

)
t

)
.
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Note that by double-counting the edges, we have
∑

i>p di 6
∑

i di = km 6 k(` +

1)
(
n−1
k−1

)
. Let M = maxi>p di, and define c ∈ [0, 1] by M = c

(
n−1
k−1

)
. By Lemma 2, we have

∑
i>p

(
di
t

)
6
k(`+ 1)

(
n−1
k−1

)
M

(
M

t

)
6 k(`+ 1)ct−1

((n−1
k−1

)
t

)
.

Comparing this to the lower bound, we must have k(` + 1)ct−1 > `− p− o(1), which
implies c = Ω(1). Hence we have some vertex, which we may assume to be i = p+ 1, with
dp+1 > c

(
n−1
k−1

)
.

We shall now show that there is a small cover of vertices of large degree. Let X ={
i : di > c

k

(
n−1
k−1

)}
, and suppose for contradiction we have F ∈ F with F ∩X = ∅.

We have {G ∈ F : G∩F 6= ∅} = ∪i∈F{G ∈ F : i ∈ G}, and so, since F ∩X = ∅, there
are at most

∑
i∈F di < c

(
n−1
k−1

)
sets in F intersecting F . Since any intersecting subfamily of

size t containing F must consist only of sets intersecting F , there are fewer than
(c(n−1

k−1)
t−1

)
such subfamilies.

On the other hand, replacing F with a set containing p + 1 creates at least
(
dp+1

t−1

)
>(c(n−1

k−1)
t−1

)
stars of size t in F . This shift would thus increase the number of intersecting

subfamilies of size t in F , contradicting the optimality of F . Hence we must have F∩X 6= ∅
for all F ∈ F ; that is, X covers F .

We now show this cover is small. Indeed, we have

k(`+ 1)

(
n− 1

k − 1

)
> km =

∑
i

di >
∑
i∈X

di >
c

k

(
n− 1

k − 1

)
|X| ,

and so |X| 6 k2(`+1)
c

= O(1), as desired.
Now take a minimal subcover in X, which we may assume to be [r]. Thus r 6 |X| =

O(1). Since m >
(
n
k

)
−
(
n−`
k

)
, we must have r > `+ 1 (we cannot have r = `, as we have

assumed F only has p < ` full stars). Note that every vertex in [r] has degree at least
c
k

(
n−1
k−1

)
. Moreover, for any vertex i /∈ [r], all sets containing i must also meet [r], and so

we have di 6 r
(
n−2
k−2

)
.

We shall employ shifting arguments to show that all vertices in [r] that are not of
full degree should have approximately equal degrees. Indeed, let i and j be two such
vertices. By the minimality of the cover, there must be some set F with F ∩ [r] = i.
From the preceding remarks, it follows that the number of sets intersecting F is at most∑

v∈F dv 6 di+r(k−1)
(
n−2
k−2

)
. Hence F is in at most

(di+r(k−1)(n−2
k−2)

t−1

)
intersecting subfamilies

of size t.
On the other hand, if we were to add a new set containing j, it would be in at

least
(
dj
t−1

)
stars of t sets containing j. By optimality, it cannot be desirable to shift

F to a set containing j, and so we must have
(di+r(k−1)(n−2

k−2)
t−1

)
>
(
dj
t−1

)
, and hence dj 6

di + r(k− 1)
(
n−2
k−2

)
= di + o

((
n−1
k−1

))
. By symmetry, we have dj = di + o

((
n−1
k−1

))
for all such

vertices i, j.

the electronic journal of combinatorics 22(1) (2015), #P1.80 14



Let us now review what we have revealed of the structure of F . There are p vertices
[p] of degree

(
n−1
k−1

)
, and a further r − p vertices [r] \ [p] of almost-equal degree that

cover the remaining edges. Let α ∈ [0, 1] be such that m =
(
n
k

)
−
(
n−`
k

)
+ α

(
n−1
k−1

)
=

(`+ α− o(1))
(
n−1
k−1

)
. Since the first p vertices cover (p− o(1))

(
n−1
k−1

)
edges, the degrees of

the remaining r − p vertices must be `−p+α+o(1)
r−p

(
n−1
k−1

)
. Let us assume they are listed in

order of decreasing degrees, so dp+1 > dr.

Suppose for some fixed 0 < ε < c
k

we had `−p+α+o(1)
r−p < 1− ε. Since dr > c

k

(
n−1
k−1

)
, and

there are o
((
n−1
k−1

))
sets containing r that also contain another element of [r], we can find

a set of ε
(
n−1
k−1

)
edges that only meet [r] at r. We shall shift these edges to the vertex p+1.

By Lemma 1, the number of non-trivially intersecting subfamilies of size t created or
destroyed is a lower-order term, while the degrees of vertices outside [r] are so small that
by Lemma 2 we may ignore the number of stars with centres outside [r]. Hence the only
intersecting subfamilies we need to consider are the stars with centres p+ 1 or r.

We had
(
dp+1

t

)
+
(
dr
t

)
such stars before the shift, and

(dp+1+ε(n−1
k−1)

t

)
+
(dr−ε(n−1

k−1)
t

)
stars

after. Applying Lemma 2, we gain at least(
1−

dr − ε
(
n−1
k−1

)
dp+1

)
εt
(
n−1
k−1

)
dp+1 − t+ 1

(
dp+1

t

)
> ε2

(
dp+1

t

)
(3)

stars. This is strictly positive unless t > dp+1 > c
k

(
n−1
k−1

)
. In this case, it follows by the

Hilton-Milner theorem [9] that the only intersecting families of size t are stars. Since no
set meeting the cover X only in p + 1 is contained in a star of size t (as t > dp+1 > di
for any vertex i in such a set), we may shift sets containing p+ 1 to other vertices in the
cover. We can repeat this process until we obtain a full star, which will strictly increase
the number of t-stars, contradicting the optimality of F .

The positivity of (3) contradicts the optimality of F . Hence we must have `−p+α+o(1)
r−p =

1− o(1). Since r > `+ 1, this is only possible when r = `+ 1 (and α = 1− o(1)), and so
it follows that F consists of `+ 1 almost-full stars, and thus we are in case (ii).

This completes the proof of Theorem 4.

This result provides us with the approximate structure of the extremal families. In
particular, when α is not 1 − o(1), we know that any extremal family contains ` full
stars, and hence is close to Ln,k(m) in structure. In order to show that Ln,k(m) is in fact
optimal, it remains to determine the structure of the sets outside the ` full stars. In some
special cases, we are able to do this exactly, as given by the following proposition.

Proposition 3. Let k, ` and t be integers, and suppose n > n0(k, `) and
(
n
k

)
−
(
n−`
k

)
6

m 6
(
n
k

)
−
(
n−`
k

)
+n− `− k+ 1. If F is a k-uniform set family on [n] with m edges, then

int(F , t) 6 int(Ln,k(m), t).

Proof of Proposition 3. If t = 0 or t = 1, then there is nothing to prove, as int(F , 0) = 1
and int(F , 1) = m for all such families F . Hence we may assume t > 2, and thus apply
Theorem 4. It follows that F must contain ` full stars. Let us write F = F0 ∪ F1,
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where F0 is the union of the ` full stars, and F1 consists of the remaining sets. Let
m1 = |F1| = m−

(
n
k

)
+
(
n−`
k

)
denote the number of additional sets F contains. If m1 = 0

then we are done, as all edges are accounted for. If m1 = 1, then by symmetry it does
not matter which set we add outside the ` stars, and so it again follows that Ln,k(m) is
optimal. Hence we may assume m1 > 2.

We will now show that int(F , t) is maximised when |∩F∈F1F | = k−1; that is, when the
sets in F1 have the maximum possible intersection. In our case, since m1 6 n− `− k+ 1,
the additional sets in Ln,k(m) all share the elements {`+1, `+2, . . . , `+k−1}, and hence
it will follow that Ln,k(m) is optimal.

We count the intersecting subfamilies of F based on their intersection with F1. Given
some H ⊂ F1 with h sets, let ext(H) denote the number of extensions of H by sets in F0

to an intersecting subfamily of F of size t. In other words, it is the number of intersecting
subfamilies in F0 of size t− h that intersect all sets in H. We then have

int(F , t) =
t∑

h=0

∑
H∈(F1h )

ext(H).

When h = 0, we simply obtain the number of intersecting subfamilies of size t in F0,
which is independent of F1. If h = 1, then by symmetry it does not matter which set
we choose for H. Hence we may assume h > 2. Suppose we have |∩H∈HH| = a. The
number of sets F ∈ F0 that intersect H without containing one of the a common elements
is very small. Indeed, fix any set H ∈ H. Since F ∩H 6= ∅, there are k options for this
intersection x. As we are not selecting one of the a common elements of H, there must be
some other set H ′ ∈ H not containing x. Hence we must again select an element of H ′,
giving a further k options at the most. Finally, since F belongs to F0, we must choose
one of the ` centres of the stars. There are then a further k− 3 elements to choose for F .
Thus there are at most `k2

(
n−3
k−3

)
< `k3

n

(
n−2
k−2

)
such sets F . This will be a lower order term,

which we may disregard. In particular, this implies that we should have a > 1 for H to
have a significant number of extensions.

We shall now estimate ext(H). Calculations similar to those in the proof of Lemma 1
show that the number of extensions that are not themselves stars is a lower-order term,
and hence we need only consider trivially intersecting extensions. There are three cases
to consider.

The centre of the star could be one of the centres of the ` full stars in F0. There are
thus ` choices for the centre, and then the sets chosen must intersect H. In light of our
previous remarks, the number of such sets is dominated by those containing one of the a
common elements, giving (a + o(1))

(
n−2
k−2

)
options. We double-count very few extensions,

as then the sets from F0 must all contain two of the ` centres of the stars, giving at most(
`
2

)
a
(
n−3
k−3

)
such sets. Thus the number of extensions of this type is (`−o(1))

((a+o(1))(n−2
k−2)

t−h

)
.

The second type of trivially intersecting extensions is that where the centre is one of
the a common elements of H. These sets must then contain any one of the ` centres of

the stars in F0, and thus the number of extensions is (a− o(1))
((`−o(1))(n−2

k−2)
t−h

)
.
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The final type is that where the centre x of the star is neither one of the ` centres
from F0 nor one of the a common elements from F1. These sets must then contain x, one
of the ` centres, and some elements from H, and thus there are very few such sets.

We thus conclude that ext(H) = (` − o(1))
((a+o(1))(n−2

k−2)
t−h

)
+ (a − o(1))

((`−o(1))(n−2
k−2)

t−h

)
.

This is increasing in a, and so to maximise ext(H) we must have a = k − 1. However,
all subfamilies H with a = k − 1 are isomorphic, as they consist of h distinct vertices
attached to a common core of k − 1 vertices. Hence in this case ext(H) does not depend
on which sets we choose, and thus ext(H) is maximised if and only if a = k − 1.

This completes the proof of Proposition 3.

Note that for a family F to be extremal, it should maximise ext(H) for all H ⊂ F1.
In particular, provided t is not too large, this implies that F is extremal if and only if it
contains ` full stars and, for 2 6 h 6 t− 1, any collection of h sets in F outside the full
stars have k − 1 vertices in common. When t is large, we will have ext(H) = 0 for all H,
as it will be impossible to find t sets that intersect H and meet the centres of the sets
[`]. Hence in this case F1 may be chosen arbitrarily, and F is extremal if and only if it
contains ` full stars.

Unfortunately, in contrast to the graph case, this gives a rather narrow range of family
sizes for which we are able to determine the extremal families exactly. However, it is
necessary to have a somewhat more restricted range, as we shall show in Section 4 that
even for

(
n−1
k−1

)
< m < 2

(
n−1
k−1

)
, Ln,k(m) is not always optimal.

Finally, note that the exact counting result in Proposition 3 implies that for these
ranges of family sizes, Ln,k(m) is a most probably intersecting family, thus giving Corol-
lary 5. The proof is exactly the same as the derivation of Theorem 3 from Proposition 1,
and so we do not repeat it here.

To complete this section, we now furnish a proof of Lemma 1, bounding the number
of non-trivially intersecting families.

Proof of Lemma 1. We begin by bounding the total number of non-trivially intersecting
families of size t in

(
[n]
k

)
. Given such a family H, we write H = H0 ∪H1, where H0 is the

largest star in H. Note that we must have H1 6= ∅, as H is non-trivially intersecting. Let
S = ∩F∈H0F be the centre of H0, and letM⊂ {F \S : F ∈ H0} be the largest matching
in the sets of the star after the centre is removed. We denote the sizes of these sets as
follows: |H0| = t0, |S| = s and |M| = b.

Let us first provide some bounds on these parameters. Clearly, s 6 k, as S is a subset
of each set in the star H0. Moreover, we claim b 6 k as well. Indeed, every set F in H1

must be disjoint from S, as otherwise H1 ∪ {F} would form a larger star. However, it
must intersect the sets {S ∪M : M ∈ M} ⊂ H0, and thus it must contain one element
from each of the b disjoint sets in M. Since |F | 6 k, we must have b 6 k. An easy
lower bound on t0 is t0 > 2, since any pair of sets in H forms a star. We in fact claim
t0 > t

k
. Taking any set F ∈ H, note that all the other sets in H must intersect F . By
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the pigeonhole principle, there is some element of F contained in at least a 1
k
-proportion

of the other sets, giving a star of size at least t
k
, as desired.

We now construct the intersecting family H. There are
(
n
s

)
choices for the centre S.

We then have to select b sets of size k − s for the matching M. There are
(
n−s
k−s

)
options

for each set, giving
((n−s

k−s)
b

)
possible matchings M. By the maximality of M, each of the

remaining sets in H0 must meet the (k−s)b elements covered by the matchingM. Hence

there are at most (k − s)b
(
n−s−1
k−s−1

)
choices for each set, providing

((k−s)b(n−s−1
k−s−1)

t0−b

)
ways to

completing H0. As mentioned earlier, each set in H1 must avoid S and contain at least
one element from each set inM. This leaves at most (k− s)b

(
n−s−b
k−b

)
sets, from which we

have to choose t − t0. Thus the number of non-trivially intersecting families with these
parameters is bounded above by(

n

s

)((n−s
k−s

)
b

)(
(k − s)b

(
n−s−1
k−s−1

)
t0 − b

)(
(k − s)b

(
n−s−b
k−b

)
t− t0

)
.

Applying the estimates in part (i) of Lemma 2, this can be further bounded by

ns

[(
k

n

)b(s−1)((n−1
k−1

)
b

)][(
ks+1b

ns

)t0−b((n−1
k−1

)
t0 − b

)][(
k2b−1

nb−1

)t−t0 ((n−1
k−1

)
t− t0

)]

=
bt0−bk2b(t−t0−1)+(s+2)t0−t

n(b−1)(t−t0−1)+s(t0−1)−1

((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)
We now simplify this expression. Since b, s 6 k and t0 6 t, we can easily bound

the numerator above by k4kt. For the denominator, note that t0 6 t − 1, as H1 6= ∅,
s > 1 and t0 − 1 > t

2k
, as 1 6 t0

2
and t0 > t

k
, giving a lower bound of nt/2k−1. Thus

the number of non-trivially intersecting families with parameters s, b and t0 is at most

n
(

k4k

n1/2k

)t ((n−1
k−1)
b

)((n−1
k−1)
t0−b

)((n−1
k−1)
t−t0

)
.

For the total number of non-trivially intersecting families, we now sum over all s, b
and t0, obtaining a bound of

k∑
s=1

k∑
b=1

t−1∑
t0=t/k

n

(
k4k

n1/2k

)t((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)

6 kn

(
k4k

n1/2k

)t ∑
06b6t06t

((n−1
k−1

)
b

)((n−1
k−1

)
t0 − b

)((n−1
k−1

)
t− t0

)

6 kn

(
8k4k

n1/2k

)t((n−1
k−1

)
t

)
.

To obtain the last inequality, we interpret the sum of the products of the three binomial
coefficients as selecting, with repetition, from a collection of

(
n−1
k−1

)
objects three sets A,B

and C whose sizes sum to t. We could instead first select t elements from this collection,
and then for each element decide which sets among A,B and C the elements should belong
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to. As the selection was with repetition, an element could belong to several of the sets,
and hence there are 23 choices for each element.

By symmetry, every set in
(

[n]
k

)
is in the same number of non-trivially intersecting

families of size t. Hence, averaging over all sets, we find that each set F ∈ F can be in at
most

tkn

(
8k4k

n1/2k

)t((n−1
k−1

)
t

)
/

(
n

k

)
= k2

(
8k4k

n1/2k

)t((n−1
k−1

)
− 1

t− 1

)
< n−t/4k

((n−1
k−1

)
− 1

t− 1

)
for sufficiently large n.

Summing over the m sets F ∈ F , the number of non-trivially intersecting families of
size t in F is no larger than

mn−t/4k
((n−1

k−1

)
− 1

t− 1

)
/t 6 (`+ 1)n−t/4k

(
n− 1

k − 1

)((n−1
k−1

)
− 1

t− 1

)
/t = (`+ 1)n−t/4k

((n−1
k−1

)
t

)
,

thus giving the desired bounds.

4 Concluding remarks

In this paper, we have extended the shifting arguments of [6] to determine which uniform
families of sets are most probably intersecting. To derive the probabilistic result, we
studied the counting version of the problem, finding families with the maximum number
of intersecting subfamilies of any given size.

In particular, for graphs we showed that, provided the graphs are not too dense, the
initial segment of the lexicographic order Ln,2(m) maximises the number of intersecting
subgraphs with t edges. This leaves open the question for denser graphs, on which we
provide some remarks.

In the case t > n
2
, it is easy to show by shifting that Ln,2(m) is optimal for any m.

Indeed, suppose we have a graph with vertices x, y, z of degrees dx 6 dy 6 dz < n − 1,
and suppose {x, y} is an edge of the graph. The number of stars this edge is contained in
is
(
dx−1
t−1

)
+
(
dy−1
t−1

)
. On the other hand, if we were to add an edge containing z, it would

be contained in at least
(
dz
t−1

)
stars. Since t > n

2
, we have t− 1 > n−2

2
> dx−1

2
, and so(

dx − 1

t− 1

)
+

(
dy − 1

t− 1

)
6

(
dx − 1

t− 2

)
+

(
dy − 1

t− 1

)
6

(
dy − 1

t− 2

)
+

(
dy − 1

t− 1

)
=

(
dy
t− 1

)
6

(
dz
t− 1

)
.

Hence we may always shift edges to the vertex of highest degree until that star is
filled. Repeating the process for the remaining vertices, we obtain a graph isomorphic to
Ln,2(m), and hence Ln,2(m) maximises int(G, t) over all graphs G with m edges.
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By the theorem of Ahlswede-Katona [3], we know for m > 1
2

(
n
2

)
+ n

2
, the number of

intersecting pairs of edges is maximised not by Ln,2(m), but by its complement, Cn,2(m).
Hence for such m we cannot hope to have one graph G that simultaneously maximises the
number of intersecting subgraphs of all given orders. Referring to Equation (1), it follows
that in this regime the most probably intersecting graph depends on the probability p.
For very small values of p, Cn,2(m) is optimal, while for very large values of p, Ln,2(m) is
better.

However, the convexity of the binomial coefficients (see, for instance, Lemma 2), sug-
gests that if Ln,2(m) maximises int(G, t), then it should maximise int(G, t′) for all t′ > t.
In particular, we believe that the result in Theorem 3 should extend to m 6 1

2

(
n
2

)
− n

2
.

In the case of hypergraphs, the situation is even more intricate. We showed that when(
n
k

)
−
(
n−`
k

)
6 m 6

(
n
k

)
−
(
n−`
k

)
+ n − ` − k + 1, Ln,k(m) maximises int(F , t). Thus

we are able to determine the extremal families for the counting problem for a number
of isolated ranges of family sizes. One might hope that, as in the graph case, Ln,k(m)
remains optimal between these ranges as well. However, we show now that this is not the
case.

Suppose, for simplicity, that we are counting the number of intersecting subfamilies
of size three in 3-uniform hypergraphs, whose number of edges is between one and two
full stars. Then m =

(
n−1

2

)
+ m′, where 0 6 m′ 6

(
n−2

2

)
. Provided we do not have two

almost-full stars, Theorem 4 shows that any extremal family is of the form F = F0 ∪F1,
where F0 is a full star, and F1 consists of the remaining m′ sets.

There are four types of intersecting subfamilies of three sets: those with 0, 1, 2 and 3
sets from F1 respectively. To maximise the number of subfamilies with 3 sets from F1, it
suffices to take F1 to be intersecting. The number of subfamilies with 0 and 1 sets from
F1 is independent of the structure of F1. Finally, to maximise the number of subfamilies
with two sets from F1, it follows from the calculations in Proposition 3 that we should
seek to maximise the number of pairs of sets in F1 that intersect in two elements.

Note that in Ln,3(m), the sets in F1 all share a common element. If we remove
this common element, F1 will be the lexicographic graph with m′ edges. Since we have
removed a common element from each set, we are trying to maximise the number of pairs
of intersecting edges. By the result in [3], if m′ > 1

2

(
n−2

2

)
+ n−2

2
, this maximum is attained

by the colexicographic graph instead, and hence it follows that Ln,3(m) does not maximise
int(F , t).

This phenomenon holds in general, and shows that determining the exact optimal k-
uniform families for all

(
n
k

)
−
(
n−`+1
k

)
6 m 6

(
n
k

)
−
(
n−`
k

)
may require a complete solution

to the counting problem for the number of t-intersecting subfamilies of a (k− 1)-uniform
set family. Indeed, it further suggests that even in this initial range, there may not be
one set family that simultaneously maximises the number of intersecting subfamilies of
any given size, and thus the optimal families may depend on the probability p.

Finally, as with the results in [10], [11] and [12], the extremal families we obtain here
are simultaneously optimal for the counting problems as well, and thus we use Equation
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(1) to resolve the probabilistic problem. It would be very interesting to develop techniques
to attack the probabilistic problem directly, as one might then find a complete solution
even in the regime where the optimal family depends on the underlying probability p.
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