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Dimension reduction by balanced truncation: Application to light-induced

control of open quantum systems
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In linear control, balanced truncation is known as a powerful technique to reduce the state-space
dimension of a system. Its basic principle is to identify a subspace of jointly easily controllable and
observable states and then to restrict the dynamics to this subspace without changing the overall
response of the system. This work deals with a first application of balanced truncation to the control
of open quantum systems which are modeled by the Liouville-von Neumann equation within the
Lindblad formalism. Generalization of the linear theory has been proposed to cope with the bilinear
terms arising from the coupling between the control field and the quantum system. As an example we
choose the dissipative quantum dynamics of a particle in an asymmetric double well potential driven
by an external control field, monitoring population transfer between the potential wells as a control
target. The accuracy of dimension reduction is investigated by comparing the populations obtained
for the truncated system versus those for the original system. The dimension of the model system
can be reduced very efficiently where the degree of reduction depends on temperature and relaxation

rate. © 2011 American Institute of Physics. [doi:10.1063/1.3605243]

Il. INTRODUCTION

Since the advent of suitable pulse shaping techniques in
the 1980s, intense and short laser pulses have been used to
control various quantum systems in physics and chemistry.'?
Starting from isolated atoms and molecules, the concept of
laser control has been extended to condensed phases and
biological systems.** Moreover, tailored laser pulses have
also been applied to the control of chemical reaction dynam-
ics thus opening the field of femtochemistry.’~'* In all these
fields, the light-induced control aims at driving a quantum
system from an initial to a final (target) state both with high
quantum yield and with high state specificity. In theoretical
investigations, these targets are modeled by optimal control
theory (OCT) employing forward and backward propagations
iteratively in order to connect the initial and final state, most
often with the constraint of limited pulse fluence.'!"1

The main obstacle for the control of quantum many body
systems is the exponential rise of the number of quantum
states under consideration as a function of the number of
the relevant degrees of freedom. This often leads to pro-
hibitively long computing time and too large memory alloca-
tion because the numerical effort to solve the time-dependent
Schrodinger equation (TDSE) is proportional to the number
of quantum states involved. The problem is even more com-
plicated if open quantum systems are to be modeled where
an approximate treatment of (i) the influence of the environ-
ment (e.g. coupling to a heat bath) and/or (ii) dynamics of
non-equilibrium systems has to be considered. In that case,
the dynamics of a quantum system coupled to a bath can be
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described within the Markov approximation by the Liouville-
von Neumann equation (LVNE) with a dissipative part in
Lindblad form.'®!7 Since the number of entries of reduced
matrices scales quadratically with the number of quantum
states involved, propagations of these matrices are consider-
ably more expensive than solving the TDSE for wave packet
propagations.

A possible reduction of the effort could be obtained
by the application of the multiconfiguration time-dependent
Hartree method for density matrices.'®2° Systems such as a
Morse oscillator coupled to 60 harmonic bath oscillators?!
could be simulated successfully. However, this method is re-
stricted to certain model Hamiltonians and certain limitations
on the densities. The use of stochastic wave function methods
is an alternative way to cope with high dimensionality®>>*
in density matrix propagation. However, the method is
inefficient for non-local situations and the statistical error
has to be compensated by averaging over a high number
of realizations which is particularly problematic when rare
events are to be treated.”> In summary, there still is a strong
need for the development of efficient methods for (reduced)
density matrix propagation in order to progress toward higher
dimensionality.

In the present work we shall explore possibilities for
model reduction of the equations of motions (EOMs) for open
quantum systems. The method of balanced truncation which
stems from the field of engineering and was originally devel-
oped for systems with linear EOMs x = Ax + Bu, where the
external control field u is the input and the desired observ-
able y = Cx is the output. The balanced truncation method
first maps states to certain linear combinations (called bal-
anced states) which are ordered according to their ability to
(a) react sensitively on an external control field (input, con-
trollability) and to (b) couple strongly to specified target states

© 2011 American Institute of Physics
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(output, observability) at the same time. Based on this trans-
formation the balanced states are restricted to the subspace
spanned by only those states which exceed a given thresh-
old of controllability and observability. Hence, this truncation
procedure guarantees that the input-output behaviour is ap-
proximately reproduced and that the remaining states can be
safely neglected.?®2” We would like to stress that, in general,
this truncation scheme is not equivalent to the truncation of
energetically high lying states. For instance, there can be en-
ergetically low lying states, which are not observable due to
too short life times and/or which are not controllable due to
vanishing coupling moments. In addition to reducing the di-
mensionality, the balanced truncation method allows to keep
the global approximation error under control,”®?° conserves
the internal energy and equilibrium states,’® and can be gen-
eralized to positive systems®' and Hamiltonian systems with
friction.>? Because model reduction can be understood as a
projection onto a lower dimensional subspace which is a pri-
ori not unique, there are different variants of balanced trunca-
tion approaches: As an alternative to simple truncation (i.e.,
Galerkin projection) the restriction to the relevant subspace
can also be realized by penalizing the hardly controllable and
observable states. Penalization, which is more in the spirit of
the singular perturbation approximation of balanced systems,
has proven useful in preserving certain algebraic structures
of the original system, such as being Hamiltonian (see, e.g.,
Refs. 33 and 34). As a rule of thumb, the singular perturba-
tion approximation yields a good approximation of the low
frequency modes in the system, whereas the Galerkin projec-
tion better captures the high-frequency behaviour.?

It is noted that similar approaches to model reduction al-
ready exist: Krylov subspace methods are related to balanced
truncation methods for linear and bilinear systems.>>3® These
iterative projection methods allow to calculate low rank
approximations of the propagator by simple matrix-vector
multiplications. Krylov methods are suitable for extremely
high-dimensional systems (n &~ 10°) and are frequently used
for pre-conditioning. In contrast to balanced truncation,
Krylov subspace methods are, however, in general, not
stability conserving and no error bound for the control of
the approximation error can be given.’’ An alternative is the
Hardy space (H,)-approximation.® This method allows an
optimal control of the approximation error by minimizing
with respect to the Hp-norm. The basic variational principle
can be augmented by algebraic boundary conditions that the
reduced system conserves stability and positivity. However,
the use of this nonlinear non-convex optimization routine is
prohibitively expensive for high-dimensional systems.

The extension of balanced truncation to more compli-
cated types of dynamics, such as non-Markovian systems or
systems with time-dependent coefficients is clearly possible.
Typically, this requires embedding of the system into a (con-
siderably) higher-dimensional space in which the equations
resume their simple form.**’ That is, though possible, in
general, such generalization are at the price of a much higher
numerical effort, and for the sake of clarity, we refrain from
considering these possibilities.

The goal of this paper is to introduce the balanced trunca-
tion method into the field of control of open quantum systems
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and provide an efficient reduction of dimension. The LvNE
with a dissipative part in Lindblad form is, however, not of the
linear structure mentioned above but contains a bilinear term
for the coupling of the open quantum system to an external
control field. Consequently, a generalization of the balanced
truncation method beyond linearity is necessary. In a recent
publication*' we showed that the dimensionality of a density
evolution problem of the classical Fokker-Planck equation
(applied to a dragged Brownian particle) can be efficiently
reduced (to 2-5%) by the balanced truncation method gener-
alized to bilinear systems x(¢) = Ax(¢) + u(t)Nx(t) + Bu(z),
where structure and positivity are conserved. For open quan-
tum systems the Liouville-von Neumann equation with a dis-
sipative part in Lindblad form has to be rewritten as a bilinear
equation, which exhibits the same structure.

This paper is organized as follows: In Sec. II, we describe
how we transform a dissipative LvNE to a bilinear form which
is suitable for the balanced truncation method. In Sec. 111, the
balanced truncation method is introduced and applied to an
asymmetric double well model system in Sec. IV. Results are
discussed and summarized in Sec. V.

Il. EVOLUTION OF OPEN QUANTUM SYSTEMS

An open quantum system can be described by the

Liouville-von Neumann-equation:'®
L, 0P(1) 5 o X
ifi— == [Ho= FOR, pO1+ Lo [P, (1)

where the commutator on the rhs represents the closed sys-
tem Liouvillian superoperator for the reduced density opera-
tor 5 containing the non-interacting system Hamiltonian H,
and the interaction with the external field — i F'(¢) composed,
in general, by a j-fold product F(¢) of field tensors and the
corresponding (j — 1)th order susceptibility 2 (e.g., electric
dipole moment, polarizability). Lp is the open system Liou-
villian in Lindblad form:*3

A A 1rasa
Lplp] = ih§:<C,ﬁCf—§[C]TC1,,5]+>, 2)
!

where [ runs over all dissipation channels.?® This functional
in Lindblad form conserves the non-negativity of popula-
tions (i.e., the diagonal elements p;; of the density matrix).**
The Lindblad operators C; are composed of the dissipative
transition rates I'y_,; from the energy eigenstate |k) (with
eigenvalue E;) of Hy to the state | J) (the set of eigenstates
{lk), k=0, ...,q — 1} is supposed to be finite) and a corre-
sponding projection: C; = CA'j,k = /T« |j){k|. Energy re-
laxation, dephasing, and decoherence can be expressed in
terms of these rates. A simple model for the treatment of dis-
sipation is sketched in the following.

Considering anharmonicity in the system part, constant
mass of the bath oscillators, and weak coupling limit, the
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downward relaxation rates can be determined by*

|(m|r|n)|* E; — Eqo
|<1|7’|0)|2 Em - En

Fm~>n,m>n -

_Ei—Ey
1—e kT
X WFHO- 3
1—e kT

The corresponding upward rates have to be calculated

from detailed balance:
_Ey-E,
l—‘n—>m,m>n =¢e ksT 1-‘m—>n,m>n- (4)

As can be seen in Eq. (3), in this model all transition rates
depend on I'j_,¢. In the present work we understand I'j_¢
as an adjustable parameter. Non-zero diagonal transition rates
provide contributions to the dephasing and decoherence in the
time evolution of the system. However, pure dephasing shall
not be treated here which is the canonical choice.

The total dephasing rate can be determined by

14
Yiom = E Z(Fl—”‘ + Fm—>j)- (5)
=0

Next, we will show how the Liouville—-von Neumann—
equation (1) can be cast into a form applicable to the
balanced truncation method. If we introduce the Bohr fre-
quencies w;,, := (E; — E,;) /i , and matrix elements: 1
= (k||l)/#, in the energy eigenstate basis, Eq. (1) can be
rewritten as>>

q—1
pl,m(t) = (—iwm — Vl,m);ol,m(t) + Z erlpk,k(t)(s/,m
k=0
g—1
FIFO Y (uipin® = paOptin).  (©6)
k=0

We now establish the relationship between the evolution
equation (6), mean observables equation (8), and the bilin-
ear input-output system consisting of the matrices A, N, B,
and C.%7-3%4 The key point is vectorization of the density
matrix:2>#’ i.e., the density matrix p of size ¢ is mapped to
a vector x(p) withn = q2 components. A detailed illustration
for a two state model is given in Appendix A. Finally, Eq. (6)
can be rewritten as

#(1) = Ax(t) + iF®)Nx(@t), x(0) = x,. 7

In control theory, this equation is called the input equation be-
cause it describes the dynamics of the system x(f) depending
on the (low dimensional) input field F(¢) and the initial value
x(0) = xo.

In density matrix notation, the expectation value (O/))
of the jth observable O/ can be calculated as

g—1
(0) =Tr{0YVp) =Y 0] pix- ®)

k. /=0
In the context of control theory we are interested in the
target of control which means that we want to control the ex-
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pectation values y:

(o)
the vectorization provides a shorthand notation of Eq. (8), see
also Appendix A:

y(0) = Cx(@), 10)

where C is referred to as the observability matrix and the
number m of observables (here m = 2), is typically small
compared to the dimensionality n of the vectorized density
matrix. Equation (10) is called the output equation because it
represents the dynamics of the target.

In a second step the vectorized density x will be shifted:
X > X =x —x,, where x, = x(p,) is the equilibrium den-
sity determined by the Boltzmann distribution:

—1

B (L4
piy=e kT Ze”TT ) (11)

=0

The shift ensures that controllability and observability con-
ditions hold*® for a system which is in equilibrium before
field excitation. At the same time, x, is the eigenvector of A
corresponding to the eigenvalue O by virtue of Eq. (4) (i.e.,
Ax, = 0). Hence, it follows:

$(1) = AX(t) + i F(ONZ(@) + i F(t)Nx,, #0)= xo— x,,
J@) =Cx@), @) =y@#)—Cx,. (12)

Setting B = Nx, and renaming u(t) = F(¢) result in the de-
sired bilinear (where iu(¢)N x(¢) is linear with respect to the
field u(¢) and the density x(¢)) input-output system derived
from Egs. (6) and (8), respectively:

(1) = AX() + iu(ONZ(@) + iBu(t), %(0) = .
() = Cx(2). (13)

On the one hand, the shift transforms a homogeneous equa-
tion to an inhomogeneous one and seems to complicate
things. On the other hand, the shift establishes the basis for
the balancing method described below in Sec. III, by setting
x(0) = 0 for an equilibrium starting condition. In the follow-
ing we omit tildes to simplify notation.

lll. BALANCED MODEL REDUCTION

Model order reduction is a branch of systems and con-
trol theory that aims at reducing the complexity of control
systems, while preserving (as closely as possible) their input-
output behaviour. It is better established for linear than for
nonlinear systems and also the basic ideas and concepts can
be most easily understood there, which is why we review lin-
ear systems first.

A. Linear systems

The simplest approximation to Eq. (13) is obtained by
linearizing about the origin, x = 0, which results in a linear
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system of the form
X(t) = Ax(t) +iBu(t),
y(@) = Cx(@).

As before, the state vector x € C” represents the vectorized
density matrix with the system matrix A € C"*" contain-
ing differences of energy eigenvalues of Hj and transition
rates from Lp (see Eq. (A2) in Appendix A). The inhomo-
geneous part, Bu with the control matrix B € R"*? and the
control variable u € R” is meant to model a general time-
dependent external field acting on the system; again the output
vector y € R” describes the relevant observables in terms of
the observability matrix C € R”*". In almost any application
of practical relevance, the state vector x € C”" is very high-
dimensional, even though u and y may be low-dimensional.*’
Therefore, one wishes to reduce the dimensionality of the sys-
tem while preserving the overall response of the observed
quantities y to the external field u. Here, the essential idea
is to regard Eq. (14) as a map u — y(u; x¢) that describes the
observable y as a function of the control u (so-called trans-
fer function).”® The method of balanced truncation aims at
keeping only those states that are most sensitive to the input
field u (controllability) and, at the same time, strongly cou-
pled to specified output states y (observability). Then, by con-
struction, the remaining states hardly contribute to the transfer
function of the system and therefore can be neglected.’®?’ In
addition, balanced truncation allows for a global control of the
approximation error by keeping or discarding as many states
as desired.?®?

The concept of balanced truncation builds on the notion
of controllability and observability Gramian matrices,

x(0) = xo,
(14)

R *
WC:/ eMiB(—i)B*eA"d1,
0
(15)
e *
W0=/ e 'Crcetdt,
0

that can be computed as the symmetric positive semidefinite
solutions of the Lyapunov equations:

AW.+W.A*+BB*=0, A"W,+W,A+C*C =0.
(16)
Here and in the remainder of this section, we assume that all
eigenvalues of A have strictly negative real parts so that the
integrals in Eq. (15) exist and are equal to the solutions of the
Lyapunov equations.

Qualitatively, the controllability Gramian W, is a mea-
sure for the control effort (in terms of the integral over |u|?)
that is needed to drive the system to a state x: given two states
X1, Xo € C" with |x{| = |x»]|, then x| can be reached with less
control energy than x; if x{W.x; > x;W_x,; in particular, if
W.x, = 0, then the state x, cannot be reached at all, regard-
less of how strong the control field is; hence, it cannot con-
tribute to the transfer function of the system.

To see this, let & € C” be an arbitrary vector and note that
any admissible control that drives the system from the origin
x(0) = 0 to a prescribed terminal state x(¢7) = xy must be of
the form

u(s) = —iB*eN ¢, (17)
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Together with the solution of Eq. (14),

t
x(1) = / e Bu(s)ds (18)
0
for the initial value x(0) = 0, we find that
tr .
x(ty) = (/ eAJBB*eA'Sds) E. (19)
0

Calling the non negative matrix
t
We(t) = / e BB*e" ds, (20)
0

the finite time controllability Gramian, it readily follows that
x(tf) = xr can be reached if and only if

Xf = Wc(tf)é 21)

has a solution. If, moreover, the Hermitian matrix W.(¢y) is
invertible, we can solve for & = W !(¢;)x . The correspond-
ing control law

a(s) = —iB*e UOW (1 )x s (22)
then minimizes ||u]?> = fotf lu(s)|>ds among all admissible

controls u € L*(0, 77). The latter can be seen by the following
simple calculation: for any admissible u € L%(0, ¢ £), we have

(i, u) = // a*(Hu(s)ds
0

tr
B / ixy (W' t)" e Bu(s)ds
0
= xX5W  tp)xy (23)
Therefore, (i1, u) = ||4|?, which implies that
I = llull® = llu — all. (24)

Hence, i is the optimal control that minimizes ||u/|*.

Conversely, the quadratic form x*W,x with W, being the
observability Gramian measures how much “output energy”
(i.e., the time integral over |y|2) can be extracted from the
system when # = 0 and the system has been initialized at
x(0) = x; in particular, W,x = 0 means that no output en-
ergy can be extracted; the state is then called unobservable
and does not contribute to the transfer function.

Let us assume that Eq. (14) has neither unobservable nor
uncontrollable states. Then, clearly, W, and W, are positive
definite, but it may still happen that some states are easier to
control and observe than others; in particular, there may be
states that are hardly controllable or observable and we ex-
pect that they will not play such a big role for the system’s
transfer function. The very idea of balancing is to find a co-
ordinate transformation x — T ~'x under which controllabil-

ity and observability Gramians become equal and diagonal,
L 26,27
ie.,”™

(o3 0
T-'W. (=Y =17*W,T = =3. (25
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The o; > 0 are Hankel singular values (HSVs) of the system.
They are independent of the choice of coordinates as can be
readily seen by noting that the squared HSVs are the eigen-
values of W.W,, namely,

T-'w.w,T = £2.

The transformation T is a contragredient transformation and
exists whenever W.., W, are symmetric and positive definite.?
In the balanced representation, states that are least influenced
by the input also have the least influence on the output and
vice versa. Balanced truncation consists of first changing to
the balanced coordinates, and then truncating the least con-
trollable and observable states, i.e., those states that have little
effect on the transfer function.

A useful property of balanced truncation is that it ad-
mits easy control of the approximation error when truncat-
ing states. For example, we may obtain a reduced order sys-
tem by projecting all the coefficients A, B, C onto the space
spanned by the first » < n columns of the inverse balancing
transformation 7. For the associated low-rank transfer func-
tion, $*) = $)(u; xy = 0), the following upper error bound
holds:?®

sup [ly(u;0) — 57w 0)l2 < 2(0r11 4 - - - 4 0,

lull2=1

where

Iwl> = f lw(t)|*dt.
0

S 00 00
W. ZZ/ / Pj([],...
= Yo 0
e 00 %)
W0=Zf / 03t ...
= Yo 0

where we use the shorthand
Pi(t)) =e*iB, Pjt,..

Oi(t) =Ce*", 0, ..

Equivalently (provided that the above integrals exist), the gen-
eralized Gramians can be expressed by means of the general-
ized Lyapunov equations (cf. Eq. (16)):

AW, + W, A* + NW.N* + BB* = 0,

oy l‘j) = eAtjl.NPj_l,
. (28)
1) =Qj_1iNe*".

(29)
A*W, + WoA + N*W,N +C*C = 0.

Again, the uncontrollable or unobservable states are those
states x € C” for which W.x = 0 or W,x = 0, respectively.>?
We argue along the lines of the linear case: Suppose again that
controllability and observability Gramians are positive defi-
nite. We expect that the weakly controllable and observable
states, i.e., these x € C” for which either x*W_.x or x*W,x

J. Chem. Phys. 135, 014112 (2011)

Moreover, any reduced order model of rank r satisfies the
lower bound,
Sup 1y(s;0) - 30w 02 = 0741

which is typically close to the upper bound when the HSVs
decay sufficiently fast. Note that also for time-dependent ob-
servability matrices C(¢) (Ref. 51), balanced truncation is ap-
plicable by an iterative procedure for the calculation of the ob-
servability Gramian. For example, a linear or quadratic time
dependence of C(¢) requires the solutions of three or five stan-
dard Lyapunov equations, respectively.

B. Bilinear systems

In contrast to the linear case, there is no comprehen-
sive theory of model order reduction of bilinear systems (not
to speak of general nonlinear systems).*® Especially, quanti-
tative statements such as computationally feasible upper or
lower bounds for the approximation error are not available.
For the sake of simplicity we consider bilinear systems of the
form

$(1) = (A + iu(®N) x(t) + i Bu(t),
y(t) = Cx(t),

x(0) = xo,
(26)

having only a single input variable u € R (however, this is
not a major restriction). Now recall the definitions (15) and
(16) of the controllability and observability Gramians of the
linear system (14). For bilinear systems, controllability and
observability can be analyzed in terms of the generalized
Gramians,?

s l‘j)P‘;»k(ll, ey l‘j)dl‘], ey dl‘j,

(27)
)0, -

.,tj)dt], ...,dtj,

are small, do not contribute substantially to the input-output
behaviour of the system and therefore can be discarded.?’ The
assumption that the system is completely controllable and ob-
servable is not essential and can be relaxed.> In this case the
balancing transformation acts only on the subspace of jointly
controllable and observable states where the orthogonal com-
plement that contains only states that are either uncontrol-
lable, unobservable, or both uncontrollable and unobservable
can be neglected (cf. also Ref. 49, Sec. 7.3). Under this as-
sumption we may proceed as in the linear case: first trans-
forming system (26) to the balanced coordinates in which
weakly controllable states coincide with weakly observable
states and second truncating these states. As in the linear case,
this second step is not unique and there are various options to
truncate the system, depending also on the precise decay of
the control term u as t — o0; we refer to our recent work for
a discussion of the various possibilities.*!
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A detailed discussion of solvability and the numerical
solution of the generalized Lyapunov equation is presented
in Appendix B. If the solution of the generalized Lyapunov
equation is too expensive or not feasible, principal component
analysis (PCA) possibly represents an alternative to determine
the Gramians which are necessary for the balanced truncation.
A detailed derivation is shown in Appendix C.

IV. EXAMPLES
A. Model system

The balanced model reduction approach shall be applied
to a dissipative quantum mechanical model system in density
matrix formulation controlled by the interaction with an exter-
nal electric field. For simplification we consider one degree of
freedom, s. The potential energy curve is chosen as an asym-
metric double well represented by a fourth order polynomial:

2 42

Hy=T+V(s) = —Z% +ay(s? —d*? +ays.  (30)
The model simulates, e.g., conformational changes of
molecules which can often be expressed as a function of one
essential coordinate, or other types of molecular switches. We
consider the asymmetric case in order (i) to get clearly local-
ized wave functions in either well and (ii) to avoid tunneling
between the potential wells.

The barrier height D is a characteristic quantity for
the system. In the symmetric case (a; = 0) it is given by
D =V (0) — V(£d) = a4d* and the two minima are sepa-
rated in the s-direction by 2d. This almost holds for small
asymmetry a;d < D, and 2a;d is the energy offset between
both minima. We choose the parameters in Eq. (30) to d
=1l,a,=D, a1 =55%x1072D, I =1.62 x 10*#*D"in
order to obtain few levels in each well with maximal spacing.
For a typical molecular application the barrier height for an
inversion vibration is of the order of 10 kJ mol~! (0.1 eV)
resulting in a moment of inertia of 5 uA2, which is a typical
value for a small molecule.

Numerical solution of the Schrodinger equation utiliz-
ing the Fourier grid method®* provides the energy levels
shown in Fig. 1. It shows six vibrational levels in the left well
and five levels in the right one where the maximal interlac-
ing (w1,0 &~ w2,0/2) of these levels minimizes tunneling and
causes the high degree of localization of the corresponding
energy eigenfunctions. In contrast, the energy eigenfunctions
above the barrier are delocalized. We include ten additional
levels up to twice the barrier height. Even in this system with
only one degree of freedom, fairly high dimensional matri-
ces A, N, B, and C occur. The 21 considered states lead to a
generalized tetradic representation of the density matrix (see
Appendix A for details) with dimension n = 441. Thus, re-
duction of the number of considered density matrix elements
by balanced truncation is useful to accelerate dynamical simu-
lations occurring, e.g., during a refinement of the control field
in OCT simulations.

The interaction with the electric field u(¢) is simplified
to the semiclassical dipole approximation —uu(¢). The tran-
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FIG. 1. Potential energy curve and energy eigenvalues in the left well (blue),
in the right well (green), and over the barrier (red) for the input parameters
d=1,a,=1D, ay =55x 1072D,and I = 1.62 x 10> #2D~!. The cut-
off is set to twice the barrier height D.

sition dipole moments are calculated from the energy eigen-
functions assuming a dipole moment operator linear in s with
unit slope, 4 = s. In addition to the potential energy curve,
the structure of the equations of motion, the positivity of the
populations, and the occurrence of a simple zero eigenvalue
form a common ground with the semi-discretized Fokker-
Planck equation model under investigation in Ref. 41. How-
ever, the used basis sets, on one side a spatial basis and on the
other side the basis of energy eigenstates, are one of the differ-
ences between the classical and quantum mechanical model
systems.

Concerning the observables of the system, we investigate
how much population is localized in the left well and the right
well, and which part is delocalized over the barrier. The cor-

responding observability matrix C € R3*#! is given by
6
Cix = Z(Sk,ijly left well
j=1
5
Crr = Z&c,z,’, right well.
j=1

10
Cyp = Z‘Sk,llﬂ" delocalized
j=1

For the complete description of the system, another two
parameters have to be set: The energy equivalent of tem-
perature T, B~! = kpT, and the dissipative transition rate
I'>_,o (due to the wave function overlap, the reference quan-
tity should rather be I',_,o than I'|_,(). In addition, for the
consideration of the dynamics of the system, the control field
u(t) = ugcos(2t — ¢o)b(t) with the initial phase ¢y and the
shape function 0 < b(¢) < 1 has to be determined. In order
to relate these quantities to energy differences which char-
acterize the potential curve, we introduce the following di-
mensionless variables for the temperature 8 = kzT /(hwa ),
for the dissipative transition rate { = I'>_,o/w2,, and for
the control field & = s oup/w2,0 with the Bohr frequency



014112-7 Balanced truncation of open quantum systems

log(IA,,. 1)

0 5 10 15 20

FIG. 2. Example 1: Logarithmic plot of the upper diagonal block of A which
consists of the sum of dissipative reaction rates matrix I" and the total transi-
tion rates.

w0 = 0.2148 D#~! and the transition dipole moment 15,
= 0.1189 eaph~!.

B. Example 1: High temperature, fast relaxation

Setting the value kT = D (i.e., 6 = 4.655) reflects a
system at fairly high temperature. Subsequently, all states
are populated notably in the equilibrium, even the delocal-
ized states lying over the barrier. For the equilibrium distribu-
tion, determined by Eq. (11), population of the lowest state in
the left well is pg = 0.10449, whereas the population of the
highest delocalized state is given by p5 o = 0.01597. The
populations in the left well sum up to y;(0) = 0.40356, in the
right well the corresponding observable is y,(0) = 0.32838,
and the delocalized states lying over the barrier exhibit a to-
tal population of y3(0) = 0.26806. The dissipative transition
rate [0 = D#™! (ie., ¢ = 4.655) causes a fast relaxation
of non-equilibrium states.

As a first step we have a closer look at matrix A (struc-
tured like Eq. (A2) in Appendix A) describing the field-free
quantum dynamics and its eigenvalue spectrum. The most in-
teresting part is the first, real valued full block of the block di-
agonal matrix A. It represents the dissipative coupling among
populations and is displayed in Fig. 2. It consists of the rates
Iy, for the off-diagonal elements and the total transition
rates for the diagonal elements. The even-odd alternations for
m, n < 10 simply reflects the extremely low overlap between
states in the left and the right well. Diagonalization of the first
block of A can easily be performed and leads to real eigen-
values. Due to Egs. (6) and (A2), the diagonal block of A
which represents the dynamics of the coherences exhibits a
simple structure: The real part is solely determined by the de-
phasing rates y,, ,, whereas the imaginary part of the diagonal
elements of A represents the negative Bohr frequencies.

Next, we perform the balancing transformation which re-
sults in the Hankel singular values displayed in Fig. 3 (to-
gether with those for the following two examples). The de-
scent of the HSVs can be roughly characterized as follows:
The first 50 HSVs decrease exponentially by about seven or-
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FIG. 3. The diagonal elements of X, also referred to as Hankel singular val-
ues for high temperature and fast relaxation (example 1, blue circles), low
temperature and fast relaxation (example 2, filled red circles), and low tem-
perature and slow relaxation (example 3, black crosses).

ders of magnitude. After that, the decrease flattens to an ex-
ponential decrease of another seven orders of magnitude be-
tween i = 100 and i = 315.

In the remainder of this work, we assess the quality
of the balanced truncation method by comparing the refer-
ence output y(t) = (y1(t), y2(t), y3(t))T with the balanced,
truncated (to r modes), and backtransformed output y“(¢)
= CT(THPx(t), where (T )" is the truncated r x n
matrix of the balancing transform, T is the truncated n x r
matrix of its inverse (see Fig. 4), and z(t) = (T ") x(¢)
are the balanced and truncated (to » components) density ma-
trix elements. Initially, we have y(t = 0) =y, = Cx,. Be-
cause we transform to the eigenstate basis of A and split off
the stationary state before balancing, reference output at time
zero can always be reproduced, regardless of the number of
truncated modes. This is due to the fact the we always con-
sider the equilibrium density, whereas truncation acts on its
orthogonal complement, see Appendix B. In contrast, using a
shiftof A — A — « in order to eliminate the zero eigenvalue
of A, unphysical populations are produced if the number  of

0.06 — left well

—right well
—delocalized |{
—2. 1073 u()

0.041

output Y=Y,

0 10 20 30 40
time t [h/(27D)]

FIG. 4. Example 1: Deviation of population from equilibrium for states
localized in the left (blue) and in the right well (green), and delocalized
states over the barrier (red) as a function of time for » = 5 (dashed), r = 10
(dashed-dotted), and r = 20 (dotted lines). The solid colored lines mark the
untruncated case, and the solid black line is the control field.
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TABLE . Relative root mean square deviations (rms) between truncated (to
r remaining elements of z) and untruncated dynamics of shifted populations
for high temperature and fast relaxation (example 1).

r Left well Right well Delocalized All
5 9.70% 6.71% 8.45% 8.65%

10 1.53% 5.08% 1.22% 2.01%

20 0.88% 1.31% 0.87% 0.92%

remaining balanced density matrix elements is too small. For
this reason we concentrate on the case of splitting off the sta-
tionary state.

Next, we consider the field driven dynamics for
t > 0. Due to the fast relaxation and the high tempera-
ture, we use a simple non-oscillating sinusoidal half cycle
pulse u(t) = ugsin(Q2t), 2 =0.196 D! 0<t< /<2,
up=17.5De 'a;"'. With w0 =02148 Di~' and sy
= 0.1189 eap#~!, the dimensionless parameter £ can be de-
termined to & = 4.1515. We want to observe how the popula-
tions of localized states in the left well, in the right well, and
of delocalized states over the barrier of the potential energy
curve evolve and relax for the time interval 0 <7 < 37 /.
At time ¢ = 0 the system is in equilibrium. The control field
serves to populate the states over the barrier and to transfer
population between the left and right well.

As a quantitative measure for the quality of balanced
truncation approximation, we monitor the relative root mean
square (rms) deviations ||y — y|l2/[ly — Yell> of the output
integrated over time. The time evolution of the control target
y for x starting from xo = O (cf. Fig. 4) shows for a trunca-
tion to r = 5 a relative rms deviation between 6.71% for the
right well and 9.70% for the left well with the mean value of
8.65% for all populations (cf. Table I) compared to the propa-
gated original system, which is a surprisingly good result for
only five components of z and diminishes the number of den-
sity matrix elements by a factor of 88. In general, deviations
get even smaller with increasing 7: For r = 10, the rms de-
viations are spread between 1.22% for the delocalized states
and 5.08% for the states in the right well, for all states we find
2.01% mismatch. Finally, for r = 20, the relative rms devia-
tions are about 1%.

A closer look at the coefficients of the balancing trans-
form reveals that the five highest HSVs are characterized by
populations of the left well (o7), coherences between neigh-
boring states in the left well (o3, 05), and populations of the
right well (o3, 04). Results for r = 10 are better since popu-
lations of levels near the barrier (o¢, 01¢), and coherences be-
tween neighboring states in the right well (09) and around the
barrier (07) are included. That means that the balancing trans-
form builds up balancing states with the highest HSVs from
linear combinations of density matrix elements of similar type
(e.g., populations of the right well). If all important informa-
tions are included full dynamics will be simulated properly
by the truncated setting. In general, however, the linear com-
binations are neither intuitive nor representative of an ascend-
ing or descending order of energy values. We hope that future
considerations (e.g., in the Floquet picture) will reveal this
situation.
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FIG. 5. Example 2: Population (with respect to equilibrium population) of
states localized in the left (blue) and in the right well (green), and delocal-
ized states over the barrier (red) as a function of time for r = 21 (dashed),
r = 29 (dashed-dotted), and r = 40 (dotted lines). The solid line marks the
untruncated case.

C. Example 2: Low temperature, fast relaxation

In the following we consider the case of lower tempera-
ture. The temperature equivalent of the energy, kT = 0.1D,
which is about the energy level splitting (¢ = 0.4655) leads to
an equilibrium population of the lowest level in the left well
of pg o = 0.65771 and the lowest level in the right well ex-
hibits a population of pf ; = 0.22182. The total populations
of the left and right well are given by y;(0) = 0.74630 and
¥2(0) = 0.25364, respectively, whereas the total population
over the barrier can be neglected, (y3(0) = 6.1257 x 107°).
Due to the low temperature, oscillating pulses can be used
to efficiently transfer population and we chose a pulse
which extends over three periods with a sine squared en-
velope: u(t) = ug cos(Qt) sinz(f—;), up =3.75 De7'ay', &
=2.0758, Q=0.196 DA™, 0 <t <t; =100 #AD~". The
control field amplitude was adjusted in order to provide pop-
ulation transfer similar to the first example. The combination
of fast relaxation and low temperature affects that population
which is transferred from the left well to the delocalized
states over the barrier is depopulated immediately for the
benefit of the states in the right well. Consequently, no popu-
lation transfer between the wells occurs after the control field
excitation has sufficiently died out toward the end of the pulse
(cf. Fig. 5).

Although the decrease of the HSVs is slightly faster than
in the first example, see Fig. 3, in this case more balanced
states are needed to reproduce the reference propagation with
a sufficient quality. Below r = 21 populations in the delocal-
ized states over the barrier behave unphysical. For r = 21, the
relative rms deviation is about 11% for the both wells. The
high relative (94.14%) but small absolute deviation for the
delocalized states over the barrier hardly influence the total
deviation (11.31%, see also Table II) which is a consequence
of the almost unpopulated delocalized states at all times. For
r =29, the rms mismatch is about 4% in the wells and
18.58% for the delocalized states. If we increase the num-
ber of remaining components of z step by step in the range
between r = 20 and r = 50, we recognize oscillations of the
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TABLE II. Relative root mean square deviations between truncated (to
remaining components of z) and untruncated dynamics of shifted populations
for low temperature and fast relaxation (example 2).

r Left well Right well Delocalized All

21 10.24% 11.56% 94.14% 11.31%
29 4.19% 4.14% 18.58% 421%
40 0.70% 0.71% 9.56% 0.77%

rms mismatch in each part of the potential as a function of r.
The deviations, both in the wells and in all states turn below
1% for r = 40. For the same reasons, as mentioned above,
rms mismatch for the delocalized states is higher (9.56%),
but decreases for increasing r. It can be seen from the coeffi-
cients of the balancing transformation that the coherences be-
tween neighboring states inside the wells do not play a domi-
nant role. Decreasing the control field to ug = 1.5 De™'a, ',
& = 0.8303 improves the rms mismatch of all populations to
10% if r = 9 which turns below 1% if r increases to 24. By
conducting additional tests for all other examples we could
verify that, in general, r has to be increased if one is inter-
ested in obtaining the same accuracy of model reduction using
higher field energies.

D. Example 3: Low temperature, slow relaxation

In a third example we consider the same low temperature
(6 = 0.4655) as in example 2, but we add the possibility to
analyze the depopulation of the delocalized states. Therefore,
we chose slow relaxation by setting the dissipative transition
rate to ['».o = 1073 D#~! which leads to £ =4.655 x 1073,
The control field is described by the function given in the pre-
ceeding example. While Q2 takes the same value, the other
constants are changed: ug = 0.2 De~'a,", t; =360#D",
and therefore & = 0.1107. Consequently, the pulse extends
over 11 periods which is depicted in Fig. 6. The HSVs de-
crease more slowly than in the examples discussed before, see
Fig. 3.

In contrast to example 2, populations of the delocalized
states grow at the expense of the major fraction of the popula-
tion in the left well and the minor fraction of the population in
the right well. Only toward the end of the control pulse, when
the amplitude of the exciting pulse has dropped down suffi-
ciently, relaxation becomes visible and depopulates the states
lying over the barrier for the benefit of the states in the right
well (major part) and the left well (minor part, cf. Fig. 6).

TABLE III. Relative root mean square deviation of the output integrated
over time for truncated (to r remaining components of z) with respect to
untruncated dynamics of shifted populations for low temperature and slow
relaxation (example 3).

r Left well Right well Delocalized All
60 45.81% 48.05% 66.38% 55.21%
90 6.56% 35.16% 7.04% 10.22%

110 4.86% 14.87% 3.50% 5.36%

180 0.58% 1.82% 0.72% 0.74%
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FIG. 6. Example 3: Population (with respect to equilibrium population) of
states localized in the left (blue) and in the right well (green), and delocalized
states over the barrier (red) as a function of time. Dashed lines indicate a
truncation to r = 90 states, dashed-dotted lines mean r = 110, and dotted
lines label r = 180. The solid line marks the untruncated case.

For r = 60, the time-dependent output shows the cor-
rect trend, but deviations are enormous (see Table III). For
r = 90, the result is already quite good for the left well (rms
= 6.56%) and the delocalized states over the barrier (rms
= 7.04%), whereas the right well still shows stronger devia-
tions (rms = 35.16%). The rms mismatch of all populations
18 10.22%. For r = 110, all relative rms-deviations shrink and
the total rms deviation is 5.36%. In order to confine the mis-
match below 1% r = 180 remaining elements of z are needed.
In contrast to the preceeding examples, the coefficients of
the balancing transform show more state specific behavior
and only few population dominated eigenvectors for the first
60 HSVs.

V. CONCLUSIONS AND OUTLOOK

This paper represents a first application of balanced trun-
cation to light-induced control of open quantum systems. This
method efficiently reduces the dimensionality of the LvNE by
constructing states which are controllable and observable at
the same time. While originally developed for control prob-
lems of linear systems, the bilinear nature of the system-field
coupling necessitates the solution of generalized Lyapunov
equations. In our application to a one-dimensional model
problem for different temperatures and relaxation rates, the
balanced truncation method has shown its great potential in
simplifying quantum-dynamical simulations occurring in op-
timal control problems. In particular, the input-output behav-
ior of the original system can be well approximated by dras-
tically reduced systems. For a relative rms deviation of 5% in
the output the dimensionality of the system can be reduced
by about 98% for high temperature and fast relaxation (ex-
ample 1), while for lower temperatures a reduction of 94% or
76% can be achieved for faster (example 2) or slower relax-
ations (example 3), respectively. The differences in the degree
of reduction can be partly attributed to the different decay of
the Hankel singular values of controllability and observability
Gramians which is the foundation of the theory of balanced
truncation method for linear systems. Also for the bilinear
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system considered in the present work, the overall behavior
is a decrease of the error with rising r, the dimensionality of
the reduced model. A drawback compared to balanced trun-
cation for linear systems is the non-monotonic behavior of
the error as a function of . However, the location of a local
minimum of the error is independent of the external field am-
plitude. In contrast, the truncated dimensionality r needed to
obtain a given accuracy for the output dynamics rises with the
field amplitude.

In future work, the dependence of the accuracy of bal-
anced truncated systems on the dimensionless parameters rep-
resenting temperature 6, dissipative transition rate ¢, and con-
trol field amplitude & should be investigated systematically for
real systems, e.g., from atomic or molecular physics. Further-
more, it would be interesting to study the effect of different
control targets expressed by different observability matrices
C for a given controllability. Especially, the sensitivity of the
required dimensionality r to achieve a desired accuracy on the
nature of matrix C should be properly examined. In particular,
the rather coarse grained target of population transfer between
the wells of the model potential considered in Sec. IV could
be replaced by finer details, such as state selective control tar-
gets. Our first test calculations have shown that these goals
are within reach. Finally, the relation between PCA and bal-
anced truncation could be further explored. This would also
allow to systematically impose further constraints on the trun-
cation procedure, e.g., positivity of the populations or even a
Liouville-von Neumann structure of the reduced system.

Yet another possible advancement of the balanced trun-
cation method could be a combination with the Floquet pic-
ture of photon dressed states. By eliminating the fast carrier
frequencies the control problem for typical laser pulses could
be reduced to an optimization of few parameters, such as fre-
quencies, intensities, and pulse shape parameters.>®>’
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APPENDIX A: VECTORIZATION OF THE DENSITY
MATRIX

We will illustrate the procedure by means of a two state
model (¢ = 2) and use the tetradic notation introduced by
Mukamel:®

£0,0
£0,0 Po,1 P11
= ’ ’ = X = ! s Al
P (m,o ,01,1) £0,1 (AD
£1,0

where the order of the matrix elements oy, in the vector x is
arbitrary but fixed. Here, we start with all the populations and
proceed with the coherences (i.e., the off-diagonal elements
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of the density matrices) leading to the following expressions:

—v00 Tiso
0
Fos1 =y
A= , .
—lwo,1 — Y0.,1
O .
0 —Iw0 — Y10
(A2)
and
—[10 Mo,
0
N = M1,0 —Mo,1
—Mo,1 Mo, 10,0 — M1,1 0
H1,0  —H1,0 0 M1,1 — 0,0
(A3)

Note, that a generalization to ¢ > 2 is straight forward.

The chosen order in the vectorization (A1) has the advan-
tage, that A is block diagonal with block sizes ¢ and (n — g),
where the latter block exhibits a diagonal structure. The di-
agonal elements of A contain —iwy , — yi.m, i.€., differences
of energy eigenvalues and total dephasing rates. Those off-
diagonal elements of A which represent couplings of dif-
ferent populations include a corresponding dissipative tran-
sition rate. The elements of N represent the coupling be-
tween the external field F(¢) and the vectorized density x(¢)
through susceptibility . Also, the matrix N can be divided
in submatrices of size ¢ X ¢, ¢ x (n — q), (n — q) x g, and
(n — q) X (n — q). In contrast to A, the upper left ¢ x g sub-
matrix of N is the zero-matrix.*’ The off-diagonal ones con-
tain off-diagonal matrix elements yu; ,,, whereas the diagonal
ones are differences of ;.

For the observables given in Eq. (9), the vectorization
(A1) provides

M A A HD)
00,0 01,1 01,0 00,1

C=
@ /D /O HO
00,0 01,1 01,0 00,1

(A4)

The shift is in the case of the two state model given by
Xe = (08 os P51, 0,0)7, and leads to

0

(AS5)

APPENDIX B: SOLVABILITY AND NUMERICAL
SOLUTION OF THE GENERALIZED LYAPUNOV
EQUATIONS

We shall briefly discuss the solution of the generalized
Lyapunov equation (29). To this end recall that a system is
called stable when the system matrix A has only eigenval-
ues in the open left half complex plane (i.e., excluding the
imaginary axis). Stability thus means that there are constants
A,a > 0 such that ||exp(A?)|| < Aexp(—at), where | - || is
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any suitable matrix norm. If moreover

)\’2

INI? <1, (B1)
2a

then controllability and observability Gramians exist.** In
contrast, for the solvability of the “ordinary” Lyapunov equa-
tion (16), stability is the only requirement. If moreover, the
pair (A, B) satisfies Kalman’s rank condition,

rank(B| AB| A’B| ...|A"'B)=n (B2)

for the Kalman block matrix (B| AB| A’B| ...|A""'B) e
Crxmp. then W, is positive definite (complete
controllability).”® In turn, if the pair (A*, C*) satisfies
the rank condition, then also W, is positive definite (complete
observability).

Direct methods for solving generalized Lyapunov equa-
tions have a numerical complexity O(n®) which makes com-
puting the Gramians a challenge even for medium-sized sys-
tems. For stable matrix A and for the controllability Gramian,
one can resort to iterative schemes, such as®®

AX ;1 + X, A* = —NX,N* = BB*, X,=0, (B3)

which requires the solution of a standard Lyapunov equa-
tion in each step (the iteration for the observability Gramian
follows analogously). Convergence X ; — W, is guaranteed
if the eigenvalue of A with the largest (negative) real part
is sufficiently separated from the imaginary axis.®' In view
of the solvability condition (B1), this can be obtained by
either a suitable scaling u +— nu, N — n~'N, B~ n~'B
with n > 1 that leaves the equations of motion invariant (but,
clearly, not the Gramians), or by shifting A — o/ witha > 0
so as to further stabilize the system matrix A.37-%2

By reducing the solution of the generalized Lyapunov
equation to n;, solutions of an ordinary Lyapunov equation,
the numerical complexity of the iterative scheme (B3) re-
duces to O(n;;n®). For even larger systems (n & 109), also
the iterative scheme may be impractical so that further pre-
conditioning of the matrices A, B, N, C becomes necessary,
e.g., by applying Krylov subspace methods®>’ and/or by ex-
ploiting the sparsity of the matrices.

Finally, we want to remind that the advantage of using
the balanced truncation procedure is based on the fact that the
most time-consuming step has to be carried out only once,
while every single propagation of the LvNE is using the trun-
cated system. An alternative to the solution of the Lyapunov
equation is presented in the following.

APPENDIX C: RELATION TO PRINCIPAL COMPONENT
ANALYSIS

Here, we want to show how balanced truncation is linked
to the more common PCA,%-% also referred to as proper or-
thogonal decomposition,%” which is another frequently used
technique for model reduction. Moreover, as we shall demon-
strate below, it offers a promising alternative to the solution of
the generalized Lyapunov equations discussed in Appendix B.
The balancing method admits an intriguing variational formu-
lation. Consider the stochastic differential equation

dx(t) = Ax(t)dt + (Nx(t) + B)dw(r), x(0)=0, (CI)
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of Itd type, i.e., the stochastic analogue of the deterministic
bilinear system

%(t) = (A + Nu(t)) x(t) + Bu(t), x(0)=0.

Here, w denotes the one-dimensional standard Brownian
motion. Suppose that {x(¢y), x(¢1), ..., x(ty)} C R" with 0
=ty <t <--- <ty =T being a discrete-time trajectory of
Eq. (C1). We want to find the best approximating linear sub-
space S C R” of dimension k < n that minimizes the mean
squared distance

1 M
Du(Q) = o Y llx(ar) = Qx(t)I (€2)
i=0

of the trajectory from S C R”. Here, ||x||g = vx*Gx is the
Euclidean distance with respect to the (constant) metric ten-
sor G € R"™" and Q denotes a projection that is orthogonal
with respect to this inner product, i.e., for which Q*G(I — Q)
= 0. Since, moreover, Q> = Q for any projection, we have
lx — Ox|I% = |lx||Z — ||Qx]|%, which implies that minimiz-
ing Dy, is equivalent to maximizing the “energy” of the pro-
jection:

1 M
En(Q) = 2> 10 (C3)
i=0

Now we show that the k-dimensional subspace S C R” that
maximizes Eq. (C3) is spanned by the dominant & eigenvec-
tors of the generalized eigenvalue problem

CuGv =Av, (C4)
where C)y is the empirical covariance matrix
L SR ()
M=

of the data. Without loss of generality we may consider the
case k = 1. In other words, we seek the best-approximating
one-dimensional subspace for our data. To this end let w € R”
denote the vector spanning this subspace, i.e., S = span{w}.
Assuming that w is normalized, |w| = 1, the projection Q
must be of the form

Ox = (w,x)gw.

Inserting the last expression into E;, our least squares prob-
lem turns out to be

M
1
mfoZ(w,xi)é st. (w,w)g =1. (C6)
i=0
Defining the functional
| M
Lw)= 22w, xi)g =2 (w,w)g =D, (C7)
i=0

a necessary condition for Eq. (C6) is that §L(w) = 0, which
reads

| XM
— in W, xi)g = Aw.

M i=0
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The last equation can be recast as

| M
—Zx,-x;" Gw = Aw,
M i=0

which is nothing but the generalized eigenvalue problem (C4).
Iterating the argument with S = span{w, w,}, wherew; = w
and (wa, w); = 0 and so on and so forth yields that the solu-
tion of the least squares problem (C2) is obtained by project-
ing the data {xo, x1, ..., x)} C R” onto the first k eigenvec-
tors of

CuGw = Aw

with

| M
Cy = Minx;k
i=0

being the unbiased estimator of the covariance matrix of the
data.

Clearly, when Cjy; = W, is the controllability Gramian
and G = W, is the observability Gramian, then (up to scaling)
the eigenvectors of Eq. (C4) essentially yield the balancing
transformation (25).

We will now argue that Cy; for M — oo, t)y — 00, the
asymptotic empirical covariance matrix, converges to the con-
trollability Gramian W,. Thus, solving the least-squares prob-
lem (C2) with respect to the observability metric G = W,
is, in indeed, equivalent to balancing (under the assumption
that W, is positive definite). To see this, it is helpful to note
that (x(¢)) = 0 when x(0) = 0, for the increments dw of the
Brownian motion which are centered Gaussian random vari-
ables. (We use the notation (-) to denote the expectation over
the all realizations of w.) Then, using Itd’s formula, it follows
that®

dx(Ox(@)*) = x@)dx ()" +dx(@) x()*
+ (Nx(t) + B)(Nx(t) + B)* dt.

We define C(t) = {(x(¢)x(¢)*) to be the covariance matrix of
x at time ¢. Inserting Eq. (C1) in the last equation, taking the
expectation, and interchanging the expectation with the dif-
ferentiation, it follows that S solves

C(t) = AC(t) + C(1)A* + NC(t)N* + BB*. (C8)

The solvability condition (B1) for the generalized con-
trollability Gramian, i.e., for the matrices A, B, N guarantees
that C — 0 as ¢ — oo, which entails®®

W, = lim C(¢).
t—00

Therefore, also Cyy — W, as M — oo, which clearly re-
mains true if N = 0, i.e., when the system is linear.*! The ob-
servability Gramian can be computed analogously. To sum up,
we have proved that solving the least-squares problem (C2)
with G = W, is equivalent to balanced truncation when the
deterministic control u in either Egs. (14) or (26) is replaced
by Gaussian white noise dw /dt. Hence, the method of PCA
lends itself as an alternative to the (expensive) solution of the
generalized Lyapunov equations (see Appendix B) for calcu-
lating the controllability and observability Gramians.*!
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