
 90

6 Application I: Peer-to-Peer Based Name Service for
MANETs

MADPastry provides efficient key-based routing in mobile ad hoc networks.
However, as already pointed out, MADPastry is not an application by itself.
Instead, it is a routing protocol that delivers a packet based on a key to the node
currently responsible for packet's key in the network. Therefore, to demonstrate
MADPastry's practical usability, it was next used to build a dynamic and
decentralized name service for MANETs [70].

6.1 Introduction

The invisible omnipresence of the Domain Name System (DNS) [35, 36] in the
Internet shields one of the most fundamental challenges from network
applications and users: How to bind a resource, for example a file or a service, to
a specific network address. Network resources are usually identified by some
URI, e.g. "http://some_node.net/some_resource". It is essential for a network
application to resolve a given URI to the concrete network address of the node
where the desired resource actually resides.

However, in MANETs, centralized names services are usually not available.
Therefore, MADPastry is used to build MAPNaS [70] – a decentralized name
service for MANETs. In MAPNaS, a resource (e.g. a file, a service, etc) is
identified by a unique resource key that is mapped into the logical MADPastry ID
space. Due to the lack of a fixed network topology in MANETs, there are no
dedicated resource directory servers. Instead, true to the P2P paradigm, every
node functions both as a resource host (of its own files, services, etc.) and as a
resource directory for certain remote resources. As determined by MADPastry,
every node keeps track of the network addresses of those resources whose
resource keys it is responsible for. Since mobile devices often have limited
hardware and storage capabilities, the design goal of MAPNaS is to keep the
architecture as simple as possible. This is demonstrated by Figure 6.1. Nodes
store the resource descriptors (the resource key along with the specific network
address of the resource) they are responsible for in their local MAPNaS
repository. Furthermore, every node advertises its own resources that it is willing
to share through MAPNaS.

6.2 Resource Advertisement

When a node A in a MADPastry network wants to make a local resource (e.g. a
service, a file, etc.) available to other nodes in the network, it needs to assign a
hash key to that resource, e.g. by hashing the resource's URI. Using that key,

 91

node A will then construct a resource descriptor consisting of the resource key
and the physical network address (e.g. IP address) of the resource provider (in
this case node A's address). Using MADPastry, the descriptor is routed to the
node currently responsible for the resource key. That recipient node will then
store the resource descriptor in its local repository.

Figure 6.2 shows an example of a resource advertisement. Node 17, whose
current overlay ID is 75A1FFE2, wants to advertise its resource with the URI
"http://mynode.net/my_resource". Hashing that URI yields the hash key
B7E9A578. Node 17 now constructs a resource descriptor containing the resource
key and the network address of the host: {B7E9A578, 17}. As described in
Section 4.4, this advertisement packet will then be routed to the responsible node
using MADPastry. At node 17, the closest entry in its MADPastry routing table is
node 4 with overlay ID B207D11F. Node 17, thus, sends the packet to node 4.
This first overlay hop (as indicated by dotted arrow) takes 5 physical hops (as
indicated by the solid black arrows) to be completed and delivers the packet from
the source cluster already to the target cluster (as indicated by the two shaded
regions). Node 4 will then consult its MADPastry routing table to determine the
next node to forward the advertisement packet to – in this case node 35 with
overlay ID B7E1C101. This second overlay hop consists of two physical hops. For
the final overlay hop, node 35 consults its MADPastry leaf set to forward the
packet to node 79 (overlay ID B7E9A014) who is responsible for the resource key.
Upon reception of this advertisement, node 79 will store the resource descriptor
{B7E9A578, 17} in its local repository.

MADPastry

Local
Repository

Own
Resources

Application

MAPNaS

Network

MADPastry

Local
Repository

Own
Resources

Application

MAPNaS

Network

Figure 6.1 The MAPNaS architecture.

 92

6.3 Resource Discovery

Resource discovery with MAPNaS works analogously to the resource
advertisement process. When a node needs to resolve a resource's URI (e.g.
"http://somenode.net/some_service"), it will simply hash the URI of the resource
and send a lookup request to the node currently responsible for that hash key.
This request is routed using MADPastry in the exact same indirect manner as
described above for the resource advertisements. The eventual destination node
will check its local repository and send back the matching resource descriptor (or
multiple descriptors in case several nodes are hosting the same resource).

Figure 6.3 illustrates the resource discovery process with MAPNaS. Following up
the example from the previous section, suppose now node 63 (overlay ID
A101D11F) is interested in the resource "http://mynode.net/my_resource" that is
provided by node 17. Unfortunately, node 63 has no idea which nodes provide the
desired resource. Therefore, node 63 hashes the URI of the resource, which yields
the hash key B7E9A578 as it did for node 17 for its advertisement. Next, node 63
simply sends a request for a matching resource descriptor towards the hash key
using MADPastry. Thus, in the first overlay hop, the request will be delivered to
node 35 with overlay ID B7E1C101. Node 35 will then forward the request to its
leaf set member node 79 with overlay ID B7E9A014 who, as before with the
resource advertisement, is responsible for the given hash key. Upon reception of
the request, node 79 will check its local repository and send a response

75A1FFE2

B207D11F

B7E1C101

B7E9A014

17
4

35

79

75A1FFE2

B207D11F

B7E1C101

B7E9A014

Figure 6.2 Indirect routing of a MAPNaS resource advertisement using MADPastry.

 93

containing the resource descriptor {B7E9A578, 17}, that it had previously
received from the provider node 17, back to the requester, node 63. At this point
it shall be remarked that for such a resource response, MAPNaS also uses
indirect, key-based routing instead of a direct AODV-style unicast from the
resource directory to the requester. The reasons for this will be presented in
detail in Chapter 7.

6.4 Local Replications

For the scalability and feasibility of a MANET, it is essential to restrict network
traffic to local regions as much as possible [19, 31]. Therefore, MAPNaS makes
use of MADPastry's clusters to store local replications of resource descriptors.

When a node intends to advertise a resource, it will now insert the resource
descriptor under two different keys. The first key is the regular hash key (of the
resource's URI, etc.) and the resource descriptor is inserted into the network as
described above. To obtain the second key under which the resource descriptor is
stored, the regular resource key is altered to make sure the descriptor will be
stored in the resource host's own MADPastry cluster. For this purpose, the
resource key's prefix is replaced with the host's own cluster prefix. In a
MADPastry network with 16 landmark keys (i.e. 16 prefix-based clusters), node
17 from the previous example would store the descriptor for its resource
"http://mynode.net/my_resource" first under its regular hash key B7E9A578

75A1FFE2

B7E1C101

B7E9A014

17

35

79

A101D11F

B7E1C101

B7E9A014

A101D11F

63

Figure 6.3 MAPNaS resource discovery using MADPastry routing.

 94

somewhere in the network. Additionally, it would also insert the resource under
the local key 77E9A578 into its own MADPastry cluster.

As described in Section 4.2, MADPastry clusters are made up of nodes that share
a common overlay ID prefix so that they are close to each other in the overlay ID
space. With Random Landmarking, these overlay neighbors are also likely to be
close to one another in the physical network. Hence, intra-cluster communication
can be expected to travel only short physical paths. Therefore, when a node needs
to lookup the address of a certain resource, it will generate the regular resource
hash key (by hashing the resource's URI) as described above. Before engaging in
a potentially cross-network indirect routing process to find the corresponding
resource descriptor, the node will first replace the descriptor key's prefix with its
own cluster prefix. To restrict the lookup process – if possible – to nodes in its
physical vicinity, the lookup request is then first routed to the appropriate local
cluster member to see whether a matching descriptor can already be found in the
local cluster. This might, for example, be the case with popular files or standard
services that are hosted by multiple nodes. Only if this local lookup provides no
(appropriate) answer, will the request be forwarded as in a regular network-wide
lookup process.

This process is illustrated in Figure 6.4. When node 17 wants to share its
resource "http://mynode.net/my_resource", it will generate its regular hash key
B7E9A578. As before, node 17 will then send an advertisement towards that key
that will eventually be delivered to node 79 whose overlay ID is closest to the
resource's hash key. Additionally, node 17 will also store its advertisement locally

75A1FFE2

B7E1C101

B7E9A014

17

35

79

A101D11F
63

B207D11F

77E99301

adv

adv

adv

adv

adv

adv

adv

adv

req
adv res

req

req

res

res

req

req

81
A7E9A102

4

3

req

Figure 6.4 Resource advertisement and discovery with local replications.

 95

in its own cluster. For this purpose, node 17 generates the local key for the
resource by replacing the prefix of the hash key with its own overlay ID prefix,
which yields the key 77E9A578. It will then use MADPastry to route the extra
advertisement to that local key, which will be delivered to node 81 with overlay
ID 77E99301 who is responsible for the local key. Analogously, when node 63 is
interested in the resource "http://mynode.net/my_resource", it too will generate
the resource's regular hash key B7E9A578. However, before issuing a global
resource discovery request, node 63 will first check its own local cluster for a
matching resource descriptor. For this purpose, node 63 produces the local key
A7E9A578 and routes a request using MADPastry to the node responsible for
that key – in this example node 3 with overlay ID A7E9A102. Node 3 will then
check its local repository for a replication of a matching resource descriptor and
reply to node 63 with a found descriptor or, otherwise, node 3 will forward the
request under its global hash key so that will be eventually delivered to node 79
as described before.

6.5 Handovers and Caching

When a MADPastry node moves from one cluster to another, it will eventually
join the new cluster by assigning itself a new overlay ID that shares a common
prefix with its cluster members. Therefore, when a MADPastry node running
MAPNaS changes its cluster membership, it needs to pass the resource
descriptors that are in its local repository to its old "left" and "right" leaf set
members as those two nodes will now be numerically closest to the corresponding
resource descriptor keys. Furthermore, when the rejoin process under its new
overlay ID is done, it needs to acquire from its new "left" and "right" leaf set
members those resource descriptors for whose keys it has now become
responsible.

Since a handover packet could be lost – e.g. due to collision, etc. – a node can
potentially end up having some resource descriptors in its local repository that it
is actually not responsible for (any longer). To take care of such incidences, each
node periodically checks its local repository for such descriptors and hands them
over, if need be, to the best candidates as proposed by its Pastry leaf set or
routing table.

Furthermore, in MANETs, a node typically overhears a good number of packets
that are not destined for it. Exploiting this virtually cost-free (in terms of
network traffic) extra information, a MAPNaS node caches the information of all
advertisement, handover, and lookup response packets that it overhears. Since
the storage capabilities of mobile nodes are usually scarce and since resource
descriptor can become stale, these cache descriptors are tagged with a simple
timestamp (e.g. 30s) after which they expire. Of course, cached descriptors are
not handed over in case of a cluster membership change. When an intermediate
node on the physical path of an overlay hop is to forward a lookup request, it first
checks its own local cache to see whether it can already satisfy the request.

 96

6.6 Experimental Results

To evaluate the performance of MAPNaS, a MAPNaS reference application was
implemented running on top of a MADPastry routing agent in ns-2. The
fundamental question to be answered in MANETs when dealing with elaborate
approaches such as MAPNaS running on top of MADPastry, is whether the effort
of maintaining the data structures is really worthwhile. In the case of MAPNaS,
the question is whether there is really anything to be gained from going through
the process of advertising resources, handing over resource descriptors,
maintaining MADPastry's routing tables, etc. Or, would it be absolutely
sufficient if nodes did not advertise their resources at all and if resource
discovery requests were, instead, simply broadcast through the network? For this
purpose, a second reference application was implemented as well where nodes do
not publicly advertise their own resources, and where resource discovery requests
are simply broadcast (already forwarded requests will not be forwarded a second
time). Every receiving node checks its own resources and if there is a match, it
sends back a direct response using AODV.

Similar to the previous chapter, the following metrics are analyzed:

Success Rate. This is the percentage of random requests that eventually deliver
a response containing the correct resource descriptor back to the originator node.
In other words, this is the round-trip (request + response) success rate of all
resource discoveries.

Packet Overhead. This is the total number of packets that are forwarded
during the entire simulation. This count is increased whenever a node forwards a
packet to the next physical hop – in other words, whenever the MAC layer of a
node is being passed a packet down from an upper layer. Hence, it includes all
application and router packets such as AODV route requests and replies,
MADPastry maintenance packets, and MAPNaS resource advertisements,
requests and replies.

Overall Traffic. Since many different packet types (e.g. AODV route requests,
MADPastry packets, resource advertisements, handover packets, etc.) of various
packet lengths are transmitted during a simulation run, not merely the total
packet count is analyzed. Additionally, the total network traffic in Kbytes that is
created during the simulated hour is also considered. Whenever a node forwards
a packet, this figure is increased by the packet size. Again, this figure includes all
routing and application level packet types (AODV, MADPastry and MAPNaS
packets).

As in the chapter before, all simulations that were carried out modeled wireless
networks of 250 nodes over the course of one (simulated) hour. Nodes are always
moving around according to the random way point model with 0s pause time
(constant movement) and at a steady speed of 1.4 m/s – a quick walking speed.
For data transmission, nodes are, again, using the 802.11 communication
standard with a transmission range of 250m. The node density in the
investigated networks is always 100 nodes/km². All MAPNaS nodes periodically

 97

send out requests for a randomly picked resource. Again, a 32-bit overlay ID
space is assumed with hexadecimal overlay IDs. In other words, each overlay ID
consists of 8 hexadecimals digits. Please refer to Appendix 9.2 for MADPastry's
system parameters and the values used throughout this section.

6.6.1 Basic Results
In a first set of simulations, MAPNaS on top of MADPastry is compared against
the simple broadcast approach with AODV. In both applications, each node issues
a request for a random resource descriptor every 10 seconds. Furthermore, each
node shares 5 resources. To measure the basic results of both systems, nodes do
not try to lookup the resources in their own cluster first by fixing the respective
resource keys, but, instead, they always lookup the resources' regular hash keys

Table 6.1 Simulation parameters and values – basic results.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random request interval (per node) 10s

Resources shared per node 5 (1250 total)

Local lookups first no

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

no caching caching enabled

S
uc

ce
ss

 R
at

e

MAPNaS
Broadcast

Figure 6.5 Success rates - basic results.

 98

right away (although nodes still publish local replications of their resources when
they change cluster membership). Table 6.1 provides an overview of the
simulation parameters and their respective values.

Figure 6.5 compares the success rates of MAPNaS against the broadcast
approach. Without the caching of overheard packets, MAPNaS on top of
MADPastry achieves a drastically higher success rate than the broadcast
approach does (87% vs. 28%). When nodes cache the content of packets they
overhear, a modified version of the broadcast application is used as a network

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

no caching caching enabled

N
um

be
r o

f p
ac

ke
ts

MAPNaS
Broadcast

Figure 6.6 Total number of packets sent.

0

100,000

200,000

300,000

400,000

500,000

600,000

no caching caching enabled

O
ve

ra
ll

Tr
af

fic
 [K

B
]

MAPNaS
Broadcast

Figure 6.7 Overall traffic.

 99

wide broadcast could hardly benefit from local caches (even if a nearby node could
already satisfy an originator's request, it could not prevent other nodes from still
forwarding the broadcast request). Therefore, a simple form of expanding ring
search is used instead. The broadcast application will first limit the propagation
of its requests to a TTL of 3. Only if no cached entry could be found in that local
region, will the request be broadcast throughout the network. Without updates,
objects remain in the cache for 30s. As can be seen, both applications can further
increase their success rate in combination with caching, but the difference is still
huge (91% vs. 32%).

There are two main reasons for MAPNaS's much better performance. First of all,
in a 250-node network, the broadcast application produces significantly more
traffic (between 2-3 times more) than MAPNaS over MADPastry does – both in
terms of the number of forwarded packets as well as in terms of the traffic
generated overall – as Figure 6.6 and Figure 6.7 demonstrate. Because of this
higher traffic, there are clearly more packet losses with the broadcast application
due to factors such as collisions and interference. Thus request and responses are
often dropped before they reach the appropriate destination. Secondly, the overall
traffic of the broadcast application is entirely made up of broadcast requests,
AODV packets, and response messages, all of which usually affect the entire
network. With MAPNaS on the other hand, a sizable portion of the overall traffic
stems from MADPastry and is thus often restricted to certain clusters.

6.6.2 Local Replications
In the next set of simulations, the benefits of local replications are examined. For
this purpose, three different traffic patterns are considered. First of all, as a
reference line, the scenario from the previous section is presented again where
nodes request random resources using their respective regular hash keys right
away and do not try to lookup the resources' replications in their local clusters
first ("random – no local tries"). In the second traffic pattern ("random – try

Table 6.2 Simulation parameters and values – local replications.

Simulation Parameter Value range

Simulation duration 3600s (simulated)

Network size 250

Network density 100 nodes/km²

Node mobility 1.4m/s (constant, 0s pause time)

Random request interval (per node) 10s

Resources shared per node 5 (1250 total)

Local lookups first yes

Traffic pattern Random requests, 80% requests for
local resources

 100

locally first"), nodes still request random resources. This time, however, a node
always tries to first lookup a possible replication of the desired resource in its
local cluster. In the third traffic pattern ("80% local"), nodes will turn out to
request resources that are hosted by nodes from their own cluster (without
actively being aware of this) in 80% of the cases. Table 6.2 provides an overview
of the simulation parameters and their respective values.

As there are no overlay clusters in the broadcast application that would allow for
a deterministic way of inserting local replicas and since nodes do not advertise
their resources there, it is hard to compare the performance of MAPNaS with
local replications against the broadcast application in a fair and meaningful
manner. For the sake of simplicity and to provide a reference line, the expanding
ring search from the previous section is used as an approximation.

Figure 6.8 shows the success rates that MAPNaS and the broadcast-based
approach achieve in the various traffic patterns. As can be seen, local replications
should be favored in situations where nodes are likely to request resources that
are hosted in their vicinity. When nodes display a behavior where they request
resources that are hosted by nodes in their own cluster in 80% of the cases, the
success rate is increased to over 95%. This is because local requests (i.e. requests
that are sent to nodes in the same cluster) are very likely to travel shorter
physical paths and are thus more likely to be successfully delivered. On the other
hand, in scenarios where nodes request resources that are hosted by arbitrary
nodes, the (often unsuccessful) initial local lookups do not help improve the
success rate. This is because by first issuing a local request, that is unlikely to be
satisfied and thus likely needs to be redirected to the global directory node, the
accumulated path length of a resource request increases, which, in turn,
adversely affects the probability of a successful delivery (and, thus, cancels out
the positive effects of the occasional local hits). Please note that, even in this

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

random - no local tries random - try locally first 80% local

Traffic pattern

S
uc

ce
ss

 ra
te

MAPNaS
Broadcast

Figure 6.8 Success rate vs. traffic pattern.

 101

unfavorable case, MAPNaS still significantly outperforms the broadcast-based
approach by a factor of almost 3 (91% vs. 32%).

Figure 6.9 depicts the generated traffic. For the random traffic pattern, the figure
with initial local lookups is slightly higher than the figure without initial local
lookups due to the longer lookup paths (unsuccessful initial local lookup + global
lookup). In a traffic pattern where nodes request local resources 80% of the time,
however, the shorter lookup paths (local lookups will often be successful, thus
there will be no need to start a global lookup) help lower the overall traffic by
12% compared to the random scenario without initial first lookups.

6.7 Related Work

As already described, numerous approaches have been proposed for service
discovery in MANETs. Please refer to Section 3.4 for an overview of the various
concepts employed in this area.

In the Internet, several systems have been proposed to build a completely
distributed DNS using DHTs [2, 6, 8, 43, 61]. Similar in spirit to MAPNaS, the
general idea, here, is always to store the entries under their hash keys in a DHT
and to retrieve them using the key-based routing provided by the DHT. However,
due to the usage of conventional DHTs, these systems are not well-suited for
MANETs. It was the purpose of MAPNaS to demonstrate how to implement such
DHT-based service discovery for MANETs.

0

100,000

200,000

300,000

400,000

500,000

600,000

random - no local tries random - try locally first 80% local

Traffic pattern

O
ve

ra
ll

tra
ffi

c
[K

B
]

MAPNaS
Broadcast

Figure 6.9 Overall traffic vs. traffic pattern.

 102

6.8 Summary

MAPNaS provides efficient DHT-based service discovery for MANETs by using
MADPastry as its DHT building block. Thus, instead of having a number of
dedicated directory servers, every MAPNaS node serves both as a resource
directory for certain resources and as a host of some resources (its own).

Through simulations, it has been shown that MAPNaS on top of MADPastry
achieves significantly better lookup success rates than a naïve broadcast-based
reference application while also producing significantly lower amounts of
network traffic. For a comprehensive assessment of MAPNaS's performance, of
course, further reference applications would clearly be required. This, however, is
considered beyond the scope of this thesis. Instead, the implementation of
MAPNaS serves two distinct purposes. First of all, it is a proof-of-concept for the
practicality of MADPastry to serve as a general-purpose building block for
distributed network applications in MANETs. Secondly, MAPNaS demonstrates
how to build an efficient DHT-based name service in MANETs so that existing
Internet-based distributed name service approaches could easily be adapted for
the deployment in MANETs.

	Title Page, Abstract, and TOC
	1 Introduction
	2 Background
	3 Related Work
	4 The MADPastry Architecture
	5 Experimental Results
	6 Application I: Peer-to-Peer Based Name Service forMANETs
	6.1 Introduction
	6.2 Resource Advertisement
	6.3 Resource Discovery
	6.4 Local Replications
	6.5 Handovers and Caching
	6.6 Experimental Results
	6.6.1 Basic Results
	6.6.2 Local Replications

	6.7 Related Work
	6.8 Summary

	7 Application II: A DHT-based Unicast for MANETs
	8 Conclusion and Future Work
	9 Appendix
	10 References

