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6 Application I: Peer-to-Peer Based Name Service for 
MANETs 

MADPastry provides efficient key-based routing in mobile ad hoc networks. 
However, as already pointed out, MADPastry is not an application by itself. 
Instead, it is a routing protocol that delivers a packet based on a key to the node 
currently responsible for packet's key in the network. Therefore, to demonstrate 
MADPastry's practical usability, it was next used to build a dynamic and 
decentralized name service for MANETs [70]. 

6.1 Introduction 

The invisible omnipresence of the Domain Name System (DNS) [35, 36] in the 
Internet shields one of the most fundamental challenges from network 
applications and users: How to bind a resource, for example a file or a service, to 
a specific network address. Network resources are usually identified by some 
URI, e.g. "http://some_node.net/some_resource". It is essential for a network 
application to resolve a given URI to the concrete network address of the node 
where the desired resource actually resides. 

However, in MANETs, centralized names services are usually not available. 
Therefore, MADPastry is used to build MAPNaS [70] – a decentralized name 
service for MANETs. In MAPNaS, a resource (e.g. a file, a service, etc) is 
identified by a unique resource key that is mapped into the logical MADPastry ID 
space. Due to the lack of a fixed network topology in MANETs, there are no 
dedicated resource directory servers. Instead, true to the P2P paradigm, every 
node functions both as a resource host (of its own files, services, etc.) and as a 
resource directory for certain remote resources. As determined by MADPastry, 
every node keeps track of the network addresses of those resources whose 
resource keys it is responsible for. Since mobile devices often have limited 
hardware and storage capabilities, the design goal of MAPNaS is to keep the 
architecture as simple as possible. This is demonstrated by Figure 6.1. Nodes 
store the resource descriptors (the resource key along with the specific network 
address of the resource) they are responsible for in their local MAPNaS 
repository. Furthermore, every node advertises its own resources that it is willing 
to share through MAPNaS. 

6.2 Resource Advertisement 

When a node A in a MADPastry network wants to make a local resource (e.g. a 
service, a file, etc.) available to other nodes in the network, it needs to assign a 
hash key to that resource, e.g. by hashing the resource's URI. Using that key, 
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node A will then construct a resource descriptor consisting of the resource key 
and the physical network address (e.g. IP address) of the resource provider (in 
this case node A's address). Using MADPastry, the descriptor is routed to the 
node currently responsible for the resource key. That recipient node will then 
store the resource descriptor in its local repository. 

Figure 6.2 shows an example of a resource advertisement. Node 17, whose 
current overlay ID is 75A1FFE2, wants to advertise its resource with the URI 
"http://mynode.net/my_resource". Hashing that URI yields the hash key 
B7E9A578. Node 17 now constructs a resource descriptor containing the resource 
key and the network address of the host: {B7E9A578, 17}. As described in 
Section 4.4, this advertisement packet will then be routed to the responsible node 
using MADPastry. At node 17, the closest entry in its MADPastry routing table is 
node 4 with overlay ID B207D11F. Node 17, thus, sends the packet to node 4. 
This first overlay hop (as indicated by dotted arrow) takes 5 physical hops (as 
indicated by the solid black arrows) to be completed and delivers the packet from 
the source cluster already to the target cluster (as indicated by the two shaded 
regions). Node 4 will then consult its MADPastry routing table to determine the 
next node to forward the advertisement packet to – in this case node 35 with 
overlay ID B7E1C101. This second overlay hop consists of two physical hops. For 
the final overlay hop, node 35 consults its MADPastry leaf set to forward the 
packet to node 79 (overlay ID B7E9A014) who is responsible for the resource key. 
Upon reception of this advertisement, node 79 will store the resource descriptor 
{B7E9A578, 17} in its local repository. 
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Figure 6.1 The MAPNaS architecture. 



 92

6.3 Resource Discovery 

Resource discovery with MAPNaS works analogously to the resource 
advertisement process. When a node needs to resolve a resource's URI (e.g. 
"http://somenode.net/some_service"), it will simply hash the URI of the resource 
and send a lookup request to the node currently responsible for that hash key. 
This request is routed using MADPastry in the exact same indirect manner as 
described above for the resource advertisements. The eventual destination node 
will check its local repository and send back the matching resource descriptor (or 
multiple descriptors in case several nodes are hosting the same resource). 

Figure 6.3 illustrates the resource discovery process with MAPNaS. Following up 
the example from the previous section, suppose now node 63 (overlay ID 
A101D11F) is interested in the resource "http://mynode.net/my_resource" that is 
provided by node 17. Unfortunately, node 63 has no idea which nodes provide the 
desired resource. Therefore, node 63 hashes the URI of the resource, which yields 
the hash key B7E9A578 as it did for node 17 for its advertisement. Next, node 63 
simply sends a request for a matching resource descriptor towards the hash key 
using MADPastry. Thus, in the first overlay hop, the request will be delivered to 
node 35 with overlay ID B7E1C101. Node 35 will then forward the request to its 
leaf set member node 79 with overlay ID B7E9A014 who, as before with the 
resource advertisement, is responsible for the given hash key. Upon reception of 
the request, node 79 will check its local repository and send a response 
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Figure 6.2 Indirect routing of a MAPNaS resource advertisement using MADPastry. 
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containing the resource descriptor {B7E9A578, 17}, that it had previously 
received from the provider node 17, back to the requester, node 63. At this point 
it shall be remarked that for such a resource response, MAPNaS also uses 
indirect, key-based routing instead of a direct AODV-style unicast from the 
resource directory to the requester. The reasons for this will be presented in 
detail in Chapter 7. 

6.4 Local Replications 

For the scalability and feasibility of a MANET, it is essential to restrict network 
traffic to local regions as much as possible [19, 31]. Therefore, MAPNaS makes 
use of MADPastry's clusters to store local replications of resource descriptors. 

When a node intends to advertise a resource, it will now insert the resource 
descriptor under two different keys. The first key is the regular hash key (of the 
resource's URI, etc.) and the resource descriptor is inserted into the network as 
described above. To obtain the second key under which the resource descriptor is 
stored, the regular resource key is altered to make sure the descriptor will be 
stored in the resource host's own MADPastry cluster. For this purpose, the 
resource key's prefix is replaced with the host's own cluster prefix. In a 
MADPastry network with 16 landmark keys (i.e. 16 prefix-based clusters), node 
17 from the previous example would store the descriptor for its resource 
"http://mynode.net/my_resource" first under its regular hash key B7E9A578 
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Figure 6.3 MAPNaS resource discovery using MADPastry routing. 
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somewhere in the network. Additionally, it would also insert the resource under 
the local key 77E9A578 into its own MADPastry cluster. 

As described in Section 4.2, MADPastry clusters are made up of nodes that share 
a common overlay ID prefix so that they are close to each other in the overlay ID 
space. With Random Landmarking, these overlay neighbors are also likely to be 
close to one another in the physical network. Hence, intra-cluster communication 
can be expected to travel only short physical paths. Therefore, when a node needs 
to lookup the address of a certain resource, it will generate the regular resource 
hash key (by hashing the resource's URI) as described above. Before engaging in 
a potentially cross-network indirect routing process to find the corresponding 
resource descriptor, the node will first replace the descriptor key's prefix with its 
own cluster prefix. To restrict the lookup process – if possible – to nodes in its 
physical vicinity, the lookup request is then first routed to the appropriate local 
cluster member to see whether a matching descriptor can already be found in the 
local cluster. This might, for example, be the case with popular files or standard 
services that are hosted by multiple nodes. Only if this local lookup provides no 
(appropriate) answer, will the request be forwarded as in a regular network-wide 
lookup process. 

This process is illustrated in Figure 6.4. When node 17 wants to share its 
resource "http://mynode.net/my_resource", it will generate its regular hash key 
B7E9A578. As before, node 17 will then send an advertisement towards that key 
that will eventually be delivered to node 79 whose overlay ID is closest to the 
resource's hash key. Additionally, node 17 will also store its advertisement locally 
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Figure 6.4 Resource advertisement and discovery with local replications. 
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in its own cluster. For this purpose, node 17 generates the local key for the 
resource by replacing the prefix of the hash key with its own overlay ID prefix, 
which yields the key 77E9A578. It will then use MADPastry to route the extra 
advertisement to that local key, which will be delivered to node 81 with overlay 
ID 77E99301 who is responsible for the local key. Analogously, when node 63 is 
interested in the resource "http://mynode.net/my_resource", it too will generate 
the resource's regular hash key B7E9A578. However, before issuing a global 
resource discovery request, node 63 will first check its own local cluster for a 
matching resource descriptor. For this purpose, node 63 produces the local key 
A7E9A578 and routes a request using MADPastry to the node responsible for 
that key – in this example node 3 with overlay ID A7E9A102. Node 3 will then 
check its local repository for a replication of a matching resource descriptor and 
reply to node 63 with a found descriptor or, otherwise, node 3 will forward the 
request under its global hash key so that will be eventually delivered to node 79 
as described before. 

6.5 Handovers and Caching 

When a MADPastry node moves from one cluster to another, it will eventually 
join the new cluster by assigning itself a new overlay ID that shares a common 
prefix with its cluster members. Therefore, when a MADPastry node running 
MAPNaS changes its cluster membership, it needs to pass the resource 
descriptors that are in its local repository to its old "left" and "right" leaf set 
members as those two nodes will now be numerically closest to the corresponding 
resource descriptor keys. Furthermore, when the rejoin process under its new 
overlay ID is done, it needs to acquire from its new "left" and "right" leaf set 
members those resource descriptors for whose keys it has now become 
responsible.  

Since a handover packet could be lost – e.g. due to collision, etc. – a node can 
potentially end up having some resource descriptors in its local repository that it 
is actually not responsible for (any longer). To take care of such incidences, each 
node periodically checks its local repository for such descriptors and hands them 
over, if need be, to the best candidates as proposed by its Pastry leaf set or 
routing table. 

Furthermore, in MANETs, a node typically overhears a good number of packets 
that are not destined for it. Exploiting this virtually cost-free (in terms of 
network traffic) extra information, a MAPNaS node caches the information of all 
advertisement, handover, and lookup response packets that it overhears. Since 
the storage capabilities of mobile nodes are usually scarce and since resource 
descriptor can become stale, these cache descriptors are tagged with a simple 
timestamp (e.g. 30s) after which they expire. Of course, cached descriptors are 
not handed over in case of a cluster membership change. When an intermediate 
node on the physical path of an overlay hop is to forward a lookup request, it first 
checks its own local cache to see whether it can already satisfy the request. 
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6.6 Experimental Results 

To evaluate the performance of MAPNaS, a MAPNaS reference application was 
implemented running on top of a MADPastry routing agent in ns-2. The 
fundamental question to be answered in MANETs when dealing with elaborate 
approaches such as MAPNaS running on top of MADPastry, is whether the effort 
of maintaining the data structures is really worthwhile. In the case of MAPNaS, 
the question is whether there is really anything to be gained from going through 
the process of advertising resources, handing over resource descriptors, 
maintaining MADPastry's routing tables, etc. Or, would it be absolutely 
sufficient if nodes did not advertise their resources at all and if resource 
discovery requests were, instead, simply broadcast through the network? For this 
purpose, a second reference application was implemented as well where nodes do 
not publicly advertise their own resources, and where resource discovery requests 
are simply broadcast (already forwarded requests will not be forwarded a second 
time). Every receiving node checks its own resources and if there is a match, it 
sends back a direct response using AODV. 

Similar to the previous chapter, the following metrics are analyzed: 

Success Rate. This is the percentage of random requests that eventually deliver 
a response containing the correct resource descriptor back to the originator node. 
In other words, this is the round-trip (request + response) success rate of all 
resource discoveries. 

Packet Overhead. This is the total number of packets that are forwarded 
during the entire simulation. This count is increased whenever a node forwards a 
packet to the next physical hop – in other words, whenever the MAC layer of a 
node is being passed a packet down from an upper layer. Hence, it includes all 
application and router packets such as AODV route requests and replies, 
MADPastry maintenance packets, and MAPNaS resource advertisements, 
requests and replies. 

Overall Traffic. Since many different packet types (e.g. AODV route requests, 
MADPastry packets, resource advertisements, handover packets, etc.) of various 
packet lengths are transmitted during a simulation run, not merely the total 
packet count is analyzed. Additionally, the total network traffic in Kbytes that is 
created during the simulated hour is also considered. Whenever a node forwards 
a packet, this figure is increased by the packet size. Again, this figure includes all 
routing and application level packet types (AODV, MADPastry and MAPNaS 
packets). 

As in the chapter before, all simulations that were carried out modeled wireless 
networks of 250 nodes over the course of one (simulated) hour. Nodes are always 
moving around according to the random way point model with 0s pause time 
(constant movement) and at a steady speed of 1.4 m/s – a quick walking speed. 
For data transmission, nodes are, again, using the 802.11 communication 
standard with a transmission range of 250m. The node density in the 
investigated networks is always 100 nodes/km². All MAPNaS nodes periodically 
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send out requests for a randomly picked resource. Again, a 32-bit overlay ID 
space is assumed with hexadecimal overlay IDs. In other words, each overlay ID 
consists of 8 hexadecimals digits. Please refer to Appendix 9.2 for MADPastry's 
system parameters and the values used throughout this section. 

6.6.1 Basic Results 
In a first set of simulations, MAPNaS on top of MADPastry is compared against 
the simple broadcast approach with AODV. In both applications, each node issues 
a request for a random resource descriptor every 10 seconds. Furthermore, each 
node shares 5 resources. To measure the basic results of both systems, nodes do 
not try to lookup the resources in their own cluster first by fixing the respective 
resource keys, but, instead, they always lookup the resources' regular hash keys 

Table 6.1 Simulation parameters and values – basic results. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random request interval (per node) 10s 

Resources shared per node 5 (1250 total) 

Local lookups first no 
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Figure 6.5 Success rates - basic results. 
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right away (although nodes still publish local replications of their resources when 
they change cluster membership). Table 6.1 provides an overview of the 
simulation parameters and their respective values. 

Figure 6.5 compares the success rates of MAPNaS against the broadcast 
approach. Without the caching of overheard packets, MAPNaS on top of 
MADPastry achieves a drastically higher success rate than the broadcast 
approach does (87% vs. 28%). When nodes cache the content of packets they 
overhear, a modified version of the broadcast application is used as a network 
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Figure 6.6 Total number of packets sent. 
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Figure 6.7 Overall traffic. 



 99

wide broadcast could hardly benefit from local caches (even if a nearby node could 
already satisfy an originator's request, it could not prevent other nodes from still 
forwarding the broadcast request). Therefore, a simple form of expanding ring 
search is used instead. The broadcast application will first limit the propagation 
of its requests to a TTL of 3. Only if no cached entry could be found in that local 
region, will the request be broadcast throughout the network. Without updates, 
objects remain in the cache for 30s. As can be seen, both applications can further 
increase their success rate in combination with caching, but the difference is still 
huge (91% vs. 32%). 

There are two main reasons for MAPNaS's much better performance. First of all, 
in a 250-node network, the broadcast application produces significantly more 
traffic (between 2-3 times more) than MAPNaS over MADPastry does – both in 
terms of the number of forwarded packets as well as in terms of the traffic 
generated overall – as Figure 6.6 and Figure 6.7 demonstrate. Because of this 
higher traffic, there are clearly more packet losses with the broadcast application 
due to factors such as collisions and interference. Thus request and responses are 
often dropped before they reach the appropriate destination. Secondly, the overall 
traffic of the broadcast application is entirely made up of broadcast requests, 
AODV packets, and response messages, all of which usually affect the entire 
network. With MAPNaS on the other hand, a sizable portion of the overall traffic 
stems from MADPastry and is thus often restricted to certain clusters. 

6.6.2 Local Replications 
In the next set of simulations, the benefits of local replications are examined. For 
this purpose, three different traffic patterns are considered. First of all, as a 
reference line, the scenario from the previous section is presented again where 
nodes request random resources using their respective regular hash keys right 
away and do not try to lookup the resources' replications in their local clusters 
first ("random – no local tries"). In the second traffic pattern ("random – try 

Table 6.2 Simulation parameters and values – local replications. 

Simulation Parameter Value range 

Simulation duration 3600s (simulated) 

Network size 250 

Network density 100 nodes/km² 

Node mobility 1.4m/s (constant, 0s pause time) 

Random request interval (per node) 10s 

Resources shared per node 5 (1250 total) 

Local lookups first yes 

Traffic pattern Random requests, 80% requests for 
local resources 
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locally first"), nodes still request random resources. This time, however, a node 
always tries to first lookup a possible replication of the desired resource in its 
local cluster. In the third traffic pattern ("80% local"), nodes will turn out to 
request resources that are hosted by nodes from their own cluster (without 
actively being aware of this) in 80% of the cases. Table 6.2 provides an overview 
of the simulation parameters and their respective values. 

As there are no overlay clusters in the broadcast application that would allow for 
a deterministic way of inserting local replicas and since nodes do not advertise 
their resources there, it is hard to compare the performance of MAPNaS with 
local replications against the broadcast application in a fair and meaningful 
manner. For the sake of simplicity and to provide a reference line, the expanding 
ring search from the previous section is used as an approximation. 

Figure 6.8 shows the success rates that MAPNaS and the broadcast-based 
approach achieve in the various traffic patterns. As can be seen, local replications 
should be favored in situations where nodes are likely to request resources that 
are hosted in their vicinity. When nodes display a behavior where they request 
resources that are hosted by nodes in their own cluster in 80% of the cases, the 
success rate is increased to over 95%. This is because local requests (i.e. requests 
that are sent to nodes in the same cluster) are very likely to travel shorter 
physical paths and are thus more likely to be successfully delivered. On the other 
hand, in scenarios where nodes request resources that are hosted by arbitrary 
nodes, the (often unsuccessful) initial local lookups do not help improve the 
success rate. This is because by first issuing a local request, that is unlikely to be 
satisfied and thus likely needs to be redirected to the global directory node, the 
accumulated path length of a resource request increases, which, in turn, 
adversely affects the probability of a successful delivery (and, thus, cancels out 
the positive effects of the occasional local hits). Please note that, even in this 
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Figure 6.8 Success rate vs. traffic pattern. 
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unfavorable case, MAPNaS still significantly outperforms the broadcast-based 
approach by a factor of almost 3 (91% vs. 32%). 

Figure 6.9 depicts the generated traffic. For the random traffic pattern, the figure 
with initial local lookups is slightly higher than the figure without initial local 
lookups due to the longer lookup paths (unsuccessful initial local lookup + global 
lookup). In a traffic pattern where nodes request local resources 80% of the time, 
however, the shorter lookup paths (local lookups will often be successful, thus 
there will be no need to start a global lookup) help lower the overall traffic by 
12% compared to the random scenario without initial first lookups. 

6.7 Related Work 

As already described, numerous approaches have been proposed for service 
discovery in MANETs. Please refer to Section 3.4 for an overview of the various 
concepts employed in this area. 

In the Internet, several systems have been proposed to build a completely 
distributed DNS using DHTs [2, 6, 8, 43, 61]. Similar in spirit to MAPNaS, the 
general idea, here, is always to store the entries under their hash keys in a DHT 
and to retrieve them using the key-based routing provided by the DHT. However, 
due to the usage of conventional DHTs, these systems are not well-suited for 
MANETs. It was the purpose of MAPNaS to demonstrate how to implement such 
DHT-based service discovery for MANETs. 
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Figure 6.9 Overall traffic vs. traffic pattern. 
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6.8 Summary 

MAPNaS provides efficient DHT-based service discovery for MANETs by using 
MADPastry as its DHT building block. Thus, instead of having a number of 
dedicated directory servers, every MAPNaS node serves both as a resource 
directory for certain resources and as a host of some resources (its own). 

Through simulations, it has been shown that MAPNaS on top of MADPastry 
achieves significantly better lookup success rates than a naïve broadcast-based 
reference application while also producing significantly lower amounts of 
network traffic. For a comprehensive assessment of MAPNaS's performance, of 
course, further reference applications would clearly be required. This, however, is 
considered beyond the scope of this thesis. Instead, the implementation of 
MAPNaS serves two distinct purposes. First of all, it is a proof-of-concept for the 
practicality of MADPastry to serve as a general-purpose building block for 
distributed network applications in MANETs. Secondly, MAPNaS demonstrates 
how to build an efficient DHT-based name service in MANETs so that existing 
Internet-based distributed name service approaches could easily be adapted for 
the deployment in MANETs. 
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