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The Lifshitz-type semimetal-insulator transition, which is a transition of the electronic topology,

has been considered as the most fundamental metal-insulator transition. Here, we present

resistivity measurements under pressure in the vicinity of the quantum critical point of fcc Yb.

We apply a previously suggested scaling for this type of transition and identify its universality

class. Moreover, we observe an anomaly in the screening coefficient A of the T2 term in the

resistivity at low temperatures in the metallic phase. We suggest an interpretation of this

phenomenon as an effect of doping by Ca impurities unintentionally present in the Yb crystals.

The observed behavior may very well be applicable to any doped system in the vicinity of such a

transition. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4825073]

I. INTRODUCTION

An electronic topological continuous phase transition

(often referred to as a “Lifshitz transition”) corresponds to a

drastic change of the Fermi surface. This can be for instance

the vanishing or the appearance of an electron or hole pocket.1

Clearly, if each and every electron and hole pocket of a

semimetal vanishes and a gapped state remains, the material

undergoes a transition from a semimetallic compressible

quantum-matter state to a trivially gapped state of the Bloch-

Wilson type.2 This type of metal-insulator transition (MIT)—a

so-called “Wilson transition”—has been considered to be the

simplest and most fundamental type of MIT, since no chemical

changes, magnetic phenomena or other concomitant phenom-

ena are involved.3 However, probably due to its apparent sim-

plicity, in most review papers on MITs the Wilson transition is

discussed only briefly.4,5 Recently, there has been renewed in-

terest in this topic, due to the implied unusual quantum critical-

ity of Lifshitz transitions,6 and also due to new experimental

evidence for the existence of possible quasi-particle interac-

tions that avoid such Wilson transitions.7,8

The pressure-induced MIT in fcc Ytterbium was supposed

early on to offer a perfect example of a Wilson transition.9 The

material becomes insulating under modest pressures of about

15 kbars,10,11 most likely due to a hybridization of the valence

s-p bands with the empty d states above the Fermi level.12 The

universality of such a transition has been described by

Continentino.13,14 In addition to our results on the effects of

slight impurity doping on Lifshitz transitions, this paper also

gives—to our knowledge the first—application of the underly-

ing scaling theory to these transitions.

II. EXPERIMENTS

Here, we present temperature-dependent measurements

of the AC resistivity of bulk ytterbium under varying hydro-

static pressures. The fcc Yb sample was purchased from Alfa

Aesar and has a nominal purity of 99.9%, with about 0.1%

Ca impurities. Our measurements cover the pressure range

from 1 bar to 30 kbars and the temperature range from 1.4 to

300 K. Measurements were performed using a 4-point probe

with an AC resistance bridge (LR-700). The sample was

installed in a standard piston-cylinder pressure cell with a

mixture of Fluorinert F77 and F70 as the pressure transmit-

ting medium. The pressure was applied while measuring the

resistance of a manganin wire to gain a rough measure of the

applied pressure. During the measurements, the supercon-

ducting transition of a lead sample inside the cell was deter-

mined to provide a precise value of the applied pressure at

low temperatures. The low temperatures were obtained using

a 4He flow cryostat.

The measurements were performed without stabilizing

the temperature at each measurement point. Instead, mea-

surement points were recorded at a cooling rate of around

3 K per hour in the critical regions (i.e., at low temperatures).

If the cooling rate was poorly controlled or anomalies were

observed, a second measurement was performed by warming

up the cold sample slowly and comparing the resistivity

curve from the cooling with that from the warming process.

III. RESULTS

An overview of the measurements is presented in Fig. 1(a).

R-T-curves were determined at 25 different pressures between

0 and 30 kbars. As can readily be seen from the figure, resis-

tivity measurements show, as expected, a positive dq=dT in

the metallic phase. A quantitative analysis reveals that the re-

sistivity in the metallic phase at temperatures below 15 K can

be well described by qðTÞ ¼ q0 þ AT2 þ BT5. At 1 K, the

value of B � T3 is about three orders of magnitude smaller than

A, and it is of the same order of magnitude at 10 K. A nearly

pure T2 dependence can be observed up to 8 K (see the fits in

the appendix). The temperature below which the function
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gives a good fit remains constant over the pressure range from

0 to 12 kbars, as can be seen in Fig. 2(d).

The T5 dependence is a necessary feature that is directly

related to the phonon contribution to the resistivity, while q0

is the residual resistivity, which is generally attributed to

impurities and defects in the metallic crystal. The T2 depend-

ence at low temperatures in metals is often attributed to

Fermi liquid behavior. However, the low value of A and the

fact that TA, as indicated in Fig. 2(d), remains constant, con-

tradict such an interpretation. This will be further discussed

below in Sec. IV, where we suggest that Taylor-Koshino

scattering16 is responsible for the observed behavior. In

Figs. 2(a) and 2(b), the pressure dependencies of A and q0

are shown. A strong kink is observed in A at 10 kbars. Our

data also show a kink-like feature in q0 at the same pressure,

as can be seen more clearly in the q0 vs. P�1=2 plot given as

the inset in Fig. 2(b). The P�1=2 scaling follows from simple

scaling laws close to a Lifshitz transition.13 Above 10 kbars,

A decreases rather rapidly with increasing pressure.

Measurements at pressures above 12 kbars show strong devi-

ations from T2 behavior and do not permit us to determine q0

reliably.

Above 15 K, all curves up to 10(1) kbars show generally

positive dq=dT, and the insulating phase exhibits the

expected negative dq=dT behavior over the whole tempera-

ture range. Above 10 kbars, the resistivity slope at tempera-

tures above 80 K becomes negative. Below this temperature,

the slope remains positive. Above 14 kbars, the system

seems to be a semiconductor. It should be pointed out that

our measurements do not reveal any resistivity divergence

FIG. 1. Resistivity measurements and the corresponding scaling for critical exponents � ¼ 1=2; �z ¼ 1, and Pc ¼ 14:3 kbars. (a) For clarity only, selected

resistivity curves are shown in the left panel. Different pressures correspond to different colors as indicated by the legend on the right side. Colors were chosen

in such a way that red-colored curves correspond to measurements in the semiconducting phase and blue/green-colored curves correspond to those in the me-

tallic phase. The inset shows the gap size as a function of the pressure. The data points were extracted from the exponential slope at higher temperatures in the

insulating phase. (b) All measured data (including the data, which has not been shown in the left panel) in the scaling form represented by Eq. (1), with their re-

spective critical exponents. All of the measured resistivity curves are included in this figure.

FIG. 2. The pressure dependence of

essential metallic constants: (a) The

pressure dependence of the coefficient

A as determined from a fit to the resis-

tivity of the form q ¼ q0 þAT2 þ BT5.

It can be clearly seen that A peaks near

10 kbars. (b) q0 increases over the

whole critical region and becomes

indeterminate around 12 kbars. Inset:

q0 vs:P�1=2. In agreement with the

theory of Lifshitz transitions, the resis-

tivity scales as P�1=2.14 A kink at a

value corresponding to 10(1) kbars is

clearly visible. This would be expected

for any Lifshitz transition.15 (c) A as a

function of q0. Up to 10 kbars, it shows

a positive linear behavior. Above

10 kbars, A decreases. (d) The temper-

ature below which the T2 fit can be

applied remains constant over the

whole pressure range in the metallic

phase.
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on approaching 0 K, as would be expected for a clean insulator.

Instead, the resistivity shows a saturation, and at the highest

pressure measured, a slight slope is seen, indicating a possible

resistivity divergence on approaching 0 K (not shown in the

paper). This will be discussed further in Sec. IV. At pressures

above 18 kbars, the curves show a clear ln q ¼ �D=kBT
behavior for temperatures above the saturation range, as gener-

ally expected for semiconductors.17 In the inset of Fig. 1(a),

the opening of the gap as a function of pressure is exhibited; a

linear extrapolation leads to a pressure corresponding to a zero

gap at 12(2) kbars. Such a linear extrapolation is reasonable

since the gap size should scale linearly with pressure for such a

transition.13 12(2) kbars is rather close to the point where A
vanishes, as mentioned above.

According to Continentino,13,14,18 the scaling law for

the conductivity of a 2nd order MIT is

r ¼ nð2�dÞf
ðPc � PÞ�z

T

� �
; (1)

where d is the dimension of the system, which is naturally 3

in our case. The correlation length n can be estimated to be

proportional to jP� Pcj�� . Universality of this transition is

associated with the critical exponents � ¼ 1=2 and �z ¼ 1.

Furthermore, these exponents are related to the dimensionality

of the system by the quantum hyperscaling relation

2� a ¼ �ðd þ zÞ, where 2� a is the critical exponent for the

heat capacity. In three dimensions, this yields 2� a ¼ 2:5, a

value also used to designate the Lifshitz transition.13,14 The

scaling is visualized in Fig. 2(b) by plotting q �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jPc � Pj

p
vs.

jPc � Pj=T, with Pc ¼ 14:3 kbars. It does not apply at very

low temperatures, where the T2 behavior in the metallic phase

sets in. In the insulating phase, the scaling does not give a

good fit in the saturation range. The corresponding tempera-

ture regions have been suppressed in the scaling plot of

Fig. 1(b). For the remaining data points, the scaling is excel-

lent using Pc ¼ 14:3ð2Þ kbars, and we interpret this pressure

as the critical pressure of the MIT, above which the system

becomes strictly insulating. This scaling plot allows us to

extract the asymptotic form of the scaling, which makes it

possible to determine the value of 2� a to be 2:4 6 0:1. This

is in good agreement with the expected value of 2.5.

IV. DISCUSSION

In a nutshell, we make the following observations that

are worthy of further discussion:

• At 10ð1Þ kbars, we observe a kink in A, which is accom-

panied by a kink in q0.
• The linear extrapolation of the gap size from resistivity

measurements in the insulating phase leads to a zero-gap

pressure of 12ð2Þ kbars.
• The scaling gives a critical pressure for the metal-

insulator transition of 14:3ð2Þ kbars.
• The temperature below which the resistivity can be fitted

by qðTÞ ¼ q0 þ AT2 þ BT5 remains constant from 0 to

12 kbars.
• The resistivity seems to saturate when approaching low

temperatures in the presumably semiconducting phase,

and shows only a slight upward turn for the 29 kbars curve

at around 4 K.

Before giving a further discussion concerning the MIT, we

should mention that theory and experiment agree that there is an

MIT of the Lifshitz type in this material,3,10,12,18–20 and our re-

sistivity curves agree very well with previous work on the same

material,11 which makes it very unlikely that our observed sys-

tem is not fcc Yb and/or does not undergo the MIT as proposed.

Our data interpretation leads us to believe that the gap-

opening pressure corresponds to 12ð2Þ kbars, as established

from the fit of the gap size. It should be mentioned that—

although this value agrees roughly with the measured value

for the MIT of 14:3ð2Þ kbar established from the scaling

within quoted errors—the fact that the two values have been

extracted from exactly the same data can be seen as an indi-

cation that these two values are indeed different. The same

consideration applies to the pressure value for the kink in A,

which, at 10ð1Þ kbars, is rather far from 14.3 kbars, but also

does not likely correspond to the gap opening.

We hold that the above observations can be well explained

by assuming that the Ca impurities present in our Yb crystal

dope the material. As will be discussed below, this assumption

is consistent with all of the observations mentioned above.

To visualize the effect of Ca-impurities on a Wilson

transition, we start with a thought experiment. We imagine a

pure, defect- and disorder-free crystal with a vanishing indi-

rect band gap at the Fermi level (zero-gap semiconductor).

As expected for ytterbium, we further assume only one va-

lence and one conduction band. If impurities which could

serve as donors or acceptors are introduced into this intrinsic

system, the energy level of impurity-related holes or elec-

trons must lie in a region of the continuous energy spec-

trum.21 Naturally in such a system, we expect an extremely

low density of states at the Fermi level. Therefore, a small

number of donors can be expected to show a strong effect.

The resulting three different steps from a semimetal to a

semiconductor with impurities are shown in Fig. 3. Impurity

doping will lead to a shift of the Fermi level. Approaching

from the semiconducting side, the sample must become me-

tallic when the band gap is smaller than the impurity energy

level. The consequence is a strong doping sensitivity of the

underlying system. Therefore, the transition will occur in

steps as demonstrated in Fig. 3. Since the Yb crystal contains

FIG. 3. Schematic of the four electronic configurations of the metal-

insulator transition as proposed. The pure material is a doped semimetal. At

10 kbars, the van Hove singularity of the lower band passes through the

Fermi level, leading to a Lifshitz transition of order 2.5. At 12 kbars, the

opening of the gap approaches 0. The system does not undergo a phase tran-

sition at this point. The metal-insulator transition occurs when the other van

Hove singularity passes through the Fermi level.

143711-3 Enderlein et al. J. Appl. Phys. 114, 143711 (2013)
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mainly Ca impurities, we suggest that these impurities create

the situation described.

A natural question that arises is where the energy levels

of these impurities lie. The slope that is shown in the inset of

Fig. 1(b) suggests that their energies lie in the meV range.

The facts that the gap opens with roughly 1:5 meV=kbar, and

about 2 kbars lie between the opening of the gap and the last

Lifshitz transition supports this. However, these are very

rough values, since it is likely that the permittivity strongly

changes during the transition, which would make the impu-

rity energy levels pressure dependent.

In the following, we will discuss the T2 behavior of the

Yb resistivity in the metallic phase. Mechanisms which can

cause a T2 dependence of the resistivity at low temperatures

include electron-electron scattering, electron-hole scattering,22

and impurity-phonon scattering16 (along with others23). In

previous work, the T2 behavior in Yb close to the Wilson tran-

sition has been attributed to electron-hole scattering of the

Baber type.3,10,11,22 However, Baber scattering contradicts

observed phenomena. We argue that the measured T2 behavior

might in fact originate from inelastic scattering on impurity

phonons (Taylor-Koshino scattering).16 The explanation via

Baber scattering is particularly inappropriate since scaling

theory predicts a vanishing coherence temperature in the vi-

cinity of the transition (Tcoh / D�z).4 The coherence tempera-

ture can naturally be determined from the temperature below

which the T2 behavior still persists. Our measurements reveal

this temperature to be independent of pressure, as demon-

strated in Fig. 2(d). This is a strong sign that the origin of the

behavior lies in a process that is not affected by the approach

to the MIT. Moreover, for electron-electron scattering, A
should diverge when approaching the MIT. Instead, it peaks at

10 kbars and then drops monotonically to 12 kbars.

The T2 coefficient A shows a linear dependence on q0 up

to the first Lifshitz transition at 10 kbars (Fig. 2(c)). This is a

typical signature of Taylor-Koshino scattering. However, the

number and the error bars of our data points do not allow a

final decision about the proportionality of the two variables.

One might think that the fact that A drops sharply contradicts

the hypothesis of an impurity-phonon scattering mechanism.

Therefore, it should be pointed out that the number of charge

carriers should drop strongly after the first Lifshitz transition.

This will greatly influence scattering mechanisms, and we are

not aware of any calculations of impurity-induced scattering

mechanisms in the direct vicinity of a Wilson transition.

Therefore, we leave the final interpretation of the T2 behavior

open, but suggest Taylor-Koshino scattering as the most satis-

factory way to explain this behavior. This interpretation is quite

consistent with the other observed impurity-related effects.

As previously mentioned, the resistivity in the low tem-

perature range does not obey the scaling law. This is in

agreement with impurity-induced effects, as the Wilson tran-

sition is a transition of the topology of the Fermi surface and

a disordered system cannot exhibit such a transition. This

suggests that in the low-temperature regime, not only in the

metallic phase, but also in the semiconducting phase, the re-

sistivity behavior is dominated by impurities. Therefore, the

small band-gap semiconducting system is an extrinsic semi-

conductor. This explains the saturation range of the

resistivity in the insulating phase. Impurity-induced broaden-

ing of the bands, as discussed theoretically by Blanter and

collaborators,15 can be neglected, since its effects are too

weak to be apparent in our data.

A Lifshitz transition should be accompanied by a kink

in the resistivity,15 as we have observed, compare Fig. 2(b).

However, if it is accompanied by a metal-insulator transition,

the residual conductivity should be zero and therefore the re-

sidual resistivity infinite. Accordingly, we interpret our

results in such way that the Ca impurities induce doping as

demonstrated in Fig. 3.

Since the three-step process, as exemplified in Fig. 3, is

clearly more complicated than a simple Wilson transition,

we want to refer to the points discussed above to compare

the two scenarios:

• The kink in A at 10 kbars (Fig. 2(a)): Assuming a single

Wilson transition, it would be very hard to find an expla-

nation for the kink or for any rapid change in the slope of

the A vs. P curve. However, a kink could be explained nat-

urally by the three-step process, as discussed above.
• The q0 vs. P curve: A weak kink in the resistivity would

be expected in the case of a Lifshitz transition;15 since the

resistivity should scale with the critical exponent

�� ¼ �1=2, the kink becomes clearly visible in the

q0 vs:P�1=2 curve. This observed kink might be difficult to

explain within the model of a single Wilson transition.
• The saturation of the resistivity on approaching low tempera-

tures: This phenomenon would be very puzzling when con-

sidering an undoped crystal (as would be necessary for a

single Wilson transition). Since the existence of the MIT is

well established, it seems necessary to interpret these curves

as belonging to an extrinsic semiconductor. This, however,

establishes the three-step process, as explained above.
• The difference between the pressure for the gap opening

(12ð2Þ kbars) and the critical pressure, as calculated from
scaling (14:3ð2Þ kbars): Considering simply the error bars,

it might seem possible that these two analyses actually

give the same value, although this is not very probable.

This interpretation is, however, unlikely, since the two

values were extracted from the same data. An attempt to

use 12 kbars as the critical pressure for the scaling does

not yield acceptable results.

V. CONCLUSIONS

We have performed temperature- and pressure-

dependent resistivity measurements on fcc bulk ytterbium.

Our measurements reveal the opening of a band gap at

approximately 12 kbars. This gap opening is not directly

accompanied by a Lifshitz transition, since the transitions of

the pocket-vanishing type appear before and after this gap

opening, namely at around 10(2) and 14.3(2) kbars. The MIT

that accompanies the transition at 14.3 kbars can be perfectly

scaled with the approach of Continentino for Wilson

transitions.13

To our present knowledge, this work, which represents

the observation of a pure Wilson transition, is the first to

show an MIT with a scaling which completely neglects

143711-4 Enderlein et al. J. Appl. Phys. 114, 143711 (2013)
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electron-electron interactions. Moreover, we have shown the

effect of impurities on the transport behavior of the observed

system. This implies the T2 behavior of the resistivity, previ-

ously interpreted as due to Baber scattering at low tempera-

tures in the metallic phase, as well as the resistivity

saturation in the semiconducting phase and a doping-induced

splitting of the pressure-degenerate quantum criticality.
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APPENDIX: FITS APPLIED

Representative fits of the low-temperature regime in the

metallic range are shown in the upper row of Fig. 4. The fits

for the evaluation of the data were obtained in a straightfor-

ward manner by fitting the function aþ bT2 þ cT5 using the

IGOR Pro curve fitting tool to the original curves. The

images in the upper row of Fig. 4 all give q vs. T2 (neglecting

the T5 term), since it is easier to see the T2 behavior with the

unaided eye in this way.

The lower row in Fig. 4 shows the fits in the intrinsic

semiconducting region. Deviations in the low-temperature

range appear naturally when impurity doping is present. The

slight deviations at higher temperatures are very probably due

to measurement errors, since close to room temperature the

temperature control during the measurements was less reliable.
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