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Abstract: The synthesis of nearly arbitrary supercontinuum pulse forms is
demonstrated with sub-pulse structures that maintain a temporal resolution
in the few-cycle regime. Spectral broadening of the 35 fs input pulses to
supercontinuum bandwidths is attained in a controlled two-stage sequential
filamentation in air at atmospheric pressure, facilitating a homogeneous
power density over the full spectral envelope in the visible to near infrared
spectral range. Only standard optics and a liquid crystal spatial light
modulator (LC-SLM) are employed for achieving pulse compression to the
sub 5 fs regime with pulse energies of up to 60 µJ and a peak power of
12 GW. This constitutes the starting point for further pulse form synthesis
via phase modulation within the sampling limit of the pulse shaper.
Transient grating frequency-resolved optical gating (TG-FROG) allows
for the characterization of pulse forms that extend over several hundred
femtoseconds with few-cycle substructures.
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27. S. Rausch, T. Binhammer, A. Harth, F. Kärtner, and U. Morgner, “Few-cycle femtosecond field synthesizer,” Opt.
Express 16, 17410–17419 (2008).

28. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instr. 21, 1929–1960 (2000).
29. M. Wollenhaupt, A. Assion, and T. Baumert, “Femtosecond laser pulses: Linear properties, manipulation, gen-

eration and measurement,” in Springer Handbook of Lasers and Optics, , F. Träger, ed. (Springer, Berlin, 2007),
pp. 937–983.

30. R. Trebino, K. DeLong, D. Fittinghoff, J. Sweetser, M. Krumbugel, B. Richman, and D. Kane, “Measuring
ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instr. 68,
3277–3295 (1997).

31. B. E. Schmidt, W. Unrau, A. Mirabal, S. Li, M. Krenz, L. Wöste, and T. Siebert, “Poor man’s source for sub 7 fs:
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1. Introduction

Recent developments for the generation and manipulation of high bandwidth ultrashort laser
pulses are continuously improving the light sources available in the few to single cycle regime
[1, 2]. Central to these efforts are strategies that provide extended nonlinear propagation un-
der controlled conditions such as hollow core and photonic crystal fibers as well as filamenta-
tion [3–9]. In this context, self-compression to the single-cycle regime via filamentation in pres-
sure gradients has been achieved and a low phase jitter in the preservation of the carrier enve-
lope phase (CEP) during spectral broadening in filamentation has been demonstrated [10–12].
The self-compression to the few-cycle regime in two color, two-pulse co-filamentation further
exemplifies the capabilities of cross-modulation strategies [13–15]. Efforts towards spectral
broadening beyond the NIR and visible regime to include ultraviolet components are expand-
ing this pulse compression technique into a spectral regime of short phase cycles [13, 16, 17].
In combination with these techniques, active optical elements such as liquid crystal arrays and
microelectromechanical devices (MEMS) in pulse shaper arrangements have enabled the phase
control necessary for effective pulse compression [17–24]. Phase correction with these types
of systems can facilitate significantly enhanced pulse compression and a new regime of phase
resolution has been demonstrated in liquid crystal double arrays when used as a common path
interferometer for the generation of double pulse sequences [25]. Parallel to the developments
for supercontinuum generation, optical waveform generation in the few-cycle regime with CEP
stabilized laser pulses has been approached, utilizing broadband oscillators or spectral broad-
ening in standard single mode fibers [26,27]. In the following, a configuration is presented that
seeks to contribute to these efforts by utilizing the precise phase manipulation of coherent su-
percontinuum pulses within a 4-f spatial light modulator arrangement for pulse form synthesis
in the few-cycle regime.

2. Methodology

2.1. Experimental setup

As shown in Fig. 1, the general strategy for high-bandwidth pulse form synthesis is realized
by sequential filamentation of amplified femtosecond laser pulses in air with an accompany-
ing chirped mirror pre-compression and a subsequent spectral phase manipulation in a pulse
shaper arrangement. The initial laser pulses are obtained from a standard femtosecond oscilla-
tor and amplifier system. A frequency-doubled Nd:Vanadate laser (Verdi V5, Coherent) pumps
a Ti:Sapphire oscillator (Femtosource Compact, Femtolasers) giving laser pulses of 6 nJ cen-
tered at 805 nm with approximately 90 nm bandwidth at a repetition rate of 80 MHz. Standard
Ti:Sapphire chirped pulse amplification (Odin C, Quantronix) is achieved in a multi-pass ar-
rangement at 1 kHz by pumping with a nanosecond frequency-doubled Nd:YLF giving ampli-
fied pulses at 807 nm and a bandwidth of 46 nm with an adjustable pulse energy between 0.4
and 1.4 mJ and pulse durations of sub 40 fs.

For a mild spectral broadening of the initial output of the amplifier system, a first filamen-
tation in air with a moderate pulse energy of 430 µJ is realized by focusing with a spherical
mirror (SM1: R = 4000 mm) for initiating filamentation. Collimation and compression after
filamentation is achieved with a spherical mirror (SM2: R = 5000 mm) and 2 double bounces
on a GVD-oscillation compensated chirped mirror pair (CM1 and CM2: Layertec) with an av-
erage GVD of -60 fs2/rad per double bounce over the spectral range of 700 to 900 nm. The
pulses are attenuated to 300 µJ by means of an iris (I2) and guided into a second filamentation
stage to extend the spectrum further into the visible spectral range. This is achieved by focus-
ing and collimating with spherical mirrors (SM3 and SM4: R = 3000 mm and R = 2500 mm,
respectively). Pre-compression of the generated supercontinuum is carried out after the second
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filamentation stage with 10 double bounces on a second chirped mirror pair (CM3 and CM4:
Layertec) with an average GVD of -40 fs2/rad over the spectral range of 510 to 920 nm. The
number of reflections for pre-compression after the second filamentation stage is chosen in view
of the dispersion in the LC-SLM and optical path that follows. It is also important to note that
the chirped mirror pair does not have a constant GVD over the full spectral range, which will
be discussed in detail in the following section.

Fig. 1. Schematic of the experimental setup for supercontinuum generation and pulse
shaping. (A) First filamentation stage and compression: (I1) iris, (SM1) concave spher-
ical mirror, R = 4000 mm; (SM2) concave spherical mirror, R = 5000 mm; (CM1,
CM2) chirped mirror pair, GVD -60 fs2rad−1/double bounce. (B) Second filamentation
stage and pre-compression: (I2) iris; (SM3) concave spherical mirror, R = 3000 mm;
(SM4) concave spherical mirror, R = 2500 mm; (CM3, CM4) chirped mirror pair, GVD
-40 fs2rad−1/double bounce. (C) Pulse shaper: (G1, G2) diffraction grating, 300 l/mm and
600 nm blaze; (CCM1, CCM2) concave cylindrical mirrors, R = 500 mm; (LC-SLM) spa-
tial light modulator, 2x640 pixels. (D) Frequency-resolved optical gating, TG-FROG: (I3)
spatial filter; (FM1, FM2) D-shaped mirrors; (SM5) concave spherical mirror, R = 500 mm;
(BK7) glass platelet, BK7; (I4) iris; (L) lens, f = 100 mm; (S) fiber spectrometer.

2.2. LC-SLM calibration

The spectrally broadened and pre-compressed supercontinuum pulses that range from approx-
imately 550 to 900 nm at 10% maximum intensity are guided into a 4-f zero dispersion com-
pressor setup (G1 and G2: silver reflection grating, 300 l/mm, 600 nm blaze, HORIBA - Jobin
Yvon; CCM1 and CCM2, concave cylindrical mirrors, R = 500 mm) with a 640 pixel double
array LC-SLM placed in the Fourier plane (SLM-640-D-VN, Cambridge Research & Instru-
mentation). The relative phase retardation attainable by transmission of the spectrally dispersed
supercontinuum through the pulse shaper arrangement is strongly wavelength dependent, which
necessitates an individual calibration of each pixel pair in the LC-SLM rather than a global cal-
ibration of the double array. This is accomplished by recording the transmission through an
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analyzer (wire-grid polarizer, Edmund Optics) with a spectrometer (USB 2000, Ocean Optics)
as a function of the voltage applied to the pixels of one array of the LC-SLM, while the voltage
applied to the other array is held constant. The fast (x) and slow (y) axes of the liquid crystals
in one array are orientated at 45 and -45◦ relative to the polarization of the input laser pulses
with a 90◦ relative orientation of the crystals in the two pixel arrays. The transmission through
the analyzer is described by the relation,

Tω(V ) = sin2
(

ϕy(V )−ϕx(V )

2

)
(1)

with the voltage dependent transmission Tω(V ) at a specific spectral position ω and the cor-
responding phase retardations ϕx(V ) and ϕy(V) for the fast and slow axis of the individual
pixels [28]. A full oscillation of the transmitted signal as a function of voltage, e.g. from maxi-
mum to maximum, gives a π rotation of the polarization and a corresponding phase-retardation
of 2π at a specific spectral position. The transmission measurement is shown in Panel C of
Fig. 2 for three different pixels of the LC-SLM. In order to assign the phase retardation of a

A B

C
D

Fig. 2. (A) Supercontinuum spectrum after the SLM and polarization analysis set for full
transmission except for a minimum transmission of three selected spectral channels at 550,
700 and 900 nm. (B) Complementary suppression of the full supercontinuum spectrum and
full transmission through three selected pixels each at 550, 700 and 900 nm. (C) Calibration
of the phase retardation giving the transmission for the spectral channels at 550, 700 and
900 nm after polarization analysis as a function of the voltage applied to one array of the
LC-SLM. (D) Spectral calibration of the LC-SLM (green), fit function ω(x) = a/(x− x0)
(black dashed line) and the shaping window τ(x) = π/ω ′(x) (blue line) of the 4f pulse
shaper arrangement. For details, see text.
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specific spectral channel to a pixel, the spectral calibration of the pulse shaper is performed
by scanning the phase retardation in one pixel while maintaining all other pixels constant and
recording the transmitted spectrum of the selected pixel with the spectrometer. This procedure
is scanned across all the pixels of the LC-SLM. Fitting each spectrum with a gaussian function
yields the wavelength transmitted through the corresponding pixel. After spectral calibration, a
phase retardation can be referenced to each pixel.

In order to provide an overview of the working parameters of the pulse shaper arrangement
used in this work, the retardation measurement is shown for three exemplary spectral channels
in Panel C of Fig. 2. The maximal phase amplitude attainable is shown to range from a little
over 6π at 550 nm, approximately 5π at 700 nm to nearly 4π at 900 nm. The approximate
bandwidth transmitted through three pixels at a particular spectral position is illustrated by
setting the phase retardation to minimal transmission at 550, 700 and 900 nm after polarization
analysis in Panel A of Fig. 2. Conversely, in Panel B of the same figure the same pixels are set
to maximal transmission while suppressing the rest of the spectrum. The corresponding spectral
resolution of the pulse shaper setup determines the shaping window τ , the maximal temporal
shift achievable within the sampling limit |δφ | ≤ π , where δφ denotes the phase difference
between two adjacent pixels. The shaping window is given by τ < π/δω with the bandwidth
transmitted through a single pixel given by δω [23, 28, 29]. In Panel D of Fig. 2, the spectral
calibration data and the shaping window as a function of the wavelength or the pixel number is
shown. The later is obtained by fitting the spectral calibration data (angular frequency ω versus
pixel number x) with an analytical function ω(x) = a/(x− x0) and calculating the shaping
window τ(x) = π/ω ′(x). Hereby, ω(x) = a/(x− x0) with the parameters a and x0 is a small-
angle approximation for the projection of the spectrum onto the LC-SLM. The shaping window
ranges from more than a picosecond above 900 nm to a mere 300 fs at 500 nm.

2.3. Pulse characterization (FROG)

The characterization of the initial amplified pulses, the intermediate pulses from filamentation
and the final pulse forms generated with the pulse shaper is achieved via frequency-resolved
optical gating (FROG) in a transient grating (TG), four-wave mixing geometry [30]. The ar-
rangement has been described in previous work [31, 32]. Briefly, the laser pulses are guided
through a spatial filter (I3) that separates the beam into three equivalent sub-pulses (k1, k2, and
k3). A split mirror arrangement (FM1 and FM2) allows for a relative temporal delay of one of
the three sub-pulses (k3) via a mechanical stage (PLS-85, MICOS) and all three pulses are fo-
cused at equal angles in a folded-boxcars arrangement with a common spherical mirror (SM5,
R = 500 mm) into a 0.17 mm thick BK7 glass platelet (BK7). The coherent four-wave mixing
signal is obtained in the direction ks = k1 - k2 + k3 from scattering the delayed sub-pulse (k3)
on the transient optical grating induced by the other two sub-pulses (k1 and k2) in the platelet.
This signal is spatially filtered from the other three beams with an iris (I4) and detected with
a spectrometer (USB2000, Ocean Optics) as a function of the temporal delay of k3 relative to
the pulse pair, k1 and k2. Hereby, the phase matching is determined by the nature of the phase
grating. Particularly the path length of the coherence volume generated by the superposition
of the pulse pair k1 and k2 in the glass platelet determines the bandwidth for phase-matched
scattering of k3. This allows for the flexibility to correlate pulses ranging over variable time
scales and bandwidth.

3. Results and discussion

3.1. Spectral broadening and pulse compression

In order to provide maximal bandwidth for pulse compression and pulse form synthesis, the
route to enhanced spectral broadening via a two-stage filamentation originally established by
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Keller and coworkers is applied here at moderate pulse energies and corresponding peak powers
[10, 31]. This is one possible route for attaining significant contributions in the visible region
of the supercontinuum while simultaneously avoiding a complex spectral phase in the NIR
spectral region when high bandwidth pulses are generated at elevated intensities [6, 10]. The
sequence of FROG traces in Fig. 3 and 4 illustrates the pathway of spectral broadening and
pulse compression from the initial amplifier output to the final supercontinuum pulses after
two-stage filamentation with chirped mirror pre-compression and a refined post-compression
in the pulse shaper. In Panel A and B of Fig. 3, the FROG trace and spectrum of the initial pulse
from the femtosecond amplifier is shown. The seed pulse for filamentation shows no relevant
second order phase contributions and has a duration of 35 fs with a bandwidth of 46 nm FWHM.
Deviations of the pulse duration from the transform limit for this bandwidth are attributed to
residual third order phase contributions. The pulse was attenuated to 430 µJ, which corresponds
to filamentation at a peak power of 12 GW.

While single-stage filamentation with input pulses above the microjoule domain at peak pow-
ers > 20 GW and intensities > 5.0 × 10 13 W/cm2 shows advantageous stability and spectral
broadening with a positive pre-chirp [10, 31], filamentation at moderate conditions was best
realized at pulse compression with maximal GVD compensation, which leaves a residual TOD
component on the amplified pulse as shown in Panel A of Fig. 3. Under these conditions, fila-
mentation in air leads to a structured spectrum shown in Panel D of Fig. 3 that ranges roughly
from 760 to 860 nm, giving a bandwidth of approximately 80 nm at FWHM. A FROG trace
taken after 2 double bounces in the chirped mirror compressor is shown in Panel C of Fig. 3.

B

D

A

C

Fig. 3. Sequence of spectral broadening and pulse compression in the experimental setup
shown in Fig. 1. (A) FROG trace and (B) spectrum of the input pulse from the femtosecond
amplifier. (C) FROG trace and (D) spectrum after first filamentation stage and chirped
mirror pulse compression.
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With a total GVD correction of -120 fs2/rad, a compression to 15 fs can be attained in the first
filamentation stage with a final pulse energy of 400 µJ. The high transmission of approximately
90% together with the significant compression is essential to attain sufficient nonlinearity for
spectral broadening in the second filamentation stage. After spatial filtering with an iris, the
resulting attenuation to 300 µJ provides a peak power of approximately 20 GW for further
filamentation.

The supercontinuum obtained from filamentation with these pulse parameters is shown in
Panel B of Fig. 4. Panel A shows the FROG trace of the pulse after the chirped mirror pre-
compression with the pulse shaper set to zero phase. Panel C and D give the respective FROG
trace and spectrum after full pulse compression with the spectral phase applied to the pulse
shaper that is given in Panel D (blue squares). A significant spectral broadening to a band-
width of approximately 350 nm at 10% maximum over the visible to NIR range from 550 -
900 nm is documented after the chirped mirror pre-compression and spatial light modula-
tor post-compression. In comparison to single-stage filamentation, the contrast in the spectral
power density between the visible to NIR spectral contributions is significantly reduced. This
enhanced yield of visible contributions in the supercontinuum spectrum is critical for efficient
pulse compression and further utilizing the full bandwidth for pulse form synthesis in the pulse
shaper. The final pulse energy obtained after the pulse shaper is 60 µJ, which translates to a

A B

C D

Fig. 4. Sequence of spectral broadening and pulse compression in the experimental setup
shown in Fig. 1. (A) FROG trace after chirped mirror pre-compression (10 double bounces,
-400 fs2/rad) and pulse shaper set to zero phase. (B) Spectrum after the second filamenta-
tion stage. (C) FROG trace and (D) spectrum (black points) after compression with the
spectral phase composed of three second-order phase functions shifted temporally against
one another with additional linear phase ramps (blue squares) set on the pulse shaper (for
details see Table 1).
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transmission of 20% for this second compression stage and a total transmission of 14% with
respect to the initial input pulse. The primary energy losses for this compression stage can
be attributed to the gratings of the pulse shaper arrangement. The typical pulse duration of
4.9 ± 0.4 fs shown in the FROG trace of Panel C in Fig. 4 is achieved with 10 double bounces
in the second chirped mirror compressor resulting in a total GVD correction of -400 fs2/rad
together with a refined phase correction in the pulse shaper.

As shown in Panel D of Fig. 4, the total phase function applied to the LC-SLM to achieve
the final compression is divided into three spectral regions of second-order phase corrections.
These are temporally shifted with an additional linear phase ramp, vary in amplitude and alter-
nate from negative to positive. The functions are explicitly given in Table 1 according to the
formalism summarized by Wollenhaupt et. al [29]. While the pulse shaper allows for more com-
plex phase corrections to be realized by including contributions of higher order phase functions,
this simple and analytical correction allows for stable and reproducible compression to pulse
durations below 5 fs. To understand the strategy of dividing the phase function for compression
into this discrete set of second-order corrections in different spectral regions, it is important to
consider the pre-compression with the respective chirped mirror pair that follows the second
filamentation. While the average GVD from 510 to 920 nm is given at -40 fs2/rad per double
bounce, this value is not constant for all wavelengths. When 10 double bounces are utilized for

Table 1. Summary of the transfer function of the LC-SLM used for pulse compression
and shaping of the supercontinuum following the formalism summarized by Wollenhaupt
et. al. in the Taylor expansion of the complex spectral phase function with the respective
coefficients [29]. Unless specified, ω0 = 3.0 rad/fs and for 7(B) the equivalent quadratic
phase function is given that is adjusted to the sampling points. For details see text.

Fig. Spectral Range Phase Function, ϕ(ω) Coefficients, bn

4.(D) 500-600 nm b1(ω−ω0)
2 +b2ω b1 = +113 fs2/rad

b2 =−32 fs
600-714 nm b1(ω−ω0)

2 b1 =−39 fs
714-950 nm b1(ω−ω0)

2 +b2ω b1 = +173 fs2/rad
b2 =+187 fs

5.(A) 500-950 nm b1 sin(b2ω +b3) b1 = +2.0 rad
b2 = +20 fs
b3 = +4.0 rad

5.(B) 500-950 nm b1 sin(b2ω +b3) b1 = +2.2 rad
b2 = +50 fs
b3 = 0.0 rad

6.(A) 500-724 nm 0 –
724-950 nm b1ω b1 =−600 fs

6.(B) 500-724 nm 0 –
724-950 nm b1ω b1 = +600 fs

6.(C,D) 500-700 nm b1ω b1 =−400 fs
700-950 nm 0 –

7.(B) b1(ω−3.05 rad/fs)2 +b2ω +b3 b1 =−550 fs2/rad
b2 = +585 fs
b3 = +4.25 rad
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a best possible compromise in pre-compression over the full supercontinuum spectrum, a sub-
stantial residual phase is accumulated from the chirped mirror pair. This is evident in the FROG
trace of the pre-compressed pulse with a zero phase written on the LC-SLM, shown in Panel
A of Fig. 4. The FROG trace clearly shows a negative linear chirp in the spectral region above
700 nm, a positive linear chirp from 700 nm to approximately 600 nm and a negative chirp from
600 nm to 510 nm. By utilizing this FROG trace, the phase function for compression could be
approximated. The refined phase function for best possible compression is given in Table 1.

3.2. Supercontinuum pulse shaping

3.2.1. Pulse train generation

Beyond the possibility of a refined pulse compression outlined above, the pulse shaper pro-
vides the capability to generate different pulse forms at supercontinuum bandwidths [20, 32].
For demonstrating this capability, particular emphasis is made on the temporal resolution and
contrast that can be retained when the function of the spatial light modulator is expanded to
the writing of analytical phase functions on the supercontinuum spectrum. Two examples are
chosen in order to illustrate different aspects of pulse form synthesis in the few cycle regime.
In the generation of pulse trains as shown in Fig. 5, the corresponding phase function extends

A

B C

Fig. 5. (A) and (B): FROG traces of supercontinuum pulse trains with a sub-pulse spac-
ing of 20 and 50 fs, utilizing a sinusoidal phase function with a modulation frequency of
∆T−1 = 50 and 20 THz at a modulation depth of 2.0 and 2.2 rad, respectively. The explicit
phase functions are given in Table 1. (C) Spectrum of the 50 fs pulse train measured after
the pulse shaper, where a dichroic beamsplitter (R = 80% from 750 to 850 nm) attenuates
the NIR spectral region for equal contributions of the visible and NIR components to the
supercontinuum spectrum.
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continuously over the full spectral envelope, resulting in a pulse form that utilizes the full
bandwidth over its entire duration. The limitations imposed by discrete sampling of this phase
function via the LC-SLM is determined by the frequency and amplitude of the periodic modu-
lation. Alternatively, the generation of double pulse structures as given in Fig. 6 demonstrates
the application of a discontinuous phase function for a defined temporal sequencing of selected
spectral components. For this case, only the slope of the phase used for temporal delay of a
specific spectral region of the supercontinuum is relevant with respect to the sampling limit of
the LC-SLM. Since the phase function used for pulse compression is the starting point for both
pulse forms, the slope of the total phase function composed of the contribution necessary for
pulse compression and the contribution for pulse shaping must be considered.

For the case of pulse train generation, Panel A and B of Fig. 5 show the FROG traces of the
pulse shapes attained via phase-only modulation with a sinusoidal function superimposed on
the spectral phase for pulse compression. A spectral modulation period ∆T−1of 50 and 20 THz
corresponds to a temporal separation of the sub pulses ∆T of 20 and 50 fs at a modulation depth
of 2.0 and 2.2 rad, respectively. Notably, the sub-pulse duration for both cases is maintained
in the sub 7 fs regime. The starting point for generating the 50 fs pulse train was a short pulse
compressed with a phase similar to that shown in Panel D of Fig 4. Furthermore, the supercon-
tinuum spectrum utilized for the generation of the 50 fs pulse train, shown Panel C of Fig. 5,
was modified with a dichroic beamsplitter (Layertec, R=80% at 750 and 850 nm) to achieve
nearly equal amplitude in the NIR and VIS components. Due to the dispersion introduced by
the beamsplitter, the phase function for compression was modified accordingly. The starting
point for the 20 fs pulse train was a compressed pulse obtained with a genetic algorithm by op-
timizing the intensity of the FROG signal at zero delay rather than an analytical phase function
as shown in Panel D of Fig. 4 [32, 33]. Further refining the pulse compression with a genetic
algorithm allowed for cleaner pulse trains with a higher contrast at shorter sub-pulse delays.

3.2.2. Double pulse structures

In order to further illustrate the capabilities and limitations of pulse forming at supercontin-
uum bandwidths, the FROG traces in Panel A to C of Fig. 6 show double pulse structures that
split the spectrum into two discrete regions with variable temporal delay between the selected
spectral components. The starting point for the generation of these double pulse sequences was
a short pulse compressed with a phase similar to the function shown in Panel D of Fig. 4. In
Panel A and B of Fig. 6, the NIR part of the spectrum above 724 nm was shifted by -600 fs
and 600 fs, respectively, using a linear phase ramp with an equivalent slope of ±600 fs applied
to this part of the spectrum. The rest of the spectrum was maintained at zero phase relative to the
phase function of the compressed pulse form. The explicit functions employed for generating
these double pulse structures are also given in Table 1. Due to the higher spectral resolution of
the pulse shaper in the NIR spectral range, temporal shifting in this spectral region is more ad-
vantageous in comparison to actively shifting the visible region of the spectrum as documented
in the calibration of the LC-SLM summarized in Fig. 2.

In order to demonstrate the limitations imposed by discrete phase sampling for a temporal
delay close to the shaping window, a FROG trace of a double pulse sequence is shown in Panel
C of Fig. 6, where the visible part of the spectrum below 700 nm was shifted by -400 fs with
the respective phase ramp and the NIR region above 700 nm is maintained at zero phase. The
visible sub-pulse suffers from substantial loss in intensity and a chirped replica pulse can clearly
be seen in the region between +300 and +800 fs delay in the cropped version of the FROG
trace shown in Panel D of Fig. 6. Since the spectral resolution of the pulse shaper decreases
with the wavelength, the replica pulse has a strong negative chirp. To understand the origin
of the replica pulse, the spectral phase function applied to the LC-SLM is depicted in Panel
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A of Fig. 7, consisting of the phase for initial pulse compression and the linear phase ramp
for temporal shifting. The formation of the replica pulse for this case can be illustrated by the
phase function shown in its wrapped form around 3.05 rad/fs in Panel B of Fig. 7 together with
the points sampled by the LC-SLM. Due to the dispersion in the spectral resolution over the
LC-SLM, the sampled points of the linear function with a negative slope of -400 fs (black line,
Panel B of Fig. 7) can be interpreted as second order phase function with varying positive slope
(red line, Panel B of Fig. 7) [34]. The parameters for this second order phase function can be
extracted directly from the replica pulse in the FROG trace, which shows a temporal shift of
about +600 fs at 3.05 rad/fs (≈ 617 nm), a shift of 700 fs at 2.89 rad/fs (≈ 650 nm) and a shift
of 550 fs at 3.13 rad/fs (≈ 600 nm). From these points, a spectral phase function according to
φ(ω) = b2(ω −ω0)

2 + b1(ω −ω0) can be formulated with a b2 = −625 fs2/rad, b1 = 600 fs
and ω0 = 3.05 rad/fs. The parameters were adjusted slightly to match the points sampled by
the LC-SLM. Both functions equivalently represent the spectral phase written by the LC-SLM
and the correspondence to the resulting replica pulse illustrates the effects that occurr when
operating at the limit of the shaping window of the pulse shaper. The original linear phase ramp
as well as the equivalent quadratic phase function depicted in Panel B of Fig. 7 are given in
Table 1.

DC

A B

Fig. 6. (A) and (B): FROG traces of double pulses split at 724 nm (2.60 rad/fs) with a sub-
pulse spacing of 600 fs. The IR part of the spectrum was temporally shifted by a linear phase
ramp with a slope of ±600 fs, respectively, in the spectral region above 724 nm. The rest
of the spectrum was maintained at zero phase relative to the phase function employed for
pulse compression. (C) and (D): FROG trace of a double pulse split at 700 nm (2.69 rad/fs)
with a sub-pulse spacing of 400 fs. The spectrum below 700 nm was temporally shifted
using a linear phase ramp with a slope of −400 fs. The explicit phase functions are given
in Table 1.
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A B

Fig. 7. (A) Total phase function for the pulse form shown in Panel C of Fig. 6 resulting
from the phase correction employed for pulse compression similar to Panel D of Fig. 4 and a
linear phase ramp with a slope of−400 fs above 2.69 rad/fs (700 nm). (B) Magnification of
the phase function in the region around 3.05 rad/fs in a wrapped representation (black line).
Points sampled by the LC-SLM (green points) with error bars indicating the approximate
bandwidth transmitted through the corresponding pixels. An equivalent quadratic function
(red line) is derived from the parameters of the sampling artifact for representing the linear
phase ramp within the sampling limit of the LC-SLM. The original linear phase ramp and
equivalent (within the sampling limit of the pulse shaper) quadratic phase function are
summarized in Table 1. For details, see text.

4. Conclusion

The general capabilities and limitations of pulse form synthesis in the few-cycle regime at su-
percontinuum bandwidths with phase-only modulation have been demonstrated. The spectral
broadening via double stage filamentation plays a critical role in supplying significant contri-
butions of the visible region to the supercontinuum. This is essential for utilizing the corre-
sponding frequencies in this spectral range for efficient pulse compression and flexible pulse
shaping. Within this configuration for spectral broadening, pulse compression of the full su-
percontinuum to sub 5 fs can be easily achieved with a spatial light modulator that allows for
a flexible adaptation to the spectral phase obtained from filamentation and chirped mirror pre-
compression. The degree of pulse compression defines the temporal resolution and contrast
attainable in pulse form synthesis. Two types of analytical pulse shapes are chosen in order
to illustrate the time resolution, contrast and the sampling limit of the pulse shaper. Specifi-
cally, a continuous periodic phase modulation over the full bandwidth of the supercontinuum
is employed for generating pulse trains. Double pulse structures are demonstrated with a dis-
continuous linear spectral phase that separates the spectral components of the supercontinuum
into definable temporal events. For both cases, few-cycle sub-pulse durations are maintained in
pulse forms that extend into the regime of hundreds of femtoseconds in total duration.

The potential of a light source that provides spectral channels from the visible to near in-
frared with variable temporal sequencing and high time resolution at pulse energies in the mid-
microjoule domain has been demonstrated with selected examples. This is complemented by
a transient grating FROG techique for a highly versatile pulse form analysis at supercontin-
uum bandwidths that allows for the correlation of pulse forms extending over several hun-
dred femoseconds composed of ultrashort sub-pulse events. Within the general efforts towards
expanding ultrashort light sources in their spectral range, bandwidth and pulse compression
capabilities, a variety of nonlinear propagation strategies have been realized in different con-
stellations and media with self-compression or active phase correction down to the single-cycle
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regime in carrier envelop phase (CEP) stabilized scenarios as well as spectral broadening be-
yond the single-octave range [1, 3, 4, 9, 11, 13, 14, 16, 18, 20–22]. Among these advancements,
spectral broadening via double filamentation as demonstrated in this work offers supercontin-
uum bandwidths with an advantageous distribution in the power density over a wide spectral
range for pulse compression and shaping within an uncomplicated experimental arrangement.
In combination with an active LC-SLM phase manipulation, an adaptive pulse compression
mechanism and a versatile technique for pulse form synthesis at supercontinuum bandwidths
is realized that is highly suited for a broad range of applications in ultrafast spectroscopy and
coherent control scenarios [35–38]. In view of further developments, the pulse compression and
synthesis of particular pulse forms have been carried out within a phase-only modulation mode
of the pulse shaper and an amplifier system that supplies input pulses with varying CEP. With
respect to the former, expanding the operating mode of the pulse shaper to phase and amplitude
modulation allows for a balanced contribution of all the spectral channels within the supercon-
tinuum. This supplies more effective bandwidth for enhanced pulse compression as well as a
higher flexibility in controlling specific spectral channels within a particular pulse form.
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