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Transistors, regardless of their size, rely on electrical gates to control the conductance 

between source and drain contacts. In atomic-scale transistors, this conductance is 

exquisitely sensitive to single electrons hopping via individual orbitals1,2. Single-electron 

transport in molecular transistors has been previously studied using top-down approaches 

to gating, such as lithography and break junctions1,3,4,5,6,7,8,9,10,11. But atomically precise 

control of the gate – which is crucial to transistor action at the smallest size scales – is not 

possible with these approaches. Here, we used individual charged atoms, manipulated by a 

scanning tunnelling microscope,12 to create the electrical gates for a single-molecule 

transistor. This degree of control allowed us to tune the molecule into the regime of 

sequential single-electron tunnelling, albeit with a conductance gap more than one order of 

magnitude larger than observed previously8,11,13,14. This unexpected behaviour arises from 

the existence of two different orientational conformations of the molecule, depending on its 

charge state. Our results show that strong coupling between these charge and 

conformational degrees of freedom leads to new behaviour beyond the established picture 

of single-electron transport in atomic-scale transistors. 
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We created molecular transistors using either phthalocyanine (H2Pc) or copper phthalocyanine 

(CuPc) molecules, depicted in Fig. 1a. These are planar π-conjugated molecules which readily 

adsorb on an InAs(111)A substrate15 at precisely defined locations above the In-vacancy site of 

the 2 × 2 reconstructed surface (Fig. 1b). The molecule is physisorbed on the surface by van der 

Waals interaction with no significant charge transfer. Due to weakness of this binding, the 

adsorbed molecules can be readily repositioned among different vacancy sites by using the tip of 

a cryogenic scanning tunnelling microscope (STM).    

The InAs(111)A substrate surface is characterized by a low concentration of native defects, 

+1 ionized indium adatoms (Inad). The adatoms render the surface weakly metallic with the Fermi 

level pinned in the conduction band16. They can also be repositioned by the STM tip17. By 

arranging a group of charged adatoms in a carefully chosen configuration, we designed and 

created a variety of electrostatic surface-potential landscapes for the nearby region with sub-

angstrom accuracy.  

This positional control over both the charged indium adatoms and the phthalocyanine 

molecules allows us, first, to design and create an atomically precise potential landscape using 

the In+1 adatoms and, then, to position the molecule within that landscape. The potential 

landscape provides the transistor gate18,19 by acting on the electron energy levels of the weakly 

coupled molecule. To complete the three-terminal transistor structure, the STM tip and InAs 

substrate serve as source and drain contacts, respectively. Electrostatic gating by repositionable 

charged defects has previously been used to shift the binding energy of dopants near a GaAs 

surface20. Here, we apply this concept to control the charge state of a single molecule (see 

supplementary information). Figure 1c,d shows topographic images of two Inad trimers with an 

H2Pc molecule in a remote position (c), and midway between the trimers (d). The molecule is 

imaged as a uniform protrusion because it performs rapid rotational jumps at sample biases Vb 
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larger than ±0.1 V15. In the midpoint position (d), the electrostatic gating is sufficient to shift the 

lowest-unoccupied molecular orbital (LUMO) below the Fermi level EF, charging the molecule 

negatively. As a consequence, the local tunnelling barrier21,22 is increased, which reduces the 

apparent molecular height compared to the neutral state. To quantify the charge state we 

measured the electrostatic potential at the tip position23,24 along the dashed line in Fig. 1c 

(Supplementary Figure 1). Figure 1e shows the difference in potentials obtained in the presence 

and absence of the molecule. Clearly, the potential difference is essentially zero when the 

molecule is located in the remote position (green dots), confirming its neutral state there. At the 

midpoint position (red squares), on the other hand, the charge state is −1, as confirmed by 

comparison with the calculated potential (blue curve) of a point charge screened by the surface-

accumulated electrons 23,24,25 (see supplementary information). 

To investigate the gating process systematically, we constructed Inad corrals that allowed us 

to fine-tune the gating through a linear potential landscape (Supplementary Fig. 2). We found that 

both CuPc and H2Pc can be tuned into a regime of charge bistability. STM imaging in the 

bistable regime revealed that the two molecular charge states have different orientational 

conformations in their respective ground states. The left STM image in Fig. 2b shows a neutral 

H2Pc in one of its three equivalent conformers, A, in which the molecular lobes are oriented 

parallel/perpendicular to one of the three 110 in-plane directions15. Upon charging, the 

molecule performs an in-plane rotation either clockwise or counter-clockwise (centre and right 

STM images, respectively). There are three equivalent conformers, A, in the neutral state and six 

equivalent conformers, B, in the negative charge state. This suggests that the transition 

A→B consists of an in-plane rotation by ±15°, as well as a small lateral displacement and/or tilt26 

of the molecule (Supplementary Fig. 3). Topographic images analogous to those in Fig. 2b were 
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obtained for CuPc in its neutral and negatively charged state, respectively. The bistability 

observed here involves a coupled switching in charge and orientational conformation. We note 

that STM-driven conformational switching in adsorbed phthalocyanine molecules has also been 

reported by others.27 

The electrostatic gating of the LUMO level strongly modifies the tunnelling conductance, 

as revealed by the current-versus-bias (I-Vb) curves in Fig. 3a, which were recorded over an 

extended bias range with the STM tip held fixed above a single CuPc molecule. The conductance 

gap is reduced as the level is brought closer to EF, consistent with the simple picture of transport 

via a single unoccupied level within a double-barrier tunnel junction (DBTJ)28,29. This picture is 

also supported by the normalized differential conductance map in Fig. 3b, which was extracted 

from I-Vb curves consecutively recorded at different values of the gate potential φ. At a given 

value, the differential conductance is sharply peaked at biases Vb for which the LUMO enters the 

energy window between the tip and sample Fermi levels, which leads to sequential tunnelling 

through the DBTJ. However, near the charge degeneracy point there is a conductance gap, ~600 

mV, which is much larger than for conventional sequential tunnelling through a gated quantum 

dot. This gap is substantially greater than normally found, for example, in electron transport 

through single molecules in the Franck-Condon blockade regime of strong electron-vibron 

coupling8,11,13,14. 

The general features of the measured tunnelling conductance can be understood within a 

Coulomb blockade model30 for the DBTJ, by treating the molecule as a quantum dot attached to 

the STM tip and the InAs(111)A surface, which act as electron reservoirs. Motivated by the 

experimental observations, we assume that the molecule can exist in two conformations, A and B, 

and that each conformation can be either neutral or charged. Conformation A is the ground state 
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of the neutral molecule and B the ground state of the charged molecule, as shown in Fig. 3c. We 

find that this assumption naturally explains the occurrence of the conductance gap in the Vb-φ 

plane. Indeed, both conformations give rise to a separate charge degeneracy point. The charge 

degeneracy point for A is shifted to higher gate voltages relative to that for B. This defines several 

regions in the Vb-φ plane, labelled I-IX in Fig. 3d. In regions I-III the molecule is blockaded with 

respect to both conformations and hence conduction is suppressed, while in regions IV and V the 

molecule is not blockaded and so conduction occurs. The remaining regions, VI-IX, are more 

subtle as they are conducting with respect to one conformation but blockaded with respect to the 

other. Franck-Condon physics strongly suppresses tunnelling-induced switching between the 

conformations and therefore A is stable in regions VI and VII, while B is stable in VIII and IX. 

These correspond to the blockaded conformations and hence there is a conductance gap for all 

potentials φ, consistent with the experimental observations. 

The bistability in charge and conformation shown in Fig. 2 occurs within the conductance 

gap region where sequential tunnelling is blocked. Figure 4a shows I-Vb curves recorded close to 

EF with the STM tip held fixed above an H2Pc molecule at the indicated φ values. Hysteresis in I-

Vb is easily seen at φ  = 121 mV (red), revealing bistable switching between two I-Vb curves of 

different slope around EF. The smaller I-Vb slope is associated with the negative charge state, 

concomitant with the increase in local tunnelling barrier upon charging. Similar hysteretic 

behaviour was previously reported for the bistable charge switching of phthalocyanine molecules 

on NaCl layers grown on Cu substrates of suitable workfunction21. A slight detuning of the 

potential quenches the I-Vb hysteresis in Fig. 4a, as shown by the blue I-Vb curves, reflecting a 

dynamical crossover between the two states as detailed in the inset. Figure 4b shows the location 

of the hysteretic switching (red) and the crossover (blue) in the Vb-φ plane, together with the 
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onset of sequential tunnelling via the LUMO (green). We observed similar behaviour for CuPc 

(Supplementary Fig. 4), for which the bistability occurs at a gating potential ~50 mV larger than 

for H2Pc. Finally, the hysteretic switching dynamics is depicted in Fig. 4c showing that the 

coercivity (defined as the half width of the hysteresis) sharply rises and eventually saturates as 

the bias ramping speed is increased. 

  Based on the model description outlined in Fig. 3c,d, we set up a Master equation for the 

coupled electronic and conformational dynamics (see supplementary information for details). As 

shown in Fig. 4d, the numerical solution indeed predicts a pronounced conductance gap for all φ, 

in agreement with the measurements in Figs. 3b and 4b. This model also explains the 

experimentally observed hysteretic behaviour in Fig. 4a and Supplementary Fig. 4. Region I in 

Fig. 4d consists of two sections, separated by the orange line, with different molecular ground 

states. Experimentally, these regions have different co-tunnelling conductances30, which explains 

why we observe bistable I-Vb characteristics (Fig. 4a,b). Moreover, as conformational changes 

are slow, the current can be hysteretic when varying parameters across this line. Experimentally, 

this is most pronounced at small biases (Fig. 4b), where electronic tunnelling (and hence the 

attempt rate for conformational switching) is weak. The observed coercivity as a function of 

ramping speed of the bias voltage (Fig. 4c) is consistent with the theoretical results from the 

Master equation as shown in Fig. 4e.   

While our model qualitatively explains many features of the observations, some aspects 

may require a more refined description. For instance, the model predicts that the lines of current 

onset extrapolate to cross at the pertinent charge degeneracy point in the Vb-φ plane and thus at 

zero bias voltage. This is not actually the case in the experimental data in Figs. 3b and 4b. This 

effect might be due to finite temperature or to interactions beyond our constant-capacitance 
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model (see supplementary information for further discussion). 

We have shown that a single-molecule transistor can be electrostatically gated by arranging 

individual charged atoms with sub-angstrom precision using a scanning tunnelling microscope. 

The resulting transistor action reveals a conductance gap far larger than previously observed for 

Franck-Condon-blockaded transport8,11,13,14, arising from strong coupling between charge and 

conformational degrees of freedom. Understanding and controlling this type of coupling – and 

the new kinds of behaviour to which it can lead – will be crucial for integrating atomic-scale 

transistors and other devices with existing semiconductor technologies. 

 

Methods Summary 

Experiment. The measurements were carried out with an ultrahigh-vacuum (UHV) STM 

operated at a base temperature of 5 K. Electrochemically etched tungsten tips were cleaned in 

UHV by Ne ion sputtering and electron beam heating. Undoped InAs layers with thickness 20 nm 

were grown by molecular beam epitaxy (MBE) on an InAs(111)A wafer (purchased from Wafer 

Technology Ltd) to prepare the In-terminated InAs(111)A-(2×2) surface. After the MBE growth, 

the surface was capped with an amorphous layer of arsenic and transferred under ambient 

conditions to the UHV system of the STM apparatus. The As capping layer was removed by 

annealing at 630 K and the sample loaded into the microscope cooled down to 5 K. InAs(111)A 

samples prepared in this way showed the same surface features as MBE-grown and in situ 

investigated samples. H2Pc and CuPc specimens (purchased from Aldrich) were purified in UHV 

by repeated cycles of degassing. Low coverages (~1 × 1012 molecules cm-2) were deposited 

directly into the microscope at sample temperatures <20 K by sublimation from a tantalum 

crucible held at 628 K. STM images were recorded in constant-current mode; bias voltages refer 
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to the sample with respect to the tip. Spectroscopy measurements of the differential tunnelling 

conductance were performed by lock-in technique (10 mV peak-to-peak modulation at a 

frequency of 675 Hz) with disabled feedback loop.  

 

Theoretical calculations. The theoretical model included four states of the phthalocyanine 

molecule, corresponding to the two conformations A and B and the two charge states for each 

conformation. The state of the molecule was described in terms of probabilities for each of these 

four states. In the weak tunnelling limit (tunnelling rate much smaller than temperature and 

spacing between the energies of the four molecular states) these probabilities can be determined 

from the solution of a Master equation that involves transition rates for thermally-induced 

transitions between different conformations of the molecule at constant charge, and transition 

rates between different charge states at the same conformation, due to tunnelling to/from the 

scanning tip and the substrate. The stationary solution of the Master equation was used to 

determine the onset of current flow in Fig. 4d; a time-dependent solution with a bias voltage that 

varies linearly in time was used to calculate the coercivity in Fig. 4e. 

31  
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Figure legends 

 

Fig. 1 Electrostatic gating of an organic molecule using charged indium adatoms. a, 

Structure of phthalocyanine (H2Pc) and copper phthalocyanine (CuPc). b, Schematic model of 

InAs(111)A-(2×2) with In surface atoms in the topmost layer (green) and As atoms in the second 

layer (orange). c, STM topographic image (50 pA, 0.5 V) of an H2Pc molecule (left) and six In 

adatoms (Inad), each charged +1, arranged as two trimers (right); the molecule is neutral and 

located 12a' (a' = 8.57 Å is the vacancy spacing) away from the midpoint between the trimers 

(origin of the x axis, dashed line). d, Same as (c) after moving the molecule with the STM tip to 

the midpoint. The electrostatic potential of the Inad trimers charges the molecule negatively and 

reduces its apparent height from 2.2 Å (neutral) to 0.9 Å (negative). e, Difference in electrostatic 

potential Δφ(x) with and without the molecule measured at a tip height on the order of 6 Å along 

the dashed line in (c). For H2Pc in the remote position (green) Δφ(x) is essentially zero (consistent 

with H2Pc being neutral), whereas for H2Pc at the midpoint (red) Δφ(x) agrees well with the 

theoretical potential (blue curve) of a −1 point charge at the location of the molecule. The 

procedure to extract the experimental quantity Δφ is described in Supplementary Figure 1 by the 

example of the data point marked by the red arrow. 

 

Fig. 2 Change of molecular conformation upon charging. a, STM images of H2Pc in the 

neutral (50 pA, 60 mV; left) and −1 charged state (50 pA, −60 mV; centre and right) recorded at 

intermediate gating of φ = 121 mV. In the neutral state, the molecular lobes are oriented 

parallel/perpendicular to the [10 1 ] in-plane direction. Upon charging, the molecule performs a 
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±15° in-plane rotation and a minor shift and/or tilt breaking the mirror symmetry relative to the 

( 1 10) and (01 1 ) plane, respectively. Coloured bars indicate the lobe orientations. Dark stripes 

in the left image are due to transient charging during the scanning. b, Schematic model of the 

molecular orientations corresponding to the cases in (a); for clarity, only the in-plane rotation is 

depicted. 

 

Fig. 3 Gap formation in the sequential tunnelling regime due to coupled charge and 

conformational states. a, Current-versus-bias (I-Vb) curves recorded over an extended bias range 

with the STM tip held fixed above a single CuPc at the indicated gating potentials φ ; the 

conductance gap changes as φ is varied. b, Normalized differential tunnelling conductance map 

as a function of gating potential φ and sample bias Vb. The map corresponds to the stability 

diagram of a gated quantum dot, but with a much larger residual gap in the region of charge 

degeneracy. c, Allowed transitions among four different states (two conformations A and B, in 

two charge states 0 and −1) at low (upper panel), high (lower panel), and intermediate (middle) 

gating potentials. d, Schematic stability diagram within a Coulomb blockade model for single-

electron tunnelling. Red and blue lines are the Coulomb branches for the conformations A and B, 

respectively. Transport through the molecule is blocked in regions I-III and regions VI-IX (white 

areas) and conducting in regions IV and V (grey areas). 

 

Fig. 4 Molecular charge bistability and switching dynamics within the conductance gap. a, 

I-Vb curves measured with the STM tip fixed above a single H2Pc gated by surrounding Inad 

atoms; the potential φ at the molecular position is indicated. At intermediate φ (red) the molecular 
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charge becomes bistable, manifested as I-Vb hysteresis. Detuning in φ (blue) quenches the 

hysteresis and yields a dynamical crossover between two current levels (circles and inset). 

Arrows indicate the bias ramping direction. The dashed line marks an InAs surface state31 

confined by the ionized Inad. b, Stability diagram of H2Pc showing that the crossover (blue) and 

hysteretic switching (red) observed in (a) occur within the conductance gap of sequential 

tunnelling via the LUMO. c, Coercivity of the hysteretic switching versus bias ramping speed for 

H2Pc (red) and CuPc (blue) measured at fixed gating potentials φ = 125 mV and φ = 170 mV, 

respectively. Error bars indicate the statistical variation extracted from I-Vb curves consecutively 

recorded at fixed ramping speed. d, Calculated map of the tunnelling current I(Vb,φ) . The orange 

line separates the Vb-φ plane into upper and lower regions, in which the molecule is 

predominantly in conformation A and B, respectively. Dips in the co-tunnelling current in (a) 

occur along this line due to switching between A and B. e, Coercivity of the hysteretic switching 

calculated within the Master equation approach (see supplementary information). The theoretical 

trend agrees well with the experimental switching dynamics in (c). 
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