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Abstract

Reprogramming of somatic cells into inducible pluripotent stem cells generally occurs at low efficiency, although what
limits reprogramming of particular cell types is poorly understood. Recent data suggest that the differentiation status of the
cell targeted for reprogramming may influence its susceptibility to reprogramming as well as the differentiation potential of
the induced pluripotent stem (iPS) cells that are derived from it. To assess directly the influence of lineage commitment on
iPS cell derivation and differentiation, we evaluated reprogramming in adult stem cell and mature cell populations residing
in skeletal muscle. Our data using clonal assays and a second-generation inducible reprogramming system indicate that
stem cells found in mouse muscle, including resident satellite cells and mesenchymal progenitors, reprogram with
significantly greater efficiency than their more differentiated daughters (myoblasts and fibroblasts). However, in contrast to
previous reports, we find no evidence of biased differentiation potential among iPS cells derived from myogenically
committed cells. These data support the notion that adult stem cells reprogram more efficiently than terminally
differentiated cells, and argue against the suggestion that ‘‘epigenetic memory’’ significantly influences the differentiation
potential of iPS cells derived from distinct somatic cell lineages in skeletal muscle.
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Introduction

Skeletal muscle is a complex tissue composed primarily of

multinucleated fibers, but also containing at least two distinct stem

cell populations (muscle-forming satellite cells and non-myogenic

mesenchymal precursors). Self-renewing muscle satellite cells can

be isolated by fluorescence activated cell sorting (FACS) on the

basis of their expression of a unique constellation of cell surface

markers [1]. CD452 Mac12 Sca12 b1-integrin+ CXCR4+
satellite cells, (hereafter referred to as skeletal muscle precursors, or

‘‘SMPs’’) express the canonical satellite cell transcription factor

PAX7, and exhibit muscle-specific stem cell activity in both in vitro

clonogenic assays and in vivo transplant settings [2,3,4]. The

differentiated daughters of SMPs (myoblasts) can likewise be found

in association with skeletal myofibers in adult muscle and isolated

by surface marker staining and cell sorting [4], but these cells

express increased levels of muscle differentiation markers and are

unable to engraft mature myofibers or reconstitute the satellite cell

compartment upon intramuscular transplant. Finally, adult muscle

is also home to a developmentally distinct population of bipotent,

mesenchymal progenitors, which are marked by surface expression

of Sca-1 [2,3] and undergo both fibrogenic and adipogenic

differentiation in vitro and in vivo [2,3,5,6].

Recent studies indicate that while reprogramming of somatic

cells into induced pluripotent stem (iPS) cells generally occurs at

low efficiency, immature blood stem and progenitor cells

reprogram very efficiently (up to 28% of input cells; [7]),

compared to their terminally differentiated daughters. Intriguing-

ly, iPS cells derived from hematopoietic lineages were reported to

exhibit biased differentiation to form blood cells in hematopoietic

colony-forming assays [8], and a recent study reported similar

lineage-biased differentiation among iPS cells reprogrammed from

blood vessel-associated mesoangioblasts [5]. Thus, to test whether

adult stem cells in other mesodermal tissues likewise exhibit
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superior reprogramming efficiency and retain an epigenetic

memory that biases their differentiation potential, we examined

reprogramming and differentiation capacity among stem and

progenitor cells of the myogenic [2,4] or fibrogenic/adipogenic

[3,5] lineages found in adult mouse skeletal muscle. Our data

indicate that, as in the hematopoietic system, myogenic and

fibrogenic/adipogenic stem cells show enhanced reprogramming

efficiency in comparison to their differentiated daughters.

However, in contrast to prior reports [5,8,9], we find no evidence

for biased differentiation among SMP-derived iPS cells. These

data support the existence of cell-intrinsic barriers to efficient

reprogramming, which are raised during the process of tissue-

specific differentiation, and argue against suggestions that lineage-

specific epigenetic marks left behind following reprogramming

significantly restrict the developmental potential of somatically

derived iPS cells.

Results

Isolation of myofiber-associated cells from a
reprogrammable mouse for reprogramming

To investigate the reprogramming efficiency of muscle-resident

stem and progenitor populations, we expressed the four canonical

reprogramming factors (Oct4, Sox2, Klf4, c-Myc) [10] using a

‘‘secondary reprogramming system’’ [11,12,13]. In this system,

primary iPS cells were generated first by infection of neonatal tail-

tip fibroblasts, carrying the ROSA-rtTA transactivator, with

lentiviruses expressing Oct4, Sox2, Klf4 and cMyc, each under

the control of a doxycycline (dox)-inducible promoter (Figure S1)

[14]. The resulting iPS cells were injected into mouse blastocysts,

where they produced fetal liver cells that were then differentiated

in vitro into CD8+ cells, and then re-induced with dox to produce

(secondary) iPS cells that were used to generate ‘‘reprogrammable

mice’’ [13,14]. Cells harvested from these mice could be converted

into iPS cells upon exposure to dox (which activates re-expression

of the integrated reprogramming factors in the transgenic cells of

these animals). Importantly, the integrated reprogramming factors

in these chimeric mice are maintained in an identical genomic

configuration in all iPS cell-derived somatic cells. Therefore this

system allows direct comparison of the reprogramming efficiencies

of distinct cell populations and lineages harvested from these mice,

without potential complications arising from differences in

lentiviral transduction efficiency or variation in integration sites.

SMPs were isolated by two-step enzymatic digestion of skeletal

muscle, followed by fluorescence activated cell sorting (FACS) for

the cell surface marker profile: CD452 Mac-12 Sca-12 b1-

integrin+ CXCR4+ (CSM4B) (Figure 1A) [2,4]. Consistent with

previous publications [2,4,6,15] , isolated SMPs showed potent

myogenic potential and were never observed to form fibroblasts or

adipocytes, even under adipogenic culture conditions (Figure 1B).

In addition to SMPs, we also isolated from skeletal muscle a

distinct population of non-myogenic CD452 Mac-12 Sca-1+

mesenchymal progenitor cells, referred to here as ‘‘Sca1+ cells’’,

which both self-renew and possess bipotent fibrogenic and

adipogenic differentiation potential [2,3,5,6] (Figure 1). Finally,

to assess the effects of differentiation on reprogramming efficiency,

we isolated a third population of CD452 Mac-12 Sca-12

CXCR42 cells, hereafter referred to as ‘‘CXCR42 cells’’, which

is composed of differentiated myoblasts and fibroblasts that lack

self-renewal activity (Figure 1 and [4]). This approach allowed us

to directly compare the reprogramming potential of three distinct

cell populations residing in an identical microenvironmental

‘‘niche’’, including both lineally distinct self-renewing tissue stem

cells (SMPs and Sca1+ cells) and the more differentiated, non-self-

renewing progeny of such cells (CXCR42 cells).

Figure 1. Isolation and differentiation potential of myofiber-associated skeletal muscle precursors (SMPs) and Sca-1+ mesenchymal
progenitors. (A) Myofiber-associated cells were isolated from mouse hind limb muscles and triceps. SMPs were isolated by FACS as CD452 Mac12

Sca12 b1-integrin+ CXCR4+, while bipotent, adipogenic/fibrogenic cells were identified and isolated as CD452 Mac12 Sca-1+ (abbreviated Sca1+;
[3,6]). All cell populations were double-sorted, yielding highly purified cell populations that subsequently were seeded onto irradiated MEFs in the
presence of doxycyline (see Figure 2). (B) SMPs but not Sca1+ cells can differentiate into myosin heavy chain+ (MyHC+) cells, indicating their
myogenic differentiation potential (bottom panel). Conversely, Sca1+ cells but not SMPs can form adipogenic cells, as indicated by Oil-Red-O staining
(top panel). CXCR42 cells are a mixture of myoblasts (bottom panel) and fibroblasts, some of which can adopt an adipocytic fate under adipogenic
culture conditions (top panel).
doi:10.1371/journal.pone.0026406.g001

Skeletal Muscle Stem Cell iPS Cells
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SMPs and bipotent fibrogenic/adipogenic progenitors
reprogram efficiently

To quantify reprogramming efficiencies, iPS colonies arising

from each dox-induced cell population were identified by

morphological criteria and counted at day 21 after dox induction.

We observed a significantly greater number of iPS colonies

emerging from seeded SMPs, compared to more differentiated

CXCR42 cells. In particular, while seeded SMPs formed iPS

colonies with an average uncorrected reprogramming efficiency of

1.8% (n = 2 experiments, range = 0.7–2.8%) and Sca1+ cells

formed iPS colonies with an average uncorrected reprogramming

efficiency of 0.04% (n = 2 experiments, range = 0.01–0.07%), we

obtained no iPS colonies from CXCR42 cells (Figure S2).

Importantly, the iPS cell lines generated from both SMPs and

Sca-1+ cells were demonstrated to be pluripotent by in vitro staining

for the pluripotency markers Oct-4, SSEA-1 and alkaline

phosphatase (Figure 2A–D). Moreover, blastocyst injection of

two ‘‘SMP-iPS’’ lines each produced mice showing a high degree

of SMP-iPS cell chimerism, including germline contribution and

transmission (Figure 2E,F, and data not shown).

The data presented above seem to indicate a significantly

increased rate of successful iPS cell derivation from tissue-resident

stem/progenitor cells (both SMPs and Sca1+ cells) in comparison

to their differentiated daughters (CXCR42 cells) residing in the

same anatomical location; however, given that the chimeric mice

from which SMPs and CXCR42 cells were isolated for these

initial experiments contained both transgenic (iPS-derived,

containing the dox-inducible reprogramming factors) and non-

transgenic (host blastocyst-derived) cells, the uncorrected repro-

gramming efficiencies reported above likely underestimate the true

efficiency of target cell reprogramming. To more accurately

determine the reprogramming efficiency of these cells, in a

subsequent series of experiments, we utilized reprogrammable

mice carrying the four doxycycline-inducible transgenic repro-

gramming factors, as before, but additionally labeled the

pluripotent cells that gave rise to these chimeric mice with a

lentivirus constitutively-expressing tdTomato [14]. This strategy

allowed us to prospectively isolate only the transgenic ‘‘repro-

grammable’’ cells, thereby enabling more accurate determination

of reprogramming efficiency (Figure S3). Using this improved

system, we found that the average efficiency of derivation of iPS

colonies from bulk-sorted tdTomato+ SMPs was ,10% after 3

weeks (n = 2 independent experiments), whereas again no iPS

colonies arose from CXCR42 cells (n = 3 independent experi-

ments), suggesting that their reprogramming efficiency is too low

to be detected under our experimental conditions (Table 1).

Single-cell cloning confirms higher SMP and Sca1+ cell
reprogramming efficiency

To exclude the possibility that the study described above might

overestimate the reprogramming efficiency of target cell popula-

tions after bulk-sorting, by counting ‘‘satellite colonies’’ emerging

from primary iPS colonies, we next performed clonal assays in

which TdTomato+ SMPs, Sca1+ cells, or CXCR42 cells were

sorted at one cell per well in a 96-well format (Figure 3). To ensure

accurate deposition of a single cell in each well, cells were sorted

directly into wells that already contained irradiated MEFs, and

reprogrammed by addition of doxycycline-supplemented medium.

After 2–3 weeks, colonies with iPS morphology emerged in several

wells, and with subsequent passaging, these colonies developed

into dox-independent iPS lines (as verified by in vitro staining of

pluripotency markers, data not shown). In these clonal assays,

SMPs gave rise to iPS lines at a frequency of 3–10% (number of

iPS colonies derived divided by the number of wells seeded with

SMPs), while again no iPS colonies were detected in wells seeded

with differentiated CXCR42 cells (Table 2, column 3).

However, previous work informed us that single-cell sorting and

plating of SMPs in 96-well plates does not occur with absolute

efficiency [2,4]. Hence, we also determined the clonal plating

efficiency of SMPs by seeding single-cells into 96-well plates

without inducing reprogramming, and counting the number of

wells containing live cells after a week. Plating efficiencies of SMPs

varied from 15–25% (Table 2, column 4), and so, using similar

plating efficiencies for cells sorted under induced reprogramming

conditions, we calculate that the actual efficiency of iPS derivation

from SMPs averages 23% (63%), and can reach up to 28%

(Table 2, columns 5 and 6). We obtained similar reprogramming

efficiencies with Sca1+ cells (Table 2). Thus, in light of the fact that

the differentiated progeny of SMPs and Sca-1+ cells – CXCR42

myoblasts and fibroblasts – reprogram at very low to undetectable

efficiencies (Figures 2 and 3; note also that, using this identical

system, Eminli et al. (2009) reported a reprogramming efficiency of

differentiated fibroblasts from tail tip of only 0.74%), these data

support the notion that adult stem and progenitor cells may be

Figure 2. SMPs and Sca-1+ mesenchymal progenitors reprogram into pluripotent iPS cells with high efficiency. (A–F) iPS cells
generated from SMPs (‘‘SMP iPS’’ cells) show embryonic stem cell-like morphology (A), and stain for the pluripotency markers Oct 4 (B) and SSEA-1
(C). Brightfield and corresponding fluorescence images (red) are shown for B and C. SMP iPS cells also show alkaline phosphatase activity (D). When
SMP iPS cells were injected into C57Bl/6 blastocysts, the resulting chimeras had agouti coat color (E), indicating contribution of the SMP iPS cells to
chimeric tissues. Offspring from matings between SMP iPS cell chimeric mice and C57Bl/6 mice have brown coat color (F), demonstrating the capacity
of SMP iPS cells to provide germline transmission.
doi:10.1371/journal.pone.0026406.g002

Skeletal Muscle Stem Cell iPS Cells

PLoS ONE | www.plosone.org 3 October 2011 | Volume 6 | Issue 10 | e26406



more amenable, in general, to reprogramming into iPS cells than

their terminally differentiated counterparts.

Significantly, the higher efficiency of reprogramming of SMPs

and Sca1+ cells was not attributable to higher endogenous

expression of reprogramming factors (Oct4, Sox2, Klf4 and c-

Myc). Quantitative real-time PCR, performed on freshly isolated

cell populations, revealed that none of the myofiber-associated cell

populations studied here expresses appreciable levels of Oct4 or

Sox2, as compared to pluripotent cells (Figure 4). In addition,

SMPs and CXCR42 cells, which show discrepant reprogramming

efficiency (Figures 2 and 3), expressed Klf4 and c-Myc at levels

significantly greater than Sca1+ cells, which show an efficiency of

reprogramming equivalent to SMPs, and much greater than

differentiated CXCR42 cells (Figures 2, 3, and 4). Likewise,

although previous reports have suggested that proliferation rate

may influence the reprogramming efficiency of somatic cells

[16,17], we found no significant differences in the rate of

proliferation of SMPs, Sca1+ cells and CXCR42 cells, based on

direct cell counting and on incorporation of bromodeoxyuridine in

cultured cells (data not shown). These data are consistent with our

previous studies [7], in which varying proliferation rates of

hematopoietic precursor cells did not affect reprogramming

efficiency. Thus, these data indicate that reprogramming efficiency

does not correlate with endogenous expression levels of repro-

gramming factors, suggesting that other attributes, unique to adult

stem cell populations, are responsible for the enhanced repro-

gramming efficiency of these cells.

Teratomas formed from SMP iPS cells do not display
biased differentiation towards somatic cell lineage of
origin

Recent reports have suggested that early passage iPS cells retain

an ‘‘epigenetic’’ memory of their somatic cell of origin, which

influences their subsequent differentiation potential [8,18].

Therefore, we sought to investigate if differences in cell-of-origin

might translate into differences in muscle lineage differentiation

capacity for iPS cells generated from myogenic SMPs or from non-

myogenic Sca1+ cells. iPS cells generated from these two different

cells-of-origin were compared to conventionally derived mES cells

Table 1. TdTomato+ skeletal muscle precursors (SMPs), myoblasts (CXCR42 cells) and bipotent mesenchymal progenitors (Sca1+
cells) were sorted onto irradiated MEFs.

Cell type Efficiency of reprogramming % (No of iPSC colonies/No of cells seeded)

Average efficiency of
reprogramming +/2 standard
error of mean

Expt 1 Expt 2 Expt 3

Skeletal muscle progenitors
(Sca12 CD452 Mac12 b1-
integrin+ CXCR4+; ‘‘SMPs’’
in text)

11% (46/430) 10% (30/300) ND 10.3+/20.3%

Mesenchymal progenitors
(Sca1+ CD452 Mac12;
‘‘Sca1+ cells’’ in text)

ND 9% (28/300) 10% (48/500) 9.5+/20.1%

Myoblast-containing
population (Sca12

CD452 Mac12 CXCR42;
‘‘CXCR42 cells’’ in text)

0% (0/1352) 0% (0/300) 0% (0/500) 0+/20%

Dox was added to induce transgenic expression of Oct4, Sox2, Klf4 and c-Myc. After three weeks, the number of iPS colonies with embryonic stem cell-like morphology
was counted. Data are presented as a percentage of input cells and number of iPS colonies per number of cells seeded. ND: not determined.
doi:10.1371/journal.pone.0026406.t001

Figure 3. Clone-sorted myofiber-associated stem cells reprogram at high efficiency. (A) Experimental strategy for clone-sorting and
reprogramming sorted cells. Myofiber-associated cells from transgenic mice carrying dox-inducible transgenes (Oct4, Sox2, c-Myc, Klf4) and labeled
with constitutively-expressed Tdtomato [22], were double-sorted for purity, and seeded into 96-well plates, at one cell per well, on irradiated MEFs.
After three weeks in dox-containing media, emergent colonies were trypsinized and passaged in the absence of dox, and iPS lines were established
which showed embryonic stem cell-like morphology, stained for the pluripotent marker SSEA-1, and showed alkaline phosphatase activity (data not
shown).
doi:10.1371/journal.pone.0026406.g003

Skeletal Muscle Stem Cell iPS Cells
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following subcutaneous injection into immunocompromised

NOD/SCID mice. These experiments used only early passage

iPS cells (3–5 passages after emergence from reprogramming

conditions), as iPS cells have been reported to lose epigenetic

markers of their somatic cell-of-origin after 5–6 passages [8].

Teratomas were obtained from injection of each pluripotent

cell line, and harvested when they reached a diameter of

,0.5 cm, typically 14–21 days after injection. No differences in

tumor size were observed for iPS- vs. ES-derived teratomas (data

not shown). In addition, in all cases, the injected cells formed

tumors containing cells from all three germ layers, a pattern of

cell fate specification consistent with the pluripotent nature of iPS

and mES cells (Figure 5A and 6). Histological assessment

confirmed the presence of neural cells, cartilage, adipose,

columnar epithelium and keratinocytes in all teratomas

(Figure 5A and data not shown); however, in all cases, skeletal

muscle comprised only a small fraction (2–4%) of tumor mass

(Figure 5B). Importantly, teratomas derived from SMP iPS cells

did not generate skeletal muscle to a significantly higher degree

than teratomas initiated by Sca1+ cell-derived iPS, or by mES,

despite the clearly superior myogenic differentiation potential of

SMPs as compared to other cell types present in skeletal muscle

([2,4], and Figure 1B). Moreover, although Sca1+ cells possess no

intrinsic myogenic capacity when isolated from skeletal muscle

(Figure 1B and [2,3,4,6]), Sca1+ cell derived iPS showed no

impairment in differentiation to the muscle lineage in these

teratoma assays (Figure 5B). Overall, teratomas derived from

Sca1+ iPS, SMP iPS, and mES cells contained an equivalent

representation of muscle cells as assessed by histology (Figure 5B).

This semiquantitative observation was corroborated by Western

blot analysis, which showed no significant differences in the

presence of skeletal muscle myosin heavy chain in teratomas

derived from Sca1+ iPS, SMP iPS, or mES cells (Figure 6B),

indicating equivalent differentiation along the skeletal muscle

lineage. Furthermore, teratomas from Sca1+ iPS, SMP iPS, or

mES cells each contained mesoderm (indicated by myosin heavy

chain, MyHC), ectoderm (indicated by cytokeratin 14, CK14)

and endoderm (indicated by cytokeratin 8, CK8) (Figure 6A) at

roughly equivalent levels (Figure 6B). These data indicate that

none of the pluripotent stem cell types generated here were

deficient in differentiation into any of the three germ layers.

Table 2. The relative efficiencies of reprogramming for each population are shown, before and after normalization for cloning
efficiency.

Cell type
No. iPS colonies/no. input cells
(Reprogramming efficiency %) Cloning efficiency

Reprogramming efficiency
(Normalized for cloning efficiency)

Mean efficiency
+/2 S.E.M.

SMPs Expt 1 18/300 (6.0%) 25% 24% 23+/23%

Expt 2 4/120 (3.3%) 20% 17%

Expt 3 5/120 (4.2%) 15% 28%

Expt 4 6/60 (10.0%) ND - n/a

Sca1+ Expt 1 4/120 (3.3%) 15% 22% 29+/27%

Expt 2 5/120 (4.2%) 12% 36%

Expt 3 2/60 (3.3%) ND - n/a

Expt 4 4/60 (6.6%) ND - n/a

CXCR42 Expt 1 0/120 (0.0%) 12% 0% 0%

Expt 2 0/120 (0.0%)

Cloning efficiency of sorted cells was determined by plating each of the indicated cell types into 96-well plates, one cell per well, and counting the number of wells
containing live cells after 7 days. ND: not determined.
doi:10.1371/journal.pone.0026406.t002

Figure 4. Increased efficiency of reprogramming of SMPs and
Sca1+ cells is independent of initial levels of endogenous
expression of reprogramming factors. Quantitative real-time PCR
using primers that detect endogenously expressed Oct4, Sox2, Klf4, and
cMyc mRNAs was performed on freshly sorted SMPs, Sca1+ cells and
CXCR42 cells (A) and on reprogrammed SMP and Sca1+ iPS cells and
mES cells (three different lines tested for each cell type, B). None of the
freshly-isolated myofiber-associated cell populations expresses Oct4 or
Sox2 at appreciable levels compared to pluripotent cells. SMPs and
CXCR42 cells express Klf4 and c-Myc at significantly higher levels than
in Sca1+ cells. Data are normalized for beta2-microglobulin expression
and presented as mean +/2 S.E.M. for the indicated number of
replicates. *p,0.05; **p,0.001.
doi:10.1371/journal.pone.0026406.g004

Skeletal Muscle Stem Cell iPS Cells
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These data argue that although early passage SMP iPS cells may

retain increased expression of some mRNAs associated with their

somatic cell origin (e.g., b1-integrin and CXCR4; [8]), iPS cell

epigenetic memory is not in this case sufficient to drive

differentiation of teratoma cells down a predominantly skeletal

muscle fate.

Figure 5. Teratomas from SMP iPS and Sca1+ iPS cells do not show biased differentiation into skeletal muscle by histology. (A)
Representative image of an H&E stained section of a teratoma formed from SMP iPS cells (A). The presence of skeletal muscle in teratomas from mES,
SMP iPS or Sca1+ iPS was assessed by histology, and is shown as the percent area of the tumor occupied by muscle (B). No significant differences
were detected in the fraction of striated muscle present in teratomas derived from mES, SMP iPS or Sca1+ iPS cells.
doi:10.1371/journal.pone.0026406.g005

Figure 6. Teratomas from SMP iPS and Sca1+ iPS cells do not show biased differentiation into skeletal muscle by Western blot. (A)
Representative Western blots of teratomas from SMP iPS, Sca1+ iPS, or mES cells, stained with the indicated antibodies against skeletal muscle myosin
heavy chain (MyHC), cytokeratin 8 (CK8), cytokeratin 14 (CK14) or GAPDH as a control. Three different lines were used for each pluripotent cell type to
generate the teratomas. (B) Western blots were quantified by optical densitometry using ImageJ, and results reported for MyHC (top), CK8 (middle)
and CK14 (bottom) as mean intensity (arbitrary units), normalized to the loading control (GAPDH). Error bars reflect standard error. No significant
differences were detected in the presence of MyHC (a mesodermal and skeletal muscle marker) or CK8 (an endodermal marker) among any of the
three sources of pluripotent cells. SMP iPS showed 2–3 fold greater representation of CK14 (an ectodermal marker) than Sca1+ iPS or mES. N.D. – not
detectable.
doi:10.1371/journal.pone.0026406.g006

Skeletal Muscle Stem Cell iPS Cells
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Discussion

Taken together, our observations that SMPs and Sca1+

mesenchymal progenitors reprogram to generate iPS cells with

greater efficiency than differentiated CXCR42 cells suggests that

pluripotency can be induced more efficiently in stem cells as

compared to their more differentiated progeny residing within the

same anatomical location and same developmental lineage. In

combination with a recent report [7], our data suggest that

increased susceptibility to reprogramming may be a common

attribute of many adult stem cells. These data thus emphasize the

crucial impact of differentiation stage on reprogramming efficien-

cy, and indicate that much higher efficiencies of iPS derivation can

be obtained simply by selecting an appropriate target population;

using undifferentiated precursor cells as targets for reprogramming

substantially enhances the efficiency of iPS generation. Future

studies identifying the molecular differences between immature

and mature cell populations should reveal critical barriers inherent

to the reprogramming process and thereby facilitate effective

generation of iPS cells for disease modeling, drug discovery and

cell therapy approaches.

Our data also indicate that, despite some epigenetic memory of

their somatic cell of origin [8], SMP iPS show no myogenic bias in

their differentiation in teratoma assays, as assessed by both

histological analysis and Western blotting for lineage-specific

differentiation markers. Similarly, although Sca1+ cells are

uniformly non-myogenic in vivo and in vitro, iPS cells generated

from Sca1+ cells differentiate to form skeletal muscle as efficiently

as SMP iPS. Intriguingly, these findings contrast with a recent

report that mesangioblast-derived iPS cells (MAB-iPS) generate

teratomas containing up to 70% striated muscle [18]. Differences

in these results may reflect differences in the degree of lineage

specification among these two cells types, as mesangioblasts have

been reported to retain both myogenic and non-myogenic

differentiation capacity (including the ability to differentiate to

form endothelium, fibroblasts, bone, fat, cartilage and neural cells),

while SMPs represent lineage-committed muscle stem cells [2].

Alternatively, it is possible that the serial passaging and selection

employed in the culture-based isolation of mesangioblasts

introduces changes in these cells that influence the subsequent

activity of iPS cells derived from them. Of note, the mesangioblasts

(MAB) that Quattrocelli et al isolated were obtained from murine

skeletal muscle and reported to derive from Sca1+ and PDGFRa+
cells. Whereas the freshly isolated SMPs studied here are

uniformly Sca12 and PDGFRa2, the ‘‘Sca1+ cells’’ in our

isolations contain ,30% PDGFRa+ cells (Figure 7), suggesting

that the Sca1+ population we studied is likely to contain a

substantial fraction of mesangioblasts. Nonetheless, in our studies,

Sca1+ iPS, like SMP iPS, generated teratomas containing only

,5% skeletal muscle (by surface area), with no differences in the

presence of skeletal muscle myosin heavy chain (determined by

Western blotting and densitometry). Thus, unlike prior studies of

iPS derived from mouse hematopoietic cells [8], and recent studies

of iPS derived from human pancreatic islets [9], each of which

reported an increased propensity of iPS to differentiate into

somatic cells of the same lineage as the iPS cell-of-origin, our data

indicate that the myogenic potential of the target cell is insufficient,

in and of itself, to impose subsequent differentiation biases on early

passage reprogrammed iPS cells. These findings are consistent

with a model in which cell-of-origin is only one of many possible

influences on the differentiation potential of iPS cells derived from

distinct somatic cells, and may reflect an incompatibility of the

myogenic program with pluripotency that may help to explain

difficulties encountered in attempts to direct the differentiation of

these cells along the skeletal muscle lineage. Thus, while

differentiation biases imparted to iPS cells based on their cell-of-

origin may be useful for deriving some somatic tissue types, they

may not provide a universal advantage for directing pluripotent

cell differentiation.

Materials and Methods

SMP isolation
Myofiber-associated cells were prepared from intact limb

muscles (EDL, gastrocnemius, quadriceps, soleus, TA, and triceps

brachii) as described previously [2,19]. Briefly, intact mouse limb

muscles were digested with collagenase II to dissociate individual

myofibers. These were triturated and digested with collagenase II

and dispase to release myofiber-associated cells. The myofiber-

associated cells were next subfractionated by FACS, using the

following marker profiles for each population: 1) SMPs: CD452

Mac-12 Sca-12 b1-integrin+ CXCR4+; 2) Myoblast and fibro-

Figure 7. Sca1+ cells but not SMPs contain a PDGFRa+ population. Sca1+ cells or SMPs were stained for PDGFRa and analyzed by FACS.
Representative FACS plots show that only Sca1+ cells (left) contain a substantial population of PDGFRa+ cells (,30% of Sca1+ cells), whereas SMPs
(right) are PDGFRa2.
doi:10.1371/journal.pone.0026406.g007
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blast-containing population: CD452 Mac-12 Sca-12CXCR42; 3)

Sca1+ mesenchymal cells: CD452 Mac-12 Sca-1+. After the initial

sort, cells were re-sorted by FACS using the same gating profile to

increase the purity of the obtained population [20].

Reprogramming of myofiber-associated cells
Sorted cells from mice containing dox-inducible Oct4, Sox2, c-

Myc and Klf4 transgenes were cultured on irradiated MEFs, in ES

medium in the presence of doxycycline (10 ug/ml; Sigma D9891-

25). Doxycycline was removed once emergent iPS colonies became

stably reprogrammed (generally 21–28 days).

Generation of reprogrammable mice
Generation of the reprogrammable mouse was described in

[11,12,13]. Briefly, iPS cells were initially derived from a neonatal

tail fibroblast-derived iPS clone that was injected into blastocysts to

produce fetal liver cells. The iPS-derived fetal liver cells were

harvested and differentiated in vitro into CD8+ cells, which then

were re-induced with dox to produce iPS cells. These secondary iPS

cells were then injected into blastocysts to generate reprogrammable

mice as used in this study.

Quantitative PCR
SMPs, Sca1+ and CXCR42 cells were harvested from mouse

skeletal muscle, and double-sorted for purity. After the second sort,

cells were deposited in Trizol and cDNA was prepared using

Superscript III Reverse Transcriptase Supermix kit (Invitrogen,

11752-050). Real-time quantitative PCR reactions were carried out

in an ABI 7900 machine, using SYBR Green PCR mix (Applied

Biosystems, 4309155). Beta 2 microglobulin (B2M) was used as a

housekeeping gene, and gene expression levels normalized to B2M

expression. Primers used to amplify endogenous genes were (listed

59 to 39; sequences from [14]):

c-Myc: AAGAGGACTTGTTGCGGAAA and TTGTAATC-

CAGAGGTTGATTATCG

Klf4: ATGGTCAAGTTCCCAGCAAG and TGATATCGA-

ATTCCGTTTGTTT

Oct4: AGTTGGCGTGGAGACTTTGC and CAGGGCTT-

TCATGTCCTGG

Sox2: GGCCATTAACGGCACACT and AAGCAGCGTA-

TCCACATAGC

B2m: TTCTGGTGCTTGTCTCACTGA and CAGTATGT-

TCGGCTTCCCATTC

Cell culture media
Embryonic stem cell media consisted of high glucose DMEM

(Gibco 11965-092) supplemented with 15% ES-qualified fetal

bovine serum (FBS; Gemini), 1 mM L-Glutamax (Invitrogen

35050-061), 100 U/ml penicillin and 100 U/ml streptomycin

(Invitrogen 15070-063), 1 mM sodium pyruvate (Invitrogen

11360-070), 16 non-essential amino acids (Invitrogen 11140-

050), 0.1 mM ß-mercaptoethanol (Invitrogen 21985-023), 1000

units/ml LIF (ESGRO, Millipore).

Immunostaining and alkaline phosphatase staining
Immunostaining was performed with antibodies to Oct4

(Abcam ab19857) and SSEA-1 (Chemicon MAB4301). Alkaline

phosphatase staining was performed using the Leukocyte Alkaline

Phosphatase kit from Sigma (86R-1KT) according to manufac-

turer’s instructions.

Myogenic differentiation assays. Freshly sorted cells were

plated at 16104 cells/ well in 96 well plates, coated with 1 mg/ml

rat-tail collagen (Sigma) and 10 mg/ml natural mouse laminin

(Invitrogen). Cells were expanded for 5–7 days in growth medium

(GM) composed of Ham’s F10 (Invitrogen)+20% horse serum

(Atlanta Biologicals)+1% penicillin/ streptomycin+5 ng/ml bFGF

(Sigma). bFGF was replaced daily. After 5–7 days, cells were

passaged and replated onto 0.2% Matrigel (Fisher) coated

chamber slides in growth medium for 2 days, and then medium

was changed to differentiation medium (DM) consisting of Ham’s

F10+2% horse serum+1% penicillin/ streptomycin. Cells were

kept in DM for 6 days, then medium was aspirated and cells

were fixed with 4% paraformaldehyde and processed for

immunofluorescence [4].

Adipogenic differentiation assay. Freshly sorted cells were

expanded as described above. After 5–7 days, cells were replated

onto 0.2% Matrigel coated 48-well plates in growth medium for 2

days. Subsequently, medium was changed to adipogenic induction

medium consisting of DMEM+10% FBS+1% penicillin/

streptomycin+1 mM Dexamethasone (Sigma)+100 nM Insulin

(Sigma)+1 mM Roziglitazone (Cayman Chemical)+0.5 mM 3-

isobutyl-1-methylxanthine (Sigma) for 2 days, and then replaced

with adipogenic differentiation medium consisting of DMEM+10%

FBS+1% penicillin/ streptomycin+100 nM Insulin. Cells were kept

in this medium for 6 days, and then fixed with 4% Parafor-

maldehyde and stained with Oil Red O (Sigma) for one hour at

room temperature [21]. Oil Red O staining of lipid droplets within

adipocytes was analyzed by standard microscopy using an Olympus

IX51 inverted microscope.

Teratoma formation. To generate teratomas, pluripotent

cells were injected subcutaneously into the back of NOD/SCID

mice. Mice were sacrificed when tumors reached approximately

0.5 cm in diameter, and tumors were harvested for fixation and

sectioning, or for protein analysis via western blots.

Western blots. Teratomas were flash frozen in liquid nitrogen,

and homogenized in buffer containing protease inhibitors (cOmplete

protease inhibitors, Roche). The homogenate was centrifuged, and

supernatant taken for protein analysis. Protein concentration was

determined using a BCA protein assay kit (Pierce), and samples were

run on a 4–20% polyacrylamide gel (Criterion, BioRad). Proteins were

transferred onto a PVDF membrane (Immuno-Blot, BioRad), and

blocked with 5% nonfat dry milk. Primary antibody staining was done

in Tris-buffered saline (Atlanta Biologicals) with 0.1% Tween-20

containing 5% milk at 4uC overnight on a rocking platform.

Secondary antibody staining was done in 5% milk at room

temperature for 1 hour on a rocking platform. Protein bands were

visualized using enhanced luminescence reagents (Amersham

RPN2232) and quantified using a Typhoon Imager (Amersham).

Band intensities were quantified using ImageJ (National Institutes of

Health). Antibodies used were as follows: Anti-GAPDH (Abcam

ab9485), Anti-skeletal fast myosin heavy chain (Abcam ab91506), Anti-

cytokeratin 14 (Abcam ab7800), Anti-cytokeratin 8 (Developmental

Studies Hybridoma Bank, Troma-1), Anti-Mouse IgG Peroxidase

Conjugated (Thermo Scientific 31430), Anti-Rabbit IgG Peroxidase

Conjugated (Thermo Scientific 31460), Anti-Rat IgG Peroxidase

Conjugated (Thermo Scientific 31470). Optical densitometry was

done using ImageJ according to http://lukemiller.org/index.php/

2010/11/analyzing-gels-and-western-blots-with-image-j/.

Animal welfare
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Massachusetts General Hospital

Subcommittee on Research Animal Care (Protocol number

2006N000104 to Konrad Hochedlinger) and the Joslin Diabetes

Center Institutional Animal Care and Use Committee (Protocol
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04-01 to Amy Wagers) and Harvard University Standing

Committee on the Use of Animals in Research and Teaching

(Protocol 29-14 to Amy Wagers). All surgeries were performed

under anesthesia, and all efforts were made to minimize suffering.

Animals were humanely sacrificed prior to tissue collection. iPS

cells were generated in accordance with the approved protocols

from Massachusetts General Hospital (Protocol number

2006N000104 ), Joslin Diabetes Center (Protocol 04-01) and

Harvard University (Protocol 29-14) as stated above.

Supporting Information

Figure S1 Generation of ‘‘reprogrammable mice’’ and
experimental design to test reprogramming efficiency of
myofiber-associated cells. Induced pluripotent stem cells (iPS

cells) were generated from mouse tail-tip fibroblasts by infection

with lentiviruses containing doxycycline-inducible Oct4, Sox2,

Klf4 and c-myc transgenes. Addition of doxycycline (dox) induces

reprogramming. These iPS cells were injected into e3.5 mouse

blastocysts, where they contributed to fetal liver. Fetal liver cells

were harvested, differentiated into CD8+ cells, and dedifferenti-

ated again using dox. The resulting iPS cells were used to generate

the reprogrammable mice for this study. The limb muscles of these

reprogrammable mice were harvested to myofiber-associated cells,

which were cultured in the presence of dox to produce tertiary iPS

cells. Muscle-derived iPS cells were used to generate transgenic

mice, which when bred to wild-type mice demonstrated germline

transmission.

(PDF)

Figure S2 Bulk-sorted SMPs and Sca1+ cells reprogram
more efficiently compared to CXCR42 myoblasts. (A)

Myofiber-associated cells were isolated from chimeric mice,

transgenic for dox-inducible Oct4, Sox2, Klf4 and c-myc (but

not tdTomato). Doxycycline was added to induce transgene

expression of Oct4, Sox2, Klf4 and c-myc. These cells consist of a

mix of transgenic and non-transgenic cells; therefore, analysis of

these cell populations, underestimates the reprogramming effi-

ciency of each cell type. Reprogramming efficiencies reported in

(B) are given as the percent of input cells (per number of cells

seeded) generating colonies with embryonic stem cell-like

morphology after 3 weeks. ND: not determined.

(PDF)

Figure S3 Representative FACS plots of tdTomato+ cells
sorted from the myofiber-associated cell compartment
for reprogramming. FACS gating of the indicated cell

populations is indicated by blue boxes and red arrows. The

percent of cells within each gate is as shown. tdTomato-expression

indicates the presence of cells transgenic for the four dox-inducible

reprogramming factors in all the populations (Sca-1+ (top),

CXCR42 (middle), and SMP (bottom)).

(PDF)
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