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Summary

Recent studies, based on a combination of long-term in-situ and satellite derived temperature data
indicate that lakes are rapidly warming at the global scale. Since Lake Surface Water Temperature
(LSWT) is highly responsive to long-term modifications in the thermal structure of lakes, it is a good
indicator of changes in lake characteristics. There have not been done many studies at a regional scale
to understand the lakes’ response to climate change, mainly due to lack of high spatio-temporal data.
Therefore, further studies are needed to understand variation in trends, impacts and consequences at
a regional scale. It is essential to have highly frequent spatially explicit data to understand the spatio-
temporal thermal variations of LSWT. Continuous in-situ water temperature data measured at high
temporal resolution from permanently installed stations are becoming increasingly available through
GLEON (Global Lake Ecological Observatory Network; http://gleon.org/) or NetLake (Networking
Lake Observatories in Europe). But these data are often heterogeneous with different sources and time
line, point based, and not available for many lakes around the globe. To establish permanent weather
stations for all the large lakes in the world is also not economically viable. As an alternative to direct
measurements, remote sensing is considered as a promising approach to reconstruct complete time
series of LSWT where direct measurements are missing. Temperature of land/water surfaces is one of
the direct and accurate measurements using satellite data acquired in the thermal infra-red spectral
region. Furthermore, the availability of daily satellite data since the 1980s at a moderate resolution
of 1 km from multiple polar orbiting satellites is an opportunity not to be missed. But owing to the
complexities related to earlier satellite missions, and the need of high level of processing, the potential
of the historical satellite data in deriving a homogenised LSWT is still not explored well.

There is a gap in the availability of long-term time series of LSWT from the satellite data which could
be used in understanding the patterns and drivers of thermal variations in large lakes. This thesis aims
to fill this gap by developing reproducible and extendable methods to derive homogenised daily LSWT
for thirty years from 1986 to 2015. Hence, the main objectives of this thesis are i) to reconstruct thirty
years (1986-2015) of daily satellite thermal data as a homogenised time series of LSWT for five large
Italian lakes by combining thermal data from multiple satellites, ii) to assess the quality of the satellite
derived LSWT using long-term in-situ data collected from the same lakes, iii) to report the seasonal
and annual trends in LSWT using robust statistical tests.

The first part of the thesis deals with the accurate processing of historical Advanced Along-Track
Scanning Radiometer (AVHRR) sensor data to derive time series of LSWT. A new method to resolve
the complex geometrical issues with the earlier AVHRR data obtained from National Oceanic and
Atmospheric Administration (NOAA) satellites has been developed. The new method can accurately
process historical AVHRR data and develop time series of geometrically aligned thermal channels in
the spectral range of 10.5-12.5 µm. The validation procedure to check the accuracy of image to image
co-registration using 2000 random images (from a total of 22,507 images) reported sub-pixel accuracy
with an overall Root Mean Square Error (RMSE) of 755.65 m. The usability of newly derived time
series of thermal channels to derive LSWT for lakes were tested and validated. Furthermore, cross-
platform and inter-platform validations were performed using corresponding same day observations
which reported an overall RMSE of less than 1.5 °C.
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In the second part of the thesis, a new method was developed to derive homogenised daily LSWT
standardized at 12:00 UTC from thermal channels of thirteen different satellites. The new method
is implemented for Lake Garda in Northern Italy developing time series of homogenised daily LSWT
for last thirty years from 1986 to 2015. The sensors used in this study are the AVHRR from multi-
ple NOAA satellites, Along Track Scanning Radiometer (ATSR) series from European Remote Sensing
(ERS) satellites and Moderate Resolution Imaging Spectroradiometer (MODIS) from Aqua and Terra
satellites. The LSWT time series are then validated using long-term in-situ data obtained from a deep
and a shallow sampling location in the lake. Validation of LSWT from individual satellites against
corresponding in-situ data reported an overall RMSE of 0.92 °C. The validation between final ho-
mogenised LSWT and the in-situ data reported a coefficient of determination (R2) of 0.98 and a RMSE
of 0.79 °C.

In the third part of the thesis, homogenised daily LSWT for the last thirty years (1986-2015) were
developed for five large lakes in Italy using the newly developed methods. The LSWT time series
was validated against the in-situ data collected from the respective lakes. Furthermore, long-term
trend analysis to study the seasonal and annual variations in LSWT over thirty years was performed
over the newly developed LSWT data. The validation procedure reported an average RMSE and
Mean Absolute Error (MAE) of 1.2 °C and 0.98 °C, respectively, over all the lakes. The trend analysis
reported an overall regional summer warming rate of 0.03 °C yr-1 and an annual warming rate of
0.017 °C yr-1. During summer, all studied sub-Alpine lakes showed high coherence in LSWT to each
other. The summer mean LSWT of Lake Garda, located in the sub-Alpine region also exhibit high
temporal coherence with that of central Italian Lake Trasimeno. Annually, mean LSWT of all sub-
Alpine lakes were found to be highly coherent to each other, while mean LSWT of Lake Trasimeno
resulted less coherent to the other lakes.

Overall, the thesis aims at contributing to the accurate processing of the various historical satellite data
and the development of a new method which allows to merge them into a unified, longest possible
time series of LSWT. The newly developed methods used open source geospatial software tools, which
ensure the reproducibility and also extensibility to any other geographic location given the availability
of satellite data. Although this study is using LSWT as the primary physical variable, the developed
methods can be used to derive any other time series of land and water based regional products from
satellite data.
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Zusammenfassung

Jüngste Studien, die auf einer Kombination von langfristigen in-situ- und satellitenabgeleiteten Tem-
peraturdaten basieren, zeigen, dass Seen auf globaler Skala sich schnell erwärmen. Da die Ober-
flächentemperatur von Seen (Lake Surface Water Temperature, LSWT) stark auf langfristige Verän-
derungen in der thermischen Struktur der Seen reagieren, sind sie ein geeigneter Indikator für Verän-
derungen in den Eigenschaften der Seen. Auf regionaler Skala wurden bisher nicht viele Studien
durchgeführt, um den Einfluss des Klimawandels auf Seen zu verstehen, vor allem wegen des Man-
gels an hochauflösenden raum-zeitlichen Daten. Daher sind weitere Studien erforderlich, um Trend-
variationen, Auswirkungen und Folgen auf regionaler Ebene zu verstehen. Es ist unumgänglich,
über zeitlich hochauflösende und räumlich explizite Daten zu verfügen, um die räumlich-zeitlichen
Schwankungen der Oberflächentemperatur von Seen (LSWT) zu verstehen. Kontinuierliche in-situ-
Daten von Wassertemperatur mit hoher zeitlicher Auflösung, die von fest installierten Stationen
gemessen werden, stehen zunehmend in größerer Anzahl durch GLEON (Global Lake Ecological Ob-
servatory Netzwork, http://gleon.org) oder NetLake (Networking Lake Observatories in Europe) zur
Verfügung. Aber diese Daten sind oft heterogen, da sie aus verschiedenen Quellen stammen und unter-
schiedliche Zeithorizonte umfassen, auch sind sie nur punktuell und stehen nicht für viele Seen rund
um den Globus zur Verfügung. Allerdings ist es ökonomisch betrachtet nicht realistisch, permanente
Wetterstationen für alle großen Seen der Welt aufzustellen. Ein vielversprechender Ansatz alternativ
dazu ist die Fernerkundung , die dort erlaubt, wo direkte Messungen fehlen, vollständige Zeitreihen
der Oberflächentemperatur von Seen zu rekonstruieren. Die Oberflächentemperatur von Land- und
Wasserflächen ist eine der direkten und genauesten Messungen, die mit Hilfe von Satellitendaten im
thermischen Infrarot-Spektralbereich durchgeführt werden kann. Darüber hinaus bieten die täglichen
Satellitendaten einer Reihe polar-umlaufender Satelliten mit einer moderaten Auflösung von 1 km seit
den 1980er Jahren eine Möglichkeit, die genutzt werden sollte. Aufgrund der komplexen Probleme
bei der Datenverarbeitung früherer Satellitenmissionen wurde jedoch das Potential im Zusammenhang
mit diesen historischen Satellitendaten zur Erstellung einer homogenisierten LSWT-Zeitreihe bislang
nicht gut genutzt.

Es gibt eine Lücke in der Verfügbarkeit von langfristigen LSWT-Zeitreihen aus Satellitendaten, die für
das Verständnis von Mustern und Auslösern von thermischen Veränderungen in großen Seen dienen
könnten. Diese Arbeit zielt darauf ab, diese Lücke zu füllen, indem sie reproduzierbare und erweit-
erbare Methoden zur Ableitung einer dreißigjährigen Zeitreihe (1986 bis 2015) von homogenisierten
täglichen LSWT-Werten vorstellt. Die wichtigsten Ziele dieser Arbeit sind i) 30 Jahre (1986-2015)
täglicher, thermischer Satellitendaten von mehreren Satelliten als homogenisierte LSWT-Zeitreihe für
fünf große italienische Seen zu rekonstruieren, ii) die Qualität der aus Satellitendaten abgeleiteten
LSWT-Daten unter Verwendung von langfristigen in-situ-Daten aus den gleichen Seen zu beurteilen,
und iii) die saisonalen und jährlichen LSWT-Trends mit statistischen Tests zu ermitteln.

Der erste Teil der Arbeit beschäftigt sich mit der genauen Verarbeitung von historischen Sensor-
daten des Advanced Along-Track Scanning Radiometers (AVHRR), um LSWT-Zeitreihen abzuleiten.
Es wurde eine neue Methode entwickelt, die die komplexen geometrischen Probleme, die in den
früheren AVHRR Sensordaten (von der National Oceanic and Atmospheric Administration (NOAA)
bereitgestellt) enthalten sind, lösen kann. Die neue Methode kann historische AVHRR Daten exakt
verarbeiten und Zeitreihen von geometrisch ausgerichteten thermischen Kanälen im Spektralbereich
von 10,5-12,5 µm prozessieren.
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Das Validierungsverfahren zur Prüfung der Genauigkeit der Bild-zu-Bild-Ausrichtung wurde mit 2000
(von insgesamt 22.507 Bildern) zufällig ausgewählten Bildern durchgeführt und ergab eine Subpixel-
Genauigkeit mit einer mittleren quadratischen Abweichung (Root Mean Square Error, RMSE) von
755,65 m. Die Nutzbarkeit der von thermischen Kanälen neu abgeleiteten LSWT-Zeitreihen wurde
getestet und validiert. Des weiteren wurden plattformübergreifende Validierungen unter Verwendung
von am gleichen Tag gemessenen Beobachtungen durchgeführt, die einen Gesamt-RMSE von weniger
als 1,5 °C ergaben.

Im zweiten Teil der Arbeit wurde eine neue Methode entwickelt, um homogenisierte, tägliche, auf
12:00 Uhr UTC bezogene LSWT-Daten aus thermischen Kanälen von dreizehn verschiedenen Satel-
liten standardisiert abzuleiten. Die neue Methode wurde für den Gardasee in Norditalien umgesetzt,
wobei die entwickelte homogenisierte LSWT-Zeitreihe mit täglicher Auflösung die letzten dreißig Jahre
von 1986 bis 2015 umfasst. Als Sensoren wurden in dieser Studie sowohl das AVHRR (auf mehreren
NOAA-Satelliten) sowie das Along Track Scanning Radiometer (ATSR, auf European Remote Sens-
ing (ERS) Satelliten) und das Moderate Resolution Imaging Spectroradiometer (MODIS, auf Aqua
und Terra-Satelliten) verwendet. Die LSWT-Zeitreihen wurden an einer tiefen und an einer flachen
Probenahmestelle des Garda-Sees mit langfristigen in-situ-Daten validiert. Die Validierung von LSWT-
Werten einzelner Satelliten in Bezug auf die in-situ-Daten ergab einen Gesamt-RMSE von 0,92 °C.
Die Validierung zwischen den endgültigen homogenisierten LSWT und den in-situ-Daten ergab ein
Bestimmtheitsmaß (R2) von 0,98 und einen RMSE von 0,79 °C.

Im dritten Teil der Arbeit wurden tägliche LSWT für die letzten dreißig Jahren homogenisiert (1986-
2015) und diese Zeitreihen für fünf große Seen in Italien mit Hilfe der neu entwickelten Methoden
erstellt. Die LSWT-Zeitreihe wurde mit in-situ-Daten der jeweiligen Seen validiert. Darüber hinaus
wurde eine langfristige Trendanalyse durchgeführt, die die saisonalen und jährlichen Schwankungen
in LSWT von mehr als dreißig Jahren in den neu entwickelten LSWT Daten analysiert. Das Vali-
dierungsverfahren ergab einen mittleren RMSE von 1,2 °C bzw. einen mittleren absoluten Fehler
(MAE) von 0,98 °C für alle Seen. Die Trendanalyse ergab eine regionale Sommer-Erwärmungsrate
von 0,03 °C yr-1 und eine jährliche Erwärmungsrate von 0,017 °C yr-1. Alle subalpinen Seen der
Studie zeigten für die Sommermonate eine hohe Kohärenz in Bezug auf LSWT. Der Sommer-LSWT
des Gardasees wies in der subalpinen Region auch mit dem mittelitalienischen Trasimenischen See
eine hohe zeitliche Kohärenz auf. Der jährliche-LSWT aller subalpinen Seen wies ebenfalls eine große
Kohärenz auf, während der mittlere LSWT des Trasimenischen Sees weniger kohärent im Vergleich zu
den anderen Seen war.

Insgesamt zielt die Arbeit auf eine genaue Bearbeitung verschiedener historischer Satellitendaten ab
und will zur Entwicklung eines neuen Verfahrens beitragen, die sie zu einer einheitlichen, möglichst
langen Zeitreihe von LSWT vereinen. Die neu entwickelten Methoden verwenden Open Source GIS-
Software-Tools, die die Reproduzierbarkeit und auch Erweiterbarkeit auf andere geographische Re-
gionen ermöglichen, sofern Satellitendaten verfügbar sind. Obwohl diese Studie LSWT als primäre
physikalische Größe verwendet, können diese Methoden verwendet werden, um auch andere Land-
und Wasser-basierte regionale Zeitreihen-Produkte aus Satellitendaten abzuleiten.
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Chapter 1

General Introduction

1.1 Background

In the last few decades, innovation in the Information and Communication Technologies

(ICT) has revolutionized the research paradigm with access to an “unlimited” amount of data.

Satellite remote sensing is one of the domains which is growing rapidly with an increasing

number of satellites on Earth’s orbit which are monitoring land and water (Campbell and

Wynne, 2011). This enabled researchers to formulate their research making use of these data

to monitor Earth’s surface understanding the patterns and processes on a particular snapshot

of time or over a period of time (Kerr and Ostrovsky, 2003; Lillesand et al., 2014). The

basic principle behind remote sensing is based on the measurement of reflected and emitted

radiation from the Earth surface at different wavelengths in the electromagnetic spectrum

(Fig. 1.1).

Figure 1.1: Electromagnetic spectrum. The wavelengths of visible and thermal region are shown
separately.

The reflected energy from a single land cover/land use type has similar properties which form

the basic principle behind identifying and studying different land use types using remote sens-

ing. Satellite sensors record the reflected energy in the optical range of the electromagnetic

spectrum while they record the emitted energy in the thermal region (Lillesand et al., 2014).
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Chapter 1 1.1. Background

Moreover, the availability of satellite data over more than the last three decades has enabled

researchers to use it for time series analyses, to understand changes over time (Verbesselt

et al., 2010). This has especially been used in studying land use, land cover changes over

years, mapping physical and geographical changes in water bodies, and climate change stud-

ies. The time series of satellite data obtained from multiple polar orbiting and geo-stationary

satellites are also used to develop Climate Data Records (CDR) with time scales of several

hours, days, weeks, months and years, which are used extensively in climate change stud-

ies (NOAA, 2004). The CDR’s are often grouped into atmospheric, oceanic and terrestrial

records. In the atmospheric genre, the major Essential Climate Variables (ECV) developed

using satellite data are Aerosol Optical Thickness (AOT), cloud properties, solar irradiance,

precipitation etc. (Ashouri et al., 2014). In the oceanic genre, the most common ECV’s are

ocean colour, sea salinity, sea surface temperature, sea ice etc. In the terrestrial genre there is

surface reflectance, Leaf Area Index (LAI), Normalized Difference Vegetation Index (NDVI),

Land Surface Temperature (LST) etc. An exhaustive list of various ECV’s produced from

combining satellite data and in-situ observation from global networks are given by NOAA

(https://www.ncdc.noaa.gov/cdr).

1.1.1 Thermal remote sensing

Thermal remote sensing deals with acquisition, processing and interpretation of data

recorded in the Thermal Infrared Region (TIR) (Fig. 1.1). The basic theory behind ther-

mal remote sensing is that all objects with a temperature above absolute zero (0 K or -273.15

°C) emit electromagnetic radiation. The satellite sensors with thermal detectors can record

this emitted TIR radiation at the long wavelengths ranging from 3 - 14 µm. Due to possible

contamination by reflected sunlight in the 3 - 5 µm, the common approach for mapping tem-

perature of the Earth’s surface is by using the data acquired between 9 - 14 µm (Kuenzer and

Dech, 2013; Li et al., 2013).

2
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Figure 1.2: Principle of remote sensing. The emitted and reflected radiation from the Earth’s surface
is recorded by the satellite and sent to a ground receiver as radiances. VZA - Viewing Zenith Angle;
SZA - Solar Zenith Angle

Many of the polar orbiting and geo-stationary satellites are equipped w ith sensors which can

record TIR radiations in the 10 - 12 µm region. Thus the emitted radiation recorded by the

thermal detectors in a sensor is scaled to integer values and stored as Digital Numbers (DN)

in order to avoid precision issues in the pixel values. These data are then distributed to the

user (Fig. 1.2).

From at-sensor radiance to TOA brightness temperature

The at-sensor radiance is a measure of reflected or emitted energy received by the radiome-

ters in the satellite sensors. The DN is converted to at-sensor radiance using the calibration

coefficients provided with the data. The relation between radiance emitted from a Black

Body1 and its absolute temperature is explained using Planck’s law (Eq. 1.1).

1Black Body is an ideal hypothetical object which emits equal amount of energy it absorbed, with emissivity equals one
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Iλ =
2hc2

λ5(ehc/kλT − 1)
(1.1)

where Iλ[W m-2 steradian-1 µm-1] is the radiance measured in the wavelength λ [µm] from

a body of absolute temperature T in Kelvin.

The constants h,c and k in the Eq. 1.1 are:

h = 6.626 x 10-34 J s; Planck’s constant

c = 2.9979246 x 108 m s-1; speed of light

k = 1.3806 x 10-23 J K-1; Boltzmann constant

Furthermore, by inversing the Planck’s equation the absolute temperature of an object can be

derived from the spectral radiance (Eq. 1.2).

T = (
hc

kλ
)(

1

ln((2hc2λ-5)/Iλ + 1)
) (1.2)

In thermal remote sensing, Iλ represents the at-sensor spectral radiance measured for objects

in Earth surface at wavelength λ of electro magnetic spectrum. Absolute temperature T

represents the Top Of Atmosphere (TOA) Brightness Temperature(BTλ). The final step is

to derive the Surface Temperature (ST) from BTλ after considering atmospheric effects and

emissivity of different objects measured. The accuracy of the ST is based on how accurately

we can quantify the atmospheric effects (in this case, mainly the water vapor column) at

the time of image acquisition. Most objects emit less energy than the predicted radiance

using Planck’s law due to the emissivity of the object. Moreover, emissivity (range: 0 - 1)

varies with wavelength and type of the object. The objects with high emissivity absorb and

emit large amount of energy while those with low emissivity absorb and emit lower amount

of energy. The emissivity related error depends upon the type of the object. According to

Kuenzer and Dech (2013), for an object with a temperature of 288 K and an emissivity of

0.98, an emissivity change of 0.01 could result in a temperature difference of 0.73 K.

The Split-Window technique to obtain surface temperature from space

One of the most common method used in estimating ST from BTλ is based on differential ab-

sorption method (Quattrochi and Luvall, 2004). The difference between radiances from two

adjacent channels can be used to estimate the atmospheric contribution to the signal. This
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purely empirically based methodology is well established in thermal remote sensing to derive

surface temperature of different land use types. From the TIR region, dual thermal channels

recorded in the 9 - 14 µm are used for estimating surface temperature using differential ab-

sorption method. This method is generally known as Split-Window (SW) technique. The dual

thermal channels used in this method are termed (for this thesis) as Ti [10.5 - 11.5 µm] and

Tj [11.5 - 12.5 µm]. In this study, we focus on satellite sensors which provide dual thermal

channels Ti and Tj to estimate lake surface temperature. Table 1.1 lists the satellites with

sensors having the dual thermal channels which can be used to estimate surface temperature

using split window algorithm (used in this thesis).

Table 1.1: Important specifications of sensors with dual thermal channels in the 10.5-12.5 µm wave-
length range. These are the satellites used in this study.

Sensor Satellites Spatial resolution Time line
Revisit time

(days)
Orbit height (km)

Wavelength(µm) of
thermal channels (Ti, Tj)

AVHRR/2 NOAA-9/11/12/14 1.1 km 1986-2001 0.5 833 (10.3-11.3), (11.4-12.4)
AVHRR/3 NOAA-16/17/18/19 1.1 km 2001-2015 0.5 870 (10.3-11.3), (11.5-12.5)

ATSR1 ERS-1 1 km 1991-1997 3 785 (10.35-11.35), (11.5-12.5)
ATSR2 ERS-2 1 km 1995-2003 3 785 (10.35-11.35), (11.5-12.5)
AATSR Envisat 1 km 2002-2012 3 783 (10.35-11.35), (11.5-12.5)
MODIS Aqua, Terra 1 km 2000-2015 2 705 (10.78-11.28), (11.77-12.27)

The accurate estimate of surface temperatures using SW techniqure depends primarily on the

split-window coefficients. These coefficients are often derived by regressing simulated BT’s

against atmospheric profiles obtained from radiative transfer models such as MODTRAN or

by comparing satellite data with in-situ measurements (Quattrochi and Luvall, 2004; Li et al.,

2013). Split-window coefficients represent linear or nonlinear functions of the emissivity,

atmospheric water vapour and column and View Zenith Angle (VZA) of the satellite. These

three parameters are considered critical in determining the accuracy of the surface tempera-

ture. The basic linear split-window equation (McMillin, 1975; Li et al., 2013)) to derive ST

from dual thermal channels is given in Eq. 1.3.

ST = c0 + c1T i + c2(T i − T j) (1.3)

where c0, c1, c2 are split window coefficients, Ti and Tj are TOA brightness temperatures

derived from the dual thermal channels. The accuracy of the derived ST depends on the

coefficients which in turn are estimated using atmospheric profiles derived from a radiative

transfer model (Li et al., 2013). However, the linear approach produced large errors dur-

ing hot and wet atmospheric conditions. To overcome this problem a nonlinear approach

(Eq. 1.4) is introduced (Walton, 1988).

5
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ST = c0 + c1T i + c2(T i − T j) + c3(T i − T j)
2 (1.4)

A combined approach is used in operational ST retrievals from MODIS and AVHRR data,

where output from linear equation is used as a first estimate of ST in the actual nonlinear

equation. There exist many variants of linear and nonlinear approaches in the literature

which include additional parameters like emissivity, atmospheric water vapor and VZA ex-

plicitly in the SW equation. Sobrino et al. (1993) and Coll and Caselles (1997) introduced a

nonlinear SW algorithm considering the emissivity and demonstrated less error compared to

the ST estimated using basic nonlinear approach (Eq. 1.4). Becker and Li (1995) introduced

cosine of VZA into the SW equation to model the angular dependencies of accurate ST re-

trieval. Furthermore, Sobrino et al. (1991); Becker and Li (1995); Jimenez-Munoz and Sobrino

(2008) extended the split-window equation by including both emissivity and atmospheric wa-

ter vapor factor in the ST retrieval. Eq. 1.5 is one such approach developed by Jimenez-Munoz

and Sobrino (2008) which includes the corrections due to emissivity and atmospheric water

vapour.

ST = T i + c1(T i − T j) + c2(T i − T j)
2 + c0 + (c3 + c4W )(1 − ε) + (c5 + c6W )∆ε (1.5)

where c0 - c6 are split window coefficients, Ti and Tj are at-sensor brightness temperatures

derived from the dual thermal channels, ε is mean emissivity, ∆ε is emissivity difference and

W is the total atmospheric water vapour column (g/cm2). The SW equation with atmospheric

water vapor and emissivity factors though proved to improve the accuracy, they are often dif-

ficult to implement due to lack of required data. An exhaustive review on existing algorithms

for retrieving ST from space data is given in Li et al. (2013). The two most important prod-

ucts derived from satellite thermal data using SW technique are Land Surface Temperature

(LST) and Sea Surface Temperature (SST). Though the basic SW approach is similar in both

cases the coefficients has to be parametrised depending on land and water.

Deriving Lake Surface Water Temperatures (LSWT)

For inland water bodies like large lakes, SST algorithms were commonly used in past studies.

Studies by Oesch et al. (2005); Politi et al. (2012) proved the usability of linear multichannel

SST and nonlinear SST estimations from ATSR2 and AVHRR sensor data over large lakes

in Europe. The multichannel linear approach reported higher accuracy than the nonlinear

approach. Crosman and Horel (2009) used MODIS LST product (MOD11L2) to study the
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spatial diurnal, seasonal and annual variations of water surface temperature of hypersaline

Great Salt Lake in Utah. Reinart and Reinhold (2008) used MODIS SST products to study the

temperature development over three years for the Lakes Vänern and Vättern in Sweden. On

the other hand, Hook et al. (2003) used ATSR2 brightness temperatures from 11 and 12 µm

to retrieve skin and bulk temperatures of Lake Tahoe by regressing them with in-situ data. In

all the multiple approaches the RMSE obtained against in-situ data ranged from 0.5 - 1.5 °C

reiterating the usability of satellite data in studying lake surface temperatures. There is a

multitude of surface temperature products available in public which are often sensor specific

and limited to a specific time frame. More recent study by Hulley et al. (2011) developed a list

of lake and sensor specific coefficients to derive Lake Surface Water Temperature (LSWT) for

169 lakes globally. By applying these coefficients to SW equation with a VZA component, the

derived LSWT exhibited lower RMSE compared to MODIS operational product. While this

approach demands further data processing to derive LSWT using the published coefficients,

Riffler et al. (2015) published long-term LSWT (1989-2013) for 25 European lakes using

their own lake specific split-window coefficients and the SW equation used by Hulley et al.

(2011). ArcLakes is another LSWT product derived exclusively from ATSR series data for a

set of selected lakes (MacCallum and Merchant, 2012).

In this thesis, we used satellite specific split-window coefficients obtained from Jimenez-

Munoz and Sobrino (2008) to derive LSWT from different sensors on board of 13 satellites.

Given that the emissivity of water surface is stable spatially and close to unity (Quattrochi

and Luvall, 2004), the mean emissivity is taken as unity in the methodology developed in this

thesis. Hence the final SW equation to retrieve LSWT used in this thesis is modified from

Eq. 1.5 and is given in Eq. 1.6.

LSWT = T i + c1(T i − T j) + c2(T i − T j)
2 + c0 (1.6)

The in-situ data used in this study for validation represents bulk temperature from the epil-

imnion of the lake at 0.0 - 0.5 m depth. The satellites, however, measure the temperature

above the sub-micron layer between water surface and the air which is highly variable ac-

cording to the meteorological conditions (Merchant, 2013). This is due to the skin effect

existing over water surfaces due to the presence of a thermal skin. The skin temperature is

often cooler than the bulk temperature in the order of 0.2 - 0.5 °C (Hook et al., 2003; Wilson

et al., 2013). The effect is normally low during daytime due to the presence of strong solar

heating which heats up the upper layer of lakes (Merchant, 2013).
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1.1.2 Global warming of lakes in the last decades

A recent study on 235 globally distributed lakes using a combination of in-situ and satellite

data reported an average warming of summer surface water temperatures of 0.034 °C yr-1

between the years 1989 and 2009 (O’Reilly et al., 2015; Sharma et al., 2015). Schneider and

Hook (2010) reported 0.045 °C yr-1 warming of night time mean LSWT over the months of

January through March and July through September from 1985-2009. The lakes in the mid

and high latitudes of the northern hemisphere showed higher warming rates than those in

the tropics and southern hemisphere. A recent study by Layden et al. (2015) demonstrated

the use of satellite derived LSWT to study the detailed climatology of 246 globally distributed

lakes. They further explained the role of lake depth, lake altitude and distance from coast in

determining the inter-lake variations of LSWT. Schneider et al. (2009) reported rapid night

time summer warming of lakes in California and Nevada at the rate of 0.11 °C yr-1 since

1992. The Great Lakes in the US except for Lake Erie were reported to be warming at

high rates of 0.5 °C per decade (O’Reilly et al., 2015). Antartic lakes are reported to be

warming at 0.06 °C yr-1 between 1980 and 1995 (Quayle et al., 2002). Lake Tanganyika,

one of the African Great Lakes, is reported to be warmed by 0.9 - 1.3 °C since 1913 (Verburg

et al., 2003). The surface temperature of Lake Kivu, another deep lake among the African

Great Lakes were reported to have been increased by 0.5 °C in last thirty years (Katsev et al.,

2014). In the recent global study by O’Reilly et al. (2015), the rates of warming followed

a regional variation, highlighting the need of regional understanding of lakes’ response to

climate change.

In Europe, there are multitude of studies on different lakes reporting rapid warming over

recent decades. Adrian et al. (2009) reported July warming since 1970 at the rate of 0.02 -

0.05 °C yr-1 computed from in-situ data of multiple northern hemisphere lakes. In western

Europe, George et al. (2005); Dokulil et al. (2006) reported an increase of surface temperature

by 1.4 °C between 1960 and 2000. In central Europe, Dokulil et al. (2006); Livingstone (2003)

reported warming of lakes at rates between 0.1 - 0.2 °C per decade. Investigations carried

out on the large lakes south of the Alps showed a rapid warming (0.1 - 0.3 °C per decade), at

a rate comparable with that of other European lakes (Salmaso and Mosello, 2010).

Most of the studies use long-term in-situ sampling data to understand the thermal variations

over time. There are multiple approaches in determining trends. Trends are estimated either

by using slope of linear regressions or with non-parametric tests like Mann-Kendall to de-

termine significant Sen slope (Sen (1968)). With a different approach, Salmaso and Mosello

(2010), Coats et al. (2006) and Dokulil et al. (2006) reported warming at similar rates using

volume weighted mean of in-situ profile data at different depths of large lakes in Europe

8
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and North America. In all the cases, availability of high-frequent in-situ data was crucial to

study the long-term variations. In case of missing data or sparse in-situ sampling, LSWT es-

timated from satellite data using thermal remote sensing techniques is considered as a good

alternative.

1.2 Thesis rationale

The advancements in remote sensing and wide acceptance of open data policy have lead to

a plethora of datasets in the public. To study the long-term thermal dynamics of lakes, it is

important to have spatio-temporal datasets at high temporal resolution. Remote sensing is a

promising alternative to sparse in-situ data in providing the required data to study temporal

dynamics. The availability of more than thirty years of data from multiple polar orbiting satel-

lites at 1 km spatial resolution and daily global coverage is an opportunity not to be missed in

deriving time series of necessary variables. The products derived from satellite data are often

termed as level-2 data, which offers comparatively easy processing and are accompanied with

quality control layers. These products, such as LST and SST, are different because they are of-

ten sensor specific, follow different algorithms, time scales and quality. Most of the products

are often spatially aggregated in order to minimize the geometrical issues, but then become

unsuitable to study smaller features like lakes. Hence it is not possible to merge in order

to study long-term changes. Moreover, the older polar orbiting satellites (like AVHRR data

from NOAA-9/11/12/14 satellites) affected largely with position errors due to the orbital

drifts, and navigational errors due to discrepancies with the satellite orientation (generally

termed as “satellite attitude”) and satellite clock (Brunel and Marsouin, 2000; Baldwin and

Emery, 1995). Though there are numerous studies dealing with an accurate geocorrection of

AVHRR data, there is a lack of a complete solution to accurately process them (Rosborough

et al., 1994). They are rarely used in research due to lack of robust methods and tools which

can perform the geometric corrections to accurately process the data. The available solutions

are either outdated, they offer limited success, or are not available in public.

Hence, the first part of my thesis (Chapter 2) deals with the issue of software availability

by having developed a new methodology and the necessary software tools to accurately pro-

cess thirty years of AVHRR LAC data (1986-2015) at 1 km spatial resolution for Northern

Italy. Chapter 2 explains in detail the developed methodology to accurately process AVHRR

LAC level-1B data and does inter-sensor comparisons to demonstrate the robustness of the

method. Furthermore, the usability of processed AVHRR data to estimate LSWT is demon-

strated.
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In addition to the issues with multiple sources of data as mentioned above, another major

obstacle to combine data from multiple satellites is different acquisition times. Though the

data is spectrally similar, the varying acquisition times is a major obstacle to merge data

from different satellites. Moreover, the orbital drift experienced by the older satellites shifted

the acquisition time by hours. This affects temperature products significantly as it follows a

cyclic daily pattern at least over lakes in Northern Italy. Thus, in order to develop a unified

LSWT time series which combines data from multiple satellites, a homogenisation procedure

is necessary, which corrects for the varying acquisition times. Chapter 3 deals with the ho-

mogenisation procedure by developing a new method to derive thirty years (1986-2015) of

gap-filled daily LSWT with a 1 km spatial resolution and a standardized time at 12:00 UTC

using a diurnal pattern based homogenisation procedure is described. In the process, dual

thermal channels at level-1B from thirteen satellites were processed to obtain brightness tem-

peratures which in turn were used to estimate LSWT. As a case study, satellite derived time

series of LSWT were developed for Lake Garda validated using long-term in-situ measure-

ments.

The main objective behind developing new homogenised daily LSWT data covering thirty

years is to study long-term trends of water temperature of large lakes in Italy. The newly

developed satellite derived LSWT time series with daily temporal resolution offers the oppor-

tunity to study the seasonal and annual trends of surface water temperature. The selection

of study lakes was driven by the availability of long-term in-situ data for the validation of

satellite derived data. Much of these in-situ data were monthly sampled. In order to establish

the usability of the developed methodology satellite derived LSWT were validated against

in-situ measurements of water temperatures in five large lakes in Italy Lake Garda, Lake Iseo,

Lake Como, Lake Maggiore and Lake Trasimeno. The results are described in Chapter 4 along

with the estimates of long-term seasonal and annual trends in water temperature based on

non-parametric tests and empirical models.

To ensure future re-usability of the developed methods by other researchers, it is important

to make them openly available to the research community. This is a significant part of science

where further openness in sharing tools and data are promoted rigorously. In the last decades,

the growth of open geospatial tools like GRASS GIS and the addition of newer specialized

geospatial tools are promoting open science in this domain. New developments are deposited

in public repositories and appended to the following chapters. From a data perspective, all

the level-1B raw data obtained from thirteen satellites are freely available from the respective

agencies, making it further extensible to other parts of the globe where data scarcity is main

hindrance in doing science.
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1.3 Research objectives

This thesis aims to fill the gap in availability of methods and tools to leverage the access

to the plethora of satellite data for the benefit of understanding land/water properties over

time. Despite the availability of long-term historical satellite data, lack of methods and tools

to accurately process them has been a main hindrance to study the long-term changes in

biological and physical variables derivable from space, at high spatial and temporal scale.

Here, LSWT as the key physical variable under study, new methods will be implemented

to develop thirty years of homogenised time series of LSWT from thirteen polar orbiting

satellites for five large lakes in Italy. On a data perspective, it is a significant contribution, as

the new methods will be reproducible and extensible, making it feasible for other scientists

to develop their own datasets. In the context of climate change, the developed time series

of LSWT for large lakes in Italy south of the Alps, give new insights into the seasonal and

annual warming trends of lakes within that region.

The first objective of the thesis is to develop a new method to accurately process historical

level-1B data from NOAA series of satellites. To develop the new method, we made use

of multiple open source tools which can read level-1B radiances, apply solar and thermal

calibration to the channels, remove bow-tie effects on wider zenith angles, correct for clock

drifts on earlier images and perform precise geo-rectification by automated generation and

filtering of ground control points using a feature matching technique. Thus, data from nine

NOAA satellites (NOAA-9/11/12/14/16/17/18/19) were processed using the new method

to develop a time series of brightness temperatures from the dual thermal channels. The

usability of the time series of brightness temperatures in estimating LSWT using the split-

window algorithm (Eq. 1.6) was tested further. As part of this objective new readers written

in Python language were developed for the AVHRR level-1B data and are made publicly

available. The entire method and results are described in Chapter 2 of this thesis.

The second objective of the thesis was to develop a homogenisation method to merge data

from thirteen satellites (including the NOAA satellites) to develop longest possible time series

of satellite derived LSWT. The derived LSWT using Eq. 1.6 and satellite specific split-window

coefficients were then homogenised to a standardized time of 12:00 UTC using a modified

typical pattern technique based on diurnal cycles. All the satellite data used were acquired

during day between 8:00 to 17:00 UTC. As a case study, this method was applied to develop

homogenised LSWT for Lake Garda and validated against long-term in-situ data. With this

study, a new method was established to homogenise LSWT from multiple satellites which is

both reproducible and applicable for other lakes.
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The third objective was to extend the LSWT time series to five large lakes in northern Italy.

Long-term in-situ water temperature data of the lakes were collected from the respective part-

ners to validate the developed LSWT for studied lakes. Furthermore, long-term seasonal and

annual trends of water temperatures over the last thirty years (1986-2015) were estimated

based on the new dataset. Temporal coherence in water temperatures between lakes were

estimated on annual and seasonal time scales based on the satellite derived homogenised

LSWT.

12
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New automated method to develop

geometrically corrected time series of

brightness temperatures from historical

AVHRR LAC data

2.1 Abstract

Analyzing temporal series of satellite data for regional scale studies demand high accuracy

in calibration and precise geo-rectification at higher spatial resolution. The Advanced Very

High Resolution Radiometer (AVHRR) sensor aboard the National Oceanic and Atmospheric

Administration (NOAA) series of satellites provide daily observations for the last 30 years at

a nominal resolution of 1.1 km at nadir. However, complexities due to on board malfunctions

and orbital drifts with the earlier missions hinder the usage of these images at their original

resolution. In this study, we developed a new method using multiple open source tools which

can read level-1B radiances, apply solar and thermal calibration to the channels, remove

bow-tie effects on wider zenith angles, correct for clock drifts on earlier images and perform

precise geo-rectification by automated generation and filtering of ground control points us-

ing a feature matching technique. The entire workflow is reproducible and extendable to any

other geographical location. We developed a time series of brightness temperature maps from

AVHRR local area coverage images covering the sub alpine lakes of Northern Italy at 1 km

resolution (1986-2014; 29 years). For the validation of derived brightness temperatures,

we extracted Lake Surface Water Temperature (LSWT) for Lake Garda in Northern Italy and

performed inter-platform (NOAA-x vs NOAA-y) and cross-platform (NOAA-x vs MODIS/AT-
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SR/AATSR) comparisons. The MAE calculated over available same day observations between

the pairs—NOAA-12/14, NOAA-17/18 and NOAA-18/19 are 1.18 °C, 0.67 °C, 0.35 °C, re-

spectively. Similarly, for cross-platform pairs, the MAE varied between 0.5 to 1.5 °C. The

validation of LSWT from various NOAA instruments with in-situ data shows high accuracy

with mean R2 and RMSE of 0.97 and 0.91 °C respectively.

2.2 Introduction

The AVHRR Local Area Coverage (LAC) data which are available at nominal 1.1 km spa-

tial resolution (hereafter AVHRR LAC) with an extensive coverage of the Earth is an unique

source of the longest medium resolution time series satellite data for regional studies. How-

ever, the number of studies which use older AVHRR LAC data are limited, owing to the

complexity in achieving acceptable accuracy due to well documented orbital drifts and clock

errors with the instruments (Brunel and Marsouin, 2000; Privette et al., 1995; Baldwin and

Emery, 1995; Krasnopolsky and Breaker, 1994; Emery et al., 1989). The archived AVHRR LAC

data is stored in 10 bit precision and consist of sensor data in raw digital counts, calibration

coefficients, time codes, quality indicators, angles, telemetry etc, which are appended at dif-

ferent bit locations (Cracknell, 1997). The data are provided in NOAA level-1B raw format

where Earth location and calibration parameters are appended with the sensor data (digital

numbers) but not applied (Robel, 2009). The data are freely available on the Comprehen-

sive Large Array-data Stewardship System (CLASS)– http://www.class.ncdc.noaa.gov/.

CLASS is NOAA’s online facility to distribute data from multiple satellites. Indeed, it requires

high level processing taking care of inter-satellite calibrations, multiple versions of AVHRR

sensor and correcting for the known issues with the older data (Baldwin and Emery, 1995;

Trishchenko et al., 2002; Robel, 2009; Kidwell, 1998). Developing a long-term time series com-

bining AVHRR LAC data from multiple NOAA instruments demand two different approaches,

one for the POD (Polar Orbiter Data) series of instruments (NOAA-9/11/12/14) and another

for the KLM (KLM represents the instrument codes) series (NOAA-16/17/18/19) due to: (i)

significant differences in the headers of the POD and KLM series data (Robel, 2009; Kidwell,

1998), (ii) varying spectral characteristics of the different versions of the AVHRR sensor—

AVHRR/1 and AVHRR/2 for POD and AVHRR/3 for KLM (Table 2.1), and (iii) pre-processing

steps depending upon the corrections to be applied for accurate navigation (Baldwin and

Emery, 1995).

The POD instruments suffered largely with position errors due to the orbital drifts, and navi-

gational errors due to discrepancies with the satellite orientation (generally termed as satel-

lite attitude) and satellite clock (Brunel and Marsouin, 2000; Baldwin and Emery, 1995). The
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satellite position error that occurred from the orbital drift of the instruments, is due to the

lack of orbit adjustment systems (Privette et al., 1995). This caused a change in the equato-

rial crossing time from the original (by hours) and the shift often increased with the age of

the instrument (Price, 1991). In Fig. 2.1, the observation time is plotted for all the NOAA

instruments used in this study, showing a rather larger shift with the earlier missions. The

effects of orbital drift on the derived vegetation indices and sea surface temperature is well

documented by Privette et al. (1995) and Kaufmann et al. (2000). On the other hand, the

clock error is due to drift in the satellite clock over time. To overcome this, a periodical re-

set of the clock was performed in the earlier NOAA instruments (Baldwin and Emery, 1995).

This also contributed to the navigational error due to clock mis-synchronization. To correct

the navigational errors, historical ephemeris (position of satellite in space at a given day and

time) data stored in two line element format are widely used (Baldwin and Emery, 1995). The

attitude control system comprises of three rotation angles - roll, pitch and yaw which control

the actual orientation by maintaining the spacecraft fixed axes along the desired geodetic di-

rections (Rosborough et al., 1994). In the earlier AVHRR LAC data attitude errors are difficult

to correct due to missing data of roll, pitch and yaw angles. To correct the navigational errors

due to attitudinal shifts, the angles are modeled from a set of known landmarks identified

from the images, but this approach has limited success (Rosborough et al., 1994; Baldwin and

Emery, 1995). The KLM instruments on the other hand were launched with much improved

AVHRR/3 six channel sensor and had advanced systems on board to minimize the naviga-

tional errors. Numerous studies in the past deal with the accurate geolocation of the AVHRR

LAC data to develop continuous time series irrespective of the NOAA instrument (Bordes

et al., 1992; Fontana et al., 2012; Moreno and Melia, 1993; Rosborough et al., 1994; Brunel

and Marsouin, 2000; Latifovic et al., 2005; Khlopenkov et al., 2010; Hüsler et al., 2011; Riffler

et al., 2015). One of the earlier methods is the automatic adjustment of the AVHRR images

by applying a physical deformation model of the actual image using the ephemeral elements

followed by landmark adjustment using reference Ground Control Points (GCP) along coastal

lines (Bordes et al., 1992; Brunel and Marsouin, 2000). With this method, an accuracy within

one pixel is achieved on images acquired from NOAA-11/12/14. Hüsler et al. (2011) used this

method as part of their AVHRR archiving process for images over Europe. Moreno and Melia

(1993) used a small sample of GCP’s to refine the orbital elements of the satellite thereby

improving the registration accuracy of the images. More recently, advanced image matching

techniques have been used to extract GCP’s to achieve sub-pixel accuracy in geo-rectification

of AVHRR images (Latifovic et al., 2005; Khlopenkov et al., 2010). Latifovic et al. (2005) devel-

oped historical AVHRR 1.1 km baseline data over entire Canada and used all the AVHRR LAC

data acquired by NOAA POD and KLM instruments. They used an image matching procedure

to automatically extract GCP’s.
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Figure 2.1: Plot of variation in observation times of National Oceanic and Atmospheric Administration
(NOAA) instruments, note the large orbital drifts of the earlier NOAA-9/11/12/14 instruments.

Table 2.1: Spectral resolution of Advanced Very High Resolution Radiometer (AVHRR) sensors in µm.

Channels AVHRR/1 AVHRR/2 AVHRR/3

1 0.58-0.68 0.58-0.68 0.58-0.68
2 0.725-1.10 0.725-1.10 0.725-1.10
3a N.A N.A 1.58-1.68
3b 3.55-3.93 3.55-3.93 3.55-3.93
4 10.50-11.50 10.3-11.3 10.3-11.3
5 Ch.4 repeated 11.5-12.5 11.5-12.5

However, the potential use of earlier AVHRR LAC images is often hindered by lack of a com-

plete solution to accurately process them (Rosborough et al., 1994). They are seldom used

in research due to lack of open software tools which can perform the aforementioned cor-

rections and accurately process the data. The available solutions are either outdated, they

offer limited success, or are published with proprietary licenses. Newer methods and geospa-

tial libraries have become available in the last decade and it is now worthwhile to revisit

the AVHRR navigation (Brovelli et al., 2012; Neteler et al., 2012). At present, the ability to

accurately process all the AVHRR LAC images are limited to very few research centers with

satellite receiving stations. There is also lack of publicly available processed AVHRR LAC
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dataset covering a particular area of interest; on the other hand, the level-1B data are freely

available for any part of the world. Therefore, we see a strong demand for an open source

solution to process the AVHRR LAC data in level-1B format for any area of interest which will

support the scientists in regional level studies.

Our aim is to develop an automated workflow using multiple open source geospatial libraries

and software packages to process all existing AVHRR LAC data (since 1986) for our study

area. As a proof of concept, geo-rectified time series (1986-2014) of brightness tempera-

ture from the two thermal bands (channels 4 and 5) of AVHRR are developed, which is then

intended to be used for estimating the historical surface temperature of sub-alpine lakes (Rif-

fler et al., 2015). The quality of the developed time series is validated for the automatic

geo-rectification and thermal calibration. We estimated long-term LSWT of Lake Garda from

the time series of brightness temperatures and performed inter-platform and cross-platform

comparisons along with in-situ data to validate the product. We used Pytroll, a set of open

source Python libraries originally meant for processing weather satellite data to read, correct

and calibrate the AVHRR data urlhttp://www.pytroll.org/. We extended the Pytroll to en-

hance its support for POD and KLM series of AVHRR LAC data. We used the feature matching

technique in Orfeo toolbox for precise geo-rectification (Inglada and Christophe, 2009). Fi-

nally all the post processing including cloud masking, workflow automation, and time series

development were accomplished in the GRASS GIS 7.0 software (GRASS Development Team,

2015; Neteler et al., 2012; Neteler and Mitasova, 2008).

2.3 Methods

2.3.1 Data and software

We obtained all the available AVHRR LAC data from the NOAA public archive (CLASS) in

the period 1986-2014 covering the study area of Northern Italy (Longitude: 42.9762°E–

46.2371°E; Latitude: 8.2127°N–12.3456°N; Area: 360 km × 340 km). Only day time images

acquired between 8:00 to 17:00 UTC are considered for this study. The data are stored

in binary format and consist of two major parts—data header and the scan line data. The

data header contains generic data on the instrument, acquisition time, data quality, orbital

parameters, and conversion factors for calibration and telemetry data, while the scan line

data contain data specific to a single scan or time segment including calibration, navigation,

telemetry and sensor data, among many others. A complete list of headers is given here:

POD–Kidwell (1998); KLM–Robel (2009). There are 2,048 points in a LAC scan line on which

the solar zenith angle and Earth location data (latitude and longitude) are sampled at every

17



Chapter 2 2.3. Methods

40th sample, while the sensor data are recorded for each of the 2,048 samples. Fig. 2.2a,b

shows the year-wise distribution of the obtained level-1B data and the time line of all the

NOAA instruments, respectively. As listed in the Table 2.1, AVHRR/1 lacks dual thermal

bands required for the split window technique of surface temperature calculation, which is

our main goal in processing this data. Hence the AVHRR LAC images acquired by the earliest

NOAA instruments—TIROS-N, NOAA-6/8/10 were avoided. Due to non-availability of day

images over the study area, data from NOAA-15 were also discarded. In line with the main

objective of estimating day time Lake Surface Water Temperature (LSWT) for the sub-alpine

lakes in the study area, we processed only the day images.

We combined multiple open source geospatial software packages in a single workflow to

meet the specific requirements of AVHRR processing. The software used, its source code

links and the licenses are listed in Table 2.2. Pytroll is an open source project, contributed

by several developers primarily from national meteorological services. Among the Pytroll

libraries, mpop, pygac and pyresample are used respectively for reading, calibrating, and re-

sampling the AVHRR LAC images. Fig. 2.3 shows their specific roles in the workflow. We

used these libraries to read all the AVHRR LAC level-1B data, apply corrections, calibrate

and write all the channels to separate TIFF images. Orfeo toolbox is a remote sensing im-

age processing toolbox developed in C++ primarily by the Centre National d’Études Spa-

tiales, France (Inglada and Christophe, 2009). We used the Scale Invariant Feature Transform

(SIFT) feature matching algorithm in Orfeo toolbox to extract homologous points (hereafter

GCP’s; homologous meaning same relative position, a term used in Orfeo toolbox module – ot-

bcli_HomologousPointsExtraction – for extracting similar GCP’s from two images using feature

matching algorithms like SIFT) in order to apply final matching of each image against a ref-

erence image (Lowe, 2004) . The GCP’s created are then filtered using the newly developed

m.gcp.filter tool in GRASS GIS (GRASS Development Team, 2015). GRASS GIS is one of the

most stable and well established open source geographical information systems and remote

sensing software which can handle both vector and raster processing in two and three di-

mensions (Neteler et al., 2012). The calibrated AVHRR LAC images are rectified using the

filtered GCP’s with i.rectify module in GRASS GIS. We developed all the raster processing and

the cloud removal procedure in GRASS GIS (Neteler and Mitasova, 2008). Fig. 2.3 shows

the workflow diagram with the respective libraries listed horizontally against the specific

requirement they meet.

18



2.3. Methods Chapter 2

2.3.2 Pre-processing

The pre-processing of AVHRR LAC data in level-1B format include reading the data, perform-

ing solar and thermal calibration to the respective channels, applying clock drift correction

and cloud removal. The foremost requirement of this methodology was to develop an AVHRR

LAC data reader which can read all the versions of AVHRR LAC level-1B data irrespective of

the NOAA instrument. The Python library pygac in the Pytroll framework is developed to read

and calibrate AVHRR global area coverage level-1B data of 4 km spatial resolution which is

derived from LAC data by resampling at every 5th sample along a scanline. We enhanced the

pygac library to add support to AVHRR LAC data (Fig. 2.3).

Table 2.2: List of software packages used in this study (License type urls: http://www.gnu.org/

copyleft/gpl.html, http://www.cecill.info/licences/Licence_CeCILL_V2-en.html).

Software Source Version License

Pytroll/mpop https://github.com/pytroll/mpop - GNU GPL v3
Pytroll/pygac https://github.com/adybbroe/pygac - GNU GPL v3

Pytroll/pyresample https://github.com/pytroll/pyresample/ - GNU GPL v3
Orfeo Toolbox https://www.orfeo-toolbox.org/ 4.4.0 CeCILL v2

GRASS GIS http://grass.osgeo.org/ 7.0.0 GNU GPL v3

The fundamental structure of the AVHRR LAC level-1B header and sensor data records is

consistent across data types, however there are significant differences between records orig-

inating from various instruments (POD vs KLM) which have to be dealt separately. Hence

we developed and added two readers (lac_pod—POD data and lac_klm—KLM data) in pygac

to successfully read and calibrate the AVHRR LAC data irrespective of the NOAA instrument.

The newly developed readers are released to the public in the source code repository here–

https://github.com/adybbroe/pygac. The main difference between the POD and KLM

drivers is the mapping of the header structure. All the different releases of level-1B data

types by NOAA over POD are mapped in the new readers following the NOAA documenta-

tion. The Python library mpop in the Pytroll framework can read multiple satellite data in raw

format and use the coefficients given in the header to apply calibration and corrections. mpop

has an extendable objective design which enables us to write plugins to support additional

data formats. We developed a plugin (lac_l1b) which is a wrapper to the new LAC readers in

pygac to read and calibrate the AVHRR LAC data.
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Figure 2.2: Data distribution. (a) Distribution of AVHRR Local Area Coverage (LAC) images over
study area from 1986 to 2014 obtained from NOAA Comprehensive Large Array-data Stewardship
System (CLASS) archive, separated by different instruments. (b) Time line of NOAA instruments used
in this study.
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Figure 2.3: Workflow diagram. On top, the horizontal arrows show the main steps involved in the workflow, the software are listed vertically on the
left. Role of each software in the workflow is explained in the corresponding cells.
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For the calibration of the solar channels (0.63 µm and 0.86 µm) we used the inter-sensor con-

sistent calibration coefficients developed by Heidinger et al. (2010) which ensures the conti-

nuity of data even with the transition of satellites. Unlike the solar channels, an on board

calibration is performed on the thermal channels (Robel, 2009; Kidwell, 1998). In spite of on

board calibration, the data are prone to contamination (leading to bias of more than 1 °C)

with unwanted fluctuations due to multiple factors including; (i) atmospheric attenuation of

the signal, (ii) decaying of the instruments, and (iii) solar contamination (Trishchenko et al.,

2002; Cao et al., 2001). To remove these perturbations in the true signal Trishchenko (2002)

introduced a robust median based approach to remove short time fluctuations from a given

sample of calibration elements followed by Fourier transform filtering to remove the persist-

ing errors over long time. For more details on thermal calibration, refer to Trishchenko et al.

(2002) and Trishchenko (2002). The aforementioned calibration techniques are successfully

implemented in operation for generating historical AVHRR baseline data records over Canada

by Latifovic et al. (2005) and more recently to develop LSWT time series for Alpine lakes in

Europe by Riffler et al. (2015). In Pytroll, pygac library has implemented thermal calibration

procedure as per Robel (2009); Kidwell (1998) followed by a Fourier transform filtering to

remove high frequency fluctuations (Trishchenko, 2002); which we used to successfully cal-

ibrate the thermal channels (Fig. 2.3). The ancillary data like GCP’s and the viewing zenith

angle are provided as tie points (51 per scanline). We used pygac library to apply linear in-

terpolation on latitude, longitude and viewing zenith angle tie points to all the points in the

geographical grid covered by the data (Fig. 2.3).

The polar orbiting NOAA satellites are launched in sun synchronous orbits at an altitude

of around 870 km above Earth (Cracknell, 1997). They are designed to acquire two daily

snapshots of Earth, one in ascending and other in the descending mode. This is possible

due to the wider scan angles (also called zenith angles) of ±55.4° covering approximately a

2,300 km wide scene. Subsequently, the spatial resolution also varies significantly off-nadir

from 1.1 km at nadir to 4 km at the edges both in along-scan and along-track directions

(Cracknell, 1997). Due to this wide off-nadir field of view, panoramic bow-tie effects are seen

towards the edges of the images (Fig. 2.4a) (Khlopenkov and Trishchenko, 2008). This creates

artifacts when applying re-projection with nearest-neighbour resampling on the level-1B data.

In this methodology, we used an algorithm based on 2D gradient search in the latitude and

longitude geolocation fields using their local gradients to project level-1B data to Lambert

Azimuth equal-area projection, which corrects for the bow-tie effects. Complete details of

the algorithm and its implementation is explained in Khlopenkov and Trishchenko (2008). In

Pytroll, this method is implemented in pyresample library which is used to resample all the

AVHRR level-1B data (Fig. 2.3).
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The POD satellites (NOAA-9/11/14) were affected by drifts in the satellite clock which in

turn contributed to the position errors (Baldwin and Emery, 1995). The difference between

satellite clock time and the actual coordinated universal time (offset ∆t) was provided by

NOAA periodically (see Section 2 at Kidwell (1998)). The clock drift leads to location error

upto 4 km, as the GCP’s are estimated based on the satellite clock (Kidwell, 1998). The known

offsets ∆t for the satellites NOAA-9/11/14 are used in the pygac library to correct for clock

drifts.

Unlike for level-2 MODIS products, there are no existing cloud mask available for the level-

1B AVHRR LAC data. For this, we adapted the algorithm developed by Khlopenkov and Tr-

ishchenko (2007), Separation of Pixels Using Aggregated Rating over Canada (SPARC) origi-

nally implemented for creating a cloud mask over Canada. As our main interest is to remove

thick clouds and thin cirrus above the lakes, we used two relevant tests from the original

SPARC algorithm, (i) Brightness temperature test (T-test) using channel 4 and (ii) thin cirrus

test (C-test) which uses the difference between channels 4 and 5. T-test uses the channel 4

brightness temperature and compares it with a dynamic threshold which is the surface skin

temperature data of the corresponding day and time derived from climatic models. In the

original study, North American regional reanalysis is used. Here we replaced it with the Euro-

pean regional analysis interim dataset developed by the European Center for Medium-range

Weather Forecasts(ECMWF) (Dee et al., 2011) following the successful implementation over

Europe by Riffler et al. (2015). The SPARC algorithm is implemented using raster processing

tools in GRASS GIS 7.0 (Fig. 2.3).

2.3.3 Precise geo-rectification using SIFT

After calibration and corrections, the AVHRR LAC data still suffer from position errors due to

erroneous satellite attitude angles (Baldwin and Emery, 1995; Rosborough et al., 1994; Brunel

and Marsouin, 2000). For any long-term analysis of landscape properties using historical

AVHRR data, it is important to obtain precise geometric position for all the images to avoid

spurious trends and artifacts. Hence we used an automatic feature matching technique called

Scale Invariant Feature Transform (SIFT) by Lowe (2004) to extract matching GCP’s between

an image pair to achieve sub-pixel accuracy in image to image rectification (Khlopenkov et al.,

2010; Latifovic et al., 2005). We selected a cloud-free geometrically corrected image from

NOAA-19 ascending mode (dated 01 August 2012) as reference image to all the other data

to which image to image matching is applied. The homologous points extraction module

in the Orfeo Toolbox 4.4.0 is used to automatically extract the matching GCP’s using the

SIFT algorithm (Fig. 2.3). The SIFT algorithm is widely used in object recognition from
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images (Lowe, 1999). Yu et al. (2008) and Fan et al. (2013) successfully implemented SIFT

features in registering multiple source remote sensing imageries. The SIFT workflow starts

with identifying and populating the SIFT features from the input and reference images. The

SIFT features are scale invariant and highly distinctive which makes them suitable for image

matching techniques. The matching SIFT features are then identified based on euclidean

distance of their feature vectors. The SIFT algorithm was developed and explained in detail

by (Lowe, 2004).

We applied SIFT individually to all the bands of a single AVHRR LAC image and combined

all the extracted GCP’s. If the total number of matching GCP pairs are less than 20, often

due to wide coverage of cloud, then the input image is discarded from further processing.

Before applying image rectification using the extracted GCP’s, it is important to discard the

GCP pairs with larger Root Mean Square Error (RMSE). We used the newly developed GRASS

GIS add-on m.gcp.filter to apply this filter. GCP filtering is applied in iterative mode till all

the GCP’s with individual RMSE larger than 500 m (half a pixel) are discarded. Finally, we

applied polynomial second order image rectification using i.rectify tool in GRASS GIS. The

entire process of GCP extraction using SIFT, GCP filtering and geo-rectification is automated

(see Appendix A.1 for the code). For validating the accuracy of automated geo-rectification

process, we extracted independent GCP’s (12,340 GCP’s) from 2,000 randomly selected geo-

rectified AVHRR LAC images (around 10% of total number of images). The x-deviation and

y-deviation along with RMSE are then calculated for validating the quality of geo-rectification

(Rocchini and Di Rita, 2005; Khlopenkov et al., 2010).

2.3.4 Validation of thermal calibration by estimating LSWT

The thermal calibration computes top of atmosphere brightness temperatures from channels

4 and 5 emitted radiances. In order to validate the performance of thermal calibration on

thermal channels from multiple NOAA instruments, we estimated Lake Surface Water Tem-

perature (LSWT) for the Lake Garda in Northern Italy using the split-window technique from

all valid brightness temperatures. LSWT is estimated using the modified non-linear split-

window Eq. (2.1) (Jimenez-Munoz and Sobrino, 2008).

T = T 4 + c1(T 4 − T 5) + c2(T 4 − T 5)2 + c0 (2.1)

where T4 and T5 are brightness temperatures derived from NOAA AVHRR channels 4 and 5

respectively; c0,c1,c2 are split-window coefficients. We used the instrument/sensor specific

split-window coefficients derived and published by Jimenez-Munoz and Sobrino (2008). We
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further estimated LSWT using the same method from the MODIS, ATSR1, ATSR2 and AATSR

sensors which have similar dual thermal channels in the same spectral range. We used the

MODIS channels 31 and 32 while for ATSR1, ATSR2 and AATSR, we used the channels 11

and 12 for LSWT estimation. To correct for the different acquisition time (between 8:00 to

17:00 UTC) of the satellites and the orbital drifts experienced with earlier NOAA instruments

(Fig. 2.1) we applied a correction to the derived LSWT based on Diurnal Temperature Cycle

(DTC) model. This procedure is intended to homogenise the derived LSWT’s to the noon

time at 12:00 UTC irrespective of the acquisition time. The model used is explained by the

Eq. 2.2.

T s(t) = T 0 + T acos(π/ω(t− tm)) + T bsin(π/ω(t− tm)) (2.2)

where,

ω = 4/3(tm − tsr) (2.3)

where T0 is the residual temperature around sun rise; Ta and Tb are temperature amplitudes;

Ts(t) is surface temperature at time t; tm is the time at which temperature is maximum; tsr

is the time of sun rise; ω is calculated using Eq. 2.3. The correction factor is calculated for

each LSWT from the corresponding diurnal cycle as the absolute difference between LSWT

at Ts(t) and Ts(12). Finally the LSWT’s are homogenised to 12:00 UTC noon fitting to the

diurnal cycle by applying the correction factor.

A global filter is then applied to remove the outliers due to undetected clouds discarding all

the LSWT’s beyond the range 7.0 °C–30 °C which is the long-term minimum and maximum

temperature respectively measured over Lake Garda. Further, we limited the LSWT estima-

tion to those pixels acquired at viewing zenith angle less than 45° (Hulley et al., 2011). We

estimated the RMSE and bias between inter-platform (AVHRR between different NOAA in-

struments) and cross-platform (AVHRR/NOAA versus other sensors) LSWT’s averaged over

lake. We took all the days where a pair of observations is available from different sensor/in-

struments. For inter-platform comparisons, same day observations for the pairs NOAA-12/14,

NOAA-17/18 and NOAA-18/19 are compared. Similarly for cross-platform comparison, the

pairs NOAA-11/ATSR1, NOAA-14/ATSR2, NOAA-16/MODIS-Aqua, NOAA-17/MODIS-Terra,

NOAA-17/AATSR, NOAA-18/MODIS-Aqua and NOAA-19/MODIS-Aqua are compared. We

compared mean LSWT computed over lake per image between these sensors.

Further, we validated the satellite derived LSWT for Lake Garda using historical in-situ data.

Monthly in-situ data measured using a multi-parameter probe from the deepest point of the

lake covering the period 1991-2013 are used for validation. The in-situ data are measured
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around 12:00 UTC noon. The corresponding AVHRR images matching the dates of in-situ

data and acquired between 8:00 to 17:00 UTC are used for validation. We estimated the

correlation statistics, R2, RMSE and Mean Absolute Error (MAE) between the in-situ data and

the corresponding LSWT extracted from the pixel representing the field location (Table 2.4).

2.4 Results

2.4.1 Time series of calibrated AVHRR LAC data

The historical AVHRR LAC images at 1.1 km spatial resolution available for more than last

30 years is the longest time series of satellite data and a potential alternative to ground

observations. Indeed, to develop the longest satellite derived time series of AVHRR LAC data,

it is inevitable to combine data from multiple instruments which in turn require superior

inter-sensor consistent calibration (Heidinger et al., 2010; Trishchenko, 2002). A total of

22,507 input images were acquired and processed using the new method (Fig. 2.2a,b). The

newly developed AVHRR LAC data readers in pygac and the new mpop plugin works with

all the level-1B data across the POD and KLM series of instruments from the CLASS archive.

The code segment to read the POD and KLM data using the new plugin in mpop is given in

Appendix A.1. The new mpop plugin has been made available in a public repository with

GNU general public license https://github.com/pytroll/mpop.

The thermal calibration applied to the data as conceived by Trishchenko (2002) is robust and

takes care of the inter-calibration between different NOAA instruments. A conclusive vali-

dation of the quality of calibration between NOAA instruments is beyond the scope of this

study. Instead we did inter-platform comparison of estimated LSWT which is explained in

subsection 2.4.3. AVHRR is a wide angle ±55.4° sensor using the whisk broom technique to

acquire large swath in one acquisition. Nevertheless, it is important to resolve the artifacts in

the wider angles due to the bow-tie effects. Visual comparison of multiple images before and

after the resampling shows that the gradient-search method eliminates the bow-tie effects

restoring the original geometry over the edges (Khlopenkov and Trishchenko, 2008). Fig. 2.4

compares the Nearest Neighbour resampling technique with our approach. Gradient search

approach (Fig. 2.4b) provides a clear geometry of the lakes in Northern Italy, while the Near-

est Neighbour (Fig. 2.4a) interpolation distorts the image making it impossible to capture the

geometry of small objects like lakes.
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Figure 2.4: NIR (Near Infrared) channel 2 of AVHRR LAC data resampled using (a) Nearest Neighbour
interpolation; (b) interpolated using the gradient search algorithm. The image is NOAA-18 AVHRR
LAC taken on 1 August 2011.

2.4.2 Geo-rectification of calibrated AVHRR LAC data using SIFT

We found that the number of extracted GCP’s using SIFT depends upon two major factors; (i)

the overlapping area between the input and the reference image (ii) the cloud coverage. SIFT

tends to fail on input images with cloud coverage more than 50% of the total area. On a clear

sky image, combining all the corresponding bands, large number of GCP’s are extracted (>

300) for an area of 122,400 km2, which is then filtered iteratively to remove outliers (RMSE

> 500 m). We observed that with large number of GCP’s, linear model rectification often

failed due to islands of localized point clouds in the image. Hence we used the polynomial

second order rectification for all the images irrespective of the number of GCP’s obtained

from SIFT. Fig. 2.5 shows different steps of the feature matching based geometric correction

applied on a NOAA-14 AVHRR LAC image (POD) acquired on 9 August 1997. The input

image is shown in Fig. 2.5a (band 2-NIR) overlaid with the extracted GCP’s in which the

position error is clearly visible along the national boundary and the lakes. Fig. 2.5c shows

the final output which is precisely aligned to the country and lake boundaries.

The validation output shows that the SIFT based geo-rectification procedure is able to achieve

sub-pixel accuracy. Fig. 2.6a shows the scatter plot of x deviation and y deviation of the GCP’s

and Fig. 2.6b shows the kernel density plots. The overall RMSE of 12,340 independent GCP’s

from 2,000 images is 755.63 m, which is below 1 pixel. The mean deviation in x and y

27



Chapter 2 2.4. Results

Figure 2.5: (a–c) explains geometric correction done on NOAA-14 AVHRR LAC data (NIR channel 2
shown here) acquired on 09 August 1997. (a1) The input image with lake and country boundaries
overlayed. Also shown is blue (input) and red (reference) crosses, the Ground Control Points (GCPs)
extracted using the SIFT algorithm; (b1) The reference image used to extract the GCP points, NOAA-
19 AVHRR LAC acquired on 01 August 2012; (c) The NOAA-14 AVHRR LAC image after polynomial
second level rectification using the GCP’s; (a2) Fig. a1 zoomed to the sub-alpine lakes in Northern
Italy; & (b2) Fig. b1 zoomed to the sub-alpine lakes in Northern Italy.

direction is 607.82 m and 624.21 m respectively. The mean deviations are found to be on the

same range suggesting that there is no geometric errors in either direction.
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2.4.3 Quality assessment of the time series using estimated LSWT

For the validation of the calibrated AVHRR LAC time series data, we compared the LSWT

of the Lake Garda estimated from all the valid thermal channels, irrespective of the NOAA

instrument, after pre-processing, geo-rectification and orbital drift correction. Fig. 2.7 shows

boxplots of absolute lake mean LSWT differences between pair of NOAA instruments. The

boxplots (Fig. 2.7) are based on the same day observations by multiple NOAA instruments.

We could only get three NOAA instrument pairs with same day observations for the inter-

sensor comparison—NOAA-12/14, NOAA-17/18 and NOAA-18/19. The MAE for NOAA in-

strument pairs are 1.18 °C, 0.67 °C, 0.35 °C for NOAA-12/14, NOAA-17/18 and NOAA-18/19

respectively. Moreover the RMSE is 1.36 °C, 0.88 °C and 0.44 °C respectively.

Figure 2.6: Validation of Scale Invariant Feature Transform (SIFT) algorithm. (a) Independent GCP
point-cloud plotted in x-deviation, y-deviation; (b) Kernel density plot of x and y deviations.
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Boxplots of the absolute lake mean LSWT differences between the cross-platform pairs are

shown in Fig. 2.8. The boxplots (Fig. 2.8) are based on the same day observations by multiple

instruments. The MAE and RMSE in all the cases are found to be between 0.5 °C to 1.5 °C (Ta-

ble 2.3). In all the cases except for NOAA-17/MODIS-Terra, the median of lake mean LSWT

difference lies below 1.5 °C (Fig. 2.8), which indicates that the majority of the differences

are in the lower range of 0-1.5 °C. The lowest MAE, RMSE of 0.6 °C, 0.85 °C respectively are

reported with NOAA-17/AATSR observations, while the highest errors of 1.2 °C, 1.35 °C are

with NOAA-17/MODIS-Terra (Table 2.3).
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Figure 2.7: Boxplots of absolute difference between lake mean Lake Surface Water Temperature
(LSWT) estimated from multiple NOAA same day observations; horizontal thick line inside the box
represents median; lower and upper end of the box represents first and third quartiles respectively;
the bottom whisker ranges from first quartile to the smallest non-outlier and the top whisker ranges
from third quartile to the largest non-outlier; the dots outside whiskers are outliers.
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Figure 2.8: Boxplots of absolute difference between lake mean LSWT estimated from same day ob-
servations from NOAA and other instruments; horizontal thick line inside the box represents median;
lower and upper end of the box represents first and third quartiles respectively; the bottom whisker
ranges from first quartile to the smallest non-outlier and the top whisker ranges from third quartile to
the largest non-outlier; the dots outside whiskers are outliers.

Table 2.4 lists important correlation statistics derived between LSWT and the in-situ data.

Slopes are estimated from the linear models between LSWT from each NOAA instrument and

the corresponding in-situ data. All the slope values are close to each other which shows the

similar relationship between LSWT and in-situ data irrespective of the NOAA instrument. In

all the cases, coefficient of determination R2 is higher than 0.93. An average RMSE and MAE

of 0.92 °C and 0.71 °C are reported from the models.

2.4.4 Software code for deploying the method elsewhere

To enable reproducibility of our method following Rocchini and Neteler (2012) and Reich-

man et al. (2011) we publish the code snippets used to process the entire AVHRR LAC data.

Appendix A.1 is the Python script to process the AVHRR LAC data using the Pytroll libraries—

mpop, pyresample, pygac—which will read level-1B format, apply solar and thermal calibra-
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Table 2.3: Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) (in °C) between lake
mean LSWT estimated between pair of sensors.

Sensor pair N12/N14 N17/N18 N18/N19 N11/ATS1 N14/ATS2 N17/AATSR N17/MODT N16/MODA N18/MODA N19/MODA

MAE 1.18 0.67 0.35 0.81 0.72 0.6 1.2 0.99 0.75 0.95
RMSE 1.36 0.88 0.44 1.0 0.98 0.85 1.35 1.16 0.92 1.12

N 26 75 10 38 98 28 75 149 262 385

N = Number of observations; N11 = NOAA-11 (likewise for other NOAA instruments - N11,N14,N16,N17,N18,N19); ATS = ATSR; MODT =
MODIS-Terra; MODA = MODIS-Aqua.

Table 2.4: Correlation statistics between in-situ data and corresponding LSWT derived from various
NOAA instruments; N = Number of samples used in the linear model.

Satellites Slope R2 RMSE MAE N

NOAA-11 0.97 0.98 0.81 0.65 12
NOAA-14 0.90 0.93 1.38 1.05 22
NOAA-16 0.98 0.99 0.36 0.28 10
NOAA-17 0.89 0.99 0.56 0.46 7
NOAA-18 0.98 0.97 1.04 0.77 12
NOAA-19 0.92 0.94 1.40 1.08 21

tion, resample using gradient search method, write all the channels and viewing zenith angle

to image format. Appendix A.2 is a bash script which is the second part of processing where

the output images from Python script are processed inside GRASS GIS session. The bash

script executes the SIFT matching using Orfeo toolbox, GCP filtering, geo-rectification and

cloud removal.

2.5 Discussion

In this study we introduced a new automated method to accurately develop time series of

AVHRR LAC data at 1 km spatial resolution covering 29 years from 1986-2014. The method is

developed by chaining several open source geospatial packages (Table 2.2 and Fig. 2.3) which

is reproducible and extendable. To the best of our knowledge there are no other published

studies which demonstrate successful processing of this data using tools which are available

open to all researchers. The new additions to the Pytroll libraries—mpop and pygac—support

all the AVHRR LAC data in level-1B format irrespective of the NOAA instrument, version

of the AVHRR sensor and the various data header types released by NOAA. Validation of

automated geo-rectification of all the AVHRR LAC data using independent GCP’s extracted

from 2,000 randomly selected images reported sub-pixel accuracy with an overall RMSE of

755.63 m. The thermal calibration takes care of inter-platform variations (Trishchenko, 2002)

and our validation procedure shows that the same day LSWT estimated from AVHRR on board

different NOAA instruments are close to each other with overall mean absolute differences

(Fig. 2.7) below 1.5 °C.
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One of the important aspects of this methodology is its ability to deal with the earlier AVHRR

LAC data from POD satellites (Baldwin and Emery, 1995; Kaufmann et al., 2000; Rosbor-

ough et al., 1994). As proved by earlier studies (Brunel and Marsouin, 2000; Privette et al.,

1995; Emery et al., 1989), it is difficult to achieve accurate geo-rectification between tem-

poral AVHRR images acquired from POD satellites. In order to achieve precise navigation,

we applied feature matching technique—SIFT to extract homologous GCP’s (Lowe, 2004; Fan

et al., 2013). We found that with this approach, high quality GCP’s can be extracted after

applying an iterative filter based on RMSE. The independent GCP’s produced to validate the

geo-rectification showed that the majority (> 80%) of the GCP displacements either in x and

y directions are in the sub-pixel range (Fig. 2.6a). The reason for larger GCP displacements

(> 1000 m) could be that SIFT failed due to the cloud coverage or due to isolated cases

of spurious calibration. To derive any meaningful long-term bio-physical variables from the

AVHRR LAC data it is crucial to take care of the inter-platform calibration which enables con-

tinuity of data over the transition of instruments (Trishchenko et al., 2002; Trishchenko, 2002;

Heidinger et al., 2010). Furthermore, the orbital drift (Fig. 2.1) experienced with the earlier

NOAA satellites poses a serious challenge to develop high quality time series data (Schneider

and Hook, 2010; Riffler et al., 2015). However, the acquisition time correction procedure

based on the DTC model shows promising results towards homogenising data from multiple

satellites. The inter-platform validation of LSWT shows that the data are indeed comparable

and that it is possible to combine the data over time to create longer time series (see Fig. 2.7

and Table 2.3). The median of the inter-platform boxplots (Fig. 2.7) are all below 1.5 °C

depicting the superior thermal calibration (Fig. 2.7). Moreover, with the cross-platform val-

idation we showed that the developed LSWT from AVHRR LAC data are close to those from

similar sensors on board instruments other than NOAA. We found exceptionally good agree-

ment between NOAA-17 and AATSR, both morning overpasses, with lowest MAE and RMSE

of 0.6 °C and 0.85 °C. On the other hand, the highest MAE and RMSE of 1.2 °C and 1.35 °C is

reported between NOAA-17 and MODIS-Terra in spite of both being morning overpass data,

which needs to be further investigated (Table 2.4). The outliers in both inter-platform and

cross-platform boxplots could be due to undetected clouds, unresolved navigational errors or

isolated cases of spurious thermal calibration. Though the validation with in-situ data show

good agreement, it is important to note that the satellite sensor measures temperature of a

sub-micron layer between water surface and air which is highly variable according to the me-

teorological conditions, whereas in-situ data represents bulk temperatures in the lake (Wilson

et al., 2013; Hook et al., 2003). Due to the skin effect over the lake surface there is a consid-

erable difference between the skin and bulk temperature which may also reflect the actual

differences between satellite derived LSWT and the in-situ data (Hook et al., 2003; Schneider

and Hook, 2010). The accuracy of the derived LSWT also depends upon the viewing zenith

angle at which the observation is taken (nadir or wide angle) (Hulley et al., 2011).
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The developed method is fully automated which will enable the users to process bulk data in

a single workflow. Rocchini and Neteler (2012) emphasizes the need for adopting Stallman’s

four freedom paradigms in ecological research. With the growing interest in open research

and publishing the data publicly it is also important to have the software packages used in

ecological research in a public domain (Reichman et al., 2011). Thus by taking advantage

of the development of open source geospatial libraries over the last decade, we successfully

revisited the accurate navigation of AVHRR LAC data and implemented a robust methodol-

ogy to process them. Though the method is robust, manually checking the precision of each

of the thousands of images is not practical, there could be unresolved navigational errors in

the final time series. The automated cloud masking may also leave undetected cloud pixels

as clear sky ones. Though the overall accuracy of SIFT based geo-rectification procedure is

found to perform well within the extent of a pixel, it does not always ensure accurate posi-

tioning of inland pixels especially in mountainous terrain like the surroundings of Lake Garda.

Our procedure does not correct for the surface elevation which may lead to pixel misplace-

ments and could have adversary effects especially on small features like lakes. Khlopenkov

et al. (2010) explains accurate geolocation of AVHRR historical time series which includes a

orthocorrection scheme taking care of the accurate positioning of the pixels in complicated

terrains. Hence it is very important to design and perform robust statistical outlier detection

before any trend analysis is performed with the developed time series data. Moreover, while

we tested this method for a small study area covering Northern Italy, it can be extended to

any other area provided the data are in level-1B format and obtained from the NOAA CLASS

archive. It is recommended to use high performance computing solutions if you are process-

ing 29 years of AVHRR data over a larger area. An ideal way to compare the performance of

different sensors is the simultaneous nadir observations approach, but it is unlikely to obtain

such a pair of images over our study area (Karlsson and Johansson, 2014).

The flagship NOAA series of instruments ended with NOAA-19, though the AVHRR radiome-

ter continued aboard the MetOp-A and MetOp-B satellites as part of a collaborative mete-

orological program by the European Space Agency and the European organization for the

exploitation of meteorological satellites. However, data from MetOp series are not consid-

ered in this study to focus exclusively on NOAA instruments. The methodology also works

with solar channels of AVHRR (Heidinger et al., 2010), though it is not the scope of this paper

to validate the performance of solar calibration. For the SIFT method, bringing a seasonal

perspective by using different reference images for multiple seasons (or months) may im-

prove the quality of the extracted GCP’s (Khlopenkov et al., 2010). It has to be noted that

for inter-platform and cross-platform validation, we took the same day observations between

08:00 to 17:00 UTC which is a wide window and explains some of the outliers in spite of

performing the acquisition time correction procedure. The gaps in the final time series after
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cloud masking and the outlier removal could be statistically filled using methods like har-

monic analysis (Roerink et al., 2000) and spatio-temporal modelling (Metz et al., 2014). We

avoided night time acquisitions as the specific project objectives demanded processing of day

time data and due to non-availability of field data during night time to validate the product.

In general, checking the consistency with night time data is important to make complete use

of the AVHRR dual acquisitions. It is recommended to use a long-term high frequent in-situ

data for validating the satellite derived products to match the time of observations. Com-

paring the long-term trends from both in-situ data and satellite derived LSWT would be a

recommended approach in testing the temporal stability of AVHRR LAC data over transition

of instruments (Schneider and Hook, 2010). But due to lack of high frequent in-situ data we

avoided comparing the long-term trends, instead we used linear models to check the integrity

of derived LSWT. For LSWT estimation, we used a generic non-linear split window equation

(Eq. (2.1)), but using satellite specific coefficients provided by Jimenez-Munoz and Sobrino

(2008). However, previous studies (Hulley et al., 2011; Riffler et al., 2015) have shown that

lake specific coefficients will lead to accurate LSWT estimation. Due to non-availability of

lake specific coefficients for the POD satellites and other non AVHRR sensors (Hulley et al.,

2011), it is difficult to follow the same method to derive LSWT from all the satellites used

in this study. Nevertheless, we obtained high accuracy (see Tables 2.3 and 2.4) by using

satellite specific coefficients in a non-linear split window equation.

2.6 Conclusion

To conclude, in this paper we present a new automated method for processing historical

AVHRR LAC data using open source geospatial packages (Fig. 2.3). The method is extend-

able and reproducible to any other geographic location provided the data is taken from NOAA

CLASS archive. All the software development related to this work is been published in public

archives making it accessible to maximum potential users (Table 2.2). We found that it is

possible to resolve the much documented navigational errors with the AVHRR LAC data from

POD satellites by implementing a robust geo-rectification procedure using SIFT feature ex-

traction procedure. This automated geo-rectification procedure produced promising results

and the validation using independent GCP’s reported an overall RMSE of 755.63 m. Further

we did a three step validation procedure for the derived time series of brightness tempera-

tures, (i) inter-platform validation by comparing estimated LSWT’s between different NOAA

instruments; (ii) cross-platform validation by comparing estimated LSWT’s between NOAA

instruments and other polar orbiting sensors like MODIS and AATSR; (iii) validation using in-

situ data (Tables 2.3 and 2.4). The overall RMSE reported for inter-platform, cross-platform
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and in-situ validation are 0.89 °C, 1.05 °C and 0.92 °C respectively. The high accuracy ob-

tained with the validation procedure after performing an acquisition time correction proce-

dure based on DTC model shows that it is indeed possible to develop a homogenised dataset

from AVHRR LAC data over multiple NOAA instruments. Our new method, along with the

code snippets (Appendices A and B) to process AVHRR LAC data will enable researchers to

leverage the availability of historical medium resolution AVHRR data in their research, oth-

erwise impossible to use due to well documented issues (Brunel and Marsouin, 2000; Privette

et al., 1995; Krasnopolsky and Breaker, 1994). It takes care of multiple sources of errors to a

large extent giving an opportunity to develop a homogenised time series of brightness temper-

atures from AVHRR LAC data. The new methodology opens a new paradigm for researchers

to create long-term (29 years) daily temporal datasets of land/water surface temperature

derived from satellite imageries. It should be noted that the current study is validated only

for lake surface temperature. For land surface, corresponding changes must be made on the

split window algorithm and the coefficients. The effects of orbital drift will also vary depend-

ing on the land use demanding case specific correction procedures. It is recommended to

establish robust statistical filtering methods to remove undetected outliers before performing

any trend analysis using the derived data. The data thus derived can play a significant role

in research as an alternative to long-term field measurements. Moreover, we could not find

any public dataset derived from AVHRR data available at its original spatial resolution. Much

of the earlier AVHRR data are underused due to lack of software tools to accurately process

them. This study will fill this gap and give scientists the opportunity to use the AVHRR LAC

data at its original spatial resolution for their research.
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Chapter 3

Homogenised daily lake surface water

temperature data generated from

multiple satellite sensors: A long-term

case study of a large sub-Alpine lake

3.1 Abstract

Availability of remotely sensed multi-spectral images since the 1980’s, which cover three

decades of voluminous data could help researchers to study the changing dynamics of bio-

physical characteristics of land and water. In this study, we introduce a new methodology

to develop homogenised Lake Surface Water Temperature (LSWT) from multiple polar or-

biting satellites. Precisely, we developed homogenised 1 km daily LSWT maps covering the

last 30 years (1986 to 2015) combining data from 13 satellites. We used a split-window

technique to derive LSWT from brightness temperatures and a modified diurnal temperature

cycle model to homogenise data which were acquired between 8:00 to 17:00 UTC. Gaps in

the temporal LSWT data due to the presence of clouds were filled by applying Harmonic

ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based on

long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in

Italy. We found the satellite derived homogenised LSWT being significantly correlated to in-

situ data. The new LSWT time series showed a significant annual rate of increase of 0.020 °C

yr-1 (*P<0.05), and of 0.036 °C yr-1 (***P<0.001) during summer.
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3.2 Introduction

Lakes are considered worldwide as sentinels of climate change (Adrian et al., 2009;

Williamson et al., 2009). Any change in the surrounding catchment due to climate forc-

ings will reflect on the physical, chemical and biological processes in lakes (Williamson et al.,

2009). The surface temperature as being direct and sensitive to long-term changes in thermal

structure of the lakes is a good indicator to understand the changes in the lake characteris-

tics (Gerten and Adrian, 2000; Adrian et al., 2009). Thermal variations on the lake surface

and epilimnion are crucial for key responses like vertical mixing and stratification, nutrient

and oxygen dynamics, as well as spread and geographical expansion of biota (Verburg et al.,

2003; Williamson et al., 2009; Adrian et al., 2009). Recent studies on a large number of lakes

worldwide indicated a global trend of rapid warming related to climate change (O’Reilly et al.,

2015; Schneider et al., 2009; Coats et al., 2006; Kraemer et al., 2015). Global warming has a

direct impact on thermal characteristics of lakes, influencing variations in the physical as well

as biological characteristics (Fink et al., 2014; Kirill Ya and Filatov, 1999). Geographical ex-

pansion of toxic cyanobacteria is reported owing to the warming of lakes (Winder et al., 2009;

Paerl and Huisman, 2008; Paerl et al., 2011; Jöhnk et al., 2008). The expansion of tropical

bloom-forming cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) to the temper-

ate lakes in the mid latitudes is triggered by global warming (Briand et al., 2004). The study

“Blooms like it hot”(Paerl and Huisman, 2008) explain climate change as a potent catalyst for

the expansion of toxic blooms. In Sweden, annual phytoplankton bloom in larger lakes was

found to be anticipated by a month due to the early warming in spring (Weyhenmeyer, 2001).

Lake Surface Water Temperature (LSWT) exhibits a rapid and direct response to climate forc-

ing prominently induced by changes in air temperature, cloud cover, short wave radiation,

latitude, and the lakes morphometry (O’Reilly et al., 2015). Detailed synthesis of in-situ and

satellite derived LSWT over lakes globally, indicated rapid warming during summer. More-

over, LSWT and air temperature trends during summer are found to diverge over many lakes

globally which signifies the need of regional studies in understanding the change dynamics

(O’Reilly et al., 2015). Investigations carried out on the large lakes south of the Alps using

non-parametric tests on volume weighted spring mean temperature derived from long-term

in-situ data series from 1970 to 2009 showed a significant warming rate of 0.012 - 0.028 °C

yr-1, at a rate comparable with that of other European and North American lakes (Salmaso

and Mosello, 2010; Schneider and Hook, 2010). The year-to-year fluctuations in the thermal

structure were shown to be strictly controlled by large scale atmospheric dynamics between

the N-Atlantic and the Mediterranean regions (Salmaso and Cerasino, 2012; Salmaso, 2012).

Results of limnological studies carried out in the largest and deepest lakes south of the Alps

(Garda, Iseo, Como, Lugano and Maggiore)(Salmaso and Mosello, 2010), pointed out the
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need of integrating interdisciplinary approaches to the scientific based long-term monitoring.

Lack of long-term in-situ data at a high temporal frequency is the main obstacle in identifying

long-term trends. In this context, data from remote sensing as a substitute to in-situ data

could play a key role in limnological studies.

Surface temperature is one of the accurate and reliable measurement using remote sensing

(Kirill Ya and Filatov, 1999). Remote sensing of the temperature is based on recording the

emitted radiation from earth surface in the spectral domain of 8 - 14 µm (Kuenzer and Dech,

2013). Inverse Planck’s law is applied to convert the emitted radiance recorded in the ther-

mal infrared region to Top Of Atmosphere (TOA) Brightness Temperatures (BT). There are

multiple approaches to estimate land/water surface temperature from the brightness tem-

peratures (Li et al., 2013). In the case of inland water bodies like large lakes, the most

common approach is the split-window technique where the difference between the two adja-

cent thermal channels (10.5 - 11.5 µm, 11.5 - 12.5 µm) is taken as a measure of atmospheric

attenuation to derive the Surface Temperature(ST) (Maul and Sidran, 1971). The accuracy

of the derived ST depends on the split-window coefficients, which in turn is based upon mul-

tiple parameters like spectral response function and emissivity of the channels, column water

vapour in the atmosphere and View Zenith Angle (VZA) of the sensor. These coefficients are

derived by regressing simulated BT’s from radiative transfer models like MODTRAN against

the atmospheric profiles. The coefficients are generally derived on a regional or global level

for the estimation of Land Surface Temperature (LST) and Sea Surface Temperature (SST)

(Czajkowski et al., 1998; Li et al., 2001; Jimenez-Munoz and Sobrino, 2008). For lakes, both

LST and SST based algorithms are used interchangeably and with higher accuracy of RMSE

between 0.5 - 1.5 °C (Hook et al., 2003; Oesch et al., 2005, 2008; Schneider et al., 2009;

Schneider and Hook, 2010; Riffler et al., 2015). Furthermore, lake and sensor specific con-

stants are published for an exhaustive list of global lakes by Hulley et al. (2011).

There are a multitude of LST and SST datasets derived from multiple sensors publicly avail-

able such as Pathfinder from AVHRR data (Kilpatrick et al., 2001), EuroLST (Metz et al.,

2014), GlobTemperature from ATSR series (Ghent, 2012) and the MODIS temperature prod-

ucts. ArcLakes (MacCallum and Merchant, 2012) and the LSWT data by (Riffler et al., 2015)

are two lake specific products derived exclusively from satellite data for a set of selected

lakes. A global database of lake summer surface water temperatures for 291 lakes combining

both in-situ and satellite data was recently published by Sharma et al. (2015). Nevertheless,

the products are often based on selected sensors aboard multiple instruments with differ-

ent specifications and acquisition times. The algorithm behind surface temperature retrieval

also differ among the products. In addition, many temperature products from moderate res-

olution (∼ 1 km) sensors are re-sampled to coarser resolution (∼ 5 km) which results in
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missing spatial coverage or even complete data loss at lake locations. Since multiple datasets

cover different time frames, we need to combine them in order to generate a time series

appropriate for trend analysis in the context of climate impact studies. But combining these

data from multiple sources without applying acquisition time correction and homogenisation

would result in spurious trends.

Our aim was to develop a new methodology to derive daily homogenised LSWT data from

multiple moderate resolution sensors. As a result, we developed a new homogenised LSWT

time series for Lake Garda using the dual thermal channels from the sensors - AVHRR/2

(NOAA-9/11/12/14), AVHRR/3 (NOAA-16/17/18/19), ATSR1 (ERS-1), ATSR2 (ERS-2),

AATSR (Envisat) and MODIS (Aqua/Terra). The new time series offers 30 years of daily

LSWT from 1986 to 2015 developed using split-window algorithm with satellite specific co-

efficients published by Jimenez-Munoz and Sobrino (2008), acquisition time/orbital drift cor-

rected, spatially sampled at 1 km resolution and gap filled using harmonic analysis. To our

knowledge, this is the first time a homogenised LSWT was developed merging data from 13

satellites. The new method is reproducible and extensible to other lakes globally, provided

that satellite data is available. The entire methodology is implemented using open source

software packages. Hereafter, in the following sections "AVHRR" represents both AVHRR/2

and AVHRR/3 sensors and "ATSR series" represents ATSR1, ATSR2 and AATSR unless explic-

itly specified.

3.3 Study area

Lake Garda is located east of the southern sub-Alpine region between the coordinates - Lon-

gitude: 45.44°E - 45.92°E; Latitude: 10.44°N - 10.91°N . With a surface of 368 km2 and a

volume of 49 km3, it is the largest lake in Italy. Along with the lakes Iseo, Como, Maggiore

and Lugano it forms part of the group of deep lakes located south of the Alpine chain. These

lakes are an important economic resource in Europe. Besides representing a major tourist

destination, their waters are also used for drinking water purposes. Lake Garda is divided

into two basins, northwestern and southeastern, which are divided by an underwater ridge

connecting the Sirmione peninsula with Punta S. Vigilio (Fig. 3.1). The northwestern basin

is large and deep, the shores descend at sharp slopes and the bottom spreads over 20 km

at depths from 300 to 350 m (maximum depth). The maximum depth in the southeast-

ern basin is around 80 m, whereas the shape is nearly conical. From a practical point of

view, the lake can, however, be divided into two major zones separating the deeper northern

area from the shallower southern area (mostly < 150 m). This distinction is consistent with

the observations in this study Bresciani et al. (2011) where, using temporal multi-spectral
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satellite images, found significant spatial and temporal variability in the concentrations of

chlorophyll-a in the northern and southern areas of Lake Garda. The low ratio between the

surface of the catchment area and the surface of the lake (6.1) explains the long theoretical

water renewal time of about 27 years in comparison with other deep lakes in the area.

Figure 3.1: Study area map of Lake Garda; dark blue area depicts the deep basin and light blue area
depicts the shallow basin. Push pins represent locations of in-situ water temperature monitoring.
The maps were generated using the software GRASS GIS 7.0 Neteler and Mitasova (2008) (URL -
https://grass.osgeo.org/grass7/)
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3.4 Methods

3.4.1 Data

In this study we used multiple moderate resolution sensor data to estimate long-term LSWT’s

over the past 30 years. We used data acquired by six sensors - AVHRR/2, AVHRR/3, ATSR1,

ATSR2, A(A)TSR and MODIS which were on board 13 satellites (Fig. 3.2a). These sen-

sors offer dual thermal channels at 10.5 - 11.5 µm and 11.5 - 12.5 µm with a spatial

resolution of approximately 1 km. This was ideal for deriving surface water temperature

using a split-window algorithm. The sensors AVHRR and MODIS provide daily images,

while ATSR series provide data every three days. We downloaded and processed level-

1B data of AVHRR, ATSR series and MODIS from Comprehensive Large Array-data Stew-

ardship System (CLASS - http://www.class.ncdc.noaa.gov/), Merci data archive (http:

//ats-merci-ds.eo.esa.int/merci/welcome.do) and Level 1 and Atmosphere Archive and

Distribution System (LAADS - https://ladsweb.nascom.nasa.gov/) respectively for the

study area. For AVHRR, we used Local Area Coverage (LAC) data available at its original

spatial resolution of 1.1 km. For ATSR series, we downloaded and processed nadir view-

ing TOA data. The level-1B swath products MYD021KM and MOD021KM for Aqua and

Terra satellites respectively are used to extract dual thermal channels from MODIS sensor.

Fig. 3.2b shows the year wise distribution of data from multiple satellites. We processed the

AVHRR and MODIS data using Pytroll libraries (http://www.pytroll.org/). Furthermore,

we used BEAM software provided by European Space Agency to process the ATSR series of

data (http://www.brockmann-consult.de/cms/web/beam/). For validation of the satellite

derived water temperatures, long-term monthly in-situ data between 1991 - 2015 collected

from two locations in Lake Garda were used. We used bulk temperature (0 - 0.5 m) mea-

sured at two locations - Brenzone in the deep basin and Bardolino in the shallow basin (see

Fig. 3.1).

3.4.2 Pre-processing

The pre-processing of thermal channels at level-1B include thermal calibration to convert

from radiances to brightness temperatures using inverse Planck’s law followed by removal of

cloud pixels. The data from MODIS and ATSR series were calibrated using the coefficients

provided in the header. For AVHRR, the calibration procedure was much more complicated

due to (well documented) navigational errors with the older NOAA satellites (Privette et al.,

1995). Despite on board thermal calibration in NOAA instruments, the calibration data were

prone to solar contamination and atmospheric attenuation of the signal and satellite decays
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Figure 3.2: Availability of moderate resolution satellite data between 1986 and 2015
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(b) Distribution of level-1B data downloaded for the study area from 1986 to 2015
obtained from respective archives - CLASS (AVHRR), LAADS (MODIS) and Merci
(ATSR series) separated by different instruments

(Trishchenko et al., 2002). In this study, we used the geometrically corrected time series

of brightness temperatures derived from dual thermal channels of AVHRR LAC data from

1986 to 2015 developed by Pareeth et al. (2016). Furthermore, we considered only those

pixels acquired at a zenith angle less than 45 degrees. All the further data processing was
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restricted to lake pixels masked using a Lake Garda boundary layer. For the cloud masks of

level-1B AVHRR LAC and MODIS data, we used the Separation of Pixels Using Aggregated

Rating over Canada (SPARC) algorithm developed by Khlopenkov and Trishchenko (2007),

originally implemented for creating cloud mask over Canada. We used two relevant tests

to remove thick clouds and thin cirrus above the lakes, i) brightness temperature test (T-

test) using channel Ti and ii) thin cirrus test (C-test) which uses the difference between

channel Ti and Tj. The T-test uses channel Ti brightness temperature and compares it with a

dynamic threshold which is the surface skin temperature data of the corresponding day and

time derived from climatic models. In this study, we replaced the North American regional

reanalysis data with European centre for medium-range weather forecasts (Dee et al., 2011)

following the successful implementation over Europe by Riffler et al. (2015). The SPARC

algorithm is implemented using raster processing tools in GRASS GIS 7.0 (Neteler et al.,

2012; Neteler and Mitasova, 2008). For ATSR series, we used the quality layer provided with

the data to remove the cloud pixels.

3.4.3 Deriving LSWT using split-window algorithm

From the brightness temperatures derived by thermal calibration, the next step was to esti-

mate LSWT’s using split-window algorithm. We used a non-linear split-window Eq. 3.1 to

estimate the surface temperature as proposed by Jimenez-Munoz and Sobrino (2008):

T = T i + c1(T i − T j) + c2(T i − T j)
2 + c0 + (c3 + c4W )(1 − ε) + (c5 + c6W )∆ε (3.1)

where c0 - c6 are split-window coefficients, Ti and Tj are at-sensor brightness temperatures

derived from the dual thermal channels, ε is mean emissivity, ∆ε is emissivity difference

and W is the total atmospheric water vapour column (g/cm2). For water surface, the mean

emissivity is close to unity. As our study is dealing with lakes, the Eq. 3.1 was modified by

assuming ε as one and ∆ε to be zero. Hence the modified Eq. 3.2 was used in this study to

retrieve LSWT from dual thermal channels:

T = T i + c1(T i − T j) + c2(T i − T j)
2 + c0 (3.2)

We used satellite specific split-window coefficients published by Jimenez-Munoz and Sobrino

(2008). These coefficients were derived by statistical minimization from a simulated database

of brightness temperatures and atmospheric profiles obtained from MODTRAN radiative
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transfer model, emissivity spectra extracted from spectral libraries and the spectral response

functions (Jimenez-Munoz and Sobrino, 2008).

After estimating the LSWT, we applied two levels of filters to remove outliers due to unde-

tected clouds and spurious calibrations. First, we applied a global filter based on a minimum

and maximum thresholds derived from the long-term in-situ data. Thus we discarded any

LSWT values beyond the range 6.5 - 29 °C. We further applied an advanced filter based on

inter-quartile range of LSWT’s derived every 16 days (Neteler, 2010; Metz et al., 2014). The

lower and upper thresholds for this filter was computed using the Eq. 3.3 and Eq. 3.4 respec-

tively:

Lower_threshold = 1stquartile− 1.5(3rdquartile− 1stquartile) (3.3)

Upper_threshold = 1stquartile− 1.5(3rdquartile+ 1stquartile) (3.4)

where the 1stquartile and 3rdquartile were derived climatologically from the LSWT data every

16 days over the years 1986 to 2015. This filter was then applied using the derived thresholds

to those LSWT data of corresponding time frames.

3.4.4 Homogenising LSWT from multiple satellites

We considered all the satellite observations for a single day over a wide window of time; from

08:00 to 17:00 UTC (Fig. 3.3). Fig. 3.3 clearly shows the orbital drift of earlier satellites -

NOAA-9/11/12/14/16.

We applied a physical model based on typical pattern technique proposed by Jin and Treadon

(2003) to standardize the acquisition time to 12:00 UTC. In this approach, monthly diurnal

cycles were used as a reference pattern to correct for the varying observation times to produce

a standard observation time. The monthly diurnal cycles computed from hourly averages

were derived from the existing satellite observations of LSWT and were limited to day time

(Fig. 3.4). We followed the Diurnal Temperature Cycle (DTC) model to derive the diurnal

variations of LSWT based on Duan et al. (2014). The model used was described by the

Eq. 3.5:

T s(t) = T 0 + T acos(π/ω(t− tm)) + T bsin(π/ω(t− tm)) (3.5)
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Figure 3.3: Plot of variation in observation times of all the satellites used in this study; Note the large
orbital drifts of the earlier NOAA-9/11/12/14 instruments.

with

ω = 4/3(tm − tsr) (3.6)

where T0 is the residual temperature at sun rise; Ta and Tb are temperature amplitudes; Ts(t)

is surface temperature at time t; tm is the time at which temperature is maximum; tsr is the

time of sun rise; ω is calculated using the Eq. 3.6. T0, Ta and Tb are obtained by statistically

fitting the model given in the Eq. 3.5. Finally, to apply the time correction to all the LSWT

data, for each image with an observation time t, Ts(t) and Ts(12) were calculated using the

model as given in Eq. 3.5. The correction factor was then computed using Eq. 3.7 to correct

the LSWT to a standard time at 12:00 UTC. A condition based approach is used for the

correction as given in Eq. 3.8 and Eq. 3.9:

cf = abs(T s(t) − T s(12)) (3.7)
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T c = T ori − cf ; T s(t) > T s(12) (3.8)

T c = T ori + cf ; T s(t) < T s(12) (3.9)

where cf is the correction factor, Tc is the corrected LSWT to a standard time 12:00 UTC and

Tori is the actual LSWT.
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Figure 3.4: Monthly diurnal cycles during day time estimated using long-term hourly climatologies
from satellite observations. The points in plot are the long-term hourly averages for a particular
month, and the red line is DTC model fit.

In order to derive one homogenised LSWT per day, the subsequent step was to merge by

averaging the single day observations from multiple satellites. For this, we first performed

a satellite specific linear regression analysis between LSWT and in-situ data to compare the

slope of regression lines between different satellites. We performed the analysis on the deep

and the shallow basins separately. The slopes varied between 0.85 and 1.1, depicting that the

data used for the models were similar to each other and exhibited similar residual patterns.

We used the r.mapcalc module in GRASS GIS 7.0 software to apply the time correction model

to the LSWT data.
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3.4.5 Gap filling using harmonic analysis

The daily LSWT data after time correction and averaging over the same day still suffered from

gaps due to cloud cover. We used Harmonic ANalysis of Time Series (HANTS) to reconstruct

the gaps in the LSWT data. The harmonic analysis decomposes a time series into several

sinusoidal functions with unique amplitude and phase values (Jakubauskas et al., 2001). It

applies a least square fitting procedure based on the derived harmonics (Xu et al., 2013). The

fitting procedure is repeated until the LSWT values with large deviations are removed from

the fitted curve (Roerink et al., 2000). Hence, the role of HANTS is twofold in this process;

i) to remove the outliers, and ii) fill the gaps with fitted values. The fitting procedure based

on HANTS is explained well by Xu et al. (2013) and Roerink et al. (2000). We implemented

HANTS based reconstruction on LSWT images using the r.hants addon in GRASS GIS 7.0

software (Metz, 2015).

3.4.6 Temporal database and trend analysis

The gap filled daily LSWT maps from 1986 to 2015 were then imported into a spatio-temporal

database using TGRASS modules in GRASS GIS 7.0. TGRASS is an advanced set of modules

which perform time series analysis on spatio-temporal data (Gebbert and Pebesma, 2014).

We developed annual and seasonal climatologies from the daily LSWT data to analyse the

long-term trends. The seasonal climatologies were developed by aggregating the LSWT over

four seasons; winter (December/January/February), spring (March/April/May/), summer

(June/July/August) and fall (September/October/November). We applied non-parametric

tests on annual and seasonal mean LSWT separately for deep and shallow basins to detect

the long-term trends. In particular, we used the Mann-Kendall test to identify the presence

of monotonic upward or downward trends. We computed the Theil-Sen slope for the quanti-

tative estimation of significant trends (Sen, 1968). We used the Durbin-Watson test to detect

potential serial correlation issues in the time series and checked for its statistical significance.

To avoid mixed pixels with land along the shore, we used an inner lake buffer considering

only water pixels while extracting the annual and seasonal climatologies (Fig. 3.5). Further-

more, for comparative analysis, we computed the same statistics on long-term in-situ data

and satellite derived LSWT from AVHRR sensor by Riffler et al. (2015) for Lake Garda.
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3.5 Results

We processed a total of 62,799 level-1B input images in order to derive daily LSWT’s. A

single LSWT map has 363 pixels of 1 km resolution representing the entire Lake Garda. After

applying the inner mask to remove the edge pixels, a total of 223 pixels were considered for

deriving long-term climatologies (Fig. 3.5). The aggregated seasonal and annual maps were

developed from daily data. To demonstrate the spatial variability of the new LSWT maps,

Fig. 3.5 shows the aggregated summer mean temperature maps for the years 1992 and 2003,

along with a temperature difference map. The year 1992 had a relatively cool summer, while

the year 2003 had a record warm summer due to a heatwave all across Europe. Harmonic

analysis filled data gaps by repetitively applying a least square fit and removing the outliers

until the remaining data was within the valid range. The amplitude of the first harmonic

in all the years was larger than the other harmonics depicting a strong unimodal pattern of

LSWT. To demonstrate the data reconstruction using HANTS, Fig. 3.6 shows the smoothed

LSWT plotted over the daily averaged LSWT after homogenisation for the year 2003.

Figure 3.5: a) Summer mean LSWT of year 1992, b) summer mean LSWT of year 2003, c) difference
map between summer means of 2003 and 1992. The boundary layer shown in black over Lake Garda
is the inner buffer used to mask out the edge pixels. The maps were generated using the software
GRASS GIS 7.0 Neteler and Mitasova (2008) (URL - https://grass.osgeo.org/grass7/)
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Table 3.1: RMSE in °C reported between same day observations of different pair of satellites for the
deep and shallow lake basin. Number inside brackets represents N - Number of observations.

Satellite pair RMSE (Deep basin) RMSE (Shallow basin)
NOAA17/NOAA18 0.74(71) 0.71(85)
NOAA18/NOAA19 0.45(10) 0.38(9)
NOAA11/ERS-1 0.95(37) 0.91(37)
NOAA14/ERS-1 0.78(19) 0.82(16)
NOAA14/ERS-2 0.78(90) 0.89(90)
NOAA16/ERS-2 0.76(38) 0.93(37)
NOAA16/Envisat 0.85(58) 0.87(50)
NOAA17/Envisat 0.67(26) 0.57(29)
NOAA18/Envisat 0.73(84) 0.76(95)
NOAA19/Envisat 0.66(75) 0.75(78)
ERS-2/Envisat 0.79(37) 0.51(33)
NOAA14/Terra 1.19(23) 1.28(22)
NOAA12/NOAA14 1.11(22) 1.05(20)
NOAA16/Terra 1.11(147) 1.17(139)
NOAA17/Terra 1.20(68) 1.16(76)
NOAA18/Terra 0.98(205) 1.02(220)
NOAA19/Terra 1.07(323) 1.12(310)
ERS-2/Terra 0.94(55) 0.87(56)
Envisat/Terra 1.18(212) 1.05(243)
NOAA16/Aqua 0.97(138) 0.97(130)
NOAA17/Aqua 1.06(63) 0.99(70)
NOAA18/Aqua 0.82(252) 0.73(256)
NOAA19/Aqua 0.97(397) 0.86(380)
ERS-2/Aqua 0.99(20) 0.78(20)
Envisat/Aqua 1.10(215) 0.98(211)
Terra/Aqua 0.78(858) 0.86(809)

3.5.1 Validation

To validate the new LSWT data, we performed a cross platform comparison of same day

observations between the satellite pairs, followed by regression analysis between final ho-

mogenised LSWT and the in-situ data. The RMSE of the various cross-platform pairs for both

deep and shallow basins varied between 0.38 °C and 1.28 °C (Table 3.1). The minimum

RMSE of 0.38 °C was reported for the satellite pair NOAA18/NOAA19 for both the deep and

shallow basins. The highest RMSE of 1.2 °C was reported for the pair NOAA17/Terra in

the deep basin and of 1.28 °C for NOAA14/Terra in the shallow basin. An average RMSE

of 0.88 °C was reported for all the satellite pairs taking into consideration both the basins.

Furthermore, we validated LSWT derived from individual satellites with the corresponding

in-situ data. We were only able to use data from 11 satellites for the validation due to the

non-availability of matching in-situ data against NOAA9 and NOAA12 (Table 3.2). An aver-

age RMSE of 0.86 °C and 0.94 °C was obtained for the deep and shallow basins respectively.
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Table 3.2: RMSE in °C reported at deep basin and shallow basin from absolute difference of LSWT
between in-situdata and satellite derived LSWT. Number inside brackets refer to N - the number of
same day observations.

Satellites RMSE (Deep basin) RMSE (Shallow basin)
NOAA11 0.33(9) 0.93(9)
NOAA14 0.54(14) 0.51(17)
NOAA16 0.33(8) 0.91(8)
NOAA17 0.37(4) 0.86(3)
NOAA18 1.25(11) 0.90(13)
NOAA19 0.67(16) 1.14(14)
ERS-1 0.41(5) 0.74(4)
ERS-2 0.47(14) 0.70(12)
Envisat 0.50(10) 0.50(11)
Terra 0.92(41) 1.04(36)
Aqua 0.89(46) 1.17(38)

For the deep basin, LSWT derived from NOAA16 had the lowest RMSE against in-situ data

(0.42 °C), while NOAA18 had the highest RMSE (1.29 °C). In the shallow basin, the low-

est RMSE was reported for ERS-2 (0.67 °C ), whereas the highest RMSE was reported for

Aqua against in-situ data (1.18 °C). An average RMSE of 0.92 °C was estimated between

satellite derived LSWT and in-situ observations. The regression analysis between the final

homogenised LSWT and the in-situ data revealed a coefficient of determination (R2) of 0.98

for both basins. The mean RMSE estimations were 0.83 °C and 0.75 °C for deep and shallow

basins respectively (Fig. 3.7).

3.5.2 Long term warming trends

We found a significant (*P < 0.05) warming trend for lake mean LSWT at an annual rate

of 0.020 °C yr-1 (Fig. 3.8). For the deep basin, we found a similar warming trend (0.014 °C

yr-1; *P < 0.05) for annual mean LSWT, but for shallow basin there was no significant annual

trend. For summer months, we report a significant warming trend at the rate of 0.036 °C yr-1

(***P < 0.001) for the lake mean LSWT (Fig. 3.8). We report a similar increasing rate for the

mean LSWT over the deep basin (0.039 °C yr-1; ***P < 0.001), while no significant warming

was found for the shallow basin. We did not observed any significant trends during the other

seasons. Furthermore, standard deviation of 0.32 °C and 0.53 °C were estimated from the

time series of annual and summer mean LSWT respectively. For comparison, we performed

summer and annual trend analysis on the lake mean temperature computed from in-situ data

and recently published satellite derived LSWT (Riffler et al., 2015). We obtained a significant

warming trend at the rate of 0.039 °C yr-1 (*P < 0.05) and 0.027 °C yr-1 (*P < 0.05) for both
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summer and annual time series from the data by Riffler et al. (2015), while no significant

warming was found from the in-situ data (Fig. 3.9).
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Figure 3.6: Plots showing gap-filled reconstructed LSWT using HANTS (red line) over the averaged
homogenised LSWT (grey bars) from multiple observations over a particular day of the year. The daily
LSWT time series from the deep and shallow basins for the year 2003 is shown as an example.
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Figure 3.7: Boxplots of lake mean LSWT difference between final homogenised LSWT and correspond-
ing in-situ data. The values shown in black over the lower whisker represents N and the values in red
is the reported RMSE in °C.

3.6 Discussion

Remotely sensed satellite data offer a great alternative to in-situ data. We demonstrated the

usability of satellite derived LSWT in estimating long-term annual and seasonal trends of lake

mean LSWT. The inevitable breaks in historical satellite data due to different life periods and

the overpass time of multiple satellites is the main challenge in developing a continuous time

series (Fig. 3.3). In order to make a long-term time series of any bio-geophysical parameter

from satellite data, it is necessary to proceed with a combination of different time series,

which demand homogenisation to correct for the different acquisition times. Hence, we

developed a workflow to derive daily LSWT maps of Lake Garda for the last 30 years (1986 -

2015) at 1 km spatial resolution recorded by six moderate resolution sensors on board of

13 different satellites. For AVHRR data acquired from multiple NOAA instruments, we used

53



Chapter 3 3.6. Discussion

Theil−Sen slope: 0.020 (*P < 0.05)

14.8

15.2

15.6

16.0

16.4

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Year

A
nn

ua
l l

ak
e 

m
ea

n 
T

(°
C

)

Theil−Sen slope: 0.036 (***P < 0.001)

22

23

24

1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014

Year

S
um

m
er

 la
ke

 m
ea

n 
T

(°
C

)

Figure 3.8: Annual (top) and summer (bottom) trends of lake mean LSWT derived from the new
homogenised daily LSWT between 1986 to 2015. Data were smoothed using the loess interpolation
(blue line). The gray area is the 95% confidence interval.

the calibration techniques which take into account the inter-satellite calibration (Trishchenko

et al., 2002; Trishchenko, 2002; Heidinger et al., 2010).For the ATSR series, the calibration

coefficients provided with the data were of superior quality ensuring continuity of data with

transition of the instrument (Schneider et al., 2009). Moreover, the split-window technique

with satellite specific coefficients used in this study could derive LSWT’s at an average RMSE

of 0.88 °C on a single day.

We found similar RMSE (< 1 °C) before and after applying time correction procedures be-

tween satellite derived LSWT and corresponding in-situ data. This could be due to the fact

that lake surface temperature of a deep sub-Alpine lake is a slow changing parameter during

the day. Precisely, the temperature measured at different times during the day was close

enough to exhibit any noticeable change in accuracy indicators before and after the time

correction procedure. Nevertheless, for the older satellites, like earlier NOAA instruments

which underwent considerable orbital shifts during their course in orbit, this step was cru-

cial. We argue that the acquisition time correction is necessary while combining data from
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Figure 3.9: Annual trends of lake mean LSWT computed from homogenised LSWT (deep basin), in-situ
data and satellite derived LSWT Riffler et al. (2015). Data is smoothed using the loess interpolation
(blue line). The area shown around the smoothed line is the 95% confidence interval.

different satellites due to at least two reasons: i) to merge the data obtained from multiple

satellites which have different quality, acquisition times and orbital decays; ii) for more dy-

namic surfaces where temperature varies at short temporal scales, this step may prove to be

crucial. Moreover, identical slopes from different linear models between individual satellites

and in-situ data confirmed the comparability of different satellite derived LSWT to each other.

Harmonic analysis was used to remove the gaps in the daily data due to undetected clouds

and unresolved spurious calibration. We found that the gap filled daily data was over

smoothed which could inadvertently remove some of the actual temporal dynamic change.

In spite of this smoothing, the final homogenised LSWT data was able to pick up the long-

term thermal dynamics over the lake surface. From the long-term summer trend of LSWT

(Fig. 3.8), it was evident that the new LSWT data was able to pick up the low and high peaks

in the last 30 years. Moreover, the spatial coverage of 1 km is another advantage of this

dataset in comparing the thermal dynamics of different locations in the lake. The tempera-

ture difference map in Fig. 3.5 clearly illustrates how LSWT is distributed over the surface
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of Lake Garda, whereby the shallow basin is more warm than the deep basin. Fig. 3.5 also

shows that in the deep basin, the western shores are warmer than at the eastern side. This is

explained by the high mountain chain of Mt. Baldo (2218 m) in the east, which blocks the sun

for a long time during the day. The amplitude and phase maps obtained for each harmonic

per year provide additional information on lake’s thermal variation over time. The amplitude

of the first harmonic is the highest for all the years, showing the influence of annual cycle of

LSWT on the lake characteristics.

We performed validation at different stages of the work flow before and after homogenisa-

tion. We found that the RMSE obtained between individual satellite derived LSWT and in-situ

data varied significantly between the deep and the shallow basins (Table 3.2). The higher

RMSE in the shallow basin may be due to the varying skin effects in Lake Garda. The differ-

ence between skin and bulk temperature often termed as skin effect could be a deciding factor

in varying accuracy over the deep and the shallow basins (Wilson et al., 2013; Schneider et al.,

2009; Hook et al., 2003). It must be noted that, the satellite measured LSWT represents tem-

perature of a sub-micron layer between the lake surface and the air, and is highly variable

according to the meteorological conditions. The in-situ data on the other hand represents

bulk temperature, often measured between 0 to 0.5 m. The RMSE values were closer in the

cross-platform comparison analysis in both the deep and shallow basins (Table 3.1), which

demonstrates the superior quality of split-window coefficients. With respect to the sensor per-

formance in deriving LSWT, we found that the ATSR series exhibited lower RMSE of 0.75 °C

and 0.74 °C, followed by AVHRR with RMSE of 0.88 °C and 0.96 °C, MODIS with RMSE of

0.92 °C and 1.18 °C for deep and shallow basins respectively. A similar study by Riffler et al.

(2015) also reported RMSE between 1 to 1.6 °C for AVHRR derived LSWT against in-situ data

from multiple European lakes. For a better comparison it is important to have high frequency

in-situ data matching the exact acquisition time of the satellites (Oesch et al., 2008; Schneider

et al., 2009). The majority of the LSWT difference in both basins were below 1.0 °C. This

suggests that the homogenisation procedure follwed by HANTS retained the same pattern of

accuracy and the RMSE in a similar range. Moreover, the comparison between summer lake

mean trends obtained from our new LSWT data series and a similar satellite derived LSWT

by Riffler et al. (2015) showed that both the data series are comparable and exhibits similar

trends (Fig. 3.9).

To understand the long-term dynamics of lake surface temperature, it is crucial to have high

frequency in-situ observations. In this study, we demonstrate that the satellite derived data

can complement the missing in-situ observations of surface water temperature, with high

spatial and temporal resolution. Global coverage of the satellite data is an added advan-

tage which enables us to use the same data set for analyzing multiple lakes subsequently for
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comparative analyses. The correct evaluation of the long-term trends of water temperature

should take into account the advantages and limits of measurements made by both remote

sensing techniques and in-situ recordings. Remote sensing technologies are limited to the

detection of long-term trends circumscribed to the surface of water bodies. While this limit

can be compensated by measurements performed at high temporal (daily) and spatial (whole

lake) scales, the direct measurement of surface data in the field at lower temporal frequency

can seriously impair the evaluation of long-term trends. Conversely, the lower temporal and

spatial coverage of in-situ data can be partly balanced by a complete availability of data col-

lected in the water column. The thermal structure of the mixolimnetic layer is less vulnerable

to transient (daily to weekly scales) fluctuations of surface water temperatures originating

from changes in local meteorological conditions. Therefore, most of the studies which have

focused on the long-term trends of lake water temperatures have been based on measure-

ments recorded in the water column. Lake Garda being a deep sub-Alpine lake, undergo

complex mixing processes during winter and spring which have a strong influence on surface

water temperatures (Salmaso, 2012). The inter-annual change of LSWT could be helpful in

identifying impacts on the associated physical and biological processes in the lake.

Recent studies by Schneider and Hook (2010) and O’Reilly et al. (2015) have confirmed global

warming of lakes due to climate change between 1985 and 2009 at the rate of 0.03 - 0.04 °C

yr-1 . The main difference between the two studies is that, Schneider and Hook (2010) used

exclusively the satellite derived LSWT, while O’Reilly et al. (2015) used a combination of

in-situ and satellite data to derive the long-term trends. There are regional studies showing

rapid warming of North American large lakes and European lakes which uses satellite derived

LSWT (Schneider et al., 2009; Riffler et al., 2015). With a different approach, Salmaso and

Mosello (2010), Coats et al. (2006) and Dokulil et al. (2006) reported warming at similar

rates using in-situ volume weighted mean bulk temperature for the large lakes in Europe and

North America. In contrast to our approach, many earlier studies used LST and SST data for

lake studies which reported similar results. More recently, studies by Riffler et al. (2015) and

Hulley et al. (2011) both developed lake specific surface temperature data using optimized

split-window coefficients. We used the data by Riffler et al. (2015) for comparing the trends

and obtained similar increasing temperature trends during summer. Study by Adrian et al.

(2009) reported July warming since 1970 at the rate of 0.02 - 0.05 °C yr-1 computed from

in-situ data for multiple northern hemisphere lakes. Although we did our analysis separately

for the deep and shallow basins of Lake Garda, we could not find any significant trend in the

shallower, southern basin. Moreover, the thermal variation over the deep basin was similar

to the entire lake basin, depicting that the lake is more influenced by the characteristics of

the deep basin.
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One of the main advantages of the developed method is that it gives the opportunity to study

the long-term thermal dynamics of other lakes given the availability of the satellite data

over study area. The spatial and temporal coverage obtained from this method is unique

and cannot be achieved by any other data source. The outliers due to undetected clouds

and other unsuitable data, are often difficult to remove completely. Though the method

is robust, manually checking the accuracy of cloud masks for thousands of images is not

practical. The automated cloud masking may leave undetected cloud pixels as clear sky

ones. A future enhancement for refining cloud masks would be to use seasonal thresholds

in SPARC algorithm instead of global ones. Nevertheless in this study, HANTS were able to

remove the outliers as shown by the validation results at the expense of losing some of the

short term temporal variability. The spatial resolution of 1 km is the highest possible when

considering moderate resolution satellite data, but it is not high enough to study the smaller

lakes. Moreover at this resolution, the issue with mixed pixels along the shore were solved

by using an inner lake buffer while computing long-term climatologies.
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Chapter 4

Warming trends of perialpine lakes from

homogenised time series of historical

satellite and in-situ data

4.1 Abstract

Availability of more than thirty years of historical satellite data is a valuable source which

could be used as an alternative to the sparse in-situ data. We developed a new homogenised

time series of daily day time Lake Surface Water Temperature (LSWT) over last thirty years

(1986-2015) at a spatial resolution of 1 km from thirteen multiple polar orbiting satellites.

The new homogenisation procedure implemented in this study corrects for the different ac-

quisition times of the satellites standardizing the derived LSWT to 12:00 UTC. In this study,

we developed new time series of LSWT for five large lakes in Italy and validated the product

with in-situ data from the respective lakes. Furthermore, we estimated the long-term annual

and summer warming rates, the temporal coherence of mean LSWT between the lakes, and

studied the intra-annual variations and long-term trends from the newly developed LSWT

time series. We found a regional warming trend at the rate of 0.017 °C yr-1 annually and

0.03 °C yr-1 during summer. Mean annual and summer LSWT temporal patterns in these

lakes were found to be highly coherent. Amidst the reported rapid warming of lakes globally,

it is important to understand the long-term variations of surface temperature at a regional

scale. This study contributes a new method to derive long-term accurate LSWT for lakes

with sparse in-situ data thereby facilitating understanding of regional level changes in lake’s

surface temperature.
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4.2 Introduction

To understand a lake’s response to climate change, it is important to have long-term data

with high temporal resolution. Data acquired from satellites and processed using remote

sensing techniques is considered a good alternative to sparse in-situ data. Among many

variables derived from satellite data, surface temperature is considered as reliable source due

to its high level of accuracy (Reinart and Reinhold, 2008; Crosman and Horel, 2009). Many

studies reported an average Root Mean Square Error (RMSE) less than 1 °C between satellite

derived LSWT and in-situ data (Oesch et al., 2008; Schneider et al., 2009). Furthermore, the

satellite derived LSWT is successfully used for estimating warming trends on a set of global

lakes by Schneider and Hook (2010). Split-window algorithm is used to convert the top of

atmosphere brightness temperatures measured from thermal channels (10 - 12 µm) radiances

to the surface temperature (Li et al., 2013). The split window coefficients are derived using

radiative transfer models, by regressing the atmospheric profiles against simulated brightness

temperatures. The accuracy of the estimated surface temperature from satellite data depends

upon these coefficients, which in turn accounts for the correction of atmospheric attenuation

(Maul and Sidran, 1971). Lake specific split-window coefficients and LSWT for a set of global

lakes were derived and published by Hulley et al. (2011); MacCallum and Merchant (2012);

Riffler et al. (2015). Moreover, Jimenez-Munoz and Sobrino (2008) published satellite specific

split window coefficients to derive surface water temperature using a nonlinear split-window

equation. There are multiple satellite derived surface temperature datasets that have been

made available by national agencies to the public, for example, Pathfinder (Kilpatrick et al.,

2001), EuroLST (Metz et al., 2014), GlobTemperature from ATSR series (Ghent, 2012) and

the MODIS temperature products. More recently Sharma et al. (2015) prepared a global

database of LSWT by acquiring both satellite based and in-situ data. However, these datasets

are often of limited quality and satellite/sensor specific. Given that the availability of thermal

data now span more than thirty years, it is important to combine data from multiple satellites

to derive longest possible time series.

Many lakes around the globe are reported to be warming rapidly and the warming rates

are found to be highly variable (O’Reilly et al., 2015). Due to the close coupling of air and

surface temperature, lakes are often directly affected by changes in air temperature due to

climate change (Livingstone et al., 2005; Salmaso et al., 2014). It is well known that basically

all system levels of lakes are responding to enhanced water temperature and subsequent

changes in thermal regime (Adrian et al., 2009). The changes in lake characteristics due

to climate change are found to be highly coherent in temporal and spatial scales (Salmaso

et al., 2014; Livingstone and Dokulil, 2001; Dokulil et al., 2006). For example, Lake Surface

Water Temperature (LSWT) is highly coherent owing to the large scale of the climatic forcing
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controlling this factor. In Europe, changes in surface temperature over lakes are largely

controlled by the North Atlantic Oscillation (NAO) (Blenckner et al., 2007) and, mostly in

the Mediterranean area, by the East-Atlantic Pattern (Salmaso, 2012). Nevertheless, the

actual rate of change in temperature is highly variable between lakes and depends upon

micro climatic conditions like local air temperature, wind speed and landscape properties like

altitude and latitude (O’Reilly et al., 2015; Livingstone et al., 2005). Although at very large

spatial scales (global, Northern hemisphere) patterns are found to be consistent, variation

among regional lakes can be important to understand. In this study, we look into a regional

scale assessment of variation in LSWT among large lakes in Italy. In Italy, an increase of

surface temperature has been reported for the large lakes south of Alps in Northern Italy

(Salmaso and Mosello, 2010; Lepori and Roberts, 2015) and the largest lake of Peninsular

Italy - Lake Trasimeno (Ludovisi and Gaino, 2010).

In this study, we developed a homogenised time series of LSWT from multiple satellites for

five large lakes in Italy using a new method developed by (Pareeth et al., Submitted). The

satellite derived homogenised LSWT cover thirty years (1986-2015) of daily data at a spatial

resolution of 1 km, obtained from thirteen polar orbiting satellites. In this study, we (i)

evaluated the possibility to use satellite data to reconstruct frequent (daily) LSWT, and (ii)

used the reconstructed data to assess long-term and seasonal trends of LSWT in the study

lakes. For validation of the satellite derived data, in-situ measurements of lake surface water

temperatures at mostly monthly temporal resolution were available for the study lakes over

years to decades during the 1986-2015 time window. We tested for long-term trends in

LSWT, intra-annual variability and the coherence in temperature development between the

lakes using the new LSWT data. Our study showed that the lakes are undergoing significantly

rapid annual and summer warming with a high temporal coherence.

4.3 Study area

We selected five sub-alpine lakes and one lake in the Central Italy for this study. Table 4.1

lists the main features of the investigated lakes and Fig. 4.1 their location. For the satellite

data processing we selected a bounding box (red box in the Fig. 4.1) Longitude: 42.9762°E -

46.2371°E; Latitude: 8.2127°N - 12.3456°N; Area: 360 km × 340 km, which covers all the

five lakes. The four large lakes south of the Alps (Lake Garda, Lake Iseo, Lake Como and

Lake Maggiore) have maximum depths and volumes ranging between 251 and 410 m, and

4.7 and 49 billions of m3, respectively (Table 4.1). These lakes contribute water for about

40% of the discharge of the River Po, the largest Italian river. Theoretical renewal times

are around 4-5 years (lakes Maggiore, Como and Iseo), 12 years (Lake Lugano) and 27
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years (Lake Garda). All these lakes are characterized by steep shores and, excluding Lake

Garda, the absence of wide shallow areas. One of the most relevant characteristics of lake

Garda is the presence of a wide shallower (< 40-80 m) in the southermost part, i.e. in the

region located in correspondence of the Po Plain, outside the sub-Alpine chain. Owing to

their climatic location, these lakes should be warm monomictic, i.e. characterized by one

complete circulation in the winter months at or above 4 °C and stable thermal stratification

from spring to early autumn (Wetzel, 2003). Actually, owing to their large depth, this group

of lakes is mero-oligomictic, showing long periods of incomplete spring mixing, interrupted

by occasional and irregular complete overturns following harsh and windy winters (Lakes

Garda, Como and Maggiore), or basically meromictic, i.e. characterized by a continuous

separation of the deep hypolimnion from the upper leayers (Mosello et al., 1997; Salmaso

et al., 2003). Lake Trasimeno is the largest lake of the peninsular Italy. Despite its large

extension, the lake is shallow, with a maximum nominal depth of 6.3 m, reached when the

waters exceeds the artificial outlet threshold located at 257.50 m a.s.l. Because of the small

extent of its watershed, meteorological conditions have caused flood and drought events over

the centuries and the problems related to water level still remain unsolved (Ludovisi et al.,

2013).

Figure 4.1: Study area in Italy depicting location of the study lakes and the bounding box used for
image analysis (red box). Each lake and the location for the in-situ water temperature measurements
(marked as red triangles) are shown in sub figures 1–5. 1) Lake Garda; 2) Lake Iseo; 3) Lake Como;
4) Lake Maggiore; 5) Lake Trasimeno
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Table 4.1: Main characteristics of the investigated lakes and type of in-situ data used in this study

Name Trophic status
Max depth

(m)
Altitude a.s.l.

(m)
Surface area

(km2)
in-situ

time period
Temporal
frequency

Time
(UTC)

Method References

Lake Garda oligomesotrophy 350 65 366.77 1991-2015 Monthly 12:00-13:00 Probe
Salmaso (2012)

Salmaso and Cerasino (2012)

Lake Iseo mesoeutrophy 251 186 61.12 1993-2012 Monthly 10:30-11:30 Probe
Leoni et al. (2014a,b)

Marti et al. (2016)
Lake Como oligomesotrophy 410 198 145.24 2000-2013 Monthly 10:30-12:00 Probe Buzzi (2002)

Lake Maggiore oligotrophy 370 193 212.5 1986-2012 Monthly 10:00-12:00
mercury

thermometer
Morabito et al. (2012)

Lake Trasimeno mesoeutrophic 6.3 257.5 124 1986-2006 Daily 09:00-12:00
mercury

thermometer
Ludovisi et al. (2013)

Ludovisi and Gaino (2010)
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4.4 Methods

4.4.1 Data

We used data (total of 62,799 images) from 13 polar orbiting satellites with moderate res-

olution sensors which provides dual thermal channels at 10.5-11.5 µm and 11.5-12.5 µm

at 1 km spatial resolution to derive daily LSWT (Fig. 4.2). The satellites collectively cover

a time span of 30 years (1986-2015) with daily multiple (day and night) snapshots of the

entire globe. We used satellite observations acquired during the day to match the acqui-

sition time of the in-situ data used for validation. We downloaded and processed level-

1B data of AVHRR, ATSR series and MODIS from Comprehensive Large Array-data Stew-

ardship System (CLASS - http://www.class.ncdc.noaa.gov/), Merci data archive (http:

//ats-merci-ds.eo.esa.int/merci/welcome.do) and Level 1 and Atmosphere Archive and

Distribution System (LAADS - https://ladsweb.nascom.nasa.gov/) respectively for the

study area. In-situ data consisted of the temperatures measured at 0.0 - 0.5 m (bulk tempera-

ture) from surface of each lake. We collected the in-situ data from the research collaborators

working on the respective lakes. Besides my institute (Fondazione Edmund Mach, Italy)

which collects monthly samples from Lake Garda, data for other lakes were obtained from

University of Milan-Bicocca (Lake Iseo; Contact person–Dr.Barbara Leoni), CNR–Institute for

the Study of Ecosystems (Lake Maggiore; Contact person–Dr.Giuseppe Morabito), ARPA Lom-

bardia (Lake Como; Contact person–Dr.Fabio Buzzi), Università degli Studi di Perugia (Lake

Trasimeno; Contact person–Dr.Alessandro Ludovisi). The time span and temporal frequency

of this data vary with lakes (Table 4.1). The methods and the locations of in-situ data mea-

surement are shown in Table 4.1 and Fig. 4.1 respectively.

4.4.2 Homogenized LSWT from satellite data

We developed a homogenised daily LSWT time series corrected at 12:00 UTC for 30 years

from 1986 to 2015. The entire workflow of the new method is shown in Fig. 4.3. The ther-

mal channels obtained from the downloaded satellite data were calibrated to derive top of

atmosphere brightness temperatures from at-sensor radiances. We used a modified method

based on Separation of Pixels Using Aggregated Rating over Canada (SPARC) remove clouds

for the months from April to October (Khlopenkov and Trishchenko, 2007). For the remaining

colder months, we used an inter-quartile filter to remove the outliers due to clouds. We used

a nonlinear split-window algorithm with satellite specific coefficients to derive surface tem-

perature from brightness temperatures as proposed by Jimenez-Munoz and Sobrino (2008).

The acquisition time correction or the homogenisation procedure to correct for the varying
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Figure 4.2: Graph showing time line of the thirteen satellites used in this study, color coded according
to sensors. Y-axis represents the name of satellites used in this study. The legend represents the sensor
on board each satellite.

acquisition time of the multiple satellites was based on a physical model using typical pat-

tern technique (Jin and Treadon, 2003). The gaps in the time series due to cloud coverage

were statistically filled using the harmonic analysis method. The entire methodology to de-

rive the homogenised LSWT from multiple satellites is explained in detail by Pareeth et al.

(Submitted), where time series of satellite derived homogenised LSWT for Lake Garda were

developed and validated. Here, we extend this new LSWT time series to four other large

lakes in the region. All the image processing was performed using the open source software

GRASS GIS 7.0 (Neteler and Mitasova, 2008; Neteler et al., 2012).

4.4.3 Validation, trends and regional coherence

To validate the newly developed homogenised LSWT, we used in-situ data collected from

study lakes over the last three decades. We used lake mean for validation against in-situ

data to avoid mixed pixels from the sampling locations. We used an inner lake mask to

avoid land/water mixed edge pixels in the analysis and used this masked pixels to calculate

the average LSWT. We developed linear regression models for each lake to assess the rela-

tion between in-situ and the satellite derived LSWT. Moreover, to quantify the accuracy of

the satellite derived LSWT, we estimated Root Mean Square Error (RMSE) and Mean Abso-

lute Error (MAE) for all the lakes. The daily LSWT derived from satellite images were then
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Figure 4.3: Block diagram of entire workflow implemented to derive time series of homogenised LSWT
with level-1B thermal radiances obtained from thirteen polar orbiting satellites in the time window
from 1986 to 2015.

aggregated to produce annual and summer time series. We avoided other seasons due to

insignificant warming reported with our earlier study on Lake Garda. To produce summer

values, daily values were averaged within the months June, July and August. We performed

non-parametric trend analysis on the summer and annual averages using Mann-Kendal tests.

The Durbin-Watson test was applied to check for potential serial correlation in the time series

data. For comparison, trend analysis was performed on similar satellite based LSWT data

from Riffler et al. (2015) for all the lakes except Lake Trasimeno, but for a shorter time scale
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Table 4.2: Results of validation of the homogenised LSWT derived from satellite data against the in-
situ data of the lakes. Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) are reported
in °C. N is the number observations used in the linear models. Coefficient of determination (R2) and
slope are obtained from the linear models

Name RMSE (°C) MAE (°C) R2 Slope N
Lake Garda 1.06 0.83 0.98 0.95 217
Lake Iseo 1.08 0.95 0.97 0.99 129
Lake Como 1.14 0.96 0.96 0.99 83
Lake Maggiore 1.13 0.97 0.97 0.96 207
Lake Trasimeno 1.38 1.13 0.98 0.97 4392

from the year 1989 to 2013. The temporal coherence of seasonal and annual LSWT between

lakes was evaluated by estimating correlation coefficient between time series of seasonal

data. The lakes were then grouped together using cluster analysis (complete method) with

dissimilarity measure as 1 – correlation (R Core Team, 2013). We further fitted a General-

ized Additive Mixed Model (GAMM) with an Auto-Regressive (AR1) model structure to take

into account the effect of autocorrelation, to study the intra-annual variability and long-term

trend of LSWT during the past three decades. We used R statistical software (Version 3.3.0)

to run the statistical tests, with package wq for Mann-Kendall tests and package mgcv for

GAMM model (Jassby and Cloern, 2016; Wood, 2006, 2004).

4.5 Results

The linear models relating in-situ and satellite data exhibited high coefficient of determina-

tion (R2) in the analysed lakes, with an average of 0.97. Moreover, the slopes of the linear

models were in the same range, implying that the relations between in-situ and satellite de-

rived LSWT were similar in all lakes (Table 4.2). An average RMSE and MAE of 1.2 °C and

0.97 °C, respectively, were showed over all the lakes (Table 4.2, Fig. 4.4). The minimum

respectively maximum RMSE were reported for Lake Garda and Lake Trasimeno (Table 4.2).

The results of the non-parametric trend analysis are given in Table 4.3. Four of five study

lakes showed significant warming trends with an average rate of 0.03 °C yr-1. The highest

rate of warming during summer was found for Lake Garda and Lake Trasimeno at a rate of

0.04 °C yr-1(***P < 0.001). Significant warming during summer were also reported for Lake

Como and Maggiore at a rate of 0.03 °C yr-1(***P < 0.05). For Lake Iseo, a non-significant

warming trend of 0.03 °C yr-1 was found. Fig. 4.5 shows the summer warming trend of all the

lakes over the last thirty years. We found similar warming trends from the satellite derived

LSWT developed by Riffler et al. (2015) (Table 4.3). To allow direct comparison of the trends

in LSWT we adjusted the time period of our data to those used by Riffler et al. (2015).
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Figure 4.4: Boxplots of the difference between in-situ and lake mean LSWT estimated from satellites.
The outliers are removed using an inter-quartile filter with 10 and 90 percentile cutoffs. Number of
observations (N) in each lake used in the assessment is shown over the boxplot.

Table 4.3: Summer (June/July/August) trends obtained from two different sources of LSWT data. The
first column lists the trends obtained from new homogenised LSWT over thirty years (1986-2015).
Second column lists the summer trends from the same data but for a reduced time scale (1989-2013)
to match the data from Riffler et al. (2015).

Name
Homogenized LSWT (°C)

(1986-2015)
Homogenized LSWT (°C)

(1989-2013)
Riffler et al. (2015)(°C)

(1989-2013)

Lake Garda 0.036 (***P < 0.001) 0.033 (*P < 0.05) 0.049 (**P = 0.01)
Lake Iseo 0.017 (P > 0.1) 0.016 (P > 0.1) 0.051 (**P = 0.01)
Lake Como 0.032 (*P < 0.05) 0.024 (P < 0.1) 0.041 (*P = 0.05)
Lake Maggiore 0.033 (*P < 0.05) 0.025 (P = 0.1) 0.003 (P > 0.1)
Lake Trasimeno 0.044 (***P < 0.001) 0.05 (***P < 0.001) N.A
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Figure 4.5: Summer mean LSWT derived from the new homogenised daily LSWT between 1986 to 2015. Data were smoothed using the linear
model (blue line). The gray area represents 95% confidence interval
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Table 4.4: Annual trend obtained from Generalized Additive Mixed Model (GAMM) and Mann-Kendall
test for all the lakes. The long-term daily trend from GAMM is divided by 30 (number of years) to
obtain the annual trend listed below.

Name
Mann-Kendall (°C)

(1986-2015)
GAMM (°C)
(1986-2015)

Lake Garda 0.020 (*P < 0.05) 0.018 (*P = 0.05)
Lake Iseo 0.019 (*P < 0.05) 0.019 (P = 0.1)
Lake Como 0.012 (P > 0.1) 0.011 (P > 0.1)
Lake Maggiore 0.017 (P < 0.1) 0.014 (P > 0.1)
Lake Trasimeno 0.017 (P > 0.1) 0.006 (P > 0.1)

Annually, Mann-Kendall tests computed on all the five lakes revealed an average warming

of 0.017 °C yr-1. All the analysed lakes showed an increase in the water temperatures with

trends significant in lakes Garda, Iseo and Maggiore (Table 4.4). The highest rate of annual

warming was reported for Lake Garda at 0.02 °C yr-1(*P < 0.05).

Pairwise correlation of LSWT between different lakes are depicted in Fig. 4.6 and Fig. 4.7.

During summer, temporal coherence was highest between Lake Iseo and Como (correlation

coefficient of 0.87) and weakest between Lake Trasimeno and Lake Como (correlation coef-

ficient of 0.62). In spite of their differences in physical and biological properties, coherence

in summer LSWT was high between Lake Garda and Lake Trasimeno, while the other three

lakes are grouped into a single branch (Fig. 4.6). At the annual scale, the four sub-Alpine

lakes showed a high temporal coherence, whereas Lake Trasimeno clearly stood out with

lower correlation coefficients to other lakes.

The intra-annual variance in the LSWT over last thirty years obtained from GAMM were

found to be similar for all the sub-alpine lakes, where as Lake Trasimeno had a long and

hotter summers and cooler winters compared to other lakes (Fig. 4.8a). The long-term trends

of daily LSWT increased by 0.34 °C for Lake Como, 0.41 °C for Lake Maggiore, 0.17 °C for

Lake Trasimeno, 0.55 °C for Lake Garda and 0.56 °C for Lake Iseo, over thirty years from

1986 to 2015 (Fig. 4.8b).
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Figure 4.6: a) Scatter plot matrix showing temporal coherence between summer mean LSWT of all the lakes. Pearson’s correlation coefficient
is given as measure of coherence. b) Dendrogram showing the clustering of lakes based on summer mean LSWT with 1 - Pearson’s correlation
coefficient the dissimilarity measure.
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Figure 4.7: a) Scatter plot matrix showing temporal coherence between annual mean LSWT of all the lakes. Pearson’s correlation coefficient is given
as measure of coherence. b) Dendrogram showing the clustering of lakes based on annual mean LSWT with 1 - Pearson’s correlation coefficient the
dissimilarity measure.
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Figure 4.8: a) Annual cycles and b) long-term trends from the GAMM analysis. For the annual cycles,
the x-axis represents day of the year and for long-term trend, the x-axis represents count of days from
1986 to 2015 representing the time factor in the model. In (b) the trend lines of the lakes Garda and
Iseo practically coincide and are not distinguishable.

4.6 Discussion

We introduced daily time series of satellite derived LSWT for five large lakes in Italy using a

newly established methodology, which can be used to study the long-term thermal character-

istics of lakes. We found that the new satellite derived LSWT is highly accurate as validated by

in-situ long-term water temperature measurements. Importantly, for all five lakes similar ac-

curacy of satellite derived LSWT was found, indicating the robustness of the new LSWT time

series. This is further reiterated by the similar slopes of the fitted line in the linear models

between in-situ and satellite derived LSWT. All studied lakes showed significantly warming

trends during summer except for Lake Iseo. The temporal patterns during summer were sim-

ilar among lakes with the year 2003 being the hottest reported in last thirty years. Moreover,

mean summer LSWT were found to be temporally coherent. The underlying pattern of co-

herence matched with the spatial closeness of the lakes. Lakes in close spatial connection

such as Lake Trasimeno and Lake Garda showed the highest coherence in LSWT. Coherence

in LSWT diminished towards the west with Lake Como situated at the most westerly boarder

of the study area showing the least coherent pattern in LSWT. Interestingly, Lake Garda was

highly coherent to other sub-Alpine lakes in the study and also to Lake Trasimeno, while

other sub-Alpine lakes showed less correlation to Lake Trasimeno. This pattern could reflect

the influence of Mediterranean weather on Lake Garda during summer.

Our results on validation of satellite derived LSWT were in line with other similar studies.

In a previous study establishing the homogenisation methodology we found higher perfor-

mance by ATSR series of sensors with RMSE of 0.75 °C, followed by AVHRR and MODIS with
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reported RMSE of 0.88 °C and 0.92 °C respectively (Pareeth et al., Submitted). Oesch et al.

(2005) used AVHRR and MODIS data to estimate LSWT for Swiss lakes and reported a bias

ranging from 0.9 to 1.6 °C. Riffler et al. (2015) reported a RMSE of less than 1.5 °C using

AVHRR data from multiple NOAA satellites. Multiple studies dealt with long-term warming

of lakes around the globe and reported similar rates as obtained by our study. Schneider

and Hook (2010) used satellite observations to report rapid warming of inland water bodies.

Most recently O’Reilly et al. (2015) used a combination of satellite and in-situ observations

to estimate long-term trends of LSWT and found an increasing summer average at the rate

of 0.03 °C yr-1. In Europe, multiple studies confirmed late spring/summer warming of North

European lakes (Adrian et al., 2009; George et al., 2005), Central Europe (Dokulil et al., 2006)

and for the lakes south of Alps (Salmaso and Mosello, 2010).

The high temporal coherence between Lake Garda and Trasimeno during summer, sheds light

to how differences in regional climate can influence the epilimnion of lakes located at the bor-

der of the Alpine chain. The shallower area of Lake Garda is located for a significant part in

the Po Plain, i.e. outside the Alpine chain where the dominant eco-system is Mediterranean.

Conversely the northern part of Lake Garda and the other large subalpine lakes are more

influenced by Alpine climate. Moreover, the presence of a wider shallower area characteriz-

ing the southern portion of Lake Garda could expose the lake to a greater influence of the

Mediterranean climate, and to a greater impact of short and medium frequency climatic fluc-

tuations acting especially on the southern basin. These factors could contribute to explain

the higher coherence in the temporal development of water temperature in lakes Garda and

Trasimeno during summer. On the other hand, deep sub-Alpine lakes considered in this study

undergo complex mixing processes during winter and spring, which have a strong influence

on surface water temperatures (Salmaso et al., 2014). This explains the weaker coherence

of sub-Alpine lakes with Lake Trasimeno on an annual scale. Moreover, the GAMM output

clearly showed a distinctive annual cycle of Lake Trasimeno compared to other lakes. Lake

Trasimeno is shallow with a maximum depth of 6.3 m at an higher altitude of 257.5 m above

a.s.l., which would explain the warm summer and coolest winter among the five lakes under

study. The long-term trend from GAMM shows a clear upward trend in LSWT. The annual

rate computed from the long-term trends is similar to what we obtained from Mann-Kendall

tests. For Mann-Kendall tests, we averaged the daily observations to annual and seasonal

time series thereby losing the variance to a greater extent. Moreover, the GAMM model takes

care of autocorrelation by including a AR1 model.

To the best of our knowledge, this is the first time homogenised satellite derived LSWT time

series were developed for large lakes to study long-term warming and temporal coherence

between lakes. The advantages of using such a dataset are multitude, though certain caveats
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should be considered before using it for analysis. First, the satellite sensor measures the

emitted radiation in the thermal infra-red region, and the energy is emitted from a sub-

micron layer above the lake surface, known as skin layer. Therefore, the LSWT from satellites

represent skin temperature (Wilson et al., 2013), while the in-situ data represent bulk data

(0 - 5 m). This difference explains the higher RMSE we obtained in our study. The satellite

data from Riffler et al. (2015) were converted to bulk temperature following the method

developed by Minnett et al. (2011), whereas our data represents skin temperature. This

could be one reason for the slightly different trends obtained from either dataset. Second,

the higher RMSE reported in this study might also reflect the lack of high temporally frequent

in-situ data (monthly time scale) which did not correspond to the actual acquisition time of

the satellite derived LSWT (daily time scale). In this study, we considered only day time

satellite data, as for night time, corresponding in-situ data were not available to validate

the observations. Our dataset is at a resolution of 1 km, which could be useful for lakes

as big as Lake Garda, but not an ideal choice to study the spatial variability for smaller

and narrower lakes. There are high resolution thermal satellite data available from Landsat

missions available at a spatial resolution of 30 m which could be used to study spatial and

temporal variability of LSWT for smaller lakes. Future studies will look into the influence of

larger climatic forcings like North Atlantic Oscillations (NAO) and Eastern Atlantic (EA) on

the long-term warming changes of LSWT followed by ecological consequences in the large

lakes south of the Alps.

4.7 Conclusion

In this study, we used newly developed daily LSWT time series of thirty years (1986-2015) of

five large lakes in the Italy to study their temporal dynamics. The new LSWT data are purely

satellite derived combining data from thirteen different satellites. The data are unique with

its new methodology adopted to develop homogenised time series correcting for the different

acquisition time of the satellites. We demonstrated that the satellite data could become a

promising alternative to in-situ measurements of LSWT. The satellite derived LSWT exhibited

high accuracy when compared to the available in-situ data of the lakes. With addition of new

satellites like Sentinel-3 with similar spectral bands in the thermal region, this study gives the

opportunity to expand further the dataset by adding future observations. We found a regional

warming trend at the rate of 0.03 °C yr-1 during summer and at an annual rate of 0.017 °C

yr-1. Annual and summer means of LSWT of the studied lakes were highly coherent. We

further estimated the long-term trend and the intra-annual cycle using generalized additive

mixed models. The method is extendable to any other geographical region of the globe given
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the availability of satellite coverage. This gives higher flexibility to the researchers to study

the long-term thermal dynamics of the lakes with sparse in-situ data.
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Chapter 5

General Discussion

5.1 Summary

Globally, lakes are subject to rapid warming due to climate change over the last century

(O’Reilly et al., 2015; Schneider and Hook, 2010). Long-term trends in the thermal variation

of surface temperature of lakes point towards changing climatic regime in the surrounding

landscape (Blenckner et al., 2007). The global trend is often regionalised by specific meteoro-

logical and environmental conditions (O’Reilly et al., 2015). Lakes in different geographical

region respond differently to the environmental changes. Therefore, a deep understanding

of the trends and patterns of thermal variations at a regional scale is necessary to quantify

its effects and to develop adaptation options. For this reason, the availability of long-term

data at daily temporal resolution is a prerequisite to study lake dynamics in a changing

environment. There are estimates of about 304 million lakes in the world, with over 17,000

lakes having a surface area of greater than 10 km2 (Downing et al., 2006). Out of this huge

number of lakes, long-term in-situ data are available only for a small fraction. Moreover, the

in-situ data vary substantially with lakes with respect to the method of collection, quality,

time line of availability, etc. In order to address these issues, there are strong efforts within

the lakes related research community (Global Lake Temperature Collaboration (GLTC),

GLEON, NetLake, Globolakes (http://www.globolakes.ac.uk/) etc.) to gather, homogenise

and disseminate in-situ data through common data platforms in order to benefit the larger

scientific community (Sharma et al., 2015).

In this context, the availability of satellite data at high temporal resolution and high spatial

scale for the more than last thirty years is an opportunity not to be missed in developing

a homogenised uniform time series of water temperature data for multiple lakes (Pareeth
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et al., 2016). Such a time series will facilitate the study of long-term trends of lakes using a

single source of uniformly processed data of similar quality covering the same time period.

In this thesis, we established a new method which allows the development of homogenised

time series of daily LSWT between 1986 and 2015 for alpine lakes from multiple moderate

resolution polar orbiting satellites (see Chapter 3). The method was applied to five large lakes

in Italy where long-term in-situ data is available to validate the satellite derived time series

(Chapter 4). The new method is reproducible and extendable to any other larger lakes in the

world where satellite coverage is available. On a larger scale, this work has the potential to

fill the gap in lack of in-situ data availability in studying long-term thermal dynamics of lakes.

5.1.1 Resolving important geometrical issues of AVHRR data

The first part of the thesis (Chapter 2) was aimed to resolve the well documented issues of

geometrical discrepancies with the historical satellite data from AVHRR sensor. From the pos-

sible satellite data sources for the time line 1986-2015, AVHRR sensor data aboard multiple

NOAA satellites had the highest share. The earlier NOAA satellites (1986-2001) undergone

clock drifts and attitude errors, resulting in discrepancies with geometrical accuracy of the

acquired data (Baldwin and Emery, 1995; Brunel and Marsouin, 2000). The orbital decay

over time further deteriorated the quality of data Fig. 2.1. This prohibited the wide usage

of AVHRR data at its original resolution of 1.1 km. Hence we developed a new workflow

(see Chapter 2) to correct for these errors and to derive geometrically aligning time series

of brightness temperatures from thermal channels of AVHRR sensors on board eight NOAA

satellites (Pareeth et al., 2016).

The new method was developed by chaining existing multiple open source software tools to

achieve different objectives (Fig. 2.3). We developed two new data drivers (one for AVHRR

LAC data from POD satellites and another for AVHRR LAC data from KLM satellites) in Python

programming language as part of the Pytroll libraries (http://pytroll.org/). These new

drivers which are now openly available as part of Pytroll, can read and calibrate all the

AVHRR LAC level-1B radiances obtained from the CLASS data archive irrespective of the

NOAA satellite. Nonetheless this study was focused on lakes, the newly developed data

drivers can be used for any land or water based applications. Here we want to point out

the larger significance of this study, as this method can be used beyond lakes to also study

land/water surface using bio-geophysical variables which can be derived from AVHRR data.

A two step validation procedure was performed to test the robustness of thermal calibration.

The inter-platform validation between LSWT of Lake Garda derived from multiple NOAA

satellites were compared and reported an average RMSE less than 1 °C (Fig. 2.7). This shows
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the superior quality of thermal calibration (Trishchenko et al., 2002; Trishchenko, 2002) and

allow to combine data from these satellites to extend the time series of LSWT. Moreover,

cross-platform validation against other similar sensors like ATSR1, ATSR2, AATSR and MODIS

employed in this study also revealed high accuracy confirming robustness of the proposed

method (Fig. 2.8). The NOAA satellite series ended with NOAA-19 which is still operational,

though the AVHRR sensor continued to be flown on the MetOp series of satellites. This study

does not include data from MetOp which could be of interest in the future. Moreover, the

night time observations were not taken into consider in this study due to non-availability of

in-situ data to validate the product.

For precise geo-rectification of AVHRR data, a feature matching technique based on computer

vision algorithm SIFT was used to extract homologous GCP’s from a pair of images. This ap-

proach was critical to the overall workflow as there was a need of automate the GCP extrac-

tion (in order to process 22,507 AVHRR images). This technique can retrieve matching points

and is followed by the application of a robust filter to remove any outliers. The SIFT algorithm

was able to detect suitable pairs of homologous points as input to the subsequent image to

image rectification process. As a limitation, it fails in case of cloud coverage greater than 50%

affecting an AVHRR image scene. The resulting overall RMSE was always in sub-pixel range

(Fig. 2.6), which is critical in time series analysis. For this entire process of geo-rectification,

we used the SIFT algorithm implemented in the Orfeo-Toolbox software along with the newly

developed GRASS GIS addon module m.gcp.filter and the enhanced i.rectify module (Inglada

and Christophe, 2009; GRASS Development Team, 2015). Importantly, our procedure does

not correct for the surface elevation which may lead to pixel misplacements and could have

adversary effects especially on small features like lakes. Khlopenkov et al. (2010) explains ac-

curate geolocation of AVHRR historical time series which includes an ortho-correction scheme

taking care of the accurate positioning of the pixels in complicated terrains. Hence it is very

important to design and perform robust statistical outlier detection before any trend analysis

is performed with the developed time series data. The workflow can be enhanced further by

including an ortho-correction procedure in the workflow which would correct for the surface

undulation.

In this study, we explored the availability of open source geospatial libraries to find a solution

to one of the most pressing challenges in AVHRR satellite data processing. With this approach,

new possibilities are now open to researchers who may develop their own custom based

regional datasets of more than thirty years from the freely available AVHRR data, which

would otherwise be difficult to achieve due to the lack of proper tools to accurately process

them. More details on the methodology, software tools and their availability are explained in

Chapter 2. Some of the possible geo-physical variables derivable from AVHRR data at 1 km
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spatial resolution and at daily scale for the past thirty years are e.g. LST, NDVI, 2-band EVI,

and land cover map time series.

5.1.2 Homogenisation of LSWT

The chapter 3 of the thesis deals with a new approach to develop a homogenised LSWT

from multiple satellites. Schneider and Hook (2010) point out the need of a unified dataset

with compensated inter-satellite biases. For addressing this need, we used the thermal data

obtained from six sensors, on board of thirteen different satellites with an acquisition time

varying between 08:00 to 17:00 UTC to derive daily LSWT (Fig. 3.2). We implemented

a modified pattern technique based on diurnal cycles from sun rise to sun set which was

used to implement the time correction procedure to standardize LSWT to 12:00 UTC. With

this approach, the maximum possible observations originating from multiple satellites could

be included in the daily 30 year time series. The Lake Garda case study gave promising

results with an overall RMSE of 0.79 °C against in-situ data (Fig. 3.8). Further analysis was

done separately on deep and shallow basins of Lake Garda to study the spatial variability

of change in surface temperature, which became possible due to the high spatial resolution

of the newly created LSWT product. The application of the same split-window algorithm

with satellite specific coefficients to derive the LSWT from the TOA brightness temperatures

ensured data compatibility. The cross-platform validation confirmed that the derived LSWT

are comparable. This shows the superior quality of the split-window coefficients provided by

Jimenez-Munoz and Sobrino (2008) in correcting atmospheric attenuation. Interestingly, the

time correction procedure did not improved the overall RMSE. A reason might be that the

variations in lake surface temperature during day time are too low, except for unusual drops

due to sudden weather variations, to exhibit any large difference in the overall accuracy

estimators before and after time correction (Fig. 3.4). Nevertheless, the time correction

procedure is a crucial step due to orbital drifts of the earlier satellites and given the wide

window of acquisition times during the day.

Due to the differences in physical properties of shallow and deep basins of Lake Garda, differ-

ent biases were observed in deep and shallow basins. In shallow basin, there was an overall

positive bias when compared to in-situ data which means the satellite data were underesti-

mating the surface temperature, probably due to the heating of epilimnion layer due to low

depths. While in the deep basin, a negative bias was observed, which means most of the

satellite derived LSWT were overestimating LSWT compared to the in-situ bulk temperature

(Fig. 3.8). The gap filling procedure using harmonic analysis was able to retain the seasonal

and annual variations. But the gap filled LSWT was found to be over-smoothed, hence losing
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some of the local variation. The trend analysis reported significant warming of 0.036 °C yr-1

during summer and an annual warming of 0.020 °C yr-1 (Fig. 3.9). This results are in line

with the other studies which reported warming of lakes at global and European level (O’Reilly

et al., 2015; Adrian et al., 2009).

This study developed a new method to homogenise LSWT derived from multiple satellites.

We show that satellite derive LSWT match well with in-situ records of one of our case study

sites – Lake Garda. To the best of our knowledge, based on a thorough literature search, we

found that it is the first time a homogenised daily LSWT data series covering 30 years was

developed from historical satellite observations. The split-window algorithm with satellite

specific coefficients rather than lake specific values makes it possible to extend the dataset

to other lakes. The algorithm by Jimenez-Munoz and Sobrino (2008) has been implemented

as a new add-on for GRASS GIS called i.lswt and is available with the current stable version

of GRASS GIS (https://grass.osgeo.org/grass70/manuals/addons/i.lswt.html). More-

over, with the addition of more satellites in orbit like MetOp-A/B, Sentinel-3A with similar

sensors, more thermal data become available to the public which could be easily processed

by the new methodology. This method is introduced as a possible economical and feasible

alternative to long-term in-situ data. Though the accuracy obtained from the validation pro-

cedure is high, comparing it to daily in-situ data obtained at the exact time of satellite data

acquisition would be an ideal approach to test the stability of new datasets. With optical data,

the issue with undetected clouds could result in spurious trends. Here, by applying harmonic

analysis we were able to remove outliers at the expense of losing local variability. But for any

surface other than water, this may not be suitable and require different spatio-temporal inter-

polation techniques to fill the gaps due to clouds (Metz et al., 2014; Neteler, 2010). Moreover,

the spatial resolution of 1 km is the highest which we can obtain from moderate resolution

sensors, but may not be suitable for small lakes.

5.1.3 Warming of large lakes in Italy

In the last part of the thesis (Chapter 4), the newly developed methods (covered in Chapters

2 and 3) were used to develop a time series of homogenised daily LSWT covering thirty

years (1986-2015) at a spatial resolution of 1 km. Specifically, it comprises five large lakes in

Italy: Lake Garda, Lake Iseo, Lake Como, Lake Maggiore and Lake Trasimeno (Fig. 4.1). The

selection of lakes was based on availability of long-term in-situ data to validate the satellite

derived product. The validation results showed similar results in all the lakes with an overall

RMSE of 1.2 °C and R2 of 0.98 (Table 4.2). The linear models developed with in-situ data

as dependent variable and LSWT as independent variable reported similar slopes for all the
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Chapter 5 5.1. Summary

lakes, documenting the stability of the new LSWT datasets for the case study lakes. LSWT

of Lake Trasimeno being the only shallow lake among the five lakes under study showed

a positive bias against in-situ data. While LSWT of all the deep sub-Alpine lakes reported

a negative bias, due to a cooler epilimnion compared to the surface layer (Fig. 4.4). The

observed biases were in line with the results obtained between deep and shallow basins of

Lake Garda.

The trend analysis reported significant warming during summer at an average rate of 0.03 °C

yr-1 over all the lakes (Table 4.3). Higher warming rates were reported for Lake Trasimeno

and Lake Garda. Annually, an average rate of 0.017 °C yr-1 was reported for all lakes. The

warming rates obtained from the new homogenised LSWT were found to be in line with sim-

ilar studies using different sources of data (Table 4.4). The temporal patterns during summer

were found to be similar among lakes with the year 2003 being the hottest reported in the last

thirty years (Fig. 4.5). Summer mean LSWT were found to be temporally coherent among

the lakes. The highest coherence was reported between Lake Garda and Trasimeno (Fig. 4.5).

This may be due to the influence of Mediterranean weather on Lake Garda during summer

time. However, mean summer LSWT of other sub-Alpine lakes showed less coherence with

that of Lake Trasimeno and were found to be in decreasing order with respect to the spatial

distance between the lakes. The annual mean LSWT was found to be highly coherent between

sub-Alpine lakes while exhibiting lower coherence with LSWT of Lake Trasimeno (Fig. 4.6).

The local meteorological conditions above these lakes play a major role in determining the

coherence between mean LSWT’s. The significant part of the shallower area of Lake Garda is

part of the Po river plain, i.e. outside the Alpine mountain chain where the dominant Mediter-

ranean climate exert its major influence. Conversely, the northern part of Lake Garda and the

other large subalpine lakes are more influenced by Alpine climate. Moreover, the presence of

a wider shallower area characterizing the southern portion of Lake Garda exposes the lake

to a greater influence of the Mediterranean climate, and to a greater impact of short and

medium frequency climatic fluctuations acting especially on the southern basin. These fac-

tors could contribute to explain the higher coherence in the temporal development of water

temperature in Lake Garda and Lake Trasimeno. On the other hand, deep sub-Alpine lakes

considered in this study undergo complex mixing processes during winter and spring, which

have a strong influence on surface water temperatures (Salmaso et al., 2014). This explains

the weaker coherence of sub-Alpine lakes with Lake Trasimeno on an annual scale. Moreover,

the long-term annual trend using GAMM showed a clear upward slope with a similar rate of

warming as obtained from Mann-Kendall tests. The intra-annual variations obtained from

GAMM further showed the clear distinctive summer and winter patterns of Lake Trasimeno

different from sub-Alpine lakes (Fig. 4.8).
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In this study the usability of new satellite derived LSWT in detecting the long-term varia-

tions over large lakes in Italy was demonstrated. The results showed rapid warming during

summer and upward annual trends. With GAMM, we could reconstruct the intra-annual vari-

ations showing distinctive pattern for Lake Trasimeno, also estimated the long-term trend as

the smoothing was linear. For such analysis, it is crucial to have long-term data with high

temporal frequency which could be obtained by using satellite data as an alternative to sparse

in-situ data.

5.2 Conclusion and future perspectives

In this thesis, new methods to develop long-term homogenised daily LSWT of thirty years

(1986-2015) using freely available satellite data and remote sensing techniques are pre-

sented (Chapters 2 and 3). Open source libraries were used throughout the study to attain

reproducibility and extensibility. The newly developed code snippets are publicly available

wherever applicable (Appendices A.1 and A.2). The LSWT developed using new method for

the large five lakes in Italy were used to estimate the summer warming trends from 1986 to

2015. The study demonstrated the usability of satellite data in studying long-term variations

of surface water temperature (Chapters 4). With the newly developed LSWT dataset, direct

effects of climate change like warming of surface temperature has been studied in detail. The

new LSWT data can be used to understand deeply the climatological behaviour and its de-

pendencies (Layden et al., 2015). It can also be used to find the cooling and warming periods,

peak LSWT day in a year, ice melting days, their inter-annual variations etc. As a continuation

of this thesis, next step would be to understand the indirect ecological consequences of warm-

ing due to climate change on these lakes. Another aspect will be to look into the influence

of larger climatic forcings like North Atlantic Oscillation (NAO) and Eastern Atlantic (EA)

climatic oscillations on the long-term changes in the LSWT of large lakes south of Alps and

Central Italy. This new methods gives an opportunity to develop thirty years of unified LSWT

from single source for all the large lakes at a global scale. Though, such an extension de-

mands a lot of processing power, the results will be of high value to the scientific community

to understand the long-term LSWT dynamics. Given recent extreme events like disappear-

ance of large lakes around the world (Micklin, 1988, 2007; Birkett, 2000; AghaKouchak et al.,

2015), satellite based homogenised LSWT could play a key role in understanding the patterns

and drivers of climate change related variations.
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Appendix

A.1 Python script to read and calibrate level 1B AVHRR LAC data using Pytroll libraries

# -*- coding: utf-8 -*-

"""

Created on Fri Feb 25 2015

filename = pytroll.py

This script is executed by the workflow shell script (see Appendix B).

This Python script is generic, will not work as such, will need local tweaking.

@author: Sajid Pareeth

@email: spareeth@gmail.com

"""

import os

#set following variables first

os.environ['PPP_CONFIG_DIR'] = '/usr/local/src/mpop/etc'

os.environ['PYGAC_CONFIG_FILE'] = '/usr/local/src/pygac/etc/pygac.cfg'

# conversion of avhrr l1b bands to tiff starts here...

import numpy as np

import pyresample

import pyproj

import geotiepoints

import argparse

import datetime

from pyresample import *

from pyresample.gradient_search import gradient_search

from pyresample.geometry import SwathDefinition
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from pyresample.geometry import AreaDefinition

from mpop.satellites import PolarFactory

from mpop.projector import get_area_def

from mpop.satin.lac_l1b import KLMReader

#Pytroll starts here

reader = KLMReader()

ts = datetime.datetime.strptime('{year} {doy} {hour} {minute}', '%y %j %H %M')

reader.read("{ipdir}/{name}".format(ipdir=mipdir,name=mname))

reader.get_lonlat()

area_swath = SwathDefinition(reader.lons, reader.lats)

channels = reader.get_calibrated_channels()

sat_azi, sat_zen, sun_azi, sun_zen, rel_azi = reader.get_angles()

ID=reader.instrument_id

global_data = PolarFactory.create_scene("noaa", "{ID}".format(ID=ID), "avhrr", ts)

area_def = get_area_def("euro_laea_AVHRR")

scene = global_data

global_data.area = area_swath

# To save zenith angle as tiff, use the following line...

channels[:, :, 2] = sat_zen

scene[0.63] = channels[:, :, 0]

scene[0.9125] = channels[:, :, 1]

scene[3.74] = channels[:, :, 2]

scene[10.8] = channels[:, :, 3]

scene[12.0] = channels[:, :, 4]

scene.area = area_swath
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l = scene.project("euro_laea_AVHRR")

l1 = gradient_search(scene[0.63].data.astype(np.float64),scene[0.63].area.lons,scene[0.63].area.lats,area_def)

l[0.63] = np.ma.masked_values(l1, 0)

b1 = l.image(0.63, mode="L")

b1.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b1.tif", floating_point=True)

l2 = gradient_search(scene[0.9125].data.astype(np.float64),scene[0.9125].area.lons,scene[0.9125].area.lats, \\

area_def)

l[0.9125] = np.ma.masked_values(l2, 0)

b2 = l.image(0.9125, mode="L")

b2.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b2.tif", floating_point=True)

lz = gradient_search(scene[3.74].data.astype(np.float64),scene[3.74].area.lons,scene[3.74].area.lats,area_def)

l[3.74] = np.ma.masked_values(lz, 0)

bz = l.image(3.74, mode="L")

bz.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_bz.tif", floating_point=True)

l4 = gradient_search(scene[10.8].data.astype(np.float64),scene[10.8].area.lons,scene[10.8].area.lats,area_def)

l[10.8] = np.ma.masked_values(l4, 0)

b4 = l.image(10.8, mode="L")

b4.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b4.tif" floating_point=True)

l5 = gradient_search(scene[12.0].data.astype(np.float64),scene[12.0].area.lons,scene[12.0].area.lats,area_def)

l[12.0] = np.ma.masked_values(l5, 0)

b5 = l.image(12.0, mode="L")

b5.save("{opdir}/NSS.LHRR.{inst}.D{year}{doy}.S{hour}{minute}_b5.tif", floating_point=True)

################ENDS HERE############################################

if __name__ == "__main__":

main()
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A.2 Shell script to process the level 1B AVHRR LAC data - entire workflow

Note about script formatting: Long lines are broken with \\which means that the command continues on the next line. This symbol is

usually not necessary when typing but it is used here for formatting reasons.

#!/bin/sh

## Processing NOAA level 1B AVHRR LAC images###

## Author: Sajid Pareeth, 2015

##The code below will not run as such, you have to adapt it to the local environment

##The below code should run inside GRASS GIS session

##Exit strategy if you are not inside GRASS GIS

if [ -z "$GISBASE" ] ; then

echo "You must be in GRASS GIS to run this program." >&2

exit 1

fi

##Setting the GRASS environments

export GRASS_OVERWRITE=1

export GRASS_MESSAGE_FORMAT=plain # percent output as 0..1..2..

# setting environment, so that awk works properly in all languages

unset LC_ALL

LC_NUMERIC=C

export LC_NUMERIC

#Setting the study area region

g.region n=2531000 s=2480000 w=4360000 e=4390000 res=$RES -a

#setting the Python environment:

PYVERSION=`python --version 2>&1 | cut -d' ' -f2 | cut -d'.' -f1-2`
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MYPYSITES=/usr/local/lib64/python$PYVERSION

# for runtime, attach to existing PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:$MYPYSITES/site-packages

#setting paths required for PYTROLL

PPP_CONFIG_DIR=/home/sajid/mpop_etc

export PPP_CONFIG_DIR=$PPP_CONFIG_DIR

PYGAC_CONFIG_FILE=/home/sajid/pygac_etc/pygac.cfg

export PYGAC_CONFIG_FILE=$PYGAC_CONFIG_FILE

for yyyy in `seq 1986 2014`; do #The loop over all the days from 1986 to 2014 starts here

cd ${MYDATA}

yy=`echo ${yyyy}|cut -c3-4`

leap=`is_leap_year.sh $yyyy` #small script to check leap year or not

if [ $leap -eq 1 ]; then

nd=366

else

nd=365

fi

for d in `seq 1 $nd`; do

cd ${MYDATA}

dy=`echo $d | awk '{ printf("%03d\n", $1) }'`

NUM=`ls NSS.LHRR.NP.D${yy}${dy}*|wc -l`

if [ ${NUM} -eq 0 ]; then

echo "No images on ${yyyy}${dy}"

continue

else

for y in `ls NSS.LHRR.NP.D${yy}${dy}*`; do
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echo "##########Processing ${y} starts here#########"

cd ${MYDATA}/"LACdata"${yyyy}"_NOheader"

# Set the region

g.region n=$N s=$S w=$W e=$E res=$RES -a

YEAR=`echo ${y}|cut -c14-15`

DOY=`echo $y|cut -c16-18`

HOUR=`echo $y|cut -c21-22`

MIN=`echo $y|cut -c23-24`

TIME=`echo $y|cut -c21-24`

i=`echo $y|cut -c1-24`

j=`echo $y|cut -c1-18`

if [ ${TIME} -ge ${MINTIME} -a ${TIME} -le ${MAXTIME} ]; then

echo "##PYTROLL starts here##"

#below pytroll.py should be modified from Appendix A with parsing.

python pytroll.py -i ${y} -o ${OUTDIR}

echo "##PYTROLL ends here##"

#Geo-correction using OTBcli_homologous points

otbcli_HomologousPointsExtraction -in1 input_b1.tif -band1 1 -in2 ref_b1.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB1

otbcli_HomologousPointsExtraction -in1 input_b2.tif -band1 1 -in2 ref_b2.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB2

otbcli_HomologousPointsExtraction -in1 input_b4.tif -band1 1 -in2 ref_b4.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB3

otbcli_HomologousPointsExtraction -in1 input_b5.tif -band1 1 -in2 ref_b5.tif -band2 1 -algorithm sift \\

-mode full -out $OUTB4

echo "##Feature matchin (SIFT) using OTB ends here##"
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##To make the tie-points from SIFT Grass compatible

cat $OUTB1 $OUTB2 $OUTB3 $OUTB4 > ${MYTMPDIR}/${i}_all.txt

## adding a column with enable/disable

awk '{$5="1\t"$5}1' ${MYTMPDIR}/${i}_all.txt > ${MYTMPDIR}/${i}_all_GRASS.txt

# proceed in the GRASS GIS database; importing the input TIFF files

r.in.gdal input=${y}_b1.tif output=${i}_b1 memory=${MEMORY}

r.in.gdal input=${y}_b2.tif output=${i}_b2 memory=${MEMORY}

r.in.gdal input=${y}_bz.tif output=${i}_zenith memory=${MEMORY}

r.in.gdal input=${y}_b4.tif output=${i}_b4 memory=${MEMORY}

r.in.gdal input=${y}_b5.tif output=${i}_b5 memory=${MEMORY}

i.group group=${y} input=${y}_b1,${y}_b2,${y}_b4,${y}_b5,${y}_zenith

mv ${MYTMPDIR}/${i}_all_GRASS.txt ${GRASSLOC}/group/${i}/POINTS #Moving the POINTS file to the GRASS group folder

PTCNT=`wc -l ${GRASSLOC}/group/${i}/POINTS|cut -d' ' -f1` ##GCP filtering and geo-rectification

unset use

if [ ${PTCNT} -le 3 ]; then

g.remove group name=${i} -f

echo "Not enough gcps to filter (< 3), hence ${y} is not usable"

continue

else

eval `m.gcp.filter group=${i} order=1 threshold=500 -b`

USE=${use}

i.target group=${i} -c

fi

if [ ${USE} -lt 20 ]; then

g.remove group name=${i} -f
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echo "${y} is not usable due to lack of enough homologous points - ${USE}, hence avoiding"

continue

elif [ ${USE} -gt 300 ]; then

m.gcp.filter group=${i} order=2 threshold=500 -b -u

i.rectify -a group=${i} extension=_rectified order=2 method=nearest --o

fi

unset use

r.colors map=${i}_b1_rectified rules=${CLRDIR}/avhrrb1.clr

r.colors map=${i}_b2_rectified rules=${CLRDIR}/avhrrb2.clr

r.colors map=${i}_b4_rectified color=kelvin

r.colors map=${i}_b5_rectified color=kelvin

echo "SPARC Cloud detection starts here" #Cloud mask based on SPARC

if [ ${MIN} -lt 30 ]; then

ECMWFHR=${HOUR}

elif [ ${MIN} -gt 30 ] && [ ${HOUR} -eq 23 ]; then

ECMWFHR=00

else

ECMWFHR=`echo $((${HOUR} + 1))`

fi

D=`echo $((${d} - 1))`

DATE=`date -d "${D} days ${yyyy}-01-01" +"%d%m%Y"`

M=00

echo "${yyyy}${DOY}__ecmwf@sp_ecmwf is used for cloud removal" #offset and scale factors from Trischenko et.al 2006

r.mapcalc "${i}_Tindex = 1.0 * (${i}_b4_rectified - ${yyyy}${DOY}_ecmwf_hants@sp_ecmwf + 6.0) * -0.42"

r.mapcalc "${i}_Bindex_land = 1.0 * (${i}_b1_rectified - 0.30) * 67"

r.mapcalc "${i}_Bindex_water = 1.0 * (${i}_b2_rectified - 0.24) * 75"
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r.mapcalc "${i}_Cindex = 1.0 * (${i}_b4_rectified - ${i}_b5_rectified - 1.5) * 4.0"

r.mapcalc << EOF

${i}_b4_masked = eval( \\

T_test = if(${i}_Tindex > 8, null(), ${i}_b4_rectified), \\

C_test = if(${i}_Cindex > 15, null(), T_test), \\

viewangle_test = if(${i}_zenith_rectified > 45, null(), C_test), \\

viewangle_test)

EOF

r.mapcalc << EOF

${i}_b5_masked = eval( \\

T_test = if(${i}_Tindex > 8, null(), ${i}_b5_rectified), \\

C_test = if(${i}_Cindex > 15, null(), T_test), \\

viewangle_test = if(${i}_zenith_rectified > 45, null(), C_test), \\

viewangle_test)

EOF

r.mapcalc "${i}_zenith_masked = if(isnull(${i}_b4_masked), null(), ${i}_zenith_rectified)"

echo "SPARC Cloud detection ends here"

else

echo "${y} is outside the time frame, hence avoiding";

continue

fi

done

fi

done

echo "#################Processing ${yyyy} finishes here#############"

done
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