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Abstract

Telomerase reverse transcriptase (TERT) and telomerase RNA (TR) represent the enzymatically active components of
telomerase. In the complex, TR provides the template for the addition of telomeric repeats to telomeres, a protective
structure at the end of linear chromosomes. Human TR with a mutation in the template region has been previously shown
to inhibit proliferation of cancer cells in vitro. In this report, we examined the effects of a mutation in the template of a virus
encoded TR (vTR) on herpesvirus-induced tumorigenesis in vivo. For this purpose, we used the oncogenic avian herpesvirus
Marek’s disease virus (MDV) as a natural virus-host model for lymphomagenesis. We generated recombinant MDV in which
the vTR template sequence was mutated from AATCCCAATC to ATATATATAT (vAU5) by two-step Red-mediated
mutagenesis. Recombinant viruses harboring the template mutation replicated with kinetics comparable to parental and
revertant viruses in vitro. However, mutation of the vTR template sequence completely abrogated virus-induced tumor
formation in vivo, although the virus was able to undergo low-level lytic replication. To confirm that the absence of tumors
was dependent on the presence of mutant vTR in the telomerase complex, a second mutation was introduced in vAU5 that
targeted the P6.1 stem loop, a conserved region essential for vTR-TERT interaction. Absence of vTR-AU5 from the telomerase
complex restored virus-induced lymphoma formation. To test if the attenuated vAU5 could be used as an effective vaccine
against MDV, we performed vaccination-challenge studies and determined that vaccination with vAU5 completely
protected chickens from lethal challenge with highly virulent MDV. Taken together, our results demonstrate 1) that
mutation of the vTR template sequence can completely abrogate virus-induced tumorigenesis, likely by the inhibition of
cancer cell proliferation, and 2) that this strategy could be used to generate novel vaccine candidates against virus-induced
lymphoma.
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Introduction

Telomerase is a multi-component ribonucleoprotein complex

that governs the maintenance of telomeres, protein-associated

hexameric sequence repeats at the end of linear chromosomes,

and ensures chromosomal integrity and cellular survival [1,2]. The

telomerase complex consists of two core components, telomerase

reverse transcriptase (TERT) and telomerase RNA (TR). In the

complex, TR serves as the template for TERT, which catalyzes

the addition of telomeric repeats (TTAGGG)n at chromosome

ends [3]. Vertebrate TRs exhibit a universally conserved

secondary structure comprised of four structural domains (Fig.

1): the pseudoknot (core) domain containing the template sequence

in conserved region (CR) 1 (CR1), the CR4 and CR5 domains

with a highly conserved stem-loop structure (CR4-5), the H/ACA

box domain, and the CR7 domain [4]. CR1 encodes the template

sequence that is utilized for the extension of the telomeric repeats,

while the CR4-5 domain contributes to the processivity of

telomerase and is essential for stable assembly with TERT. The

H/ACA box and CR7 domains confer TR stability [4–6].

Telomerase activity is absent in most somatic cells, but

commonly up-regulated in rapidly dividing cells including

transformed cells [7]. Consistent with this observation, telomerase

activity is significantly elevated in over 85% of human cancers and

over 70% of immortalized human cell lines [8]. The absence of

telomerase activity often leads to progressive telomere shortening

resulting in cellular senescence and irreversible cell cycle arrest [9].

Several tumor-inducing viruses have evolved strategies to evade or

subvert mechanisms controlling cellular senescence, mainly via the

up-regulation of TERT, which is generally the limiting factor for

telomerase activity [10–13]. It has been suggested that up-

regulation of TERT expression and, consequently, increased

telomerase activity ensures the proliferative potential of persistent-

ly infected cells.

One of the most efficient viruses with respect to induction of

fatal tumors is Marek’s disease virus (MDV). MDV is a
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lymphotropic herpesvirus that causes a well-described syndrome,

Marek’s disease (MD), in chickens. MD is characterized by

neurological disorders, immune suppression, and malignant T cell

lymphomas [14]. The rapid onset of lymphomas developing within

2 to 3 weeks post-infection (p.i.) and high tumor-induced

mortalities of 90–100% in susceptible chickens make MDV-

induced transformation an ideal model to study virus-induced

tumorigenesis in a natural virus-host setting [15]. A number of

MDV-encoded genes have been shown to be involved in MDV-

induced transformation. The major MDV oncogene, meq, encodes

a basic leucine zipper (bZIP) transcription factor similar to the

cellular homologues c-Jun, c-Fos, and c-Myc. Meq dimerizes with

other bZIP transcription factors and modulates expression of both

cellular and viral genes [16,17]. MDV also encodes other genes

products and sequence elements, which perform auxiliary

functions in transformation [18]. One such element is a TR

homologue termed viral TR (vTR) that shares 88% sequence

identity with chicken TR (chTR) [19]. The high sequence

homology suggests vTR was likely acquired from the chicken

genome during virus-host co-evolution. Compared to its cellular

counterpart, chTR, interaction of vTR with TERT results in

higher telomerase processivity [20,21]. It was shown that vTR

contributes to the rapid onset of lymphoma formation by serving

as a template for TERT, but it also has functions that are

independent of the telomerase complex. It is predominantly the

telomerase-independent functions of vTR that are responsible for

tumor progression and dissemination [21,22].

In vitro experiments demonstrated that mutations in the template

sequence within CR1 of human and mouse TR can result in

telomere instabilities, aberrant chromosome separation and

segregation, and ultimately apoptosis [23,24]. TRs with a mutated

template can induce unique checkpoint responses that are different

from DNA damage or loss-of-telomerase responses, even at low

mutant TR expression levels and in the presence of wild-type TR.

In addition, pro-apoptotic effects were also shown for TRs

harboring mutant template or oligonucleotides specifying mutant

template sequences and such molecules are discussed as anti-

tumor therapeutics in different types of cancers [23,25,26].

Here, we investigated the effect of a mutant vTR template

sequence (AU5) on the tumor-promoting capacity of a highly

oncogenic avian herpesvirus in its natural host. Mutation of the

template sequence of MDV-encoded vTR completely abrogated

virus-induced tumor formation in chickens. Introduction of a

second mutation in the stem loop (CR4-5) region that abolishes a

Figure 1. Schematic diagram of MDV vTR secondary structure,
location of the CR1 and CR4-5 domains, and incorporated
mutations. A) The pseudoknot (core), containing the template
sequence, and the CR4-CR5 domains containing the P6.1 stem loop,
are indicated with boxes. B) The pseudoknot domain including the
sequence of wild-type vTR template and AU5 template mutant (AU5).
Nucleotide changes in the template sequence are shown in red. C) The
CR4-CR5 domain showing detailed representations of the P6.1 stem-loop
and the structures of wild-type P6.1 (left) and mutant P6.1 stem-loop
(P6.1mut) (right) are shown. Nucleotide changes of the wt P6.1 stem-loop
(blue) are shown in red and have been previously published [22].
doi:10.1371/journal.ppat.1002333.g001

Author Summary

Telomerase facilitates telomere maintenance and consists
of two major components: the catalytic subunit telome-
rase reverse transcriptase (TERT) and telomerase RNA (TR)
that provides the template for the addition of telomeric
repeats to telomere ends. Expression of TRs with a
mutation in the template sequence can result in telomere
instability, cell cycle arrest and apoptosis in mammalian
cells. Here, we introduced a template mutation in a TR
encoded by the highly oncogenic avian herpesvirus
Marek’s disease virus (MDV) to evaluate this mechanism
in a natural virus-host model for virus-induced tumorigen-
esis. Expression of the mutant viral telomerase RNA (vTR)
by MDV allowed virus replication in telomerase-deficient
cells, but completely abrogated MDV-induced lymphoma-
genesis in vivo in a telomerase-dependent manner.
Infection with MDV harboring the template mutation in
vTR not only abrogated herpesvirus-induced tumorigene-
sis, but also protected chickens from lethal challenge with
a very virulent MDV strain. We provide the first in vivo
evidence that a TR with a template mutation expressed by
a herpesvirus can be used to prevent herpesvirus-induced
tumorigenesis, an approach that could be used for the
development of the next generation vaccines against MDV
and possibly also other lymphotropic herpesviruses.

Mutant vTR Abrogates Virus-Induced Lymphomagenesis
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functional interaction of vTR with TERT restored lymphoma-

genesis, confirming that the abrogation of tumorigenesis shown for

the mutant virus is dependent on telomerase activity through

interaction of mutant vTR and TERT. In vaccination-challenge

studies, the virus expressing mutant template protected chickens

from lethal challenge with a very virulent MDV strain.

Results

Expression of mutant template sequence vTR
significantly reduces proliferation of avian cancer cells in
vitro

TRs harboring mutations in the template sequence were

previously shown to result in telomere instabilities, aberrant

chromosome separation and segregation, and ultimately apoptosis

in mammalian cells in vitro [23]. Led by these previous

observations, we hypothesized that expression of vTR encoding

a mutated template sequence (AATCCCAATC to ATATATA-

TAT), termed AU5, could have an effect on avian cancer cells that

is similar to that described previously for mammalian cells [23,24].

In order to test our hypothesis, we first screened a number of avian

primary cells and permanent cancer cell lines to determine the

optimal system that would provide sufficient levels of telomerase

activity. We performed telomere repeat amplification protocol

(TRAP) assays to detect telomerase activity in primary chicken

embryo cell (CEC) cultures, the chicken fibroblast cell line DF-1

[27], and the quail cancer cell line QT35 [28]. CEC and DF-1

cells did not exhibit telomerase activity, while the QT35 cancer

cell had high telomerase activity as evidenced by the presence of

numerous TRAP products (Fig. 2A). A DF-1 cell line stably

expressing TERT showed some telomerase activity, suggesting

that TERT was the limiting factor for telomerase activity in this

cell line. Based on the results, we used a previously established

QT35 cancer cell line that allowed tetracycline-inducible expres-

sion [29] of vTR or vTR-AU5 (AU5). During the establishment of

cell lines we observed that even un-induced AU5 cell lines

replicated markedly slower. From many initial clones, only a single

monoclonal AU5 cell line could be established, suggesting a strong

selection against leaky AU5 expression. This effect has been

previously observed during the development of mammalian cell

lines expressing TR template mutants [23]. Therefore, polyclonal

vTR and AU5 cell lines were used to determine the effect of AU5

expression on cancer cell proliferation. RT-qPCR analysis of

polyclonal cells, confirmed leaky expression of the constructs and

that vTR and AU5 expression could be increased by more than

300-fold upon induction with doxycycline after 5 days of treatment

(Fig. 2B).

To determine if AU5 inhibits cancer cell proliferation, we

analyzed colony formation by measuring confluency over 31 days

in the presence or absence of doxycycline. Constitutive or induced

expression of wild-type vTR resulted in enhanced proliferation

when compared cells harboring the vector control as described

previously [21]. In contrast, cell lines harboring AU5 exhibited a

significant growth defect when compared to vTR and control cell

lines (Fig. 2C). Increased expression of AU5 following induction

resulted in only slightly reduced cell proliferation when compared

with non-induced cells, suggesting that expression of only low

levels of AU5 are sufficient to reduce growth of the QT35 cancer

cell line. We concluded that our results are consistent with those of

TR over-expression in human and murine cancer cells [23,24] and

show that expression of the MDV vTR can help stabilize and/or

promote growth, while mutation of the template sequence

significantly impairs proliferation of the avian QT35 cancer cell

line.

Mutation of the vTR template sequence abrogates MDV-
induced lymphomagenesis

Since mutation of the template sequence of vTR resulted in

decreased proliferation of QT35 cancer cells (Fig. 1C), we

hypothesized that the mutation in the context of virus infection

may have an effect on MDV replication and tumorigenesis in vivo.

Therefore, we mutated the template sequence of vTR (AU5) in

pRB-1B, an infectious bacterial artificial chromosome (BAC) clone

of the highly oncogenic RB-1B MDV strain using two-step Red-

mediated recombination [30,31]. Two rounds of mutagenesis

allowed the desired alteration of both copies of the diploid vTR

gene within the MDV genome, and transfection of the

recombinant BAC clone into CEC resulted in the reconstitution

of the vTR template mutant virus (vAU5). Furthermore, a

revertant clone (AU5rev) was generated in which the wild-type

template sequence was restored in the mutant vAU5. Following

virus reconstitution, we performed plaque size assays and multi-

step growth kinetics in CEC that revealed that the growth

properties of vAU5 were indistinguishable from those of parental

(vRB-1B) and revertant (vAU5rev) viruses (Fig. 3A–D).

Next, we determined if expression of AU5 had an effect on

MDV replication, disease, and tumor incidence in vivo. In two

independent experiments, we infected 1-day-old P2a chickens with

vRB-1B, vAU5, or vAU5rev and monitored virus levels in the

blood using qPCR assays until 28 days post infection (dpi). vAU5

replication was significantly impaired when compared to parental

and revertant viruses, indicating that the number of infected B and

T cells is reduced (Fig. 4B and D). Consistent with the reduction of

viremia, none of the chickens infected with vAU5 developed

tumors in two independent experiments (0/10; 0/18) over the

course of 13 weeks while parental (vRB-1B) or revertant (vAU5rev)

viruses induced lymphomas in 92–100% of infected animals

(Fig. 4A and C). We concluded from our data that expression of

vTR harboring the AU5 mutation by MDV can completely

abrogate virus-induced tumorigenesis in highly susceptible chick-

ens, most likely by the elimination of MDV-infected and/or

transformed cells by apoptosis.

Abrogation of MDV-induced lymphomagenesis caused
by expression of mutant vTR is dependent on its
interaction with TERT

We previously demonstrated that a mutation within the vTR

P6.1 stem-loop can prevent incorporation of vTR into the

telomerase complex and abolish enzymatic activity and telomere

elongation [22]. To confirm that the absence of lymphoma in

vAU5-infected animals was dependent on the presence of AU5 in

the telomerase complex, we constructed mutant viruses in which

the AU5 and P6.1 mutations were introduced into vTR either

individually or together. Revertant viruses of each mutation were

also generated. All constructed viruses replicated with kinetics

comparable to those of parental and revertant viruses in vitro

(Fig. 5). Upon infection of chickens with the recombinant viruses,

qPCR analysis revealed that insertion of the P6.1 mutation into

vAU5 (vAU5+P6.1mut) restored lytic virus replication to levels

comparable to those of parental vRB-1B, while mutant virus only

harboring the AU5 mutation (vAU5+P6.1rev) was significantly

impaired in replication (Fig. 6A).

Like vAU5, vAU5+P6.1rev did not induce tumors in any of the

infected chickens (0/19) (Fig. 6B). Two of the 19 chickens (11%)

died over the course of the 13 week experiment, which was likely

due to immunosuppression and generalized wasting, common

characteristics of MD and observed in earlier reports using viruses

that are unable to express vTR [21]. Viruses that contained the

Mutant vTR Abrogates Virus-Induced Lymphomagenesis
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Figure 2. Expression of vTR harboring the mutant template (AU5) decreases cell proliferation of an avian cancer cell line. A) Analysis
of telomerase activity in primary CEC cultures, the chicken fibroblast cell line DF-1 with or without TERT expression, and the quail QT35 cancer cell line
using TRAP assays. TRAP products representing telomere elongation and internal control (IC) are indicated. B) RT-qPCR of vTR copies in polyclonal
empty vector, vTR or AU5 QT35 cell lines induced with 1 mg/ml doxycycline (Dox) for 3 and 5 d or left uninduced. Data is shown as relative
quantitation (RQ) of vTR copies relative to quail GAPDH RNA copies that served as an endogenous control. C) Percent (%) confluency of vector, vTR,
and AU5 cell lines over the course of 31 d. Results are shown as means and standard errors of three independent experiments. P values were
determined between each group using Student’s t tests.
doi:10.1371/journal.ppat.1002333.g002

Figure 3. MDV harboring a template mutant vTR replicate comparable to parental and revertant viruses in vitro. A–B) Plaque areas
were determined for 35 (A) or 100 (B) randomly selected plaques for indicated viruses. Results are shown as mean plaque areas in percent of the
parental vRB-1B with standard deviations (error bars). C–D) Multi-step growth kinetics of indicated viruses were performed in triplicates and are
shown as means with standard deviations (error bars).
doi:10.1371/journal.ppat.1002333.g003

Mutant vTR Abrogates Virus-Induced Lymphomagenesis
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P6.1 and the AU5 mutation (vAU5+P6.1mut) induced lymphomas

in 100% of infected animals. Furthermore, vP6.1, parental and

complete revertant viruses caused tumors in all animals infected

with the respective viruses. From the results we concluded that

abrogation of lymphoma formation after infection with an MDV

specifying the AU5 template mutation is indeed dependent on the

interaction of template mutant vTR with TERT and has no effect

if it is not incorporated into the telomerase complex.

Vaccination with vTR template mutant virus confers
protection against lethal MDV challenge

Since MDV harboring the template mutant vTR did not induce

tumors but still replicated in chickens, we addressed the question

whether vAU5 could induce a robust enough immune response to

serve as a vaccine. Groups of 1-day-old P2a (highly susceptible to

MD) and N2a (partially resistant to MD) chickens were inoculated

with diluent, vAU5, or the widely used, commercial vaccine strain

CVI988. Vaccinated chickens were challenged 10 days later with

the very virulent RB-1B MDV strain. Chickens receiving the

diluent developed tumors with expected frequencies of 100% in

the P2a chickens and 79% in the N2a chickens after 13 weeks

(Fig. 7A and B) [32]. vAU5 vaccinated N2a chickens were

completely protected from lethal challenge, while 7% of the

animals vaccinated with the commercial CVI988 vaccine strain

developed disease with a protective index of 91%. In P2a chickens

that are highly susceptible to MD, both vAU5 and CVI988

Figure 4. Tumor induction and in vivo replication of MDV
harboring mutant template sequence (AU5) vTR. MD-susceptible
chickens were inoculated with 1,000 PFU of either vRB-1B (n = 12) or
vAU5 (n = 11) in experiment 1 (A and B) and 2,000 PFU of vRB-1B
(n = 17), vAU5 (n = 19), or vAU5rev (n = 17) in experiment 2 (C and D). A
and C) Necropsies were performed on chickens following onset of
clinical signs of MD during both experiments and the percent of
infected chickens developing tumors over 13 wk was determined. B and
D) DNA was obtained from peripheral blood of chickens infected with
each respective virus and viral genome copies were determined using
qPCR assays. MDV ICP4 copies were normalized to the chicken iNOS
gene and are shown as MDV genome copies per 16106 cells with
standard error of mean bars. Viremia induced by vAU5 was significantly
reduced when compared to vRB-1B (in experiment B) 14dpi, p = 0.007;
21dpi, p = 0.003; 28dpi, p = 0.014; in experiment D) 14dpi, p = 0.013;
21dpi, p = 0.004; 28dpi, p = 0.049) and vAU5rev (in experiment D) 10dpi,
p = 0.022; 14dpi, p = 0,003) at the time points indicated by asterisks (*)
using Student’s t tests.
doi:10.1371/journal.ppat.1002333.g004

Figure 5. In vitro replication of parental, mutant, and revertant
viruses. Plaque areas were determined for 100 randomly selected
plaques for the indicated viruses. Results are shown as mean plaque
areas in percent of the parental vRB-1B with standard deviations (error
bars).
doi:10.1371/journal.ppat.1002333.g005

Figure 6. Secondary mutation of the vTR-TERT interaction
domain, P6.1, rescues MDV replication and lymphomagenesis.
MD-susceptible chickens were infected with vRB-1B (n = 17), vP6.1mut
(n = 16), vAU5 + P6.1mut (n = 18), vAU5 + P6.1rev (n = 19), or vAU5rev +
P6.1rev (n = 18). A) DNA was obtained from blood of infected chickens
and MDV genome copies are shown per 16106 cells as in Fig. 3.
Significant differences in genome copies between vAU5 + P6.1rev and
vRB-1B (14dpi, p = 0.013; 21dpi, p = 0.004; 28dpi, p = 0.049) and vAU5rev
+ P6.1rev (14dpi, p = 0.002) are indicated with an asterisk (*) using
Student’s t test. B) Tumor incidences for each group infected with
viruses contained only the AU5 mutation (empty boxes), additional/
exclusively the P6.1 mutation (grey symbols) or parental and complete
revertants (black symbols) were measured for 13 weeks.
doi:10.1371/journal.ppat.1002333.g006

Mutant vTR Abrogates Virus-Induced Lymphomagenesis
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efficiently induced protection against challenge infection, as only 1

animal in each group developed disease. The protective index of

vAU5 and CVI988 in P2a animals was 93% and 92%,

respectively. These results suggest that mutation of the template

region of vTR in a virulent MDV can serve as a strategy to induce

protection against virus-induced lymphomas.

Discussion

We here report on effects of a mutation in the template

sequence (CR1) of vTR encoded by MDV on virus replication and

tumorigenesis in a natural virus-host model. Mutation of the vTR

template sequence from AATCCCAATC to ATATATATAT
(AU5) resulted in decreased proliferation of the QT35 avian

cancer cell line (Fig. 2), as had been described for TR in

mammalian cells [23,24]. Introduction of the template sequence

mutation in vTR in the context of the viral genome and infection

of MD-susceptible chickens with mutant virus (vAU5) resulted in

complete absence of tumors and low-level viral replication in vivo

(Fig. 4). Secondary mutation of the vTR stem-loop sequence

(P6.1), abolishing the interaction of mutant vTR with TERT,

restored virus-induced tumorigenesis (Fig. 6), thus showing that

vTR-TERT interaction and functional telomerase activity is

required for the anti-tumorigenic effects of the mutant template

sequence in a viral background. Vaccination with MDV harboring

the vTR template mutation not only abrogated herpesvirus-

induced tumorigenesis, but also protected chickens from a lethal

challenge with a very virulent MDV strain.

We surmise that the reduced proliferation of QT35 expressing

vTR with a template sequence mutation, as well as the absence of

tumors and greatly reduced lytic replication in chickens are both

caused by the incorporation of mutant telomeric repeat sequences

into host telomeres of infected cells, which eventually leads to

telomere crisis and apoptosis (Fig. 8). This sequence of events has

been shown previously in other mammalian systems in vitro, where

even low levels of mutant TR induced a unique checkpoint

response resulting in telomere instabilities, aberrant chromosome

separation and segregation, and apoptosis [23,24]. In addition, the

pro-apoptotic effect of TRs harboring mutant templates or

oligonucleotides specifying mutant template sequences has also

been shown [23,25,26].

It is interesting to note that the QT35 cancer cell line was

previously shown to maintain MDV in a latent state [33] and that

the cells express MDV vTR at very low levels (Fig. 2B). Despite the

expression of endogenous quail TR and MDV vTR, AU5

expression had a negative effect on the replication of QT35

cancer cells. Consequently, induced over-expression of wild-type

vTR led to increased proliferation of QT35 cancer cells, further

lending support to the interpretation that vTR performs an

important function in the early maintenance of transformed cells

[21]. Induced expression of the AU5 sequence leading to

incorporation of mutant template sequences significantly reduced

proliferation presumably by inducing apoptosis, again consistent

with previous studies on mammalian TRs [23].

vTR was previously shown to contribute to MDV-induced

lymphomagenesis. Deletion of vTR in the MDV genome resulted

in significantly reduced tumor incidences but the mutation did not

affect virus replication in vivo [21]. Mutation of the vTR template

region (AU5) in MDV, however, completely abrogated tumori-

genesis and reduced viral loads in infected animals, likely via

inhibition of cancer cell replication through induction of apoptosis.

vTR has at least two functions during lymphomagenesis, one that

is dependent and one that is independent of telomerase activity.

The telomerase-dependent function plays an important role in the

early onset of disease but is dispensable for tumorigenesis. This

conclusion is supported by studies showing that MDV harboring a

mutated vTR incapable of interaction with TERT (P6.1mut) can

still induce tumors in chickens, albeit resulting in a delayed onset

of tumor formation [22]. vTR functions that are independent of its

presence in the telomerase complex seem to be important for

lymphomagenesis but are poorly understood. We utilized this

previously published mutation to determine if the induction of

apoptosis and abrogation of tumorigenesis is dependent on the

incorporation of AU5 into the telomerase complex. While MDV

harboring AU5 vTR are incapable of inducing tumors, mutation

in the vTR-TERT interaction domain (vAU5+P6.1mut) in vAU5

completely restored tumorigenesis.

We therefore concluded that restored ability of vAU5+P6.1mut

to induce tumors is presumably caused by the inability of the

telomerase to incorporate mutant telomeric repeats at the ends of

host chromosomes and cause telomere crisis and apoptosis; hence

the pro-oncogenic functions of vTR that are independent of the

telomerase complex prevail. Our results demonstrate that

vAU5+P6.1mut can efficiently cause lymphoma, which confirms

that vTR has tumor-promoting functions independent of the

telomerase complex and that they are mediated by a vTR domain

outside of the template region.

The fact that vAU5 was unable to induce tumors in highly

susceptible P2a chickens suggested that it could serve as a potential

vaccine against MD. Vaccination with vAU5 protected chickens

from lethal challenge infection with the very virulent MDV strain

RB-1B at least as efficiently as the commercial vaccine strain

Figure 7. Immunization with the vAU5 mutant viruses protects
chickens from lethal MDV infection. A) MD-incidence in N2a (A;
n = 14) and B) P2a (B; n = 14) chickens vaccinated with either vAU5,
CVI988 or media alone (Mock) before challenge-infection with RB-1B.
Precent protection from the onset of disease or being tumor-positive at
termination of the experiment is shown in % of the animals.
doi:10.1371/journal.ppat.1002333.g007

Mutant vTR Abrogates Virus-Induced Lymphomagenesis
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CVI988/Rispens that is commonly used in the field [34].

However, the residual mortality observed in some chickens has

to be clarified to ensure the safety of the vaccine candidate. A

similar phenomenon of low levels of mortality in highly susceptible

birds, similar to the one observed here, was also observed with

MDV mutants in which the major oncoprotein of MDV, Meq,

was absent. Infection with meq deletion viruses did not cause

tumors [35], but severe lymphoid atrophy and immunosuppres-

sion was evident [36]. Likely, a combination of vTR template

mutation with other modifications in the MDV genome targeting

genes important for replication could therefore increase the safety

of the vaccine and prevent lymphoid atrophy. Here, we suggest a

new strategy that could be applied to the next generation of MD

vaccines, which will certainly be needed because recently isolated

MDV strains are capable of evading immune protection provided

by current vaccines [15,37,38].

Materials and Methods

Ethics statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of Cornell University (permit number 2002-0085 and

2008-0018). The animal care facilities and programs of Cornell

University meet the requirements of the law (89–544, 91–579, 94–

276) and NIH regulations on laboratory animals, and are in

compliance with the Animal Welfare Act, PL 279. All experi-

mental procedures were in compliance with approval of Cornell

University’s Institutional Animal Care and Use Committee

(IACUC) and all efforts were made to minimize suffering.

Generation of mutant MDV
Recombinant viruses were generated by two-step Red-mediated

recombination as previously described [30,31]. Primers used for

construction of template sequence (CR1) AU5 mutants (vAU5)

and revertants (vAU5rev) are shown in Table 1. Primers used for

construction of the P6.1 vTR-TERT interaction domain mutants

and revertants have previously been published [22].

Propagation of MDV
CEC cultures were prepared from 10-day-old specific-patho-

gen-free (SPF) embryos using standard methods [39]. Recombi-

nant viruses were reconstituted from purified BAC DNA in CEC

cultures using CaPO4 transfection [40]. The loxP flanked mini-F

Figure 8. Proposed model for abrogation of tumor induction by mutant template sequence vTR through incorporation of mutant
telomere sequences in transformed T cells. Expression of vTR AU5 leads to telomere instabilities, aberrant chromosome separation and
segregation, and finally apoptosis induction in the presence of TERT (upper panel). Without vTR interaction with TERT by mutation of the P6.1 stem
loop, mutant template sequences (AU5) are not incorporated in the telomeres of transformed cells and thus proliferation of transformed cells
continues, leading to lymphomas.
doi:10.1371/journal.ppat.1002333.g008

Mutant vTR Abrogates Virus-Induced Lymphomagenesis

PLoS Pathogens | www.plospathogens.org 7 October 2011 | Volume 7 | Issue 10 | e1002333



sequences within the infectious clones were removed by co-

transfection with a Cre recombinase expression vector (pCAGGS-

NLS/Cre) as previously described and screened via analytical

PCR [30]. Virus propagation, plaque area measurements and

multi-step growth kinetics were also performed as described

previously [41].

Animal studies
SPF P2a (MHC haplotype B19B19) or N2a (MHC haplotype

B21B21) chickens were obtained from departmental flocks and

housed in poultry isolation units. Chickens were inoculated with

1,000 or 2,000 plaque forming units (PFU) of virus by intra-

abdominal injection and evaluated for symptoms of MD on a daily

basis. Necropsies were performed on chickens showing clinical

signs of MD, as well as all remaining chickens at the termination of

the experiment.

Chicken blood DNA extraction and qPCR assays
DNA was extracted from whole blood of eight chickens for each

group randomly selected prior to the experiment and MDV

genomic copies were determined by qPCR assays [41]. Briefly,

MDV DNA copy numbers were detected using primers and probe

specific for the MDV infected cell protein 4 (ICP4) locus that were

normalized to cellular genome copies of chicken inducible nitric

oxide synthase (iNOS).

Cloning of vTR and AU5 Tet-on expression constructs
and generation of stable cell lines

Tet-on constructs were generated by digestion of the pCMS-

vTR and pCMS-vTR-AU5 constructs previously described [22]

with EcoRI and XbaI. Resulting vTR or AU5 fragments were

then cloned into the pcDNA4/TO/myc-his vector (Invitrogen,

Carlsbad, CA) to generate pcDNA4/TO-vTR and pcDNA4/TO-

AU5, respectively.

Inducible cell lines were generated based on QT35TR19, a

previously described Tet-inducible QT35 cancer cell line (kindly

provided by Karel A. Schat, Cornell University) and maintained

as described previously [29]. To generate control, vTR, and AU5

expressing cell lines, QT35TR19 cells were transfected with

pcDNA4/TO (empty vector), pcDNA4/TO-vTR, or pcDNA4/

TO-AU5 using Lipofectamine2000 (Invitrogen, Carlsbad, CA)

following the manufacturer’s instructions. Monoclonal and

polyclonal cell lines were selected with 5 mg/ml blasticidin and

500 mg/ml zeocin (Invitrogen). All cell lines were used between

passage 5 and 10 in cell proliferation and RT-qPCR assays.

Cell proliferation assays
Proliferation of Tet-inducible cell lines was evaluated as

previously described [23]. Briefly, 26103 cells of each cell line

were seeded into 35 mm dishes in triplicate and maintained in

media with or without 1 mg/ml doxycycline with 2/3 media

changed every 4–5 days. After 31 days, cells were fixed with 90%

ice-cold acetone and stained with 1% crystal violet in 50%

methanol. Percent confluency was determined using NIH ImageJ

software by calculating the total area on the plates covered by cell

colonies over the total area of the plate. The average % confluency

was determined from three independent experiments.

RT-qPCR assays for analysis of Tet-inducible vTR
expression

One-thousand vTR, AU5, or empty vector Tet-inducible cells

were treated with or without 1 mg/ml doxycycline in triplicate.

After 3 and 5 days, total RNA was prepared using RNA STAT 60

as described previously [42]. Reverse transcription was performed

using the ThermoScriptTM RT-PCR system (Invitrogen, Carls-

bad, CA) with random hexamer oligonucleotides according to

manufacturer’s instructions.

Copies of vTR cDNA were determined by qPCR assays using

the TaqMan Fast Universal Master Mix system (Applied

Biosystems, Inc.) according to manufacturer’s instructions and

performed in an ABI Prism 7500 Fast Real-Time PCR System

(Applied Biosystems, Inc.). Results were analyzed with the

Sequence Detection Systems version V2.0.3 software using the

comparative Ct method (22DDCt) of relative quantification.

Primers and probe for the detection of MDV vTR and quail

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that served

as an endogenous control have been described previously [43,44].

Statistical analysis
Significant differences in % confluency assays and MDV

replication using qPCR assays were determined using Student’s t

test or Tukey-Kramer comparison of means.
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