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Abstract. Intuitively, if a density operator has small rank, then it should
be easier to estimate from experimental data, since in this case only a few
eigenvectors need to be learned. We prove two complementary results that
confirm this intuition. Firstly, we show that a low-rank density matrix can
be estimated using fewer copies of the state, i.e. the sample complexity of
tomography decreases with the rank. Secondly, we show that unknown low-
rank states can be reconstructed from an incomplete set of measurements, using
techniques from compressed sensing and matrix completion. These techniques
use simple Pauli measurements, and their output can be certified without making
any assumptions about the unknown state. In this paper, we present a new
theoretical analysis of compressed tomography, based on the restricted isometry
property for low-rank matrices. Using these tools, we obtain near-optimal error
bounds for the realistic situation where the data contain noise due to finite
statistics, and the density matrix is full-rank with decaying eigenvalues. We also
obtain upper bounds on the sample complexity of compressed tomography, and
almost-matching lower bounds on the sample complexity of any procedure using
adaptive sequences of Pauli measurements. Using numerical simulations, we
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compare the performance of two compressed sensing estimators—the matrix
Dantzig selector and the matrix Lasso—with standard maximum-likelihood
estimation (MLE). We find that, given comparable experimental resources,
the compressed sensing estimators consistently produce higher fidelity state
reconstructions than MLE. In addition, the use of an incomplete set of
measurements leads to faster classical processing with no loss of accuracy.
Finally, we show how to certify the accuracy of a low-rank estimate using direct
fidelity estimation, and describe a method for compressed quantum process
tomography that works for processes with small Kraus rank and requires only
Pauli eigenstate preparations and Pauli measurements.
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1. Introduction

In recent years, there has been amazing progress in studying complex quantum mechanical
systems under controlled laboratory conditions [1]. Quantum tomography of states and
processes is an invaluable tool used in many such experiments, because it enables a complete
characterization of the state of a quantum system or process (see, e.g., [2–16]). Unfortunately,
tomography is very resource intensive, and scales exponentially with the size of the system. For
example, a system of n spin-1/2 particles (qubits) has a Hilbert space with dimension d = 2n,
and the state of the system is described by a density matrix with d2

= 4n entries.
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Recently, a new approach to tomography was proposed: compressed quantum tomography,
based on techniques from compressed sensing [17, 18]. The basic idea is to concentrate on states
that are well approximated by density matrices of rank r � d. This approach can be applied to
many realistic experimental situations, where the ideal state of the system is pure, and physical
constraints (e.g. low temperature or the locality of interactions) ensure that the actual (noisy)
state still has low entropy.

This approach is convenient because it does not require detailed knowledge about the
system. However, note that when such knowledge is available, one can use alternative
formulations of compressed tomography, with different notions of sparsity, to further reduce
the dimensionality of the problem [19]. We will compare these methods in section 6.2.

The main challenge in compressed tomography is how to exploit this low-rank structure,
when one does not know the subspace on which the state is supported. Consider the example of
a pure quantum state. Since pure states are specified by only O(d) numbers, it seems plausible
that one could be reconstructed after measuring only O(d) observables, compared with O(d2)

for a general mixed state. While this intuition is indeed correct [20–23], it is a challenge to
devise a practical tomography scheme that takes advantage of this. In particular, one is restricted
to those measurements that can be easily performed in the laboratory; furthermore, one then has
to find a pure state consistent with measured data [24], preferably by some procedure that is
computationally efficient (note that, in general, finding minimum-rank solutions is NP-hard,
hence computationally intactable [25]).

Compressed tomography provides a solution that meets all these practical require-
ments [17, 18]. It requires measurements of two-outcome Pauli observables, which are feasi-
ble in many experimental systems. In total, it uses a random subset of m = O(rd log d) Pauli
observables, which is just slightly more than the O(rd) degrees of freedom that specify an ar-
bitrary rank r state. Then the density matrix ρ is reconstructed by solving a convex program.
This can be done efficiently using general-purpose semidefinite program (SDP) solvers [26] or
specialized algorithms for larger instances [27–29]. The scheme is robust to noise and contin-
ues to perform well when the measurements are imprecise or when the state is only close to a
low-rank state.

Here, we follow up on [17, 18] by giving a stronger (and completely different) theoretical
analysis, which is based on the restricted isometry property (RIP) [30–32]. This answers a
number of questions that could not be addressed satisfactorily using earlier techniques based on
dual certificates. Firstly, how large is the error in our estimated density matrix when the true state
is full-rank with decaying eigenvalues? We show that the error is not much larger than the ‘tail’
of the eigenvalue spectrum of the true state. Secondly, how large is the sample complexity of
compressed tomography, i.e. how many copies of the unknown state are needed to estimate
its density matrix? We show that compressed tomography achieves nearly optimal sample
complexity among all procedures using Pauli measurements and, surprisingly, the sample
complexity of compressed tomography is nearly independent of the number of measurement
settings m as long as m >�(rd poly log d).

In addition, we use numerical simulations to investigate the question: given a fixed time
T during which an experiment can be run, is it better to do compressed tomography or full
tomography, i.e. is it better to use a few measurement settings and repeat them many times or do
all possible measurements with fewer repetitions? For the situations we simulate, we find that
compressed tomography provides better accuracy at a reduced computational cost compared to
standard maximum-likelihood estimation (MLE).
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Finally, we provide two useful tools: a procedure for certifying the accuracy of low-
rank state estimates and a very simple compressed sensing technique for quantum process
tomography.

We now describe these results in more detail.
Theoretical analysis using RIP. We use a fundamental geometric fact: the manifold of rank-r
matrices in Cd×d can be embedded into O(rd poly log d) dimensions, with low distortion in the
two-norm. An embedding that does this is said to satisfy the RIP [32]. In [30], it was shown
that such an embedding can be realized using the expectation values of a random subset of
O(rd poly log d) Pauli matrices. This implies the existence of the so-called ‘universal’ methods
for low-rank matrix recovery: there exists a fixed set of O(rd poly log d) Pauli measurements,
which has the ability to reconstruct every rank-r d × d matrix. Moreover, with high probability,
a random choice of Pauli measurements will achieve this. (The earlier results of [17] placed the
quantifiers in the opposite order: for every rank-r d × d matrix ρ, most sets of O(rd poly log d)
Pauli measurements can reconstruct that particular matrix ρ.)

Intuitively, the RIP says that a set of random Pauli measurements is sensitive to all low-rank
errors simultaneously. This is important, because it implies stronger error bounds for low-rank
matrix recovery [31]. These bounds show that, when the unknown matrix ρ is full-rank, our
method returns a (certifiable) rank-r approximation of ρ that is almost as good as the best such
approximation (corresponding to the truncated eigenvalue decomposition of ρ).

In [31], these error bounds were used to show the accuracy of certain compressed sensing
estimators, for measurements with additive Gaussian noise. Here, we use them to upper-bound
the sample complexity of our compressed tomography scheme. (That is, we bound the errors
due to estimating each Pauli expectation value from a finite number of experiments.) Roughly
speaking, we show that our scheme uses O(r 2d2 log d) copies to characterize a rank-r state
(up to constant error in trace norm). When r = d, this agrees with the sample complexity of
full tomography. Our proof assumes a binomial noise model, but minor modifications could
extend this result to other relevant noise models, such as multinomial, Gaussian or Poissonian
noise.

Furthermore, we show an information-theoretic lower bound for tomography of rank-r
states using adaptive sequences of single-copy Pauli measurements: at least �(r 2d2/log d)
copies are needed to obtain an estimate with constant accuracy in the trace distance. This
generalizes a result from [33] for pure states. Therefore, our upper bound on the sample
complexity of compressed tomography is nearly tight, and compressed tomography nearly
achieves the optimal sample complexity among all possible methods using Pauli measurements.

Our observation that incomplete sets of observables are often sufficient to unambiguously
specify a state gives rise to a new degree of freedom when designing experiments: when aiming
to reduce statistical noise in the reconstruction, one can either estimate a small set of observables
relatively accurately or else a large (e.g. complete) set of observables relatively coarsely. Our
bounds (as well as our numerics) show that, remarkably, over a very large range of m the only
quantity relevant for the reconstruction error is t , the total number of experiments performed.
It does not matter over how many observables the repetitions are distributed. Thus, fixing t
and varying m, the reduction in the number of observables and the increase in the number of
measurements per observable have no net effect with regard to the fidelity of the estimate as long
as m >�(rd poly log d). This finding holds independently of whether fidelity or trace distance
is used to measure the reconstruction error, and we believe that it is plausible that a similar
phenomenon occurs for other cost functions as well.
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Certification. We generalize the technique of direct fidelity estimation (DFE) [33, 34] to work
with low-rank states. Thus, one can use compressed tomography to get an estimated density
matrix ρ̂, and use DFE to check whether ρ̂ agrees with the true state ρ. This check is guaranteed
to be sound even if the true state ρ is not approximately low rank. Our extension of DFE may be
of more general interest, since it can be used to efficiently certify any estimate ρ̂ regardless of
whether it was obtained using compressed sensing or not, as long as the rank r of the estimate
is small (and regardless of the ‘true’ rank).

Numerical simulations. We compare the performance of several different estimators (methods
for reconstructing the unknown density matrix). They include: constrained trace-minimization
(also known as the matrix Dantzig selector), least squares with trace-norm regularization (or the
matrix Lasso), as well as a standard MLE [35–37] for comparison.

We observe that our estimators outperform MLE in essentially all aspects, with the matrix
Lasso giving the best results. The fidelity of the estimate is consistently higher using the
compressed tomography estimators. Also, the accuracy of the compressed sensing estimates
is (as mentioned above) fairly insensitive to the number of measurement settings m (assuming
that the total time available to run the experiment is fixed). So by choosing m � d2, one still
obtains accurate estimates, but with much faster classical post-processing, since the size of the
data set scales as O(m) rather than O(d2).

It may be surprising to the reader that we outperform MLE, since it is often remarked
(somewhat vaguely) that ‘MLE is optimal’. However, MLE is a general-purpose method that
does not specifically exploit the fact that the state is low-rank. Also, the optimality results for
MLE only hold asymptotically and for informationally complete measurements [38, 39]; for
finite data [40] or for incomplete measurements, MLE can be far from optimal.

From these results, one can extract some lessons about how to use compressed tomography.
Compressed tomography involves two separate ideas: (1) measuring an incomplete set of
observables (i.e. choosing m � d2) and (2) using trace minimization or regularization to
reconstruct low-rank solutions. Usually, one does both of these things. Now, suppose that the
goal is to reconstruct a low-rank state using as few samples as possible. Our results show that
one can achieve this goal by doing (2) without (1). At the same time, there is no penalty in
the quality of the estimate when doing (1), and there are practical reasons for doing it, such as
reducing the size of the data set to speed up the classical post-processing.

Quantum process tomography. Finally, we adapt our method to perform tomography of
processes with a small Kraus rank. Our method is easy to implement, since it requires only the
ability to prepare eigenstates of Pauli operators and measure Pauli observables. In particular,
we require no entangling gates or ancillary systems for the procedure. In contrast with [19],
our method is not restricted to processes that are element-wise sparse in some known basis, as
discussed in section 6.2. This is an important advantage in practice, because while the ideal (or
intended) evolution of a system may be sparse in a known basis, it is often the case that the
noise processes perturbing the ideal component are not sparse, and knowledge of these noise
processes is key to improving the fidelity of a quantum device with some theoretical ideal.

1.1. Related work

While initial work on tomography considered only linear inversion methods [41], most
subsequent works have largely focused on maximum likelihood methods and to a lesser extent
on Bayesian methods for state reconstruction [35–37, 41–52].
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However, there has recently been a flurry of work which seeks to transcend the standard
MLE methods and improve on them in various ways. Our contributions can also be seen in this
context.

One way in which alternatives to MLE are being pursued is through what we call full-rank
methods. Here the idea is somewhat antithetical to ours: the goal is to output a full-rank density
operator, rather than a rank deficient one. This is desirable in a context where one cannot make
the approximation that rare events will never happen. Blume-Kohout’s hedged MLE [53] and
Bayesian mean estimation [52] are good examples of this type of estimator, as are the minimax
estimator of [54] and the so-called Max-Ent estimators [55–58]. The latter are specifically for
the setting where the measurement data are not informationally complete, and one tries to
minimize the bias of the estimate by maximizing the entropy along the directions where one
has no knowledge.

By contrast, our low-rank methods do not attempt to reconstruct the complete density
matrix, but only a rank-r approximation, which is accurate when the true state is close to low-
rank. From this perspective, our methods can be seen as a sort of Occam’s razor, using as few
fit parameters as possible while still agreeing with the data [59]. Furthermore, as we show here
and elsewhere [17], informationally incomplete measurements can still provide faithful state
reconstructions up to a small truncation error.

One additional feature of our methods is that we are deeply concerned with the feasibility
of our estimators for a moderately large number of qubits (say, 10–15). In contrast to most
of the existing literature, we adopt the perspective that it is not enough for an estimator to be
asymptotically efficient in the number of copies for fixed d. We also want the scaling with
respect to d to be optimal. We specifically take advantage of the fact that many states and
processes are described by low-rank objects to reduce this complexity. In this respect, our
methods are similar to tomographic protocols that are tailored to special ansatz classes of states,
such as those recently developed for use with permutation-invariant states [60], matrix product
states [61] or multi-scale entangled states [62].

Our error bounds are somewhat unique as well. Most previous work on error bounds
used either standard resampling techniques or Bayesian methods [42, 43, 45, 48, 50, 52].
Very recently, Christandl and Renner [63] and Blume-Kohout [64] independently derived two
closely related approaches for obtaining confidence regions that satisfy or nearly satisfy certain
optimality criteria. In particular, the latter approaches can give very tight error bounds on an
estimate, but they can be computationally challenging to implement for large systems. The error
bounds which most closely resemble ours are of the ‘large deviation type’; see, for example, the
discussion in [38]. This is true for the new improved error bounds, as well as the original bounds
proven in [17, 18]. These types of bounds are much easier to calculate in practice, which agrees
with our philosophy on computational complexity, but may be somewhat looser than the optimal
error bounds obtainable through other more computationally intensive methods such as those
of [63, 64].

1.2. Notation and outline

We denote Pauli operators by P or Pi . We define [n] = {1, . . . , n}. The norms we use
are the standard Euclidean vector norm ‖ x ‖2, the Frobenius norm ‖X‖F =

√
Tr(X † X), the

operator norm ‖X‖ =
√
λmax(X † X) and the trace norm ‖X‖tr = Tr|X |, where |X | =

√
X † X .

The unknown ‘true’ state is denoted by ρ and any estimators for ρ are given a hat: ρ̂. The
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expectation value of a random variable X is denoted by EX . We denote by Hd the set of d × d
Hermitian matrices.

The paper is organized as follows. In section 2, we detail the estimators and error bounds
and then upper bound the sample complexity. In section 3, we derive lower bounds on the
sample complexity. In section 4, we find an efficient method of certifying the state estimate. In
section 5, we detail our numerical investigations. We show how our scheme can be applied to
quantum channels in section 6 and conclude in section 7.

2. Theory

We describe our compressed tomography scheme in detail. Firstly, we describe the measurement
procedure and the method for reconstructing the density matrix. Then we prove error bounds
and analyze the sample complexity.

2.1. Random Pauli measurements

Consider a system of n qubits, and let d = 2n. Let P be the set of all d2 Pauli operators, i.e.
matrices of the form P = σ1 ⊗ · · · ⊗ σn where σi ∈ {I, σ x , σ y, σ z

}.
Our tomography scheme works as follows. Firstly, choose m Pauli operators, P1, . . . , Pm ,

by sampling independently and uniformly at random from P . (Alternatively, one can choose
these Pauli operators randomly without replacement [65], but independent sampling greatly
simplifies the analysis.) We will use t copies of the unknown quantum state ρ. For each i ∈ [m],
take t/m copies of the state ρ, measure the Pauli observable Pi on each one and average the
measurement outcomes to obtain an estimate of the expectation value Tr(Piρ). (We will discuss
how to set m and t later. Intuitively, to learn a d × d density matrix with rank r , we will set
m ∼ rd log6 d and t ∼ r 2d2 log d.)

To state this more concisely, we introduce some notation. Define the sampling operator to
be a linear map A : Hd

→ Rm defined for all i ∈ [m] by

(A(ρ))i =

√
d

m
Tr(Piρ). (1)

(The normalization is chosen so that EA∗A= I, where I denotes the identity superoperator,
and A∗ is the adjoint of A. That is, A∗ : Rm

→Hd is the complex-conjugate transpose of the
linear map A.) We can then write the output of our measurement procedure as a vector

y =A(ρ)+ z, (2)

where z represents statistical noise due to the finite number of samples. (More generally, if the
measurements contain systematic or adversarial noise, these can also be represented by z. There
are various error bounds for this situation, although they are necessarily more pessimistic than
the ones we show here [66].)

2.2. Reconstructing the density matrix

We now show two methods for estimating the density matrix ρ. Both are based on the same
intuition: find a matrix X ∈Hd that fits the data y while minimizing the trace norm ‖X‖tr,
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which serves as a surrogate for minimizing the rank of X . In both cases, this amounts to a
convex program, which can be solved efficiently.

(We mention that at this point we do not require that our density operators are normalized
to have unit trace. We will return to this point later in section 5.)

The first estimator is obtained by constrained trace-minimization (also known as the matrix
Dantzig selector):

ρ̂DS = arg min
X

‖X‖tr s.t. ‖A∗(A(X)− y)‖6 λ. (3)

Note that the constraint bounds the operator norm ofA∗(A(X)− y). The parameter λ should be
set according to the amount of noise in the data y; we will discuss this later.

The second estimator is obtained by least-squares linear regression with trace-norm
regularization (also known as the matrix Lasso):

ρ̂Lasso = arg min
X

1
2‖A(X)− y‖

2
2 +µ‖X‖tr. (4)

Again the regularization parameter µ should be set according to the noise level; we will discuss
this later.

One additional point is that we do not require positivity of the output in our definition of the
estimators (3) and (4). One can add this constraint (since it is convex) and the conclusions below
remain unaltered. We will explicitly add positivity later on when we do numerical simulations,
and discuss any trade-offs that result from this.

2.3. Error bounds

In previous works on compressed tomography [17, 18], error bounds were proved by
constructing a ‘dual certificate’ [67] (using convex duality to characterize the solution to the
trace-minimization convex program). Here we derive stronger bounds using a different tool,
known as the RIP. The RIP for low-rank matrices was first introduced in [32], and was recently
shown to hold for random Pauli measurements [30].

We say that the sampling operator A satisfies the rank-r RIP if there exists some constant
06 δr < 1 such that, for all X ∈ Cd×d with rank r ,

(1 − δr)‖X‖F 6 ‖A(X)‖2 6 (1 + δr)‖X‖F. (5)

For our purposes, we can assume that X is Hermitian. Note that this notion of RIP is analogous
to that used in [19], except that it holds over the set of low-rank matrices, rather than the set of
sparse matrices.

The random Pauli sampling operator (1) satisfies RIP with high probability, provided that
m > Crd log6 d (for some absolute constant C); this was recently shown in [30]. We note,
however, that this RIP result requires m to be larger by a poly log d factor compared to previous
results based on dual certificates. Although m is slightly larger, the advantage is that when
combined with the results of [31], this immediately implies strong error bounds for the matrix
Dantzig selector and the matrix Lasso.

To state these improved error bounds precisely, we introduce some definitions. For the rest
of section 2, let C , C0, C1, C ′

0 and C ′

1 be fixed absolute constants. For any quantum state ρ, we
write ρ = ρr + ρc, where ρr is the best rank-r approximation to ρ (consisting of the largest r
eigenvalues and eigenvectors), and ρc is the residual part. Now we have the following:
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Theorem 1. LetA be the random Pauli sampling operator (1) with m > Crd log6 d. Then, with
high probability, the following holds:

Let ρ̂DS be the matrix Dantzig selector (3), and choose λ so that ‖A∗(z)‖6 λ. Then

‖ρ̂DS − ρ‖tr 6 C0rλ+ C1‖ρc‖tr.

Alternatively, let ρ̂Lasso be the matrix Lasso (4), and choose µ so that ‖A∗(z)‖6 µ/2. Then

‖ρ̂Lasso − ρ‖tr 6 C ′

0rµ+ C ′

1‖ρc‖tr.

In these error bounds, the first term depends on the statistical noise z. This, in turn, depends
on the number of copies of the state that are available in the experiment; we will discuss this in
the next section. The second term is the rank-r approximation error. It is clearly optimal, up to
a constant factor.

Proof. These error bounds follow from the RIP as shown by Theorem 2.1 in [30], and a
straightforward modification of Lemma 3.2 in [31] to bound the error in trace norm rather than
Frobenius norm (this is similar to the proof of Theorem 5 in [66]).

The modification of Lemma 3.2 in [31] is as follows6. (For the remainder of this section,
equation numbers of the form (III.x) refer to [31].) In the case of the Dantzig selector, let
H = ρ̂DS − ρ be the difference of the matrix Dantzig selector and the quantum state. Following
equation (III.8) and decomposing H = H0 + Hc exactly as in [31], we can obtain the following
bound:

‖H‖tr 6 ‖H0‖tr + ‖Hc‖tr 6 2‖H0‖tr + 2‖ρc‖tr, (6)

where we used the triangle inequality and equation (III.8). Then, at the end of the proof, we
write

‖H0‖tr 6
√

2r‖H0‖F 6
√

2r‖H0 + H1‖F

6 C14
√

2rλ+ C12
√

2δ4r‖ρc‖tr, (7)

where we used Cauchy–Schwarz, the fact that H0 and H1 are orthogonal, the bound on
‖H0 + H1‖F following equation (III.13) and equation (III.7). Combining (6) and (7) gives our
desired error bound. The error bound for the Lasso is obtained in a similar way; see section
III.G in [31]. ut

2.4. Sample complexity

Here we bound the sample complexity of our tomography scheme; that is, we bound the number
of copies of the unknown quantum state ρ that are needed to obtain our estimate up to some
accuracy. What we show, roughly speaking, is that t = O(( rd

ε
)2 log d) copies are sufficient to

reconstruct an estimate of an unknown rank r state up to accuracy ε in the trace distance. For
comparison, note that when r = d, and one does full tomography, O(d4/ε2) copies are sufficient
to estimate a full-rank state with accuracy ε in trace distance7.

6 Note that [31] contains a typo in Lemma 3.2: on the right-hand side, in the second term, it should be ‖Mc‖∗/
√

r
and not ‖Mc‖∗/r .
7 To see this, let P1, . . . , Pd2 denote the Pauli matrices. For each i ∈ [d2], measure Pi O(d2/ε2) times, to estimate
its expectation value with additive error ±O(ε/d). Equivalently, one estimates the expectation value of Pi/

√
d

with additive error ±O(ε/d3/2). Using linear inversion, one obtains an estimated density matrix with additive error
O(ε/d1/2) in Frobenius norm, which implies error O(ε) in trace norm.
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To make this claim precise, we need to specify how we construct our data vector y from the
measurement outcomes on the t copies of the state ρ. For the matrix Dantzig selector, suppose
that

t > 2C4(C0r/ε)
2d(d + 1) log d (8)

for some constants C4 > 1 and ε 6 C0. (For the matrix Lasso, substitute C ′

0 for C0 in these
equations.) We construct an estimate of A(ρ) as follows: for each i ∈ [m], we take t/m copies
of ρ, measure the random Pauli observable Pi on each of the copies and use this to estimate
Tr(Piρ). Then let y be the resulting estimate of A(ρ), and let z = y −A(ρ). Everything else is
defined exactly as in theorem 1.

Theorem 2. Given t = O(( rd
ε
)2 log d) copies of ρ as in equation (8) and measured as discussed

above, the following holds with high probability over the measurement outcomes.
Let ρ̂DS be the matrix Dantzig selector (3), and set λ= ε/(C0r) for some ε > 0. Then

‖ρ̂DS − ρ‖tr 6 ε + C1‖ρc‖tr.

Alternatively, let ρ̂Lasso be the matrix Lasso (4), and set µ= ε/(C ′

0r). Then

‖ρ̂Lasso − ρ‖tr 6 ε + C ′

1‖ρc‖tr.

Proof. Our claim reduces to the following question: if we fix some value of λ > 0, how many
copies of ρ are needed to ensure that the measurement data y satisfy ‖A∗(y −A(ρ))‖6 λ?
Then one can apply theorem 1 to obtain an error bound for our estimate of ρ.

Let t be the number of copies of ρ. Say we fix the measurement operator A, i.e. we fix
the choice of the Pauli observables P1, . . . , Pm . (The measurement outcomes are still random,
however.) For i ∈ [m] and j ∈ [t/m], let Bi j ∈ {1,−1} be the outcome of the j th repetition of the
experiment that measures the i th Pauli observable Pi . Note that EBi j = Tr(Piρ). Then construct
the vector y ∈ Rm containing the estimated expectation values (scaled by

√
d/m):

yi =

√
d

m
·

m

t

t/m∑
j=1

Bi j , i ∈ [m]. (9)

Note that Ey =A(ρ).
We will bound the deviation ‖A∗(y −A(ρ))‖, using the matrix Bernstein inequality. First,

we write

A∗(y)=

√
d

m

m∑
i=1

Pi yi =
d

t

m∑
i=1

t/m∑
j=1

Pi Bi j , (10)

and also

A∗A(ρ)=
d

m

m∑
i=1

Pi Tr(Piρ). (11)

We can now write A∗(y −A(ρ)) as a sum of independent (but not identical) matrix-valued
random variables:

A∗(y −A(ρ))=

m∑
i=1

t/m∑
j=1

X i j , X i j =
d

t
Pi

[
Bi j − Tr(Piρ)

]
. (12)
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Note that EX i j = 0 and ‖X i j‖6 2d/t =: R. Also, for the second moment we have

E(X 2
i j)= E

(
d2

t2
I
[
Bi j − Tr(Piρ)

]2
)

=
d2

t2
I
[
1 − Tr(Piρ)

2
]
. (13)

Then we have

σ 2 :=
∥∥∥∑

i j

E(X 2
i j)

∥∥∥ =

∑
i j

d2

t2

[
1 − Tr(Piρ)

2
]
6 t ·

d2

t2
=

d2

t
. (14)

Now the matrix Bernstein inequality (Theorem 1.4 in [68]) implies that

Pr
[
‖A∗(y −A(ρ))‖> λ

]
6 d · exp

(
−

λ2/2

σ 2 + (Rλ/3)

)
6 d · exp

(
−

tλ2/2

d(d + 1)

)
(15)

(where we assumed that λ6 1).
For the matrix Dantzig selector, we set λ= ε/(C0r), and we get that, for any t >

2C4λ
−2d(d + 1)log d = 2C4(C0r/ε)2d(d + 1)log d,

Pr

[
‖A∗(y −A(ρ))‖>

ε

C0r

]
6 d · exp(−C4 log d)= d1−C4, (16)

which is exponentially small in C4. Plugging into theorem 2 completes the proof of our claim.
A similar argument works for the matrix Lasso. ut

3. Lower bounds

How good are the sample complexities of our algorithms? Here we go a long way toward
answering this question by proving nearly tight lower bounds on the sample complexity for
generic rank r quantum states using single-copy Pauli measurements. Previous work on single-
copy lower bounds has only treated the case of pure states [33].

Roughly speaking, we show the following, which we will make precise at the end of the
section.

Theorem 3 (Imprecise formulation). The number of copies t needs to grow at least as fast as
�(r 2d2/ log d) to guarantee a constant trace-norm confidence interval for all rank-r states.

The argument proceeds in three steps. First, we fix our notion of risk to be the minimax risk,
meaning we seek to minimize our worst-case error according to some error metric such as the
trace distance. We want to know how many copies of the unknown state we need to make
this minimax risk an arbitrarily small constant. For a fixed set of two-outcome measurements,
say Pauli measurements, we then show that some states require many copies to achieve
this. In particular, these states have the property that they are globally distinguishable (their
trace distance is bounded from below by a constant) but their (Pauli) measurement statistics
look approximately the same (each measurement outcome is close to unbiased). The more
such states there are, the more copies we need to distinguish between them all using solely
Pauli measurements. Finally, we use a randomized argument to show that, in fact, there are
exponentially many such states. This yields the desired lower bound on the sample complexity.

Let 6 be some set of density operators. We want to put lower bounds on the performance
of any estimation protocol for states in 6. (We do not initially restrict ourselves to states with
low rank.)
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We assume that the protocol has access to t copies of an unknown state ρ ∈6 on which it
makes measurements one by one. At the i th step, it has to decide which observable to measure.
Let us restrict ourselves to two-outcome measurements, which can be described by positive
operator-valued measures (POVMs) {5i ,1 −5i}, where each5i satisfies 065i 6 1 and may
be chosen from a set P . (We do not initially restrict ourselves to Pauli measurements, either.)
We allow the choice of the i th observable to depend on the previous outcomes. We refer to
the random variables which jointly describe the choice of the i th measurement and its random
outcome as Yi . At the end, these are mapped to an estimate ρ̂(Y1, . . . , Yt) ∈6.

In other words, an estimation protocol is specified by a set of functions

5i : Y1, . . . , Yi−1 7→ P,
ρ̂ : Y1, . . . , Yt 7→6.

Consider a distance measure 1 :6×6 → R on the states in 6. (For example, this could
be the trace distance or the infidelity; we need not specify.) Suppose that we are given t copies
of the unknown state ρ, and the maximum deviation we wish to tolerate between our estimate
ρ̂ and the true state ρ is given by ε > 0. Now define the minimax risk

M∗(t, ε)= inf
〈ρ̂,5i 〉

sup
ρ∈6

Pr
[
1(ρ̂(Y ), ρ) > ε

]
, (17)

where the infimum is over all estimation procedures 〈ρ̂,5i〉 on t copies with estimator ρ̂ and
choice of observables given by 5i . That is, we are considering the ‘best’ protocol to be the one
whose worst-case probability of deviation is the least.

The next lemma shows that if there are a large number of states in6 which are far apart (by
at least ε) and whose statistics look nearly random for all measurements in P , then the minimax
risk is lower-bounded by a function that decreases linearly with the number of copies t . Hence,
to achieve a small minimax risk, the number of copies t must be large.

Lemma 1. Assume that there are states ρ1, . . . , ρs ⊂6 such that

∀i 6= j :1(ρi , ρ j)> ε,

∀i,∀5 ∈ P : |trρi5−
1
2 |6 α.

Then the minimax risk as defined in (17) fulfills

M∗(t, ε) > 1 −
4α2t + 1

log s
.

Proof. Let X be a random variable taking values uniformly in [s]. Let Y1, . . . , Yt be random
variables, Yi describing the outcome of the i th measurement carried out on ρX . Define

X̂(Y ) := arg min
i
1(ρ̂(Y ), ρi).

Then

Pr
[
1(ρ̂(Y ), ρi) > ε

]
> Pr

[
X̂(Y ) 6= X

]
. (18)

Now combine Fano’s inequality

H(X |X̂)6 1 + Pr[X̂ 6= X ] log s,
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the data processing inequality

I (X; X̂(Y ))6 I (X; Y ),

in terms of the mutual information I (X; Y ) := H(X)− H(X |Y ), and the fact that H(X)= log s
to obtain

Pr[X̂(Y ) 6= X ]>
H(X |X̂)− 1

log s

=
H(X)− I (X; X̂)− 1

log s

= 1 −
I (X; X̂)+ 1

log s

> 1 −
I (X; Y )+ 1

log s

= 1 −
H(Y )− H(Y |X)+ 1

log s

> 1 −
t −

1
s

∑s
i=1 H(Y |X = i)+ 1

log s
.

Let h(p) be the binary entropy and recall the standard estimate

h(1/2 ±α)> (1 − 4α2).

Combine that with the chain rule [69, Theorem 2.5.1]

H(Y |X = i)=

t∑
j=1

H(Y j |Y j−1, . . . , Y1, X = i)

> t (1 − 4α2).

The advertised bound follows. ut

We now show how to construct a set of states, each with rank r , that satisfy the conditions of
lemma 1 in terms of the trace distance and the set of Pauli measurements. The following lemma
shows how, given such a set of states, we can enlarge it by one. We will then apply this lemma
repeatedly, to get a total of s < ecrd states.

Lemma 2. For any 0< ε < 1 −
r
d , let ρ1, . . . , ρs be normalized8 rank-r projections on Cd ,

where s < ec(ε)rd and c(ε) is specified below. Then there exists a normalized rank-r projection
ρ such that

∀i ∈ [s] : 1
2‖ρ− ρi‖tr > ε, (19)

∀Pk 6= 1 : |tr
[

1
2(1 ± Pk)ρ

]
−

1
2 |6 α. (20)

Here, α2
= O( log d

rd ), the Pk are n-qubit Pauli operators, and

c(ε)=
ln(8/π)

2rd
+

1

32

[(
1 −

r

d

)
− ε

]2
.

8 Normalized to have trace 1.
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Proof. Let ρ0 be some normalized rank-r projection and choose ρ according to9

ρ = Oρ0OT

for a Haar-random O ∈ SO(d). Here we use the special orthogonal group SO(d) because the
analysis becomes marginally simpler than if we use a unitary group.

To check (19), choose i ∈ [s] and define Ri to be the projector onto the range of ρi . Also
define the function

f : O 7→ ‖ρi − Oρ0OT
‖tr.

We can bound the magnitude of f using the pinching inequality:

f (O)> ‖ρi−Ri Oρ0OT Ri‖tr + ‖R⊥

i Oρ0OT R⊥

i ‖tr > tr(ρi)−tr(Ri Oρ0OT Ri)+ tr(R⊥

i Oρ0OT R⊥

i )

= 1 + tr
[
(R⊥

i − Ri)Oρ0OT
]
.

From this we can bound the expectation value of f over the special orthogonal group:

E
[

f (O)
]
> 1 + tr

[
(R⊥

i − Ri)(EOρOT )
]

= 1 +
1

d
tr
[
(R⊥

i − Ri)1
]

= 1 +
d − 2r

d
= 2

(
1 −

r

d

)
.

Next we get an upper bound of 4
√

r
on the Lipschitz constant of f with respect to the Frobenius

norm:

| f (O +1)− f (O)|6 ‖(O +1)ρ0(O +1)T
− Oρ0OT

‖tr

6 ‖Oρ01
T
‖tr + ‖1ρ0OT

‖tr + ‖1ρ01
T
‖tr

= 2‖1ρ0‖tr + tr(1ρ01
T )

6 2
√

r‖1ρ0‖F + tr(ρ011
T )

6 2
√

r‖1‖F‖ρ0‖ +
1

r
‖1‖‖1T

‖tr

6
2

√
r
‖1‖F +

2

r

√
r‖1‖F 6

4
√

r
‖1‖F,

where we use ‖1 ‖6 2 in the last line, which follows from the triangle inequality and the fact
that any 1 can be written as a difference 1= O ′

− O for O ′
∈ SO(d).

From these ingredients, we can invoke Lévy’s lemma on the special orthogonal group
[70, Theorem 6.5.1] to obtain that, for all t > 0,

Pr
[
‖ρi − ρ‖tr < 2(1 − r/d)− t

]
6 ec1 exp

(
−

c2t2rd

16

)
,

where the constants are given by c1 = ln(
√
π/8) and c2 = 1/8. Now choose t = 2(1 − r/d)− 2ε

and apply the union bound to obtain

Pr
[
(19) does not hold

]
< ec(ε)rd Pr

[
‖ρi − ρ‖tr < 2(1 − r/d)− t

]
6 exp

(
rd

[
c(ε)−

c2t2

16

]
+ c1

)
= 1.

9 For the duration of this proof, the letter O denotes an element of SO(d) instead of the asymptotic big-O notation.
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The upper bound on ε follows from the requirement that t > 0. This shows that ρ indeed satisfies
equation (19).

Now we move on to equation (20). For any non-identity Pauli matrix Pk , define a function

f : O 7→ tr(Pk Oρ0OT ).

Clearly, we have E[ f (O)] = 0. We again wish to bound the rate of change so that we can use
Lévy’s lemma, so we compute

(dO f )(1)= tr(ρ0OT Pk1)+ tr(Pk Oρ01
T )= tr

[
(ρ0OT Pk + ρT

0 OT PT
k )1

]
,

which implies that

‖∇ f (O)‖2 = ‖ρ0OT Pk + ρT
0 OT PT

k ‖F 6
2

√
r
.

Lévy’s lemma then gives for all t > 0

Pr
[
|trPkρ|> t

]
6 ec1 exp

(
−

c2t2rd

4

)
.

Choosing t = 2α, and α2
= 4 ln(d4π/8)/(rd), then the union bound gives us

Pr
[
(20) does not hold

]
< d2 Pr

[
|trPkρ|> 2α

]
6 exp

(
2 ln d −

c2(2α)2rd

4
+ c1

)
= 1,

from which the lemma follows. ut

We remark that a version of lemma 2 continues to hold even if we can adaptively choose
from as many as 2O(n) additional measurements which are globally unitarily equivalent to Pauli
measurements.

We now combine the two previous lemmas, to get a precise version of theorem 3. (To
summarize: we use lemma 2 repeatedly to construct a large set of states that are difficult to
distinguish using Pauli measurements; then we use lemma 1 to lower-bound the minimax risk
for estimating an unknown state using t copies; hence, if an estimation procedure has a small
minimax risk, t must be large.)

Theorem 4 (Precise version of theorem 3). Fix ε ∈ (0, 1 −
r
d ) and δ ∈ [0, 1). Then, in order

for an estimation procedure to satisfy M∗(t, ε)6 δ, the number of copies t must grow like

t =�
( r 2d2

log d

)
,

where the implicit constant depends on δ and ε.

4. Certifying the state estimate

Here we sketch how the technique of DFE, introduced in [33, 34] for pure states, can be used to
estimate the fidelity between a low-rank estimate ρ̂ and the true state ρ. The only assumption we
make is that ρ̂ is a positive semidefinite matrix with Tr(ρ̂)6 1 and rank(ρ̂)= r . No assumption
at all is needed on ρ. In fact, we also do not assume that we obtained the estimate ρ̂ from
any of the estimators which were discussed previously. Our certification procedure works
regardless of how one obtains ρ̂, and so it even applies to the situation where ρ̂ was chosen
from a subset of variational ansatz states, as in [61].
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Recall that the main idea of DFE is to take a known pure state |ψ〉〈ψ | and from it define a
probability distribution Pr(i) such that by estimating the Pauli expectation values Tr(ρPi) and
suitably averaging it over Pr(i) we can learn an estimate of 〈ψ |ρ|ψ〉. In fact, one does not need
to do a full average; simply sampling from the distribution a few times is sufficient to produce a
good estimate.

For non-Hermitian rank-1 matrices |φ j〉〈φk| instead of pure states, we need a very slight
modification of DFE. Following the notation in [33], we simply redefine the probability
distribution as Pr(i)= |〈φ j |Pi |φk〉|

2/d and the random variable X = Tr(Piρ)/〈φk|Pi |φ j〉. It
is easy to check that E(X)= 〈φ j |ρ|φk〉 and the variance of X is at most one. Then all of
the conclusions in [33, 34] hold for estimating the quantity 〈φ j |ρ|φk〉. In particular, we can
obtain an estimate to within an error ±ε with probability 1 − δ by using only single-copy Pauli
measurements and O( 1

ε2δ
+ d log(1/δ)

ε2 ) copies of ρ.
Our next result shows that by obtaining several such estimates using DFE, we can also infer

an estimate of the mixed state fidelity between an unknown state ρ and a low-rank estimate ρ̂,
given by

F(ρ, ρ̂)=
[
Tr

√
G

]2
, (21)

where for brevity we define G =
√
ρ̂ρ

√
ρ̂. (Note that some authors use the square root of this

quantity as the fidelity. Our definition matches [33].) The asymptotic cost in sample complexity
is far less than the cost of initially obtaining the estimate ρ̂ when r is sufficiently small compared
to d .

Theorem 5. Given a state estimate ρ̂ with rank(ρ̂)= r , the number of copies t of the state ρ
required for estimating F(ρ, ρ̂) to within ±ε with probability 1 − δ using single-copy Pauli
measurements satisfies

t = O

(
r 5

ε4

[
d log(r 2/δ)+ r 2/δ

])
. (22)

Proof. The result uses the DFE protocol of [33, 34], modified as mentioned above, where the
states |φ j〉 are the eigenstates of ρ̂.

Expand ρ̂ in its eigenbasis as ρ̂ =
∑r

j=1 λ j |φ j〉〈φ j |. Then we have

G =

r∑
j,k=1

√
λ jλk〈φ j |ρ|φk〉|φ j〉〈φk|. (23)

For all 16 j 6 k 6 r , we use DFE to obtain an estimate ĝ jk of the matrix element
〈φ j |ρ|φk〉, up to some additive error ε jk that is bounded by a constant, |ε jk|6 ε0.

If each estimate is accurate with probability 1 − 2δ/(r 2 + r), then by the union bound the
probability that they are all accurate is at least 1 − δ. The total number of copies t required for
this is

t = O

(
r 2

ε2
0

[
d log(r 2/δ)+ r 2/δ

])
. (24)

Let ĝ jk = ĝ∗

k j , and let

Ĝ =

r∑
j,k=1

√
λ jλk ĝ jk|φ j〉〈φk| (25)
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be our estimate for G. Finally, let Ĝ+
= [Ĝ]+ be the positive part of the Hermitian matrix Ĝ,

and let F̂ =
[
Tr

√
Ĝ+

]2
be our estimate of the fidelity F(ρ, ρ̂). Note that we may assume that

F̂ 6 1, since if it were larger, we can only improve our estimate by just truncating it back to 1.
We now bound the error of this fidelity estimate. We can write Ĝ as a perturbation of G,

Ĝ = G + E , where

E =

r∑
j,k=1

√
λ jλkε jk|φ j〉〈φk|. (26)

First note that the Frobenius norm of this perturbation is small,

‖E‖F =

(∑
j,k

λ jλk|ε jk|
2
)1/2

6 ε0

∣∣∣∑
j

λ j

∣∣∣ = ε0. (27)

(If ρ̂ is subnormalized, then this last equality becomes an inequality.)
Next observe that

|F − F̂ | =

∣∣∣Tr(
√

G +
√

Ĝ+)Tr(
√

G −

√
Ĝ+)

∣∣∣6 21,

where we define

1= |Tr(
√

G −

√
Ĝ+)|. (28)

Using the reverse triangle inequality, we can bound 1 in terms of the trace norm

16
∥∥∥√

G −

√
Ĝ+

∥∥∥
tr
. (29)

Using [71, Theorem X.1.3] in the first step, we find that∥∥∥√
G −

√
Ĝ+

∥∥∥
tr
6

∥∥∥√
|G − Ĝ+|

∥∥∥
tr
6

√
r
√

‖G − Ĝ+‖tr,

where the second bound follows from the Cauchy–Schwarz inequality on the vector of
eigenvalues of |G − Ĝ+

|. Using the Jordan decomposition of a Hermitian matrix into a
difference of positive matrices X = [X ]+ − [X ]−, we can rewrite G − Ĝ+ as

G − Ĝ+
= G − [G + E]+ = −E − [G + E]−. (30)

Then by the triangle inequality and positivity of G,

‖G − Ĝ+
‖tr 6 ‖E‖tr + ‖[G + E]−‖tr 6 2‖E‖tr. (31)

Using the standard estimate ‖E‖tr 6
√

r‖E‖F, we find that

16 r 3/4
√

2ε0. (32)

This gives our desired error bound, albeit in terms of ε0 instead of the final quantity ε. To get
our total error to vanish, we take ε = 2r 3/4

√
2ε0, which gives us the final scaling in the sample

complexity. ut

As a final remark, we note that by computing 1 for the special case ρ̂ = ρ = 1/r , E = ε01/r ,
we find that

1=

√
1 + rε0 − 1, (33)
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so the error bound for this protocol is tight with respect to the scaling in ε0 (and hence ε).
However, we cannot rule out that there are other protocols that achieve a better scaling. Also,
it seems that the upper bound for the current protocol with respect to r could potentially be
improved by a factor of r with a more careful analysis.

5. Numerical simulations

We numerically simulated the reconstruction of a quantum state given Pauli measurements and
the estimators from equations (3) and (4). Here we compare these estimates to those obtained
from a standard maximum likelihood estimate (MLE) as a benchmark.

As mentioned previously, all of our estimators have the advantage that they are convex
functions with convex constraints, so the powerful methods of convex programming [72]
guarantee that the exact solution can be found efficiently and certified. We take full advantage
of this certifiability and do simulations which can be certified by interior-point algorithms. This
way we can separate out the performance of the estimators themselves from the (sometimes
heuristic) methods used to compute them on very large scale instances.

For our estimators, we will explicitly enforce the positivity condition. That is, we will
simulate the following slight modifications of equations (3) and (4) given by

ρ̂ ′

DS = arg min
X�0

TrX s.t. ‖A∗(A(X)− y)‖6 λ (34)

and

ρ̂ ′

Lasso = arg min
X�0

1

2
‖A(X)− y‖

2
2 +µTrX. (35)

Moreover, whenever the trace of the resulting estimate is less than 1, we renormalize the state,
ρ̂ 7→̂ρ/Tr(ρ̂).

5.1. Setting the estimator parameters λ and µ

From theorem 1 we know roughly how we should choose the free parameters λ and µ, modulo
the unknown constants Ci , for which we will have to make an empirical guess. We guess that
the log factor is an artifact of the analysis and that the state is nearly pure. Then we could
choose λ∼ µ∼ d/

√
t . For the matrix Dantzig selector of equation (34), we specifically chose

λ= 3d/
√

t for our simulations. However, this did not lead to very good performance for the
matrix Lasso of equation (35) when m was large. We chose instead µ= 4 m/

√
t , which agrees

with k when m ∼ d, as it can be for nearly pure states.
We stress that very little effort was made to optimize these choices for the parameters. We

simply picked a few integer values for the constants in front (namely 2, . . . , 5), and chose the
constant that worked best upon a casual inspection of a few data points. We leave open the
problem of determining what the optimal choices are for λ and µ.

5.2. Time needed to switch measurement settings

Real measurements take time. In a laboratory setting, time is a precious commodity for a
possibly non-obvious reason. An underlying assumption in the way we typically formulate
tomography is that the unknown state ρ can be prepared identically many times. However, the
parameters governing the experiment often drift over a certain timescale, and this means that
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beyond this characteristic time, it is no longer appropriate to describe the measured ensemble
by the symmetric product state ρ⊗t .

To account for this characteristic timescale, we introduce the following simple model. We
assume that the entire experiment takes place in a fixed amount of time T . In a real experiment,
this is the timescale beyond which we cannot confidently prepare the same state ρ, or it is the
amount of time it takes for the student in the laboratory to graduate, or for the grant funding to
run out, whichever comes first. Within this time limit, we can either change the measurement
settings, or we can take more samples. We assume that there is a unit cost to taking a single
measurement, but that switching to a different measurement configuration takes an amount of
time c.

At the one extreme, the switching cost c to change measurement settings could be quite
large, so that it is barely possible to make enough independent measurements that tomography
is possible within the allotted time T . In this case, we expect that compressed tomography
will outperform standard methods, since these methods have not been optimized for the case of
incomplete data. At the other extreme, the switching cost c could be set to 0 (or some other small
value), in which case we are only accounting for the cost of sampling. Here it is not clear which
method is better, for the following reason. Although the standard methods are able to take a
sufficient number of data in this case, each observable will attain comparatively little precision
relative to the fewer observables measured with higher precision in the case of compressed
tomography for the same fixed amount of time T . One of our goals is to investigate if there are
any trade-offs in this simple model.

For the relative cost c between switching measurement settings and taking one sample, we
use c = 20, a number inspired by the current ion trap experiments done by the Blatt group in
Innsbruck. However, we note that the conclusions do not seem to be very sensitive to this choice,
as long as we do not do something outrageous like c > t , which would preclude measuring more
than even one observable.

5.3. Other simulation parameters

We consider the following ensembles of quantum states. We initially choose n = 5 qubit states
from the invariant Haar measure onC2n

. Then we add noise to the state by applying independent
and identical depolarizing channels to each of the n qubits. Recall that the depolarizing channel
with strength γ acts on a single qubit as

Dγ (ρ)= γ
1

2
+ (1 − γ )ρ; (36)

that is, with probability γ the qubit is replaced by a maximally mixed state and otherwise it is
left alone. Our simulations assume very weak decoherence, and we use γ = 0.01.

We use two measures to quantify the quality of a state reconstruction ρ̂ relative to
the underlying true state ρ, namely the (squared) fidelity ‖

√
ρ̂
√
ρ‖

2
tr and the trace distance

1
2‖ρ− ρ̂‖tr.

We used the interior-point solver SeDuMi [26] to do the optimizations in equations (34)
and (35). Although these algorithms are not suitable for large numbers of qubits, they produce
very accurate solutions, which allows for a more reliable comparison between the different
estimators. The data and the code used to generate the data for these plots can be found with the
source code for the arXiv version of this paper. For larger numbers of qubits, one may instead
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use specialized algorithms such as singular value thresholding (SVT) or fixed-point continuation
(FPCA) to solve these convex programs [27–29]; however, the quality of the solutions depends
somewhat on the algorithm, and it is an open problem to explore this in more detail.

For the MLE, we used the iterative algorithm of [73], which has previously been used in
e.g. [74]. This method converged on every example we tried, so we did not have to use the more
sophisticated ‘diluted’ method of [75] that guarantees convergence.

For the purposes of our simulations, we sampled our Pauli operators without replacement.

5.4. Results and analysis

The data are depicted in figure 1. The three subfigures (a)–(c) use three different values for
the total sampling time T in increasing order. We have plotted both the fidelity and the trace
distance (inset) between the recovered solution and the true state.

Several features are immediately apparent. First, we see that both of the compressed
sensing estimators consistently outperform MLE along a wide range of values of m, the number
of Paulis sampled, even when we choose the optimal value of m just for the MLE. Once m
is sufficiently large (but still m � d2) all of the estimators converge to a reasonably high-
fidelity estimate. Thus, it is not just the compressed sensing estimators which are capable of
reconstructing nearly low-rank states with few measurement settings, but rather this seems to be
a generic feature of many estimators. However, the compressed sensing estimators seem to be
particularly well suited for the task.

When the total amount of time T is very small (figure 1(a)), then there is a large advantage
of using compressed sensing. In this regime, if we insist on making an informationally
complete measurement, there is barely enough time to make one measurement per setting,
so the measurement results are dominated by statistical fluctuations, i.e. the signal-to-noise
ratio is poor. Compressed sensing techniques—measuring an incomplete set of observables,
and regularizing the solution to favor low-rank states—lead to much better results. However,
note that in this situation, it is very difficult for any method, including compressed sensing, to
achieve extremely high-fidelity state reconstructions (with fidelity greater than 95%, say).

As the total amount of time available increases, all of the estimators of course converge
to higher fidelity estimates. Interestingly, for the compressed sensing estimators, there seems to
be no trade-off whatsoever between the number of measurement settings and the fidelity, once
T and m are sufficiently large. That is, the curve is completely flat as a function of m above a
certain cutoff. This is most notable for the matrix Lasso, which consistently performs at least as
well as the matrix Dantzig selector, and often better. These observations are consistent with the
bounds proven earlier.

The flat curve as a function of m is especially interesting, because it suggests that there
is no real drawback to using small values of m. Smaller values of m are attractive from the
computational point of view because the runtime of each reconstruction algorithm scales with
m. This makes a strong case for adopting these estimators in the future, and at the very least more
numerical studies are needed to investigate how well these estimators perform more generally.

We draw the following conclusion from these simulations. The best performance for a
fixed value of T is given by the matrix Lasso estimator of equations (4) and (35) in the regime
where m is nearly as small as possible. Here the fidelity is larger than the other estimators (if
only by a small or negligible amount when T is large), but using a small value for m means
smaller memory and processing time requirements when doing the state reconstruction. MLE
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Figure 1. Fidelity and trace distance (inset) as a function of m, the number
of sampled Paulis. Plots (a), (b) and (c) are for a total measurement time of
T = 41k, 80k and 270k, respectively, in units where the cost to measure a single
copy is one unit of time, and the cost to switch measurement settings is c = 20
units. The three estimators plotted are the matrix Dantzig selector (equation (34),
blue), the matrix Lasso (equation (35), red) and a standard MLE (green). Each
bar shows the mean and standard deviation from 120 Haar-random five-qubit
states with 1% local depolarizing noise. Our estimators consistently outperform
MLE, even after optimizing the MLE over m. (We do not know what precisely
causes the degradation of the performance of MLE in figure 1a, but it is plausible
to speculate that the cost term c is responsible for this effect). See the main text
for more details.

consistently underperforms the compressed sensing estimators, but still seems to ‘see’ the low-
rank nature of the underlying state and converges to a reasonable estimate even when m is small.

6. Process tomography

Compressed sensing techniques can also be applied to quantum process tomography. Here, our
method has an advantage when the unknown quantum process has a small Kraus rank, meaning
that it can be expressed using only a few Kraus operators. This occurs, for example, when the
unknown process consists of unitary evolution (acting globally on the entire system) combined
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|ψ0〉

PB

E PA

Figure 2. Compressed quantum process tomography using an ancilla. The
quantum circuit represents a single measurement setting, where one measures
the observable PA on the system and PB on the ancilla.

with local noise (acting on each qubit individually, or more generally, acting on small subsets
of the qubits).

Consider a system of n qubits, with Hilbert space dimension d = 2n. Let E be a completely
positive trace-preserving (CP) map from Cd×d to Cd×d , and suppose that E has Kraus rank
r . Using compressed sensing, we will show how to characterize E using m = O(rd2log d)
settings. (For comparison, standard process tomography requires d4 settings, since E contains
d4 independent parameters in general.) Furthermore, our compressed sensing method requires
only the ability to prepare product eigenstates of Pauli operators and make Pauli measurements,
and it does not require any ancilla qubits.

We remark that, except for the ancilla-assisted method, just the notion of ‘measurement
settings’ for process tomography does not capture all of the complexity because of the need to
have an input to the channel. Here we define one ‘input setting’ to be a basis of states from
which the channel input should be sampled uniformly. Then the total number of settings m is
the sum of the number of measurement settings (Paulis, in our case) and input settings. This
definition justifies the claim that the number of settings for our compressed process tomography
scheme is m = O(rd2 log d).

The analysis here focuses entirely on the number of settings m. We forgo a detailed analysis
of t , the sample complexity, and instead leave this open for future work.

Note that there is a related set of techniques for estimating an unknown process that is
element-wise sparse with respect to some known, experimentally accessible basis [19]. These
techniques are not directly comparable to ours, since they assume a greater amount of prior
knowledge about the process, and they use measurements that depend on this prior knowledge.
We will discuss this in more detail at the conclusion of this section.

6.1. Our method

First, recall the Jamiołkowski isomorphism [76]: the process E is completely and uniquely
characterized by the state

ρE = (E ⊗ I)(|ψ0〉〈ψ0|),

where |ψ0〉 =
1

√
d

∑d
j=1 | j〉 ⊗ | j〉. Note that when E has Kraus rank r , the state ρE has rank r .

This immediately gives us a way to do compressed quantum process tomography: first prepare
the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state
|ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see figure 2.

We now show a more direct implementation of compressed quantum process tomography
that is equivalent to the above procedure, but does not require an ancilla. Observe that in the
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|φj(PB)〉 E PA

Figure 3. Compressed quantum process tomography, implemented directly
without an ancilla. Here one prepares a random eigenstate of PB , applies the
process E and measures the observable PA on the output.

above procedure, we need to estimate expectation values of the form

Tr((PA ⊗ PB)ρE)= Tr((PA ⊗ PB)(E ⊗ I)(|ψ0〉〈ψ0|)),

where PA and PB are Pauli matrices. By using the Kraus decomposition, it is straightforward to
derive the equivalent expression

Tr((PA ⊗ PB)ρE)=
1

d
Tr(PAE(PB)), (37)

where the bar denotes complex conjugation in the standard basis.
We now show how to estimate the expectation value (37). Let λ j and |φ j〉 denote the

eigenvalues and eigenvectors of PB . Then we have

Tr((PA ⊗ PB)ρE)=
1

d

d∑
j=1

λ j Tr(PAE(|φ j〉〈φ j |)).

To estimate this quantity, we repeat the following experiment many times, and average the
results: choose j ∈ [d] uniformly at random, prepare the state |φ j〉, apply the process E , measure
the observable PA, and multiply the measurement result by λ j . (See figure 3.) In this way, we
learn the expectation values of the Jamiołkowski state ρE without using an ancilla. We then use
compressed quantum state tomography to learn ρE , and from this we recover E . Note that since
the approach described here can also be applied to the case that E is not trace-preserving, it
applies to detector tomography as well.

6.2. Related work

Our method is somewhat different from the method described in [19]. Essentially, the difference
is that our method works for any quantum process with a small Kraus rank, whereas the method
of Shabani et al works for a quantum process that is element-wise sparse in a known basis
(provided this basis is experimentally accessible in a certain sense). The main advantage of the
Shabani et al method is that it can be much faster: for a quantum process E that is s-sparse (i.e.
has s non-zero matrix elements), it requires only O(s log d) settings. The main disadvantage is
that it requires more prior knowledge about E and is more difficult to apply. While it has been
demonstrated in a number of scenarios, there does not seem to be a general recipe for designing
measurements that are both experimentally feasible and effective in the sparse basis of E .

To clarify these issues, we now briefly review the Shabani et al method. We assume that
we know a basis 0 = {0α|α ∈ [d2]} in which the process E is s-sparse. For example, when E is
close to some unitary evolution U , one can construct 0 using the singular-value decomposition
(SVD) basis of U . This guarantees that, if E contains no noise, it will be perfectly sparse in
the basis 0. However, in practice, E will contain noise, which need not be sparse in the basis
0; any non-sparse components will not in general be estimated accurately. The success of the
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Shabani et al method therefore rests on the assumption that the noise is also sparse in the basis
0. Although this assumption has been verified in a few specific scenarios, it seems less clear
why it should hold in general. By comparison, our method simply assumes that the noise is
described by a process matrix that is low rank; this can be rigorously justified for any noise
process that involves only local interactions or few-body processes.

The other complication with the Shabani et al method concerns the design of the state
preparations and measurements. On the one hand, these must satisfy the RIP condition for
s-sparse matrices over the basis 0; on the other hand, they must be easy to implement
experimentally. This has been demonstrated in some cases, by using states and measurements
that are ‘random’ enough to show concentration of measure behaviors, but also have tensor
product structure. However, these constructions are not guaranteed to work in general for an
arbitrary basis 0.

We leave open the problem of doing a comparative study between these and other
methods [77, 78], akin to [79].

7. Conclusion

In this work, we have introduced two new estimators for compressed tomography: the matrix
Dantzig selector and the matrix Lasso (equations (3) and (4)). We have proved that the sample
complexity for obtaining an estimate that is accurate to within ε in the trace distance scales as
O( r2d2

ε2 log d) for rank-r states and that for higher rank states, the additional error is proportional
to the truncation error. This error scaling is optimal up to constant multiplicative factors, and
requires measuring only O(rd poly log d) Pauli expectation values, a fact we proved using
the RIP [30]. We also proved that our sample complexity upper bound is within poly log d
of the sample complexity of the optimal minimax estimator, where the risk function is given
by a trace norm confidence interval. We showed how a modification of DFE can be used to
unconditionally certify the estimate using a number of measurements which is asymptotically
negligible compared to obtaining the original estimate. We numerically simulated our estimators
and found that they outperform MLE, giving higher fidelity estimates from the same amount
of data. Finally, we generalized our method to quantum process tomography using only Pauli
measurements and preparation of product eigenstates of Pauli operators.

There are many interesting directions for future work. One major open problem is to switch
the focus from two-outcome Pauli measurements to alternative measurements which are still
experimentally feasible. For example, measurements in a local basis have 2n outcomes and are
not directly analyzable using our techniques. It would be very interesting to give an analysis of
our estimators from the perspective of such local basis measurements. One difficulty, however,
is that something like the RIP is not likely to hold in this case, so we will need additional
techniques.

Another direction is to find better methods for deriving error bars or confidence regions
for compressed tomography. In principle, one can use the error bounds in this paper to estimate
confidence regions (based on mild assumptions about the experimental setup), and then use
DFE to check (unconditionally, i.e. without making any assumptions) whether the true state lies
within that confidence region. However, while the error bounds in this paper have roughly the
right asymptotic scaling (with the rank r and dimension d), in practice one may want to know
finer properties of the confidence region, such as its shape [63, 64].
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A related direction is to find methods for rank-based model selection (or, more simply,
estimating the rank of the unknown state) [80]. In principle, one can always ‘guess and check’
the rank, using DFE; but a more sophisticated approach may perform better in practice.

Some other open problems are to tighten the gap that remains between the sample
complexity upper and lower bounds, and to try to prove optimality with respect to alternative
criteria, in addition to minimax risk. For example, it would be interesting to find a useful notion
of average case optimality.

On the numerical side, some of the open questions are the following. First, it would be very
interesting to carry out a more detailed numerical study of the performance of our estimators.
While they have clearly outperformed MLE in the simulations reported here, there is no question
that this is a narrow range of parameters on which we have tested these estimators. It would be
interesting to do additional comparative studies between these and other estimators to see how
robust these performance enhancements are. It would also be very interesting to study fast first-
order solvers such as [27–29] which work particularly well for approximately low-rank matrices
and which could compute estimates on a large number of qubits (ten or more).

The success of the estimators we studied depends on being able to find good values for
the parameters λ and µ. While we have used simple heuristics to pick particular values, a
detailed study of the optimal values for these parameters could only improve the quality of our
estimators. Moreover, MLE seems to enjoy the same ‘plateau’ phenomenon, where the quality
of the estimate is insensitive to m above a certain cutoff. This leads us to speculate that this is a
generic phenomenon among many estimators, and that perhaps there are even better choices for
estimators than the ones we benchmark here.
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[55] Bužek V 2004 Quantum tomography from incomplete data via MaxEnt principle Lect. Notes Phys. 649 189
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