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Abstract

A pseudo-incompressible model for moist atmospheric flows is presented.

The equation set is derived from a fully compressible system by assuming

that the pressure perturbations are small. Unlike the standard dry pseudo-

incompressible approximation the hydrostatic background state is allowed to

vary in time and a set of equations dictating the evolution of the background

state are derived. Changes of the background state are the result of net ac-

cumulation of diabatic processes and latent heat conversion. Their governing

equations emerge in the theory from a consistency condition for the velocity

divergence constraint. The model is validated by comparing its results for a

well-established benchmark test with those from a fully compressible model.

Keywords: Cloud modelling, Sound-proof models, Pseudo-incompressible

approximation

1. Introduction

Atmospheric flows are composed of motions occuring on a large range

of temporal and spatial scales. All of these motions can be captured by

the compressible Navier-Stokes equations but as sound waves do not play
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an important role in these processes, it is theoretically appealing and can

be numerically advantageous to remove the sound waves entirely from the

governing equations.

Many “sound-proof” equation sets have been developed to tackle this is-

sue. The most well known of these are the Boussinesq equations (Boussinesq

(1903)), the anelastic equations (Ogura and Phillips (1962) and Lipps and

Helmer (1982)) and the pseudo-incompressible equations (Durran (1989)).

These equation sets are derived by introducing different approximations into

the governing equations. The Boussinesq approximation replaces the conti-

nuity equation by an incompressibility condition, the anelastic approxima-

tion disregards the time derivative of the density in the continuity equation

to yield a divergence constraint and the pseudo-incompressible approxima-

tion ignores the time derivative in the pressure evolution equation which also

yields a divergence constraint.

So far only the anelastic equations have been utilised extensively as a

basis for modelling moist flows (e.g. Clark (1977), Lipps and Helmer (1982),

Grabowski and Smolarkiewicz (2002) and Pauluis (2008)). The Boussinesq

equations are unsuitable for moist atmospheric applications due to the as-

sumption of constant density and the pseudo-incompressible equations have

yet to be implemented in moist form due to the complications that latent

heat causes in the divergence constraint.

In Almgren et al. (2008), a pseudo-incompressible model with source

terms and compositional changes for supernovae is developed. Motivated

by this work we have created a pseudo-incompressible model for moist atmo-

spheric flows. This model is valid for flows with large density and potential
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temperature variations and is therefore more generally applicable than the

anelastic approximation which is only valid for small variations (as shown

in Klein (2009)). In the analysis presented in Lipps and Helmer (1982),

for example, they require the potential temperature to be a slowly varying

function of the vertical coordinate for their moist anelastic model. If we

focus on atmospheric motions then this restricts the validity of their model

to motions in the troposphere and in this paper they state that “for severe

mid-latitude convection...the present analysis is expected to have limited va-

lidity”. However, the assumption of small density and potential temperature

variations is valid for most atmospheric processes of interest and our model

is advantageous only in specific cases.

In this paper we will start from the moist compressible model presented

in Bryan and Fritsch (2002) and derive our pseudo-incompressible from this

equation set. To implement the model numerically we have incorporated it

into an in-house finite volume code for low Mach number flow based on the

numerics found in Klein (2009). The model is then verified against the moist

benchmark test-case given in Bryan and Fritsch (2002).

2. Derivation of the moist pseudo-incompressible equations

2.1. Model assumptions

We will be making the several simplifications in our model, namely, each

phase will have the same temperature and velocity field, we will be ignoring

hydrometeor fallout, ice-phase micro-physics, the Coriolis force and sub-grid-

scale turbulence.
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2.2. The moist compressible equations

Making these assumptions we arrive at the following compressible equa-

tions with bulk microphysics

ρt +∇ · (ρu) = 0 (1)

(ρu)t +∇ · (ρu ◦ u) +∇p = −ρgk (2)

(ρqv)t +∇ · (ρqvu) = −ρC (3)

(ρqc)t +∇ · (ρqcu) = ρC (4)

where the t subscript signifies the partial derivative with respect to time, ρ

is the total density and k is the unit vertical vector. Note, any variables not

defined here are defined in Appendix A.

We define the potential temperature and ideal gas equations as

θ = T (pref/p)
(R/cp) (5)

p = ρaRT + ρvRvT =

(
1 + qv/ε

1 + q

)
ρRT (6)

where ε = R/Rv and the prognostic equation for potential temperature will

be given as

(ρθ)t +∇ · (ρθu) =
ρθLv
cpT

C. (7)

which is the same equation used in equation set A in Bryan and Fritsch

(2002). ??Does this need to be here??

We wish to define a new variable P such that

P =

(
1 + qv/ε

1 + q

)
ρθ =

pref
R

(
p

pref

)1/γ

(8)

4



where (5) and (6) have been used to get the second equality and γ = cp/cv.

Now, using (7) and (8) we get the following prognostic equation for P

Pt +∇ · (Pu) = S (9)

where S =
[
Lv

cpT
− 1/(ε+ qv)

]
PC. Equation (9) taken with equations (1)-

(4) are the governing equations for the compressible system using our new

variable P and are starting point for the derivation of the moist pseudo-

incompressible equations.

2.3. The pseudo-incompressible approximation

Similarly to the pseudo-incompressible derivations presented in Durran

(1989) and Almgren et al. (2008) we will start by assuming that the pressure

does not vary much from its hydrostatic background value and can be written

as

p = p0(z, t) + p′(x, t). (10)

where p′/p0 << 1 and

∂p0

∂z
= −ρ0g. (11)

Note, that unlike in Durran (1989) we have allowed the hydrostatic values to

vary in time. This will solve the problem presented by the latent heat term

in the divergence constraint by allowing the changing background state to

compensate for heating effect and in the idealised dry test-case presented in

Almgren (2000) it was shown to play a vital role in ensuring that the solution

converges to the compressible solution in the limit of a small heating rate.
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We then set p = p0 in (8) to get

P (p0, t) = P0(z, t) =
pref
R

(
p0

pref

)1/γ

. (12)

Now, we can re-write the evolution equation (7) as the following divergence

constraint

∇ · (P0u) = S − (P0)t. (13)

Normally the evolution equation (7) is solved which restricts our time step to

that of the acoustic wave time scale but instead we will impose the divergence

constraint (13) which filters sound-waves and allows us to take larger time-

steps. We must now derive an equation which determines (P0)t.

2.4. Evolution of the background state

Using Almgren et al. (2008) we let u = ũ+w0k, where w0 is the base-state

velocity and ũ governs the remaining local dynamics such that
xmax∫
xmin

ũ.k dx =

0. This means that the domain-wide changes in the vertical flux due to

heating are entirely incorporated into w0. Using equation (13), the definition

for ũ and using horizontal solid-wall boundary conditions we can derive the

following equation for the background state

(P0)t +
∂P0w0

∂z
= S (14)

where · = 1
L

xmax∫
xmin

· dx. Note, (14) is also valid for periodic horizontal boundary

conditions.

Using (12) we rewrite equation (14) as

(P0)t +
∂P0w0

∂z
=
∂P0

∂p0

Dp0

Dt
+ P0

∂w0

∂z
= P0

(
1

γp0

Dp0

Dt
+
∂w0

∂z

)
= S (15)
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where the background material derivative is defined as D
Dt

= ∂
∂t

+ w0
∂
∂z

.

Now, in order to calculate w0 we need to calculate a value for the material

derivative of the background pressure. To do this we first integrate the

hydrostatic balance to get

ptop0 (t)− p0(z, t) =

ztop∫
z

ρ0(z′, t)g dz′ (16)

where ptop0 (t) = p0(ztop, t). We now take the background material derivative

of (16) to get

Dp0

Dt
=
∂ptop0

∂t
(17)

since the weight of the columns in the background state do not change due

to the fact that we are using solid-wall vertical boundary conditions as is

required for the benchmark test-case.

It also possible to derive a model which utilises an open-top boundary con-

dition which would be more commmon for meteorlogical applications. This

can be achieved following the method presented in Almgren et al. (2008)

by assuming the pressure of a parcel does not change, i.e. Dp0
Dt

= 0, rather

than assuming that the weight of the columns do not change as done above

and then using this fact in (15) to derive an equation for w0. Also, a suit-

able buffer layer would have to be implemented to damp spurious motions

approaching the upper boundary.

Integrating (15) from the bottom to the top of the domain in the z direc-

tion and re-arranging we get

∂ptop0

∂t
=

zmax∫
zmin

S/P0 dz

zmax∫
zmin

1/γp0 dz

. (18)
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Now that we have a value for
∂ptop0

∂t
we can calculate w0 by integrating

(15) from zmin to z to get a value for the background velocity at height z

w0 =

z∫
zmin

(
S

P0

− 1

γp0

∂ptop0

∂t

)
dz′. (19)

The background velocity can then be used to determine (P0)t using (14).

2.5. The moist pseudo-incompressible equations

We now have all the equations we require for a moist pseudo-incompressible

model. To make the final step in our derivation we must replace the full den-

sity in equations (1)-(4). The pseudo-density is defined the same way as

in the original pseudo-incompressible derivation presented in Durran (1989)

which is the density calculated at the background pressure but using the full

potential temperature, i.e.

ρ∗ = ρ(p0, θ). (20)

Making these adjustments results in our new set of governing equations

ρ∗t +∇ · (ρ∗u) = 0 (21)

(ρ∗u)t +∇ · (ρ∗u ◦ u)) +∇p = −ρ∗gk (22)

(ρ∗qv)t +∇ · (ρ∗qvu) = −ρ∗C (23)

(ρ∗qc)t +∇ · (ρ∗qcu) = ρ∗C (24)

with the following equations for the background state

∂ptop0

∂t
=

zmax∫
zmin

S/P0 dz

zmax∫
zmin

1/γp0 dz

(25)
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w0(z, t) =

z∫
zmin

(
S

P0

− 1

γp0

∂ptop0

∂t

)
dz′ (26)

∂P0

∂t
+
∂P0w0

∂z
= S (27)

and the following equation of state and divergence constraint

P0 =

(
1 + qv/ε

1 + q

)
ρ∗θ =

pref
R

(
p0

pref

)1/γ

(28)

∇ · (P0u) = S − (P0)t. (29)

Note that p0 will be used and not the full pressure when calculating the

condensation rate numerically as shown in section Appendix B.3.

It is also possible to write an evolution equation for the background den-

sity as

(ρ0)t +
∂

∂z
(ρ0w0) = 0. (30)

Here we have taken advantage of the fact that the density remains symmetric

in the horizontal direction for the benchmark test-case but for cases where

it is non-symmetric this equation would have an extra term of the form

∂
∂z

(
ρ′w̃
)
. Note, equation (30) is presented only for completeness and is not

utilised in the model.

The replacement of the evolution equation (9) with the divergence con-

straint (29) and the fact that ρ and C are calculated using the background

pressure are the main differences between the moist pseudo-incompressible

equations and the compressible system with which we started.

Comparing to an anelastic equation set we see that the differences are

seen in the density. In the anelastic equations the density is set to the initial
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hydrostatic values whereas here the less restrictive “pseudo-density” is used.

Also, the divergence constraint in the anelastic approximation is derived from

the continuity equation and not the potential temperature equation.

Note, for the remainder of the paper the asterisk will be dropped from

the pseudo-density in order to simplify the notation.

3. Numerics of the moist pseudo-incompressible model

3.1. Overview of the numerics

Equations (21)-(29) were solved using a predictor-corrector finite volume

code based on numerical techniques described in Klein (2009). The primary

variables, ρ, ρu, ρqv, ρqc, and P0 are stored at cell centers, whereas the per-

turbation pressure p is stored at grid nodes. Fluxes of conserved variables

arise at grid cell interfaces as usual in a cell-centered finite volume code.

In a predictor step the divergence constraint is ignored and P is advected

in the same way as other variables. Also, the old time level pressure is used

in the momentum equation. This results in a reduced order of accuracy in

the momentum equation due to the pressure term and also due to advective

fluxes that do not yet exactly satisfy the divergence constraint.

These inaccuracies are corrected in the two corrector steps. The advective

fluxes are corrected in the first step and the error in the momentum equation

due to the usage of the old time level pressure is corrected in the second step.

To calculate the microphysical source terms we use the method of sat-

uration adjustment outlined in Grabowski and Smolarkiewicz (1990) after

the predictor step but before the corrector steps. Unlike Grabowski and

Smolarkiewicz (1990), we will be using the time-varying hydrostatic pressure
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and not the initial hydrostatic pressure in the source term calculation to get

values for the temperature and the vapour saturation mixing ratio. For the

test-case presented in Bryan and Fritsch (2002) the difference between using

the initial and time-varying pressure is negligable, however, the retention of

hydrostatic variations can become important for larger-scale flows as shown

in Kurowski et al. (2013).

A more detailed description of the numerics is given in Appendix B.

4. Comparison with the benchmark test-case

4.1. Overview of the benchmark test-case

To test the accuracy of the model we utilised the benchmark simulation

proposed in Bryan and Fritsch (2002). This test-case consists of a saturated

and neutrally stratified hydrostatic base-state atmosphere with solid-wall

boundary conditions, an initially constant value for the total water mixing

ratio of 0.02 and a constant base value for the wet equivalent potential tem-

perature θe of 320 K with a perturbation of warm air placed near the bottom

of the domain. The definition for θe is given as

θe = T

(
pd
pref

)−R/(cp+cpcq)

exp

(
Lvqv

(cp + cpcq)T

)
(31)

which is taken from Emanuel (1994) and the perturbation θ
′

is given as

θ
′
= 2 cos2

(
πR

2

)
(32)

where

R =

√(
x

xr

)2

+

(
z − z0

zr

)2

, (33)
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z0 = 2.0 km and xr = zr = 2.0 km. Using equations (11), (28) and (31)

we can calculate the vertical profiles of ρ, p, θ, qv and qc given our presribed

values for q and θe.

4.2. Results

In the original paper four different compressible equation sets are used.

To make a comparison we will look at the one which most closely resembles

our own model assumptions which is the one labeled set A. This set uses the

same governing equations and evolution equation for potential temperature

as were used to derive our pseudo-incompressible equations and are given by

equations (5) and (7).

In the original paper the plots of θe and the vertical velocity are used to

test model validity and here we will do the same. Below the plots produced

from our model can be seen in figures (1) and (2). These figures were pro-

duced using a constant time-step size of 1.66 s for CFL = 0.5 and using the

same 100 m grid spacing as used in the original paper.
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min=-1.408   max=1.835   c.i.=0.5

Figure 1: A contour plot of perturbations of the wet equivalent potential temperature at

t = 1000 s for the moist bubble simulation where the contour interval is 0.5 K, the grid

spacing is 100 m and the zero contour is omitted.

min=-6.702   max=10.96   c.i.=2

Figure 2: A contour plot of the vertical velocity at t = 1000 s for the moist bubble

simulation where the contour interval is 2 m s−1 and the grid spacing is 100 m .

These results compare well qualitatively with those in the original paper
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Bryan and Fritsch (2002), but there are some differences: Our bubble top

rises to about 7.1 km which is slightly higher than the height reached in the

original paper of about 6.9km giving a difference in the distance covered by

the bubbles of about %4. Looking at the maximum and minimum values

we can see that between the vertical velocities there is about a 8% variation

compared to the values in the original paper (10.96 m s−1 and −6.7 m s−1

in our case and 11.88 m s−1 and −7.23 m s−1 in Bryan’s case) and between

the wet equivalent potential temperature perturbations there is a variation

of about 13% in the case of the maximum values and a negligible variation

in the case of the minimum values (1.84 K and −1.4 K in our case and

2.14 K,−1.4 K in Bryan’s case).

There are many differences in our numerics which could account for the

discrepancies. For example, our equations are solved in conservation form

unlike those in the original paper, our codes use different functions to caculate

the condensation rate numerically and they have advection schemes.

In Straka et al. (1993) various models were shown to have large variations

in performance when the grid resolution is changed. This illustrated that the

numerics have a large role to play in model output. In our case, when we ran

the model with a 50% higher number of cells in the horizontal and vertical

directions (i.e. a grid spacing of 66.67 m) we found that the maximum

and minimum values had much better agreement and some of the qualitative

differences in the vertical velocity plot were corrected as shown in figures

(3) and (4). In light of this, we can see that even small adjustments to

the numerics can influence the overall result and our plots and the one’s

contained in Bryan and Fritsch (2002) compare well considering their many
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numerical differences.

min=-1.443   max=2.068   c.i.=0.5

Figure 3: A contour plot of perturbations of the wet equivalent potential temperature at

t = 1000 s for the moist bubble simulation at the higher resolution where the contour

interval is 0.5 K, the grid spacing is 66.67 m and the zero contour is omitted.
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min=-7.541   max=11.89   c.i.=2

Figure 4: A contour plot of the vertical velocity at t = 1000 s for the moist bubble

simulation at the higher resolution where the contour interval is 2 m s−1 and the grid

spacing is 66.67 m.

5. Conclusions

In the preceeding pages a pseudo-incompressible computational model

which includes phase changes is developed. The addition of phase changes

requires adjustments to the divergence constraint not seen in the more com-

mon anelastic model. Borrowing and adapting ideas from Almgren et al.

(2008), these issues were tackled by allowing the background state to vary

in time and then deriving a set of equations governing the evolution of the

background variables.

The model was shown to perform well against a compressible model for

the idealized bubble test-case presented in Bryan and Fritsch (2002). To

compare the models contour plots of the vertical velocity and wet equivalent

potential temperature are examined. The plots compare well overall but our
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bubble rises slight higher and results in some discrepancies in the form of the

vertical velocity plot. Considering the fact that our models contain many

differences in their numerics some variation is to be expected.

In deriving this model we have assumed that the pressure perturbations

are small but unlike the anelastic equations no constraint was imposed on the

size of the potential temperature or density variations. The assumption of

small potential temperature and density variations is generally valid for moist

atmospheric processes and as a result the moist pseudo-incompressible model

may be expected to be superior to an anelastic model only in specific cases.

For example, in the cases of deep convection and in the cases of baroclinic

waves due to the retention of the baroclinic vorticity production term (see

page 33 in Cotton et al. (2011)).

Regarding the microphysics, our usage of the initial pressure stratifica-

tion in the caculation of the latent heat release is suitable for many atmo-

spheric problems (including the test-case presented here) but may have to be

modified when modelling larger-scale moist dynamics. It is possible to use

a reconstructed full pressure in the source term calculation in sound-proof

models as shown in Kurowski et al. (2013) and a similar approach to the one

used in that paper may have to be implemented when using our model in

problems where larger pressure perturbations are expected.

This work was motivated by the findings contained in Almgren et al.

(2008) but there are some notable differences between the models. In Alm-

gren’s work an outflow top boundary is used whereas here we have given

a method which is able to impose solid-wall boundary conditions. Another

difference is that we have kept the coefficient in the divergence constraint

17



in a physically meaningful form and did not have to result writing it as an

integral. This is due to the fact that the γ in the definition of potential tem-

perature is constant and the coefficent will have to be written in a similar

integral form when a non-constant γ is required.

As far as the authors are aware this is the first implementation of a moist

pseudo-incompressible model and we see it as being of great practicality for

anyone modelling atmospheric processes for which larger perturbations are

important. The reason being that the model is both more computationally

efficient than a compressible model and holds greater validity than an anelas-

tic model. Also, due to the fact that we do not use the Exner pressure in the

momentum equation the model can be easily extened to a semi-implicit fully

compressible model and by using the work presented in Klein and Pauluis

(2011) thermodynamic consistency can also be ensured.
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Appendix A. Variable definitions

Definition of variables and constants not defined in the text

ρ - Total density

18



u - Velocity of the air

p - Total pressure

qv - Vapour mixing ratio

qc - Cloud water mixing ratio

q = qv + qc - Total mixing ratio

T - Temperature

θ - Potential temperature

C - Condensation rate

S - Latent heating rate

g = 9.81 m s−2 - Acceleration due to gravity

pref = 1.0× 105 Pa - Reference pressure

Tref = 273.15 K - Reference temperature

R = 287 J kg−1 K−1 - Gas constant of dry air

Rv = 461 J kg−1 K−1 - Gas constant of water vapor

cp = 1004.0 J kg−1 K−1 - Specific heat of dry air at constant pressure

cpv = 1885 J kg−1 K−1 - Specific heat of water vapor at constant pressure

cpc = 4186 J kg−1 K−1 - Specific heat of cloud water at constant pressure

cv = 717 J kg−1 K−1 - Specific heat of dry air at constant volume

Lv0 = 2.5× 106 J kg−1 - Latent heat of vaporisation reference value

Lv = Lv0 − (cpc − cpv) (T − Tref ) - Latent heat of vaporisation
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Appendix B. Numerical details

Appendix B.1. Explanation of the numerics notation

The notation used in this section is given as follows

i - Grid cell index in the horizontal direction

j - Grid cell index in the vertical direction

x - Horizontal position

z - Vertical position

∆t - Time step size

∆x - Grid cell size in x-direction

∆z - Grid cell size in x-direction

u - Horizontal velocity

w - Vertical velocity

n - values at the end of previous time step

n+ 1 - values at the end of current time step

pred - values at the end of the predictor step

Appendix B.2. The predictor step

In this step the advective updates for ρ, ρu, P, ρqv and ρqc are calculated

while ignoring the latent heat and condensation source terms. The time

integration is preformed using a two step strong stability preserving Runge-

Kutta scheme from Gottlieb et al. (2001). These steps can be written in

general form as
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1. Step One

φ∗i,j =φni,j +
∆t

∆x

(
(φu)n

i+ 1
2
,j
− (φu)n

i− 1
2
,j

)
+

∆t

∆z

(
(φw)n

i,j+ 1
2
− (φw)n

i,j− 1
2

)
−∆tQφ

i,j

(B.1)

2. Step Two

φ∗∗i,j =
1

2

(
φni,j + φ∗i,j

)
+

∆t

2∆x

(
(φv)∗

i+ 1
2
,j
− (φv)∗

i− 1
2
,j

)
+

∆t

2∆z

(
(φw)∗

i,j+ 1
2
− (φw)∗

i,j− 1
2

)
− ∆t

2
Qφ,∗
i,j

(B.2)

where φ ∈ {ρ, ρu, ρw, P, ρqv, ρqc} and

Qφ
i,j =


0 (φ ∈ {ρ, P, ρqv, ρqc})(
pn
i+ 1

2
,j
− pn

i− 1
2
,j

)
(φ ∈ {ρu})(

pn
i,j+ 1

2
− pn

i,j− 1
2

)
+ ρni,jg (φ ∈ {ρw})

(B.3)

Note, Qφ,∗
i,j indicates that ρ∗i,j is to be used in the gravity term.

The fluxes in this step are calculated as follows, first the velocities on the

cell faces are determined using

u =
1

2
(uL + uR) (B.4)

w =
1

2
(wL + wR) (B.5)

where the L and R subscripts signify reconstructed values on the left and

right of the interface. These values are reconstructed using a prescribed

limiter. Finally, , fluxes are calculated in an upwind fashion. For example,

to calculate (φu)n
i+ 1

2
,j

we let

(φu)n
i+ 1

2
,j

=
(

(φu)n
i+ 1

2
,j

)+

+
(

(φu)n
i+ 1

2
,j

)−
(B.6)
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where (
(φu)n

i+ 1
2
,j

)+

=
(
φn
i+ 1

2
,j

)
L
∗max(0, u) (B.7)

and (
(φu)n

i+ 1
2
,j

)−
=
(
φn
i+ 1

2
,j

)
R
∗min(0, u). (B.8)

The remaining fluxes can be calculated using the same method.

It is important to note that we are using the pressure p in the imple-

mentation of the momentum equation rather than the Exner pressure π as

is common in many “sound-proof” models.

Appendix B.3. Microphysics step

In this step we calculate the microphysical source terms and use them

to update ρqv, ρqc and P . Throughout this step we will be using the initial

stratification of pressure in the calculation of temperature and the vapour

saturation mixing ratio.

Following Grabowski and Smolarkiewicz (1990) the condensation rate in

a single cell over a time-step can be calculated using

Cn
i,j =

 (q∗∗v − q∗∗vs)(
1 + (1 + q∗∗vs/ε)

(
q∗∗vsL

n
v

cp

Lv0

RvT ∗∗2

))
∆t


i,j

(B.9)

where qvs is the vapour saturation mixing ratio, T n = θn(pn0/pref )(R/cp) and

T ∗∗ = θ∗∗(pn0/pref )
(R/cp). The vapour saturation mixing ratio can be calcu-

lated following Lipps and Helmer (1982) using

qvs =
εes

p0 − es
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where the saturation vapour pressure is given by the

es = e0 exp

(
Lv0

Rv

(
1

Tref
− 1

T

))
with e0 = 611.0 Pa.

Using Ci,j we can now calculate the latent heat rate over one time-step

as

Sni,j =

[(
Lv
cpT

)
− 1/(ε+ qv)

]n
i,j

P n
i,jC

n
i,j. (B.10)

Finally, the microphysical updates are given as

(ρqv)
pred
i,j = (ρqv)

∗∗
i,j − Cn

i,j∆t (B.11)

(ρqc)
pred
i,j = (ρqv)

∗∗
i,j + Cn

i,j∆t (B.12)

P pred
i,j = P ∗∗i,j + Sni,j∆t (B.13)

and now variables ρ∗∗, (ρu)∗∗ and (ρw)∗∗ will be written with a “pred” super-

script since they also contain the predicted values.

Appendix B.4. Background state update

To calculate the background state at the new time level we must first

calculate the rate of change of ptop0 over the current time-step using (18).

This is done as follows

(
∂ptop0

∂t

)n
=

jmax∑
j=jmin

(AV G(S)/P0)nj

jmax∑
j=jmin

(1/γp0)nj

(B.14)

where AV G is the numerical approximation of the horizontal average and is

given by AV G(·) = 1
(imax−imin)

imax∑
i=imin

(·). Note that any variables that have
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only a j index do not depend on x. We then use this to calculate the back-

ground velocity on the interface from (19) using

w0
n
j+ 1

2
=∆z

[
j∑

k=jmin

(
(AV G(S)/P0)nk − (1/γp0)nk

(
∂ptop0

∂t

)n)]
(B.15)

Finally, P0 is calculated from (14) using

(P0)n+1
j = (P0)nj +

∆t

∆z

(
(P0w0)nj+1/2 − (P0w0)nj−1/2

)
+ AV G(S)nj ∆t. (B.16)

Appendix B.5. First projection

In this step the advective fluxes are corrected to satisfy the divergence

constraint given by (13). From Klein (2009) we write a poisson equation

which can be used to determine a pressure correction ∂p. The gradient of

this pressure correction is used to correct the fluxes in the P equation as

follows

∇ · (Pu)n+1
i,j = ∇ · (Pu)predi,j −

∆t

2

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

. (B.17)

Since the terms at n+ 1 satisfy the divergence constraint we re-write (B.17)

as

Sni,j −
(
P n+1

0 − P n
0

∆t

)
j

= ∇ · (Pu)predi,j −
∆t

2

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

. (B.18)

Now using the fact the
(
P pred−Pn

∆t

)
i,j

= Sni,j−∇·(Pu)predi,j due to the predictor

step we get(
P pred − P n

∆t

)
i,j

−
(
P n+1

0 − P n
0

∆t

)
j

= −∆t

2

(
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

. (B.19)
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Since the old time level values have already been corrected we know that

P n
i,j = P n

0 j and we get(
∆t

2
∇ · P

pred

ρpred
(∇∂pc)

)
i,j

= −

(
P pred
i,j − P0

n+1
j

∆t

)
. (B.20)

Solving this equation using using subroutines from the HYPRE package (see

Falgout and Yang (2002)) to solve the Poisson equation, we write the flux

update to the P equation as

(∂(Pu) · n)i,j =

(
∆t

2

P pred

ρpred
(∇∂pc) · n

)
i,j

(B.21)

and then the advected variables are updated as follows

φn+1
i,j =φpredi,j +

∆t

∆x

((
∂(Pu)

φpred

P pred

)
i+ 1

2
,j

−
(
∂(Pu)

φpred

P pred

)
i− 1

2
,j

)

+
∆t

∆z

((
∂(Pw)

φpred

P pred

)
i,j+ 1

2

−
(
∂(Pw)

φpred

P pred

)
i,j− 1

2

) (B.22)

for φ 6= ρu, ρw. The only difference for φ = ρu, ρw is that the updated values

will be labeled φfirstPro instead of φn+1 of since they are not yet the fully

corrected values.

Appendix B.6. Second projection

Here the cell-centered momenta are corrected by an increment of the nodal

pressure. This pressure increment is determined again through a Poisson

equation that is derived from the divergence constraint divergence constraint

given by (13). Also using Klein (2009) we can write a poisson equation on
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the nodes for the pressure correction(
∆t

2
∇ ·
(
P

ρ

)n+1

∇ (∂p)

)
i+ 1

2
,j+ 1

2

=∇ · (Pu)firstPro
i+ 1

2
,j+ 1

2

−

(
Sn
i+ 1

2
,j+ 1

2
−
P0

n+1
j+ 1

2

− P0
n
j+ 1

2

∆t

)
(B.23)

where the values on the right hand side are interpolated from the cell centered

values. After solving for ∂p using the poisson solver the velocity is updated

using

(ρu)n+1
i,j =(ρu)firstProi,j − ∆t

2∆x

(
(∂pi+ 1

2
,j+ 1

2
+ ∂pi+ 1

2
,j− 1

2
) (B.24)

−(∂pi− 1
2
,j+ 1

2
+ ∂pi− 1

2
,j− 1

2
)
)

(B.25)

and

(ρw)n+1
i,j =(ρw)firstProi,j − ∆t

2∆z

(
(∂pi+ 1

2
,j+ 1

2
+ ∂pi− 1

2
,j+ 1

2
) (B.26)

−(∂pi+ 1
2
,j− 1

2
+ ∂pi− 1

2
,j− 1

2
)
)
. (B.27)

Now all our variables are second order accurate at the new time level and

they also satisfy the divergence constraint.
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