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Homogenised daily lake surface 
water temperature data generated 
from multiple satellite sensors: A 
long-term case study of a large sub-
Alpine lake
Sajid Pareeth1,2,3, Nico Salmaso2, Rita Adrian3,4 & Markus Neteler1,5

Availability of remotely sensed multi-spectral images since the 1980’s, which cover three decades of 
voluminous data could help researchers to study the changing dynamics of bio-physical characteristics 
of land and water. In this study, we introduce a new methodology to develop homogenised Lake 
Surface Water Temperature (LSWT) from multiple polar orbiting satellites. Precisely, we developed 
homogenised 1 km daily LSWT maps covering the last 30 years (1986 to 2015) combining data from 
13 satellites. We used a split-window technique to derive LSWT from brightness temperatures and 
a modified diurnal temperature cycle model to homogenise data which were acquired between 8:00 
to 17:00 UTC. Gaps in the temporal LSWT data due to the presence of clouds were filled by applying 
Harmonic ANalysis of Time Series (HANTS). The satellite derived LSWT maps were validated based 
on long-term monthly in-situ bulk temperature measurements in Lake Garda, the largest lake in Italy. 
We found the satellite derived homogenised LSWT being significantly correlated to in-situ data. The 
new LSWT time series showed a significant annual rate of increase of 0.020 °C yr−1 (*P < 0.05), and of 
0.036 °C yr−1 (***P < 0.001) during summer.

Lakes are considered worldwide as sentinels of climate change1,2. Any change in the surrounding catchment due 
to climate forcings will reflect on the physical, chemical and biological processes in lakes2. The surface temper-
ature as being direct and sensitive to long-term changes in thermal structure of the lakes is a good indicator to 
understand the changes in the lake characteristics1,3. Thermal variations on the lake surface and epilimnion are 
crucial for key responses like vertical mixing and stratification, nutrient and oxygen dynamics, as well as spread 
and geographical expansion of biota1,2,4. Recent studies on a large number of lakes worldwide indicated a global 
trend of rapid warming related to climate change5–8. Global warming has a direct impact on thermal characteris-
tics of lakes, influencing variations in the physical as well as biological characteristics9,10. Geographical expansion 
of toxic cyanobacteria is reported owing to the warming of lakes11–14. The expansion of tropical bloom-forming 
cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) to the temperate lakes in the mid latitudes is trig-
gered by global warming15. The study “Blooms like it hot”12 explain climate change as a potent catalyst for the 
expansion of toxic blooms. In Sweden, annual phytoplankton bloom in larger lakes was found to be anticipated 
by a month due to the early warming in spring16.

Lake Surface Water Temperature (LSWT) exhibits a rapid and direct response to climate forcing prominently 
induced by changes in air temperature, cloud cover, short wave radiation, latitude, and the lakes morphometry5. 
Detailed synthesis of in-situ and satellite derived LSWT over lakes globally, indicated rapid warming during sum-
mer. Moreover, LSWT and air temperature trends during summer are found to diverge over many lakes globally 
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which signifies the need of regional studies in understanding the change dynamics5. Investigations carried out on 
the large lakes south of the Alps using non-parametric tests on volume weighted spring mean temperature derived 
from long-term in-situ data series from 1970 to 2009 showed a significant warming rate of 0.012–0.028 °C yr−1,  
at a rate comparable with that of other European and North American lakes17,18. The year-to-year fluctuations 
in the thermal structure were shown to be strictly controlled by large scale atmospheric dynamics between the 
N-Atlantic and the Mediterranean regions19,20. Results of limnological studies carried out in the largest and deep-
est lakes south of the Alps Lake Garda, Lake Iseo, Lake Como, Lake Lugano and Lake Maggiore 17, pointed out the 
need of integrating interdisciplinary approaches to the scientific based long-term monitoring. Lack of long-term 
in-situ data at a high temporal frequency is the main obstacle in identifying long-term trends. In this context, data 
from remote sensing as a substitute to in-situ data could play a key role in limnological studies.

Surface temperature is one of the accurate and reliable measurement using remote sensing10. Remote sensing of 
the temperature is based on recording the emitted radiation from earth surface in the spectral domain of 8–14 μ​m21.  
Inverse Planck’s law is applied to convert the emitted radiance recorded in the thermal infrared region to Top Of 
Atmosphere (TOA) Brightness Temperatures (BT). There are multiple approaches to estimate land/water surface 
temperature from the brightness temperatures22. In the case of inland water bodies like large lakes, the most com-
mon approach is the split-window technique where the difference between the two adjacent thermal channels 
(10.5–11.5 μ​m, 11.5–12.5 μ​m) is taken as a measure of atmospheric attenuation to derive the Surface Temperature 
(ST)23. The accuracy of the derived ST depends on the split-window coefficients, which in turn is based upon 
multiple parameters like spectral response function and emissivity of the channels, column water vapour in the 
atmosphere and View Zenith Angle (VZA) of the sensor. These coefficients are derived by regressing simulated 
BT’s from radiative transfer models like MODTRAN against the atmospheric profiles. The coefficients are gen-
erally derived on a regional or global level for the estimation of Land Surface Temperature (LST) and Sea Surface 
Temperature (SST)24–26. For lakes, both LST and SST based algorithms are used interchangeably and with higher 
accuracy of RMSE between 0.5–1.5 °C6,18,27–30. Furthermore, lake and sensor specific constants are published for 
an exhaustive list of global lakes by31.

Figure 1.  Study area map of Lake Garda; dark blue area depicts the deep basin and light blue area depicts 
the shallow basin. Push pins represent locations of in-situ water temperature monitoring. The maps were 
generated using the software GRASS GIS 7.048 (URL - https://grass.osgeo.org/grass7/).

https://grass.osgeo.org/grass7/
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There are a multitude of LST and SST datasets derived from multiple sensors publicly available such as 
Pathfinder from AVHRR data32, EuroLST33, GlobTemperature from ATSR series34 and the MODIS temperature 
products. ArcLakes35 and the LSWT data by30 are two lake specific products derived exclusively from satellite 
data for a set of selected lakes. A global database of lake summer surface water temperatures for 291 lakes com-
bining both in-situ and satellite data was recently published by36. Nevertheless, the products are often based on 
selected sensors aboard multiple instruments with different specifications and acquisition times. The algorithm 
behind surface temperature retrieval also differ among the products. In addition, many temperature products 
from moderate resolution (~1 km) sensors are resampled to coarser resolution (~5 km) which results in missing 
spatial coverage or even complete data loss at lake locations. Since multiple datasets cover different time frames, 
we need to combine them in order to generate a time series appropriate for trend analysis in the context of climate 
impact studies. But combining these data from multiple sources without applying acquisition time correction and 
homogenisation would result in spurious trends.

Our aim was to develop a new methodology to derive daily homogenised LSWT data from multiple moderate 
resolution sensors. As a result, we developed a new homogenised LSWT time series for Lake Garda using the dual 
thermal channels from the sensors - AVHRR/2 (NOAA-9/11/12/14), AVHRR/3 (NOAA-16/17/18/19), ATSR1 
(ERS-1), ATSR2 (ERS-2), AATSR (Envisat) and MODIS (Aqua/Terra). The new time series offers 30 years of daily 
LSWT from 1986 to 2015 developed using split-window algorithm with satellite specific coefficients published 
by26, acquisition time/orbital drift corrected, spatially sampled at 1 km resolution and gap filled using harmonic 
analysis. To our knowledge, this is the first time a homogenised LSWT was developed merging data from 13 sat-
ellites. The new method is reproducible and extensible to other lakes globally, provided that satellite data is avail-
able. The entire methodology is implemented using open source software packages. Hereafter, in the following 
sections “AVHRR” represents both AVHRR/2 and AVHRR/3 sensors and “ATSR series” represents ATSR1, ATSR2 
and AATSR unless explicitly specified.

Study area
Lake Garda is located east of the southern sub-Alpine region between the coordinates - Longitude: 
45.44°E–45.92°E; Latitude: 10.44°N–10.91°N. With a surface of 368 km2 and a volume of 49 km3, it is the largest 
lake in Italy. Along with the lakes Iseo, Como, Maggiore and Lugano it forms part of the group of deep lakes 
located south of the Alpine chain. These lakes are an important economic resource in Europe. Besides represent-
ing a major tourist destination, their waters are also used for drinking water purposes. Lake Garda is divided into 
two basins, northwestern and southeastern, which are divided by an underwater ridge connecting the Sirmione 
peninsula with Punta S. Vigilio (Fig. 1). The northwestern basin is large and deep, the shores descend at sharp 
slopes and the bottom spreads over 20 km at depths from 300 to 350 m (maximum depth). The maximum depth 
in the southeastern basin is around 80 m, whereas the shape is nearly conical. From a practical point of view, 
the lake can, however, be divided into two major zones separating the deeper northern area from the shallower 
southern area (mostly <​150 m). This distinction is consistent with the observations in ref. 37 where, using 

Figure 2.  (a) Summer mean LSWT of year 1992 (b) summer mean LSWT of year 2003 (c) difference map 
between summer means of 2003 and 1992. The boundary layer shown in black over Lake Garda is the inner 
buffer used to mask out the edge pixels. The maps were generated using the software GRASS GIS 7.048 (URL - 
https://grass.osgeo.org/grass7/).

https://grass.osgeo.org/grass7/
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temporal multi-spectral satellite images, found significant spatial and temporal variability in the concentrations 
of chlorophyll-a in the northern and southern areas of Lake Garda. The low ratio between the surface of the 
catchment area and the surface of the lake (6.1) explains the long theoretical water renewal time of about 27 years 
in comparison with other deep lakes in the area.

Results
We processed a total of 62,799 level-1B input images in order to derive daily LSWT’s. A single LSWT map has 363 
pixels of 1 km resolution representing the entire Lake Garda. After applying the inner mask to remove the edge 
pixels, a total of 223 pixels were considered for deriving long-term climatologies (Fig. 2). The aggregated seasonal 
and annual maps were developed by averaging the daily data. To demonstrate the spatial variability of the new 
LSWT maps, Fig. 2 shows the aggregated summer mean temperature maps for the years 1992 and 2003, along 
with a temperature difference map. The year 1992 had a relatively cool summer, while the year 2003 had a record 
warm summer due to a heatwave all across Europe. Harmonic analysis filled data gaps by repetitively applying a 
least square fit and removing the outliers until the remaining data was within the valid range. The amplitude of the 
first harmonic in all the years was larger than the other harmonics depicting a strong unimodal pattern of LSWT. 
To demonstrate the data reconstruction using HANTS, Fig. 3 shows the smoothed LSWT plotted over the daily 
averaged LSWT after homogenisation for the year 2003.

Figure 3.  Plots showing gap-filled reconstructed LSWT using HANTS (red line) over the averaged 
homogenised LSWT (grey bars) from multiple observations over a particular day of the year. The daily 
LSWT time series from the deep and shallow basins for the year 2003 is shown as an example.
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Validation.  To validate the new LSWT data, we performed a cross platform comparison of same day observa-
tions between the satellite pairs, followed by regression analysis between final homogenised LSWT and the in-situ 
data. The RMSE of the various cross-platform pairs for both deep and shallow basins varied between 0.38 °C and 
1.28 °C (Table 1). The minimum RMSE of 0.38 °C was reported for the satellite pair NOAA18/NOAA19 for both 
the deep and shallow basins. The highest RMSE of 1.2 °C was reported for the pair NOAA17/Terra in the deep 
basin and of 1.28 °C for NOAA14/Terra in the shallow basin. An average RMSE of 0.88 °C was reported for all the 
satellite pairs taking into consideration both the basins. Furthermore, we validated LSWT derived from individ-
ual satellites with the corresponding in-situ data. We were only able to use data from 11 satellites for the validation 
due to the non-availability of matching in-situ data against NOAA9 and NOAA12 (Table 2). An average RMSE 
of 0.86 °C and 0.94 °C was obtained for the deep and shallow basins respectively. For the deep basin, LSWT 
derived from NOAA16 had the lowest RMSE against in-situ data (0.42 °C), while NOAA18 had the highest RMSE 
(1.29 °C). In the shallow basin, the lowest RMSE was reported for ERS-2 (0.67 °C), whereas the highest RMSE 

Satellite pair RMSE (Deep basin) RMSE (Shallow basin)

NOAA17/NOAA18 0.74(71) 0.71(85)

NOAA18/NOAA19 0.45(10) 0.38(9)

NOAA11/ERS-1 0.95(37) 0.91(37)

NOAA14/ERS-1 0.78(19) 0.82(16)

NOAA14/ERS-2 0.78(90) 0.89(90)

NOAA16/ERS-2 0.76(38) 0.93(37)

NOAA16/Envisat 0.85(58) 0.87(50)

NOAA17/Envisat 0.67(26) 0.57(29)

NOAA18/Envisat 0.73(84) 0.76(95)

NOAA19/Envisat 0.66(75) 0.75(78)

ERS-2/Envisat 0.79(37) 0.51(33)

NOAA14/Terra 1.19(23) 1.28(22)

NOAA12/NOAA14 1.11(22) 1.05(20)

NOAA16/Terra 1.11(147) 1.17(139)

NOAA17/Terra 1.20(68) 1.16(76)

NOAA18/Terra 0.98(205) 1.02(220)

NOAA19/Terra 1.07(323) 1.12(310)

ERS-2/Terra 0.94(55) 0.87(56)

Envisat/Terra 1.18(212) 1.05(243)

NOAA16/Aqua 0.97(138) 0.97(130)

NOAA17/Aqua 1.06(63) 0.99(70)

NOAA18/Aqua 0.82(252) 0.73(256)

NOAA19/Aqua 0.97(397) 0.86(380)

ERS-2/Aqua 0.99(20) 0.78(20)

Envisat/Aqua 1.10(215) 0.98(211)

Terra/Aqua 0.78(858) 0.86(809)

Table 1.   RMSE in °C reported between same day observations from different pair of satellites for the deep 
and shallow lake basin. Number inside brackets represents N - Number of observations.

Satellites RMSE (Deep basin) RMSE (Shallow basin)

NOAA11 0.33(9) 0.93(9)

NOAA14 0.54(14) 0.51(17)

NOAA16 0.33(8) 0.91(8)

NOAA17 0.37(4) 0.86(3)

NOAA18 1.25(11) 0.90(13)

NOAA19 0.67(16) 1.14(14)

ERS-1 0.41(5) 0.74(4)

ERS-2 0.47(14) 0.70(12)

Envisat 0.50(10) 0.50(11)

Terra 0.92(41) 1.04(36)

Aqua 0.89(46) 1.17(38)

Table 2.   RMSE in °C reported at deep basin and shallow basin from absolute difference between in-situ 
data and satellite derived LSWT. Number inside brackets refer to N - the number of same day observations.
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Figure 4.  Boxplots of lake mean LSWT difference between final homogenised LSWT and corresponding 
in-situ data. The values shown in black over the lower whisker represents N and the values in red is the reported 
RMSE in °C.

Figure 5.  Annual (top) and summer (bottom) trends of lake mean LSWT derived from the new 
homogenised daily LSWT between 1986 to 2015. Data were smoothed using the loess interpolation (blue 
line). The gray area is the 95% confidence interval.
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was reported for Aqua against in-situ data (1.18 °C). An average RMSE of 0.92 °C was estimated between satellite 
derived LSWT and in-situ observations. The regression analysis between the final homogenised LSWT and the 
in-situ data revealed a coefficient of determination (R2) of 0.98 for both basins. The mean RMSE estimations were 
0.83 °C and 0.75 °C for deep and shallow basins respectively (Fig. 4).

Long term warming trends.  We found a significant (*P <​ 0.05) warming trend for lake mean LSWT at 
an annual rate of 0.020 °C yr−1 (Fig. 5). For the deep basin, we found a similar warming trend (0.014 °C yr−1; 
*​P <​ 0.05) for annual mean LSWT, but for shallow basin there was no significant annual trend. For summer 

Figure 6.  Annual trends of lake mean LSWT computed from homogenised LSWT (deep basin), in-situ 
data and satellite derived LSWT30. Data is smoothed using the loess interpolation (blue line). The area shown 
around the smoothed line is the 95% confidence interval.

Figure 7.  Plot of variation in observation times of all the satellites used in this study. Note the large orbital 
drifts of the earlier NOAA-9/11/12/14 instruments.
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months, we report a significant warming trend at the rate of 0.036 °C yr−1 (*​*​*​P <​ 0.001) for the lake mean LSWT 
(Fig. 5). We report a similar increasing rate for the mean LSWT over the deep basin (0.039 °C yr−1; *​*​*​P <​ 0.001), 
while no significant warming was found for the shallow basin. We did not observed any significant trends during 
the other seasons. Furthermore, standard deviation of 0.32 °C and 0.53 °C were estimated from the time series of 
annual and summer mean LSWT respectively. For comparison, we performed summer and annual trend analysis 
on the lake mean temperature computed from in-situ data and recently published satellite derived LSWT by30. 
We obtained a significant warming trend at the rate of 0.039 °C yr−1 (*​P <​ 0.05) and 0.027 °C yr−1 (*​P <​ 0.05) for 
both summer and annual time series from the data by30, while no significant warming was found from the in-situ 
data (Fig. 6).

Discussion
Remotely sensed satellite data offer a great alternative to in-situ data. We demonstrated the usability of satellite 
derived LSWT in estimating long-term annual and seasonal trends of lake mean LSWT. The inevitable breaks in 
historical satellite data due to different life periods and the overpass time of multiple satellites is the main challenge 
in developing a continuous time series (Fig. 7). In order to make a long-term time series of any bio-geophysical 
parameter from satellite data, it is necessary to proceed with a combination of different time series, which demand 
homogenisation to correct for the different acquisition times. Hence, we developed a workflow to derive daily 
LSWT maps of Lake Garda for the last 30 years (1986–2015) at 1 km spatial resolution recorded by six moderate 
resolution sensors on board of 13 different satellites. For AVHRR data acquired from multiple NOAA instru-
ments, we used the calibration techniques which take into account the inter-satellite calibration38–40. For the ATSR 
series, the calibration coefficients provided with the data were of superior quality ensuring continuity of data with 
transition of the instrument6. Moreover, the split-window technique with satellite specific coefficients used in this 
study could derive LSWT’s at an average RMSE of 0.88 °C on a single day.

We found similar RMSE (<​1 °C) before and after applying time correction procedures between satellite 
derived LSWT and corresponding in-situ data. This could be due to the fact that lake surface temperature of a 
deep sub-Alpine lake is a slow changing parameter during the day. Precisely, the temperature measured at dif-
ferent times during the day was close enough to exhibit any noticeable change in accuracy indicators before and 
after the time correction procedure. Nevertheless, for the older satellites, like earlier NOAA instruments which 
underwent considerable orbital shifts during their course in orbit, this step was crucial. We argue that the acqui-
sition time correction is necessary while combining data from different satellites due to at least two reasons: i) to 
merge the data obtained from multiple satellites which have different quality, acquisition times and orbital decays; 
ii) for more dynamic surfaces where temperature varies at short temporal scales, this step may prove to be crucial. 
Moreover, identical slopes from different linear models between individual satellites and in-situ data confirmed 
the comparability of different satellite derived LSWT to each other.

Harmonic analysis was used to remove the gaps in the daily data due to undetected clouds and unresolved 
spurious calibration. We found that the gap filled daily data was over smoothed which could inadvertently remove 
some of the actual temporal dynamic change. In spite of this smoothing, the final homogenised LSWT data 
was able to pick up the long-term thermal dynamics over the lake surface. From the long-term summer trend 
of LSWT (Fig. 5), it was evident that the new LSWT data was able to pick up the low and high peaks in the last 
30 years. Moreover, the spatial coverage of 1 km is another advantage of this dataset in comparing the ther-
mal dynamics of different locations in the lake. The temperature difference map in Fig. 2 clearly illustrates how 
LSWT is distributed over the surface of Lake Garda, whereby the shallow basin is more warm than the deep 
basin. Figure 2 also shows that in the deep basin, the western shores are warmer than at the eastern side. This is 
explained by the high mountain chain of Mt. Baldo (2218 m) in the east, which blocks the sun for a long time dur-
ing the day. The amplitude and phase maps obtained for each harmonic per year provide additional information 
on lake’s thermal variation over time. The amplitude of the first harmonic is the highest for all the years, showing 
the influence of annual cycle of LSWT on the lake characteristics.

We performed validation at different stages of the work flow before and after homogenisation. We found that 
the RMSE obtained between individual satellite derived LSWT and in-situ data varied significantly between the 
deep and the shallow basins (Table 2). The higher RMSE in the shallow basin may be due to the varying skin 
effects in Lake Garda. The difference between skin and bulk temperature often termed as skin effect could be a 
deciding factor in varying accuracy over the deep and the shallow basins6,27,43. It must be noted that, the satel-
lite measured LSWT represents temperature of a sub-micron layer between the lake surface and the air, and is 
highly variable according to the meteorological conditions. The in-situ data on the other hand represents bulk 
temperature, often measured between 0 to 0.5 m. The RMSE values were closer in the cross-platform comparison 
analysis in both the deep and shallow basins (Table 1), which demonstrates the superior quality of split-window 
coefficients. With respect to the sensor performance in deriving LSWT, we found that the ATSR series exhibited 
lower RMSE of 0.75 °C and 0.74 °C, followed by AVHRR with RMSE of 0.88 °C and 0.96 °C, MODIS with RMSE 
of 0.92 °C and 1.18 °C for deep and shallow basins respectively. A similar study by30 also reported RMSE between 
1 to 1.6 °C for AVHRR derived LSWT against in-situ data from multiple European lakes. For a better comparison 
it is important to have high frequency in-situ data matching the exact acquisition time of the satellites6,29. The 
majority of the LSWT difference in both basins were below 1.0 °C. This suggests that the homogenisation proce-
dure follwed by HANTS retained the same pattern of accuracy and the RMSE in a similar range. Moreover, the 
comparison between summer lake mean trends obtained from our new LSWT data series and a similar satellite 
derived LSWT by30 showed that both the data series are comparable and exhibits similar trends (Fig. 6).

To understand the long-term dynamics of lake surface temperature, it is crucial to have high frequency in-situ 
observations. In this study, we demonstrate that the satellite derived data can complement the missing in-situ 
observations of surface water temperature, with high spatial and temporal resolution. Global coverage of the 
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satellite data is an added advantage which enables us to use the same data set for analyzing multiple lakes sub-
sequently for comparative analyses. The correct evaluation of the long-term trends of water temperature should 
take into account the advantages and limits of measurements made by both remote sensing techniques and in-situ 
recordings. Remote sensing technologies are limited to the detection of long-term trends circumscribed to the 
surface of water bodies. While this limit can be compensated by measurements performed at high temporal 
(daily) and spatial (whole lake) scales, the direct measurement of surface data in the field at lower temporal 
frequency can seriously impair the evaluation of long-term trends. Conversely, the lower temporal and spatial 
coverage of in-situ data can be partly balanced by a complete availability of data collected in the water column. 
The thermal structure of the mixolimnetic layer is less vulnerable to transient (daily to weekly scales) fluctuations 
of surface water temperatures originating from changes in local meteorological conditions. Therefore, most of the 
studies which have focused on the long-term trends of lake water temperatures have been based on measurements 
recorded in the water column. Lake Garda being a deep sub-Alpine lake, undergo complex mixing processes 
during winter and spring which have a strong influence on surface water temperatures20. The inter-annual change 
of LSWT could be helpful in identifying impacts on the associated physical and biological processes in the lake.

Figure 8.  Availability of moderate resolution satellite data between 1986 and 2015. (a) Time line of the 
satellites in orbit; (b) Distribution of level-1B data downloaded for the study area from 1986 to 2015 obtained 
from respective archives - CLASS (AVHRR), LAADS (MODIS) and Merci (ATSR series) separated by different 
instruments.
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Recent studies by18 and5 have confirmed global warming of lakes due to climate change between 1985 and 
2009 at the rate of 0.03–0.04 °C yr−1. The main difference between the two studies is that18, used exclusively the 
satellite derived LSWT, while5 used a combination of in-situ and satellite data to derive the long-term trends. 
There are regional studies showing rapid warming of North American large lakes and European lakes which uses 
satellite derived LSWT6,30. With a different approach7,17, and42 reported warming at similar rates using in-situ 
volume weighted mean bulk temperature for the large lakes in Europe and North America. In contrast to our 
approach, many earlier studies used LST and SST data for lake studies which reported similar results. More 
recently, studies by30 and31 developed lake specific surface temperature data using optimized split window coeffi-
cients. We used the data by30 for comparing the trends and obtained similar increasing temperature trends during 
summer. Study by1 reported July warming since 1970 at the rate of 0.02–0.05 °C yr−1 computed from in-situ data 
for multiple northern hemisphere lakes. Although we did our analysis separately for the deep and shallow basins 
of Lake Garda, we could not find any significant trend in the shallower, southern basin. Moreover, the thermal 
variation over the deep basin was similar to the entire lake basin, depicting that the lake is more influenced by the 
characteristics of the deep basin.

One of the main advantages of the developed method is that it gives the opportunity to study the long-term 
thermal dynamics of other lakes given the availability of the satellite data over study area. The spatial and tem-
poral coverage obtained from this method is unique and cannot be achieved by any other data source. The out-
liers due to undetected clouds and other unsuitable data, are often difficult to remove completely. Though the 
method is robust, manually checking the accuracy of cloud masks for thousands of images is not practical. The 
automated cloud masking may leave undetected cloud pixels as clear sky ones. A future enhancement for refin-
ing cloud masks would be to use seasonal thresholds in SPARC algorithm (see Methods) instead of global ones. 
Nevertheless in this study, HANTS were able to remove the outliers as shown by the validation results at the 
expense of losing some of the short term temporal variability. The spatial resolution of 1 km is the highest pos-
sible when considering moderate resolution satellite data, but it is not high enough to study the smaller lakes. 
Moreover at this resolution, the issue with mixed pixels along the shore were solved by using an inner lake buffer 
while computing long-term climatologies.

Methods
Data.  In this study we used multiple moderate resolution sensor data to estimate long-term LSWT’s over 
the past 30 years. We used data acquired by six sensors - AVHRR/2, AVHRR/3, ATSR1, ATSR2, A(A)TSR and 
MODIS which were on board 13 satellites (Fig. 8a). These sensors offer dual thermal channels at 10.5–11.5 μm 
and 11.5–12.5 μ​m with a spatial resolution of approximately 1 km. This was ideal for deriving surface water tem-
perature using a split-window algorithm. The sensors AVHRR and MODIS provide daily images, while ATSR 
series provide data every three days. We downloaded and processed level-1B data of AVHRR, ATSR series and 
MODIS from Comprehensive Large Array-data Stewardship System (CLASS - http://www.class.ncdc.noaa.gov/), 
Merci data archive (http://ats-merci-ds.eo.esa.int/merci/welcome.do) and Level 1 and Atmosphere Archive and 
Distribution System (LAADS - https://ladsweb.nascom.nasa.gov/) respectively for the study area. For AVHRR, we 
used Local Area Coverage (LAC) data available at its original spatial resolution of 1.1 km. For ATSR series, we down-
loaded and processed nadir viewing TOA data. The level-1B swath products MYD021KM and MOD021KM for 
Aqua and Terra satellites respectively were used to extract dual thermal channels from MODIS sensor. Figure 8b 
shows the year wise distribution of data from multiple satellites. We processed the AVHRR and MODIS data 
using Pytroll libraries (http://www.pytroll.org/). Furthermore, we used BEAM software provided by European 
Space Agency to process the ATSR series of data (http://www.brockmann-consult.de/cms/web/beam/). For val-
idation of the satellite derived water temperatures, long-term monthly in-situ data between 1991–2015 collected 
from two locations in Lake Garda were used. We used bulk temperature (0–0.5 m) measured at two locations - 
Brenzone in the deep basin and Bardolino in the shallow basin (see Fig. 1).

Pre-processing.  The pre-processing of thermal channels at level-1B include thermal calibration to convert 
from radiances to brightness temperatures using inverse Planck’s law followed by removal of cloud pixels. The 
data from MODIS and ATSR series were calibrated using the coefficients provided in the header. For AVHRR, 
the calibration procedure was much more complicated due to (well documented) navigational errors with the 
older NOAA satellites43. Despite on board thermal calibration in NOAA instruments, the calibration data were 
prone to solar contamination and atmospheric attenuation of the signal and satellite decays40. In this study, we 
used the geometrically corrected time series of brightness temperatures derived from dual thermal channels of 
AVHRR LAC data from 1986 to 2015 developed by44. Furthermore, we considered only those pixels acquired at a 
zenith angle less than 45 degrees. All the further data processing was restricted to lake pixels masked using a Lake 
Garda boundary layer. For the cloud masks of level-1B AVHRR LAC and MODIS data, we used the Separation 
of Pixels Using Aggregated Rating over Canada (SPARC) algorithm developed by45, originally implemented for 
creating cloud mask over Canada. We used two relevant tests to remove thick clouds and thin cirrus above the 
lakes, i) brightness temperature test (T-test) using channel Ti and ii) thin cirrus test (C-test) which uses the 
difference between channel Ti and Tj. The T-test uses channel Ti brightness temperature and compares it with a 
dynamic threshold which is the surface skin temperature data of the corresponding day and time derived from 
climatic models. In this study, we replaced the North American regional reanalysis data with European centre for 
medium-range weather forecasts46 following the successful implementation over Europe by30. The SPARC algo-
rithm is implemented using raster processing tools in GRASS GIS 7.047,48. For ATSR series, we used the quality 
layer provided with the data to remove the cloud pixels.

http://www.class.ncdc.noaa.gov/
http://ats-merci-ds.eo.esa.int/merci/welcome.do
https://ladsweb.nascom.nasa.gov/
http://www.pytroll.org/
http://www.brockmann-consult.de/cms/web/beam/
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Deriving LSWT using split-window algorithm.  From the brightness temperatures derived by thermal 
calibration, the next step was to estimate LSWT’s using split-window algorithm. We used a non-linear split-window  
Equation 1 to estimate the surface temperature as proposed by26:

ε ε= + − + − + + + − + + ΔT T c T T c T T c c c W c c W( ) ( ) ( )(1 ) ( ) (1)i 1 i j 2 i j
2

0 3 4 5 6

where c0–c6 are split-window coefficients, Ti and Tj are at-sensor brightness temperatures derived from the dual 
thermal channels, ε is mean emissivity, Δ​ε is emissivity difference and W is the total atmospheric water vapour 
column (g/cm2). For water surface, the mean emissivity is close to unity. As our study is dealing with lakes, the 
equation 1 was modified by assuming ε as one and Δ​ε to be zero. Hence the modified equation 2 was used in this 
study to retrieve LSWT from dual thermal channels:

= + − + − +T T c T T c T T c( ) ( ) (2)i 1 i j 2 i j
2

0

We used satellite specific split-window coefficients published by26. These coefficients were derived by sta-
tistical minimization from a simulated database of brightness temperatures and atmospheric profiles obtained 
from MODTRAN radiative transfer model, emissivity spectra extracted from spectral libraries and the spectral 
response functions26.

After estimating the LSWT, we applied two levels of filters to remove outliers due to undetected clouds and 
spurious calibrations. First, we applied a global filter based on a minimum and maximum thresholds derived 
from the long-term in-situ data. Thus we discarded any LSWT values beyond the range 6.5–29 °C. We further 
applied an advanced filter based on inter-quartile range of LSWT’s derived every 16 days33,49. The lower and upper 
thresholds for this filter was computed using the equations 3 and 4 respectively:

_ = − . −Lower threshold quartile quartile quartile1 1 5(3 1 ) (3)st rd st

_ = − . +Upper threshold quartile quartile quartile1 1 5(3 1 ) (4)st rd st

where the 1stquartile and 3rd quartile were derived climatologically from the LSWT data every 16 days over the 
years 1986 to 2015. This filter was then applied using the derived thresholds to those LSWT data of corresponding 
time frames.

Figure 9.  Monthly diurnal cycles during day time estimated using long-term hourly climatologies from 
satellite observations. The points in plot are the long-term hourly averages for a particular month, and the red 
line is DTC model fit.
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Homogenising LSWT from multiple satellites.  We considered all the satellite observations for a single 
day over a wide window of time; from 08:00 to 17:00 UTC. Figure 7 clearly shows the orbital drift of earlier sat-
ellites - NOAA-9/11/12/14/16. We applied a physical model based on typical pattern technique proposed by50 to 
standardize the acquisition time to 12:00 UTC. In this approach, monthly diurnal cycles were used as a reference 
pattern to correct for the varying observation times to produce a standard observation time. The monthly diurnal 
cycles computed from hourly averages were derived from the existing satellite observations of LSWT and were 
limited to day time (Fig. 9). We followed the Diurnal Temperature Cycle (DTC) model to derive the diurnal var-
iations of LSWT based on51. The model used was described by the Equation 6:

π ω π ω= + − + −T t T T t t T t t( ) cos( / ( )) sin( / ( )) (5)s 0 a m b m

with

ω = −t t4/3( ) (6)m sr

where T0 is the residual temperature at sun rise; Ta and Tb are temperature amplitudes; Ts(t) is surface temper-
ature at time t; tm is the time at which temperature is maximum; tsr is the time of sun rise; ω is calculated using 
the Equation 6. T0, Ta and Tb are obtained by statistically fitting the model given in the Equation 5. Finally, to 
apply the time correction to all the LSWT data, for each image with an observation time t, Ts(t) and Ts(12) were 
calculated using the model as given in Equation 5. The correction factor was then computed using Equation 7 
to correct the LSWT to a standard time at 12:00 UTC. A condition based approach is used for the correction as 
given in Equation 8 and 9:

= −cf abs T t T( ( ) (12)) (7)s s

= − >T T cf T t T; ( ) (12) (8)c ori s s

= + <T T cf T t T; ( ) (12) (9)c ori s s

where cf is the correction factor, Tc is the corrected LSWT to a standard time 12:00 UTC and Tori is the actual 
LSWT.

In order to derive one homogenised LSWT per day, the subsequent step was to merge by averaging the sin-
gle day observations from multiple satellites. For this, we first performed a satellite specific linear regression 
analysis between LSWT and in-situ data to compare the slope of regression lines between different satellites. We 
performed the analysis on the deep and the shallow basins separately. The slopes varied between 0.85 and 1.1, 
depicting that the data used for the models were similar to each other and exhibited similar residual patterns. 
We used the r.mapcalc module in GRASS GIS 7.0 software to apply the time correction model to the LSWT data.

Gap filling using harmonic analysis.  The daily LSWT data after time correction and averaging over the 
same day still suffered from gaps due to cloud cover. We used Harmonic ANalysis of Time Series (HANTS) to 
reconstruct the gaps in the LSWT data. The harmonic analysis decomposes a time series into several sinusoi-
dal functions with unique amplitude and phase values52. It applies a least square fitting procedure based on the 
derived harmonics53. The fitting procedure is repeated until the LSWT values with large deviations are removed 
from the fitted curve54. Hence, the role of HANTS is twofold in this process; i) to remove the outliers, and ii) fill 
the gaps with fitted values. The fitting procedure based on HANTS is explained well by53 and54. We implemented 
HANTS based reconstruction on LSWT images using the r.hants addon in GRASS GIS 7.0 software55.

Temporal database and trend analysis.  The gap filled daily LSWT maps from 1986 to 2015 were then 
imported into a spatio-temporal database using TGRASS modules in GRASS GIS 7.0. TGRASS is an advanced 
set of modules which perform time series analysis on spatio-temporal data56. We developed annual and seasonal 
climatologies from the daily LSWT data to analyse the long-term trends. The seasonal climatologies were devel-
oped by aggregating the LSWT over four seasons; winter (December/January/February), spring (March/April/
May/), summer (June/July/August) and fall (September/October/November). We applied non-parametric tests 
on annual and seasonal mean LSWT separately for deep and shallow basins to detect the long-term trends. In 
particular, we used the Mann-Kendall test to identify the presence of monotonic upward or downward trends. We 
computed the Theil-Sen slope for the quantitative estimation of significant trends57. We used the Durbin-Watson 
test to detect potential serial correlation issues in the time series and checked for its statistical significance. To 
avoid mixed pixels with land along the shore, we used an inner lake buffer considering only water pixels while 
extracting the annual and seasonal climatologies (Fig. 2). Furthermore, for comparative analysis, we computed 
the same statistics on long-term in-situ data and satellite derived LSWT from AVHRR sensor by30 for Lake Garda.
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