
Background

2 Background

This chapter considers important background information which are needed to
prepare the development, testing and analysis as well as theapplication of the seis-
mic source location algorithm designed in this work. It starts with a section about
earthquakes and their different seismic sources and continues with a section that
describes how to mathematically express and hence model those sources in ho-
mogeneous and isotropic media. After the basis for the modeling of synthetic data
is build a section about multicomponent seismology follows. It considers differ-
ent approaches and the estimation of polarization information of three-component
data and discusses applicability and pitfalls. Once estimation techniques and the
reliability of polarization information are discussed this chapter closes with a sec-
tion about kinematic ray tracing and the theoretical background for its implemen-
tation in the presented location algorithm.

2.1 Earthquakes

The occurrence of earthquakes has been observed for thousands of years. In gen-
eral, an earthquake is defined as a sudden movement or shakingof the Earth’s crust
resulting from abrupt release of accumulated stress in the Earth (Sheriff, 2002).
Earthquakes mainly occur in the outer 30 km of the Earth, where rocks tend to
break (brittle failure of rock) rather than deforming ductile under stress. Neverthe-
less, earthquakes commonly assochiated with phase alterations can be observed at
depth as great as 700 km in subduction zones. Naturally induced earthquakes as
shown in Figure 2.1 are mainly associated with tectonic activity, volcanoes, rock-
falls, and landslides. On the other hand, its also known thathuman activity (such
as explosions, mining, production from hydrocarbon reservoirs or reservoir stim-
ulation) causes earthquakes.

Brittle failure of rocks can be caused in different ways. Thegoverning failure
mechanisms are associated with tensile failure and shear failure and can be de-
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Figure 2.1: Distribution of global seismicity from 2005 to 2007. Events were loaded from
several catalogs (indicated by different markers) and plotted with the IRIS online mapping
tool (http://www.iris.edu/SeismiQuery/events.htm). The depths of the events are color-
coded.

scribed by mapping stress states in a Mohr-Coulomb diagram as shown in Fig-
ure 2.2. The principle stressesσ1, σ2 andσ3 can be used to describe the stress
state, withσ1 being the maximum principle stress andσ3 the minimum principle
stress (Scholz, 2002). Compressive stresses are defined as positive.

Tensile failure occurs when tensile stress exceeds the tensile strengthT of the
rock (see the magenta solid line in Figure 2.2). The tensile failure criterion can
be formulated relating the smallest component of principalstress to the tensile
strengthT of the rock:

σ3 = −T. (2.1)

The shear failure of rocks is described by the Mohr-Coulomb criterion:

τ = τ0 + µ · σn, (2.2)

whereτ andσn are the shear and normal stresses resolved on any plane within the
material.τ0 represents a term of cohesion. The parameterµ is called the coefficient
of internal friction and is often expressed astanφ with φ being the angle of inter-
nal friction. Shear failure occurs when the shear stress associated with the stress
state intersects the Mohr-Coulomb envelope (see green solid line in Figure 2.2).

As shown by Figure 2.2 the stress state can be mapped drawing the Mohr-
Coulomb’s circle. Any circle of this kind is characterized by a radius(σ1 − σ3)/2
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Figure 2.2: Failure criteria related to the stress state of the rock.

and a center(σ1 − σ3)/2 located on theσn axis. The rock is in a stable stress state
as long as the Mohr-Coulomb circle does neither exceed tensile strength nor the
shear strengths as shown by the blue Mohr-Coulomb circle in Figure 2.2.

There are three major ways to change the stress state in orderto cause failure. One
is associated with compressional motion which increases the maximum principle
stressσ1 and leaves the minimum principle stressσ3 constant. The stress within
the material, and hence the radius of the Mohr-Coulomb circle (see Figure 2.2),
can increase only until the failure criterion is tangent to the circle. Shear fail-
ure follows. This scenario can be observed at convergent plate boundaries where
earthquakes occur at several depths ranging from the very near surface to several
hundred kilometers (see Figure 2.1) because the temperatures of the subducting
plate permits brittle failure down to at least 300 km (e.g., Carminati et al.). Deeper
earthquakes are generally related to other mechanisms, such as e.g., dehydration
embrittlement, faulting induced by a phase alteration or adiabatic shear instabil-
ity (see Green II, 2003). Furthermore, the largest earthquakes occur at convergent
plate boundaries, e.g., some events on subduction zones in Alaska and Chile have
exceeded magnitude 9.

On the other hand, the radius of the Mohr-Coulomb circle can also be increased by
decreasing the minimum principle stressσ3 while leaving the maximum principle
stressσ1 constant. This change is associated with crustal extensionas at spread-
ing ridges, or similar extensional boundaries like rifts orgrabens. Earthquakes
in extensional environments are relatively shallow and have usually magnitudes
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smaller than 8 (see Figure 2.1).

Both, compressional as well as extensional stress states can be locally observed
at strike-slip faults, which is often called transpressionor transtension (Zoback,
1991). Earthquakes are relatively shallow (as deep as 25 km)and their mecha-
nisms indicate strike-slip motion. The magnitudes are not as large as at convergent
plate boundaries but can still reach magnitudes of 8.5. One if the most prominent
example of strike-slip faults is the San Andreas Fault in California, which sepa-
rates the Pacific from the North American plate.

The third possibility to change the stress state is caused bychanges in pore/fluid
pressurePf . The increase of fluid pressure changes the effective normalstress
σeff

n which is defined as the difference between the normal stressσn and the pore
pressurePf (see Figure 2.3) , i.e.

σeff
n = σn − Pf . (2.3)

Figure 2.3: Schematic representation of the interaction offrame work stresses and pore
pressurePf .

The increasing pore pressure decreases the effective normal stress by the same
order of magnitude which causes a shift of the stress circle towards the failure
envelope (Figure 2.2). If the stress circle is tangent to theMohr-Coulomb envelope
shear failure will occur and if the stress circle exceeds thetensile strength T tensile
failure can be observed. Those fluid induced earthquakes areoften observed in
relation with water-level-changes in lakes, in mines and inwater dam reservoirs,
or even with heavy rainfalls (Talwani and Acree, 1985; Costain and Bollinger,
1991; Hainzl et al., 2006). At the same time, fluid induced earthquakes can also be
man-made, which means they can be caused by fluid injections such as hydraulic
stimulations/fracturing of rocks (see, e.g., Albright andPearson, 1980; Shapiro et
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al., 1997; Zoback and Harjes, 1997; Shapiro et al., 1999; Shapiro, 2000; Rutledge
and Phillips, 2003; Rutledge et al., 2004).

All these different earthquake sources cause seismic wavesthat propagate through
the earth and can be recorded with geophones. The seismic wavefield observed at
different geophone locations will differ in many ways depending on the medium
the waves traveled through and on local conditions at the receiver and the source.
In this work the whole wavefield will be analyzed but only direct body waves will
be used to invert the wavefield for the seismic source location. For this reason
the next section will describe which wavefield can be expected from direct body
waves radiated from different seismic sources.

2.2 Seismic sources

The seismic wavefield recorded at a three component receiverdepends on the
medium parameters, the distance between source and receiver and the source type
itself. In this thesis a general approach that evaluates theseismic moment ten-
sor components is used to describe the far field displacementin homogeneous
isotropic media. The moment tensorM is defined as

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33



 , (2.4)

where each entryMkl describes a pair of bi-directional forces pointing in the di-
rectionk and being separated in the directionl as shown in Figure 2.4. With this
set of point dipoles and single couples any source type can bedescribed, e.g. an
explosion source can be represented by a moment tensor with non-zero elements
only along the main diagonal ofM.

Following the notation of Strelitz (1978), the recorded farfield displacement field
u for a point source can be written using the first derivative ofthe Green’s function
G′ and the second order moment tensorM:

u = G′M = cFM (2.5)

with

c =
1

4πρv3R
(2.6)

R represents the distance from the source to the receiver andv denotes the wave
velocity, respectively.F is called the excitation matrix and describes P-, SV- and
SH- body waves. For a homogeneous, isotropic, and infinite medium it has the
following form:
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Figure 2.4: The components of the moment tensor represent nine different force couples.

FP =





sin2 φ cos2 ϕ 1
2
sin2 φ sin 2ϕ 1

2
sin 2φ cosϕ

1
2
sin2 φ sin 2ϕ sin2 φ sin2 ϕ 1

2
sin 2φ sin ϕ

1
2
sin 2φ cosϕ 1

2
sin 2φsinϕ cos2 φ



 , (2.7)

FSV =





1
2
sin 2φ cos2 ϕ 1

4
sin 2φ sin 2ϕ cos2 φ cos ϕ

1
4
sin 2φ sin 2ϕ 1

2
sin 2φ sin2 ϕ cos2 φ sinϕ

− sin2 φ cosϕ − sin2 φ sin ϕ −1
2
sin 2φ



 , (2.8)

FSH =





−1
2
sin φ sin 2ϕ − sin φ sin2 ϕ − cos φ sin ϕ

− sin φ cos2 ϕ 1
2
sin φ sin 2ϕ cos φ cosϕ

0 0 0



 (2.9)

with φ being the take-off angle andϕ the azimuth angle.

For simplification, here only sources that do not change the angular momentum
are considered. Hence the conditionMkl = Mlk should be fulfilled which makes
the momentum tensor symmetric. A symmetric moment tensor only holds six in-
dependent entries and a vector notation can be introduced toreplace matrix nota-
tions:
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m1 = M11 f1 = F11

m2 = M12 = M21 f2 = F12 + F21

m3 = M22 f3 = F22

m4 = M13 = M31 f4 = F13 + F31

m5 = M23 = M32 f5 = F23 + F32

m6 = M33 f6 = F33

(2.10)

Therefore, any displacement fieldui can be expressed by the sum of these inde-
pendent entries

u(i) =
6
∑

j=1

(c(i)fj(i)mj , (2.11)

wherei represents the observation components.

The displacement of an explosion source is defined by an equivalent force sys-
tem (m1 = m3 = m6 6= 0) that consists of three perpendicular dipoles of equal
strength, which corresponds to the isotropic part of the moment tensor. The P-
wave radiation pattern is spherical and there is no direct S-wave radiation observ-
able in the far field. Hence, the radiation pattern of an explosion source can be
written as:

uP =
1

4πρv3R
(m1f1(P ) + m3f3(P ) + m6f6(P ))

=
1

4πρv3R
m1(sin

2 φ cos2 ϕ + sin2 φ sin2 ϕ + cos2 φ)

=
1

4πρv3R
m1(sin

2 φ(cos2 ϕ + sin2 ϕ) + cos2 φ)

=
1

4πρv3R
m1 (2.12)

In order to simulate a seismogram it is necessary to introduce a source time func-
tion or seismic moment rate functionK ′(t) which reflects the pulse radiated from
the source. The pulse propagates away from the source with the velocityv and
arrives at a receiver at distancer at timet − r

v
with the displacement

uP =
1

4πρv3R
· K ′

(

t −
r

v

)

. (2.13)

Using the same procedure, seismograms of double couple sources can be ex-
pressed selecting a force system of the moment tensor. For example consider
shear failure in the x-y(1-2) plane or y-z(2-3) plane with relative displacement
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in x-direction or z-direction. The moment tensor of such a source has only two
non-zero componentsM13 andM31. Hence the displacement for such a source
can be described in the following way:

uP =
1

4πρv3R
(m4f4(P ))

=
1

4πρv3R
m4(

1

2
sin 2φ cosϕ +

1

2
sin 2φ cos ϕ)

=
1

4πρv3R
m4(sin 2φ cosϕ)

and using a source time function

uP =
sin 2φ cosϕ

4πρv3R
· K ′

(

t −
r

v

)

, (2.14)

uSV =
1

4πρv3R
(m4f4(SV ))

=
1

4πρv3R
m4(

1

2
cos2 φ cos ϕ − sin2 φ cos ϕ)

=
1

4πρv3R
m4 cos ϕ(

1

2
+

1

2
cos 2φ −

1

2
+

1

2
cos 2φ)

and using a source time function

uSV =
cos ϕ cos 2φ

4πρv3R
· K ′

(

t −
r

v

)

(2.15)

uSH =
1

4πρv3R
(m4f4(SH))

=
1

4πρv3R
m4(− cos φ sinϕ + 0)

and using again a source time function

uSH =
− cos φ sin ϕ

4πρv3R
· K ′

(

t −
r

v

)

. (2.16)

The radiation pattern for P-, SH- and SV-waves obtained fromthese equations is
shown in Figure 2.5. The obtained P-wave particle motion is parallel to the di-
rection of propagation whereas the S-wave particle motion is perpendicular to the
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Figure 2.5: Radiation pattern of a double couple in the x-z-plane separated into its com-
ponents for the P-wave (blue), SH-wave(red) and SV-wave (green), respectively.

direction of propagation. The far field amplitudes of both, P- and S-waves decay
proportional to the distanceR. Furthermore it can be seen, that the amplitude of

the S-wave is
(

vp

vs

)3

times larger then the P-wave amplitude. Assuming a con-

stant Poisson ratio of 1.73 the S-wave amplitude is 5 times larger than the P-wave
amplitude.

In this work synthetic seismograms for explosion sources were modeled with
equation (2.13) and for double couple sources using the equations (2.14), (2.15)
and (2.16). The displacement field can be transformed from spherical coordinates
into Cartesian coordinates using the following transformation matrix





sin φ cosϕ cos φ cos ϕ − sin ϕ
sin φ sin ϕ cos φ sinϕ cos ϕ

cos φ − sin φ 0









uP

uSV

uSH



 =





ux

uy

uz



 (2.17)

There are may different ways to describe a source time function K ′(t). For the
considerations in this work the shape of the source time function does not play
a key role. A Küpper-type wavelet as described in Fuchs and Müller (1971) was
chosen to represent the seismic moment rate function.
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2.3 Multi-component seismology

Multi-component seismology comprises the investigation of the vertical compo-
nent as well as the horizontal components of ground motion. Thus the correspond-
ing seismic record is a vector quantity that contains significantly more information
on the propagating wavefield. For isotropic media, the particle motion of a com-
pressional wave is oriented in the direction of propagationas shown in Figure 2.6
(a). Consequently the particle motion is parallel to the raypath. In contrast, shear
waves are associated with particle motion perpendicular tothe direction of prop-
agation (see Figure 2.6 (b)). The vector of the particle motion lies within a plane
perpendicular to the propagation direction (ray) and its orientation depends on the
type or orientation of the source (Tatham and McCormack, 1991). Furthermore,
Rayleigh wave particle motion in isotropic media is characterized by a 90 degree
phase shift between the vertical and the in-line componentswhich results in el-
liptical particle motion (see Figure 2.6 (c)). The particlemotion of Love waves is
horizontal and linear (like an SH-wave, see Figure 2.6 (d)) with an azimuth trans-
verse to the propagation direction (Vidale, 1986). However, due to its late arrival
as well as its dispersive character it is unlikely that a Lovewave is interpret as an
S-wave.

Figure 2.6: Geometry of propagation direction and polarization directions for P-waves (a),
S-waves (b), Rayleigh waves (c) and Love waves (d).

Hence the evaluation of particle motion recorded with three-component sensors
enables the discrimination between surface waves, compressional waves and shear
waves. This can be achieved by comparing the direction of wave propagation with
the direction of particle motion. The evaluation process that quantitatively de-
scribes the particle motion of a recorded wavefield is calledpolarization analy-
sis. The success of polarization analysis depends on the accuracy with which the
three-component wavefield is recorded. It must represent the true vector wave-
field and must not be distorted during acquisition or preprocessing. Acquisition
related problems occur when the sensor response or the coupling is not the same
for all three components (see section 3.5 in this thesis as well as Hendrick and
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Hearn (1999)). The dynamic range of the three-component recording system must
also be sufficient to record ”true” amplitudes without any clipping or distortion.
Preprocessing problems can occur during digitalization. Component timing and
amplitude equalization must be identical on all components. As stated by Hen-
drick and Hearn (1999) it is generally not advisable to rectify sensitivity/coupling
problems (e.g., by relative component scaling) unless independent calibration in-
formation is available. They point out a guiding rule that any scalar applied to the
data must be identical on all components. This makes data independent scaling
preferable over data dependent scaling methods like AGC applications. Special
care must be taken when frequency and/or velocity filtering is applied since noise
removal can also modify the underlying signal.

In general polarization analysis is a vector processing technique that can be per-
formed graphically - via visual evaluation of a so called hodogram, or mathemati-
cally obtaining measurements that express the polarization behavior observed in a
particle motion hodogram. The graphical approach becomes impractical for data
sets as large as it typically is for seismic exploration and production. Many differ-
ent algorithms to evaluate particle motion in an automated way were proposed in
the last 50 years (see e.g., Flinn, 1965; Park et al., 1987; Jurkevics, 1988; Bataille
and Chiu, 1991; Li and Crampin, 1991; Franco and Musacchio, 2001). Apart from
Li and Crampin (1991) all proposed automated algorithms consider the wavefield
in a given time interval.

The estimates typically yield three parameters which express the polarization be-
havior observed in a particle motion hodogram: (1) rectilinearity, (2) dip and
(3) azimuth. Hearn and Hendrick (1999) give a comparison of single-trace time-
domain polarization analysis algorithms. They concluded that the investigated ap-
proaches for polarization estimates yield remarkably similar results but differed a
lot in computation times.

In this work, the analysis of the polarization behavior overtime intervals was
adapted from Jurkevics (1988). Considering a time intervalof three-component
dataux, uy anduz containingN time samples auto- and cross-variances can be
obtained from:

Cij =

[

1

N

N
∑

s=1

ui(s)uj(s)

]

(2.18)

wherei andj represent the component indicesx, y, z ands is the index variable
for a time sample. The 3×3 covariance matrix

C =





Cxx Cxy Cxz

Cxy Cyy Cyz

Cxz Cyz Czz



 (2.19)
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is real and symmetric and represents a polarization ellipsoid with best fit to the
data. The principal axis of this ellipsoid can be obtained bysolving C for its
eigenvaluesλ1 ≥ λ2 ≥ λ3 and eigenvectorsp1, p2, p3:

(C − λI)p = 0 (2.20)

whereI is the identity matrix.

The parameter called rectilinearityL, sometimes also called linearity, relates the
magnitudes of the intermediate and the smallest eigenvalueto the largest eigen-
value

L = 1 −

(

λ2 + λ3

2λ1

)

, (2.21)

and is a measure of how linear the wavefield is polarized. It yields values between
zero and one. For a perfectly linearly polarized signal the largest eigenvalueλ1

of the covariance matrix is much larger than the two other eigenvalues. Hence the
rectilinearityL will have values close to one. For signals with elliptical polariza-
tions the magnitudes of the eigenvalues will be much more similar and hence the
rectilinearity decreases.
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Y
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Z
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(c)(b)(a)

Azimuth
Azimuth

Azimuth

Dip

Dip

Dip

Figure 2.7: Polarization parameter sketch. Polarization information are decribed by rec-
tininearity, dip and azimuth. The wave in (a) is characterized by high rectilinearity,
medium dip and hence a reliable azimuth estimate. In (b) the rectilinearity is low and
dip and azimuth are difficult to estimate. In (c) the rectilinearity is high. The energy is
mainly observed at the vertical component which results in areliable dip estimate but an
unreliable azimuth estimate.

The rectilinearity is a very reliable measure to distinguish between body waves
and Rayleigh waves (at least in isotropic media). In Figure 2.7 (a) and (c) waves
with high rectilinearity as observed for body waves are shown, whereas a wave
with low rectilinearity as shown in (b) is rather associatedwith a elliptically po-
larized surface waves.
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The other two polarization parameters (dip and azimuth) describe the orientation
of the largest eigenvectorp1 = (p1(x), p1(y), p1(z)) (see Figure 2.7). The dip can
be calculated by

φ = arctan

(

p1(z)
√

p1(x)2 + p1(y)2

)

. (2.22)

It is zero for horizontal polarization and is defined positive in positive z-direction.
It is clear that the estimation of dip is only meaningful for linear polarized waves
and will not give reliable information when applied to Rayleigh wave recordings.

The azimuth is specified as

θ = arctan

(

p1(y)

p1(x)

)

(2.23)

and is defined positive counterclockwise (ccw) from the positive x-axis.

Note that azimuth estimates should be interpreted in combination with rectilinear-
ity and dip. In addition to the importance of high rectilinearity, it provides highest
reliability if the particle motion on the horizontal components is significant, i.e.,
if the dip is not too steep (compare Figure 2.7 (a) and (c)). Therefore a measure
for the azimuth reliability can be obtained using the rectilinearity valueL and a
weighting factor inversely proportional to the steepness of the dip:

R = L · cos φ. (2.24)

The interpretation of the obtained orientation results needs to be done carefully.
The results for P-waves are directly indicate the directiontowards the source in-
dependent whether it was an explosion source or a double couple source because
the particle motion occurs in propagation direction. In contrast, the dip and az-
imuths obtained from S-waves are not directly invertible interms of the source
directions. Some effects can be seen looking at synthetic data modeled in a ho-
mogeneous isotropic media using a double couple source in the x-z plane. The
equations used for modeling are given in section 2.2. The radiation pattern from
such a source can be expressed in terms of P-wave radiation aswell as SH-wave
and SV-wave radiation as shown in Figure 2.5.

For a source atx = 0 m, y = 0 m andz = 2100 m (see Figure 2.8 and Table 2.1)
and receivers in two vertical monitoring wells, (#1 atx =35 m,y =300 m and
#2 atx = 350 m,y =250 m), synthetic data as shown in Figure 2.9 (a) can
be modeled (some white and isotropic noise was also added to the data). For both
vertical arrays the lowermost receiver was located at a smaller depth as the source.
Rectilinearities, dips and azimuths are calculated using amoving time window of
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Figure 2.8: Aquisition geometry for synthetic data radiated from a double couple source
in the center of the model. The radiation pattern of the S-waves is color-coded: green for
SV-waves and red for SH-waves.

x (m) y (m) z (m) additional information
Example 1
Source 0 0 2100 Double couple in the x-z plane
Monitoring well #1 35 300 1380-1950 20 receivers at 30 m spacing
Monitoring well #2 350 250 1265-1850 40 receivers at 15 m spacing

vP = 5300 m/s,vS = 3060 m/s
Example 2
Source 1 (E1) 50 100 3000 Double couple in the x-z plane
Source 2 (E2) 50 50 2100 Double couple in the x-z plane

50 ms delay between events
Monitoring well #1 350 20 2250-2850 20 receivers at 30 m spacing
Monitoring well #2 250 350 2350-2935 40 receivers at 15 m spacing

vP = 5300 m/s,vS = 3060 m/s

Table 2.1: Parameter for the synthetic data analyzed in thissection.
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20 ms length. The rectilinearity versus time plot in Figure 2.9 (b) clearly separates
the linearly polarized body waves from the background noise. Later in this work
a P-wave detection algorithm will be presented that makes use of this separation
possibility.

The resulting dips and azimuths versus time are shown in Figure 2.9 (c) and (d).
The dips observed for the P-waves are very consistent and increase the higher the
receivers are located in the monitoring wells. The azimuthsof the P-waves also re-
flect remarkably the source receiver geometry. For this reason the P-wave dips and
azimuths can be used to invert for the source direction. The S-wave recorded in
monitoring well #1 shows almost zero dip over the whole array. This is consistent
with what we should observe since Figure 2.8 indicates that mainly SH-waves will
be observed at vertical arrays located close to the y-axis. The azimuth calculated
from this SH-wave shows a 90 degree offset to the P-wave azimuth. As shown in
equation (2.23) the azimuth is calculated using only the horizontal components
of the largest eigenvector. Whether the azimuth can be inverted for the source
azimuth by adding 90 degree depends on the following condition:

r · S = rxsx + rysy = 0, (2.25)

wherer is the direction vector towards the source andS the S-wave particle mo-
tion vector (the largest eigenvector, respectively). Per definition the S-wave par-
ticle motion vector is perpendicular to the propagation direction which means
r · S = rxsx + rysy + rzsz = 0. Hence the condition in equation (2.25) is only
fulfilled if rz = 0 or sz = 0, which is the case for SH-waves or if the receiver is at
the same depth as the source.

Consequently, the S-wave azimuths obtained in monitoring well #1 could be used
to invert for the source azimuth. In contrast, the azimuths in monitoring well #2
(see Figure 2.9 (c) and (d)) do not fulfill the condition givenin equation (2.25) or
at least not over the full length of the array. The azimuth varies over the 600 m
array (15 m spacing× 40 receiver) from almost 0 to 90 degree which is a result
of the recording geometry and the SV-wave radiation pattern. Hence, the source
azimuth cannot be inverted from the S-wave azimuths in monitoring well #2.

It is clear that the interference of different phase arrivals, e.g., from a second event,
influences the polarization estimates. In Figure 2.10 (a) synthetic data are shown
which demonstrate the effects of arrival interference. Thedata were modeled with
two double couple sources and the recording network consisted of two monitoring
wells. Monitoring well #1 is placed atx = 350 m andy = 20 m and well #2 at
x = 350 m, y = 250 m. Where the phase arrivals intersect, the resulting particle
motion estimate is a combination of the particle motion vectors of the individual
arrivals. Depending on the individual wave types it may evenresult in high recti-
linearity values as shown in Figure 2.10 (b) where the P-waveof the second event
E2 intersects the S-wave of the first event E1 in monitoring well #1 or where the
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Figure 2.9: Polarization analysis of synthetic data generated using a double couple source
in the x-z-plane for a homogeneous isotropic medium. The radiation pattern of this source
is shown in Figure 2.5 and 2.8. The monitoring network consists of two vertical wells (see
Table 2.1, Parameters for Example 1)). The first 20 receiverscorrespond to monitoring
well #1 and the other 40 receivers to a monitoring well #2, respectively.
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S-wave of E1 intersects both the P- and S-wave of E2. In the case shown here
only the P-wave interference of E1 and E2 in well #2 shows a small but recog-
nizable rectilinearity decrease. The dip and azimuth estimation also demonstrates
that the orientation of a dominating arrival may be preserved (see e.g. Figure 2.10
(c) and (d) in well #2 where the S-wave of E1 intersects with the P-wave of E2).
Both, azimuth and dip of the S-wave of E1 are still consistentwith the estimates of
neighboring receivers that are not effected by arrival interference. Hence a consis-
tency check comparing the estimated dip and azimuth with estimates from other
receivers in an array can provide useful information about the reliability of the
estimated value. Here, such a test would show that the P-waveof E2 has incon-
sistent polarization for receivers 35 - 41, whereas the estimates for the S-wave
polarization of E1 was preserved at these receivers.

It is intuitive that the length of the investigated time interval influences the result-
ing polarization parameters. In fact, the interval length influences resolution and
stability. Polarization parameters obtained from a very long interval may become
very smooth and consequently the resolution decreases. It can also lead to wrong
estimates, especially when the interval contains more thanone phase arrival. The
effects would be the same as for intersecting phase arrivalswhich was discussed
above. On the other hand, polarization parameters obtainedfrom a too short in-
terval may be unstable while resolving the instantaneous polarization attributes
very good. The most extreme interval length - one sample long- was proposed by
Li and Crampin (1991). Of course, the parameter of rectilinearity is meaningless
when only one time sample is considered. Instantaneous azimuth and dip can be
estimated but may become highly variable depending on the signal-to-noise ratio
of the considered data. Nevertheless, a sample-by-sample estimate of polariza-
tion orientation can resolve orientations of partly intersecting arrivals and is less
computationally expensive than the covariance matrix based estimate.

In this thesis, both instantaneous as well as interval-approximated polarization
estimates will be used for the location of seismic sources. For the interval-
approximated polarization estimates time intervals of thelength of one or two
dominant signal periods are used since this provides the best compromise be-
tween stability and resolution. Furthermore, the investigations of polarization at-
tributes have shown that P-wave polarization attributes are directly invertible with
respect to propagation directions whereas S-wave polarizations need careful inter-
pretations. For this reason, the use of the P-wave polarization for seismic source
location was chosen over the use of S-wave polarization evenif the S-wave might
provide a more dominant signal.
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Figure 2.10: Polarization analysis of synthetic data generated using two double couple
sources in an homogeneous isotropic medium. The monitoringnetwork consists of two
vertical wells (see Table 2.1, Parameters for Example 2)). The first 20 receivers correspond
to monitoring well #1 and the other 40 receivers to a monitoring well #2, respectively.
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2.4 Ray Theory

Seismic signals in complex media are difficult to describe and it takes a lot of
computational power to simulate realistic wave propagation. Much less computa-
tional power is needed to approximate the propagation of body-waves with ray-
tracing. In literature ray theory is intensively discussedand a complete descrip-
tion and derivation can be found in the books ofČervený (2001) and Chapman
(2004). The approach is based on an asymptotic high frequency approximation to
the wave equation and commonly used for several applications such as reflection
seismics, refraction seismics or seismology. The high frequency approximation
means that the wavelength is small compared with the propagation distances and
the spatial variations / heterogeneities of the medium. These circumstances may
require smoothing of input models but also allow us to consider the propagating
wave locally as a plane wave.

When talking about raytracing it is necessary to distinguish between kinematic
ray tracing and dynamic ray tracing. The kinematic ray theory describes the ge-
ometry and times of rays and wavefronts whereas dynamic raytracing considers
geometrical spreading of rays and the magnitude of the displacement.

In this thesis only kinematic ray tracing is considered since for the location method
mainly the geometry and times of rays are needed. The description of the acoustic
kinematic ray theory starts with the equation of motion

∂v

∂t
= −

1

ρ
∇P +

1

ρ
f (2.26)

and its constitutive relation

∂P

∂t
= −κ∇ · v. (2.27)

Herev describes the velocity of the medium (particle velocity),P the pressure,
ρ the density,κ the bulk modulus andt represents the time. The symmetry of
these equations implies that velocity and pressure have similar solutions. Chap-
man (2004) uses the following ansatz to solve the equations:

v(ω,xR) = f(ω)
∑

n

eiωT (xR,Ln)
∞
∑

m=0

v(m)(xR,Ln)

(−iω)m
(2.28)

and
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−P (ω,xR) = f(ω)
∑

n

eiωT (xR,Ln)
∞
∑

m=0

−P (m)(xR,Ln)

(−iω)m
. (2.29)

The ansatz is written in the frequency (ω) domain andf(ω) is an arbitrary spec-
trum depending on the source. The notationLn and the corresponding summation
overn is used by Chapman (2004) to indicate that more than one path may exist
from a source point to the pointxR which is known as ray expansion.T repre-
sents the travel-time function, and(m) denotes the index, whereas(...)m refers
to the power ofm. In homogeneous media acoustic and elastic waves propagate
approximately without dispersion with a frequency-independent velocity and sat-
isfy Snell’s law at interfaces. In inhomogeneous media similar behavior can be
observed as long as the wavelength is small compared to the spatial variation.
Therefore Chapman (2004) writes his ansatz as a series in amplitude coefficients
v(m) andP (m).

Substituting equation (2.28) and (2.29) into equation (2.26) (without the body
force term) leads to:

f(ω)
∑

n

iω · eiωT (xR,Ln)

∞
∑

m=0

v(m)(xR,Ln)

(−iω)m
=

−1

ρ
·

(

f(ω)
∑

n

iω · eiωT (xR,Ln) · ∇T (xR,Ln)

∞
∑

m=0

−P (m)(xR,Ln)

(−iω)m

)

−
1

ρ
·

(

f(ω)
∑

n

eiωT (xR,Ln)

∞
∑

m=0

−∇P (m)(xR,Ln)

(−iω)m

)

(2.30)

and into equation (2.27)

f(ω)
∑

n

iω · eiωT (xR,Ln)
∞
∑

m=0

−P (m)(xR,Ln)

(−iω)m
=

− κ ·

(

f(ω)
∑

n

iω · eiωT (xR,Ln) · ∇T (xR,Ln)

∞
∑

m=0

v(m)(xR,Ln)

(−iω)m

)

− κ ·

(

f(ω)
∑

n

eiωT (xR,Ln)

∞
∑

m=0

∇ · v(m)(xR,Ln)

(−iω)m

)

, (2.31)

respectively. Omitting the argument(xR,Ln) and defining boundary conditions
(v(−1) = 0 andP (−1) = 0) equation (2.30) and equation (2.31) can be written
as
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ρ

∞
∑

m=0

v(m)

(−iω)m
= −∇T

∞
∑

m=0

−P (m)

(−iω)m
+

∞
∑

m=0

−∇P (m−1)

(−iω)m
(2.32)

∞
∑

m=0

P (m)

(−iω)m
= κ ·

(

∇T

∞
∑

m=0

v(m)

(−iω)m
−

∞
∑

m=0

∇v(m−1)

(−iω)m

)

. (2.33)

The coefficients of each power ofω are set zero (as they must be to make the
equation valid for arbitrary frequency) and it follows

−∇P (m−1) = ρvm − pP m (2.34)

κ∇ · v(m−1) = κp · vm − P m (2.35)

for m ≥ 0, with the slowness vector

p = ∇T. (2.36)

The next step is to eliminatevm from equation (2.34) which can be done by rear-
ranging equation (2.35) and substituting it into equation (2.34):

−∇P (m−1) = ρ
κ∇ · v(m−1) + P (m)

κp
− pP m

(κp2 − ρ)P (m) = κ
(

p · ∇P (m−1) + ρ∇ · v(m−1)
)

(2.37)

For m = 0 and using again the boundary conditions (v(−1) = 0 andP (−1) = 0)
this equation reduces to :

(

κ

ρ
p2 − 1

)

P (0) =
(

α2p2 − 1
)

P (0) = 0, with
√

κ

ρ
= α. (2.38)

The series of amplitude coefficients in the ansatz (2.29) canalways be defined in
a way thatm = 0 holds the first non-zero term and hence the coefficientP (0) can
be assumed to be non-zero. Therefore it is possible to rewrite equation (2.38):

(∇T )2 =
1

α2
(2.39)
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Ray

Wavefronts T(x) = t

Slowness vector

Figure 2.11: The ray path must be in the direction of the slowness vector and orthogonal
to the wavefronts.

which is known as the eikonal equation. Wavefronts are the surfaces where the
travel-time function isT (x) = t. The slowness vector is perpendicular to the
wavefronts as shown in Figure 2.11. The ray is defined as the trajectory orthog-
onal to the wavefronts which can be parameterized in arc length s. Assumings
increases with increasingT the eikonal equation becomes:

dT

ds
=

1

α
(2.40)

Under these circumstances the ray pathdx/dT must be in the direction of the
slowness vector and from equation (2.40) it follows (with|dx| = ds)

dx

dT
= α2p. (2.41)

Using equation (2.40) and (2.36) the change of the slowness vector is

dp

dT
= −

∇α

α
. (2.42)

Equation (2.41) and (2.42) represent the kinematic ray equations. Since the loca-
tion method presented in this work will use initial conditions (values) for the po-
sitionx0 and the directionp0 the ray path can be obtained solving these differen-
tial equations. In many scientific applications the fourth-order-Runge-Kutta (RK4)
method is used to numerically integrate ordinary differential equations (Press et
al., 1992). This approach evaluates the derivatives once atthe beginning of the
interval (initial point)k1, twice at midpointsk2 andk3 , and once at the end of the
intervalk4:
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k1 = ∆tf(xn, yn)

k2 = ∆tf(xn +
1

2
∆t, yn +

1

2
k1)

k3 = ∆tf(xn +
1

2
∆t, yn +

1

2
k2)

k4 = ∆tf(xn + ∆t, yn + k3) (2.43)

(2.44)

Then the new incrementy(n+1) is calculated as a weighted average of these esti-
mated increments

y(n+1) = yn +
1

6
k1 +

2

6
k2 +

2

6
k3 +

1

6
k4 + O(∆t5) (2.45)

wherek2 andk3, the two midpoint values, give double weights. This method is
reasonably simple and robust and provides a stable and accurate numerical solu-
tion of differential equations as long as the propagation increment - here a ray
tracing time step∆t - is sufficiently small compared to the variations in the inte-
gration interval. The RK4 method has an error that is proportional to∆t5 for an
integration step, while the total accumulated error is proportional to∆t4.

Hence, the time step for the ray propagation needs to be chosen carefully. On the
other hand, the use of small propagation time steps increases the number of time
steps necessary to trace a ray of a fixed length, which may result in an unreason-
able long computation time. Press et al. (1992) recommends the use of adaptive
step size control to achieve some predetermined accuracy inthe solution with min-
imum computational effort. However, in this work the numberof rays as well as
the considered length of rays was expected to be reasonable small and the adaptive
step size control was not implemented in the ray tracing method.
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