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ABSTRACT

Spatial distribution modeling of CO in Tehran can lead to better air pollution management and control, and it is also
suitable for exposure assessment and epidemiological studies. In this study MARS (Multi-variate Adaptive Regression
Splines) is compared with typical interpolation techniques for spatial distribution modeling of hourly and daily CO
concentrations in Tehran, Iran. The measured CO data in 2008 by 16 monitoring stations were used in this study. The
Generalized Cross Validation (GCV) and Cross Validation techniques were utilized for the parameter optimization in the
MARS and other techniques, respectively. Then the optimized techniques were compared based on the mean absolute
of percentage error (MAPE). Although the Cokriging technique presented less MAPE than the Inverse Distance
Weighting, Thin Plate Smooth Splines and Kriging techniques, MARS exhibited the least MAPE. In addition, the MARS
modeling procedure is easy. Therefore, MARS has merit to be introduced as an appropriate method for spatial
distribution modeling. The number of air pollution monitoring stations is very low (16 stations for 22 zones) and the
distribution of stations is not suitable for spatial estimation, hence the level of errors was relatively high (more than
60%). Consequently, hourly and daily mapping of CO provides a limited picture of spatial patterns of CO in Tehran, but
it is suitable for estimation of relative CO levels in different zones of Tehran. Hence, the map of mean annual CO
concentration was generated by averaging daily CO distributions in 2008. It showed that the most polluted regions in
Tehran are the central, eastern and southeastern parts, and mean annual CO concentration in these parts (zones 6, 12,

Corresponding Author:
Haarnid Talieri Shalbvaioni
@ : +49-30-83854366
& : +49-30-83854366
P4 : hamid.taheri@met.
fu-berlin.de

13, 14 and 15) is between 4.2 and 4.6 ppm.
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1. Introduction

In the last decades, the energy consumption, emission of air
pollutants and number of poor air quality days has increased in
cities because of increases in population in urban areas (Chan and
Yao, 2008). Similar to many other mega cities, Tehran (the capital
city of Iran) has serious air pollution problems. The major air
pollutants in Tehran are CO, PMjo, NO,, SO, HC and O3 (Naddafi et
al., 2012). Although only 10% of Iran’s population lives in Tehran,
about 30% of Iran’s vehicles are found in Tehran and 30% of Iran’s
industrial sites are located around Tehran (Atash, 2007). About 70
and 30% of the air pollution sources in Tehran are non—stationary
and stationary sources, respectively (Abbaspour and Soltaninejad,
2004). Of Tehran’s many motor vehicles, 40% of those are old
vehicles (20 years or older) (Atash, 2007). Low quality fuels and the
large number of old and poorly maintained vehicles are
responsible for much of the pollutant emissions in Tehran
(Abbaspour and Soltaninejad, 2004; Atash, 2007). CO, one of the
major air pollutants in Tehran, is mainly formed by primary
combustion, particularly in vehicle engines (Givehchi et al., 2013),
and there is a direct relationship between CO emission and traffic
flow and speed in Tehran (Rashidi and Massoudi, 1980). The
sources of CO in Tehran are emissions by transportation (97.1%),
household and commercial areas (0.6%), industries (0.3%) and
agriculture (0.2%) (Vafa—Arani et al., 2014). The health risks posed
by CO are highly related to the concentration and duration of

exposure. CO poisoning at low concentrations can cause
headaches, dizziness, weakness, nausea, vomiting, confusion,
disorientation, visual disturbance and subtle cardiovascular
ilinesses (Raub et al., 2000). Unconsciousness, coma, convulsions,
cardiorespiratory problems, and death may occur after prolonged
exposures or acute exposure to high concentrations of CO (Raub et
al., 2000). The studies in Tehran showed that increased CO
concentration can increase the allergenicity of pollen grains (Majd
et al.,, 2004), daily admission in Tehran’s hospitals due to
cardiovascular diseases (Hosseinpoor et al., 2005) and the total
number of deaths due to respiratory and cardiovascular diseases
and cancer (Abbaspour and Soltaninejad, 2004). In addition, it has
been found that exposure to increased levels of CO during
pregnancy may increase the risk of fetal abnormality (Ziaei et al.,
2005).

Modeling of spatial distribution of pollutants can help to
estimate pollutant concentration in areas with no air pollution
monitoring stations. In addition, it can specify the regions that
exceed the air pollution standards. Furthermore, spatial
distribution modeling of pollutants can be utilized for the exposure
assessment and epidemiological studies (Jerrett et al., 2005; Hoek
et al., 2008). Little data is available about the spatial distribution of
CO in Tehran, hence there is a need for estimation of CO levels in
Tehran’s different zones.

© Author(s) 2015. This work is distributed under the Creative Commons Attribution 3.0 License.
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There are two general approaches for mapping of air
pollutants: dispersion modeling and spatial interpolation (Briggs,
1992). The most serious problem with dispersion models is their
severe data demand (Briggs et al., 1997). Different techniques have
been developed for the spatial interpolation of air pollutants and
they are utilized for the modeling of spatial distribution of air
pollutants in urban area. Among these techniques, the IDW
(Inverse Distance Weighting), Kriging, Cokriging and TPSS (Thin
Plate Smooth Splines) are well-known interpolation techniques
and have been widely used for the spatial distribution modeling of
air pollutants. Mulholland et al. (1998) used universal Kriging for
the spatial interpolation of ozone in Atlanta metropolitan area.
TPSS was applied for spatial distribution modeling of NO;
concentrations and its performance was evaluated by the cross
validation technique (lonescu et al., 2000). The results showed that
estimated NO, concentrations by interpolation are reliable. Pikhart
et al. (2001) employed geostatistical techniques for the estimation
of SO, levels in Prague, Czech Republic and Poznan, Poland. Ung et
al. (2001) utilized the TPSS and Kriging methods for the modeling
of pollutant concentration in Strasbourg, France. Jerrett et al.
(2001) applied universal Kriging for spatial interpolation of Total
Suspended Particulates (TSP) in Hamilton, Canada. Bel (2004)
proposed a new technique for evaluation of ozone concentration
over Paris, France and compared it with classical Kriging methods.
Patil et al. (2003) utilized different interpolation techniques (e.g.
IDW and TPSS) for the mapping of NOx and SOx spatial variations in
the winter in Delhi, India. Finkelstein et al. (2003) mapped the TSP
and SO, in Hamilton using the Kriging. Jerrett et al. (2005) applied
cubic splines, Kriging, universal Kriging, and multi—quadratic radial
basis function for spatial distribution modeling of PM,s in Los
Angeles, California. They found that universal Kriging and the
multi-quadratic radial basis function have better performance
than the other methods. Beaulant et al. (2008) employed TPSS for
the spatial distribution modeling of Strasbourg, France. Pearce et
al. (2009) investigated the potential of the Ordinary Kriging and
Kriging with External Drift (KED) techniques to provide high—
resolution maps of PM,s in Cusco, Peru. Statistical evaluations
indicated that KED was the most appropriate model. Beelen et al.
(2009) applied ordinary Kriging and universal Kriging techniques for
the development of EU-wide maps of air pollutants (NO, PM1g, O3,
SO,, and CO) on a 1x1 km resolution for the global, rural and urban
scales, separately. The universal Kriging presented better perform-
ance than the ordinary Kriging. Singh et al. (2011) compared the

Kriging and Cokriging techniques for spatial interpolation of 8h
mean daily maximum ozone concentration and daily mean PMyg
concentration over the Milan, Italy urban area. The results
indicated that the Cokriging technique has better performance
than the Kriging technique.

MARS (Multi—variate Adaptive Regression Splines) is a well—
known nonparametric regression method that has been utilized for
the different spatial and temporal modeling in miscellaneous
studies (e.g. Munoz and Felicisimo, 2004; Leathwick et al., 2005;
Leathwick et al., 2006; Heikkinen et al., 2007; Storlie et al., 2009),
but it has not been used for spatial distribution modeling of air
pollutants over urban areas.

MARS is essentially a combination of spline regression,
stepwise model fitting and recursive partitioning, and it is able to
reveal the underlying nonlinear patterns hidden in complex data
sets (Storlie et al., 2009). Number of input variables is not a
limitation for MARS and it can be applied for spatial interpolation
with different numbers of input variables. In addition, one of its
important capabilities is the ability to consider the interaction of
different input variables from the product of two or more basis
functions (Friedman, 1991a; Friedman, 1991b; Friedman and
Rooster, 2005; Hastie et al., 2009). Hence, the MARS construction
implies its ability for multivariable interpolation problems. Thus in
this paper, MARS is evaluated for the spatial distribution modeling
of an air pollutant in Tehran and it is compared with the IDW, TPSS,
Kriging and Cokriging techniques. CO is one of the major air
pollutants in Tehran (Ziaei et al., 2005) and it is one of the
pollutants that requires prevention and control measures to insure
adequate human health protection (Raub et al., 2000). Therefore,
in this study the spatial distribution of CO in Tehran’s different
zones is developed by MARS.

2. Materials and Methods
2.1. Study area

Our study area is the city of Tehran, which is located in the
northern part of Iran (between 35.56—35.83°N and 51.20-51.61°E)
and its area is 18 909 km2. It is the capital and the most crowded
city of Iran and its population is about 11 million. The geographical
position of Tehran in Iran is exhibited in Figure 1.

Figure 1. The position of Tehran in Iran (Source map: US Energy Information
Administration), with a view of Tehran and the Alborz mountains in the northern part of
Tehran (Photographer: Hansueli Krapf).
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Tehran is bordered by the Alborz Mountains in the northern
part (Figure 1) and there are flat plains in the other parts of
Tehran. The weather in Tehran is mainly influenced by altitude
elements and pollutant emissions. The pollution cannot escape
from the city because of a lack of permanent winds. The altitudes
in Tehran in the northern, central and southern parts are 1 700,
1200 and 1 100 meters, respectively. The maximum and minimum
temperatures in Tehran are 43.9 and -15 centigrade degrees,
respectively. Mean annual rainfall in Tehran is about 316
millimeters. Tehran city and its 22 zones are exhibited in Figure 2.
The CO data was retrieved from 16 air pollution monitoring
stations shown in Figure 2.

2.2. Air pollution data

The air pollution monitoring stations in Tehran displays
different pollutant concentrations in the air by bar charts on an
electronic panel and they save the concentration of pollutants as
hourly averaged data. All of the stations measure the level of air

pollutants such as CO, NO,, SO,, NOyx, O3 and PMjo. The hourly CO
data of 16 air pollution monitoring stations was provided by the
Tehran Air Quality Control Corporation (AQCC). The latitude,
longitude and altitude of the employed stations are presented in
Table 1. The accuracy of CO measurements is +10%. The air
pollution data from 2008 was utilized in this study. A database of
hourly CO concentrations measured at different stations in 2008
was created. Then the average of the hourly data was considered
as the mean daily CO concentration and the database of daily CO
concentration in 2008 was created.

2.3. Elevation data

The elevation data in Tehran is utilized as the auxiliary variable
for the Cokriging technique, or it can be used as an input variable
for the MARS model. The implementation of MARS with three
input variables (latitude, longitude and elevation), also known as
MARS3, requires elevation data as an input variable.

51 °1P'D"E

51 I‘25)'0"E

51a39|0||E

35°50'0"N

35°40'0"N-

Boundaries of Tehran
and its 22 zones

® Meteorological stations
A Air pollution monitoring stations

-35°50'0"N

+35°40'0"N

51°10'0"E

51°200°E

Figure 2. Tehran’s geographical situation and its 22 zones with the positions of meteorological and air pollution
monitoring stations.

51°30'0°E

Table 1. Location of the air pollution monitoring stations

Altitude (m) Longitude (°,', ") Latitude (°,"," Longitude (UTM) Latitude (UTM)
1260 51, 24, 28.475 35,43, 16.388 536893 3953105
1140 51, 25, 23.563 35, 40, 38.060 538298 3948233
1575 51, 29, 6.114 35,48,0.21 543825 3961881
1390 51, 23, 10.705 35, 44, 48.242 534928 3955927
1067 51, 25, 32.08 35, 36, 16.474 538547 3940175
1299 51, 16, 4.39 35, 44, 23.597 524223 3955132
1480 51,18,51.611 35, 45, 46. 415 528415 3957696
1302 51, 30, 22.073 35, 43,51.69 545771 3954234
1178 51, 29, 56.480 35, 37, 48.097 545185 3943029
1299 51, 25, 34.003 35, 43, 48.490 538565 3954101
1211 51, 20, 13.997 35,42,16.121 530506 3951224
1140 51,23,41.144 35, 38, 48.826 535737 3944857
1422 51, 26, 21.895 35, 46, 21.068 539717 3958807
1431 51, 34,57.879 35,43,0.588 552708 3952968
1596 51, 26, 3.355 35, 48, 21.942 539235 3962529
1152 51, 25, 24.498 35,41, 4.574 538318 3949050
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2.4. Interpolation techniques

Interpolation techniques that are considered in this research
are the MARS, IDW, TPSS, Kriging and Cokriging techniques. The
IDW, TPSS, Kriging and Cokriging techniques are well known and
they are described in Webster and Oliver (2001).

MARS is a novel nonparametric modeling technique that was
developed by Jerome Friedman (Friedman, 1991a) and its
algorithm is explained briefly here. Suppose that we are going to
model a system where X=(X1, Xa,..., Xm,.., Xp) is the vector of p input
variables and Y is the output function of the system. Imagine, there
are n samples (observations) of the system so that the kth sample
(k=1,..., n) is denoted by Xi=(Xk1, Xk2,-., Xkm,-.., Xkp) @nd yx. The
principles of the MARS technique are based on the piecewise linear
basis functions (BF) of the following forms:

_ _ N _fx—t ifx>t
BF1(x) = |x — t|, = max(0,x t)—{o ifx<t

BF2(x) = |t — x|, = 0t — )_{t—x ifx<t (1)
x) = x|y = max(0,t —x) =1 ifx>t

where, t is called the Knot and |.|. means the positive part. These
functions are also known as reflected pairs, mirror-image
functions, or hockey stick functions and can be defined for each
input variable X, at its observed values xm , k=1, 2,..., n as:

BF1 = max(0, X,, — Xgm) 2)
BF2 = max(0, Xy, — Xim)

Consider the set C involving all 2nxp possible basis functions,
i.e.,

Ci = { (Xi—t)+ ) (t - Xi)+ } ; tE {xli,le', ...,X]'i, ey xm-}, (3)

i=1,..,p

The MARS modeling technique is performed in a forward—
backward stepwise fashion. In the forward step, a model consists
of only the intercept being considered (y = f3,), then MARS adds a
reflected pair functions from C to the model that minimizes the
sum of squares of the residuals. That is, nxp models of the form
y = BOI + Blj(Xi_xji)+ + ﬁzj(x” - X[)+ ,j = 1, .., are fitted
and the one with the minimum SSE = Y, (y; — 9;)% is selected
as the appropriate one. Suppose that the current model is denoted
by model no. 1. In the next stage, each of the remaining (n—1)xp
reflected pairs in C are candidates to add to the model no.1. In
each stage, the coefficients are re—estimated by the least square
method. In this way, the model no. 2 is formed by selecting paired
functions that provide the minimum SSE. The process of adding the
new terms can be repeated until the variation of SSE is not
significant or the number of basis functions in the model is equal to
the user defined maximum number of basis functions. This upper
limit should be large enough to ensure that the correct model can
be captured. At the end of the forward step, the resulting model
has many redundant knots and clearly has poor performance to
predict the test data. In other words, this is an over—fitted model.
Hence the basis functions that contribute least to the overall fit
must be removed from the model in the backward pruning step.

The backward step is started by the final model at the end of
the forward step. Suppose that this model is denoted by fu
including M basis functions (M/2 pair basis functions) and one bias
term. In each step of the backward procedure, one basis function is
removed from the current model to provide models with M—-1, M—
2,...1, and 0 basis functions. If the resulting models are named by
fm-1, fv-2, f1, fo, respectively, then each of these can be a
candidate as the final MARS model. The criterion to choose the

best model is generalized cross validation (GCV) (Hastie et al.,
2009). This measure, for the I*h(/=0,1,...,M—1) model, f;, is defined as
Equation (4):

SSE,

GCVe—————
1= (wm; /n))

(4)

where, m; and SSE; are the number of basis functions and the sum
of squares of residuals of the ™ model in the deletion step,
respectively. The user—defined v is the smoothing parameter that
is normally selected between 2 and 4. The model with the lowest
GCV value is the final MARS model.

The only remaining question is that of which basis function
should be removed in each deletion step. Suppose that by, b,,..., by
are the basis functions in model f. The reduced model f_; is
formed by removing a basis function from the set bi, by,..., b
whose removal will result in the smallest increase in SSE,.

The above explanations are about the MARS technique
without consideration of interaction among input variables. But
MARS can also be implemented with consideration of interaction
among input variables if interactive basis functions are defined in
the set of possible basis functions (C). An interactive basis function
can be defined by multiplication of the basis functions of different
variables. For example, /(X1, X2)=max(0, X1—xk1)xmax(0, X,—Xs2) is an
interactive basis function which defines the interaction between
the two input variables X; and X; in a localized region where X1>xi1
and X>>xs; (Xk1 and xs are the kth and sth values of input variables X;
and X, respectively). This means that different sub-regions of
predictors might have different interaction patterns that can be
expressed explicitly in MARS.

2.5. Algorithm of study

Multiple steps of the research algorithm are shown in
Figure 3. In the first step, the hourly carbon monoxide
concentration data for the year 2008 were collected from the air
pollution stations. Then the new database was generated by
converting the hourly data to daily data.

Working days in Iran are Saturday to Wednesday. Friday is the
only official weekend holiday, but some companies, state offices
and organizations don’t work or work fewer hours than regular
working days on Thursdays. Therefore, there are different traffic
intensities on Fridays, Thursday and Saturdays—Wednesdays, and
consequently different air pollution patterns and intensities. In the
second step, a Friday, a Thursday and a Monday were selected and
the hourly CO concentration data of the 16 monitoring stations for
the selected three days (72 hours) in 2008 was transferred to GIS
environment of ArcGIS software. Then, the different interpolation
techniques (IDW, TPSS, Kriging and Cokriging) were implemented
on these hourly maps and the parameters of the above techniques
for each hour were calibrated separately. Then a Friday, a Thursday
and a Monday were selected in each month in 2008 (36 days), the
daily CO concentration data was calculated using the hourly CO
measurements from the 16 monitoring stations and a similar
interpolation procedure was implemented on the 36 different daily
datasets.

Similarly, the datasets were imported to MATLAB for
implementation of MARS2 (MARS with two input variables
(longitude and latitude)) and MARS3 (MARS with three input
variables (longitude, latitude and elevation)) and generated the
spatial distribution models of CO in hourly and daily scales (Step 3).

In the fourth step, the optimum values of the parameters of
the typical interpolation techniques were determined using the
cross—validation (CV) technique (leaving out the observation points
in each map one at a time).
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Similarly, the optimum models for MARS2 and MARS3 were
determined using the generalized cross validation (GCV) technique
(step 5).

’

Mean Absolute Percentage Error (MAPE =% ?=1|%|

13
where, n is number of observations. y; and J; are the measured
and estimated CO concentrations, respectively) was utilized as
evaluation criteria for all of the studied techniques and the best
method for spatial distribution modeling of hourly and daily CO
concentration was determined (step 6). In the last step (step 7),
the hourly, daily and annual spatial distribution maps of carbon
monoxide concentration in Tehran were generated using the best
method and the pollution condition in different parts of Tehran
was discussed.

3. Results and Discussion

The input variables for the IDW, TPSS and Kriging methods are
latitude and longitude data and the output is CO concentration.
Cokriging not only utilizes longitude and latitude as input variables,
but also the elevation data as auxiliary input variables. The
optimum conditions for different interpolation techniques were
determined by the cross—validation technique in the ArcGIS
environment and have been presented in Sargazi et al. (2011). The
cross validations showed that the optimum weight exponent for

hourly and daily interpolation by the IDW technique are 2.1 and
1.1, respectively. These weight exponents are in the range of
weight exponents, presented by de Mesnard (2013), for the
dispersion of pollution plumes. In addition, the optimum
smoothing parameter for the TPSS technique is equal to 1.1x10-11
and the best semi—variogram model for the Kriging and Cokriging is
spherical model.

The MPAE of each optimized method for 36 daily and 72
hourly datasets was calculated. Tables 2 and 3 show the MAPE
values of the IDW, Kriging, Cokriging, MARS2 and MARS3
techniques for spatial modeling of hourly and daily CO concen-
tration in Tehran. MAPE values for typical interpolation techniques
ranged from 79.7 (Cokriging technique) to 110.5 (TPSS technique)
and from 75.9 (Cokriging technique) to 109 (TPSS technique) for
hourly and daily interpolations, respectively.

The Cokriging technique is the best typical interpolation
technique for the spatial modeling of CO in Tehran because its
MPAE for both hourly and daily modeling is lower than the other
studied interpolation techniques (Tables 2 and 3). It has better
results than the IDW, TPSS and Kriging techniques, because it uses
not only the latitude and longitude data as input variables but also
implicitly uses the elevation data.

[ Collecting the Catbon monoxide data from moratoring stations (siep 1) J

‘_h_\_h__\_h‘u

Spatial distribution modeling of cathon
ronoxide i hourly and daily scales
nging MARS2 and MARSS in the
MATLAB (step 3)

Spatial distribation modeling of carbon monoxde in hootly
and daily seales using typical irterpolation techrigues (IDW,
TPS5, Kriging, Cokriging) in AwGIS enviromment (step 2)

'

Gereralized Cross validation of WMARSZ and
WILESS for determination of the WMARS2 and
WAERS 3 raodels(step 5)

Cross-validation of the typical interpolation technigues for
deterrmination of the optirm results for each imterpolation

techrdgue (step 4)

:

I

Comparison between WARS2, MARSS and other interpolation techrigues by cross
walidation and using percent of dheohite error criterion and deterraination of the best method
for spatial distribution odeling of catbon mono:dde i houtly and daily scales (step 6)

Generating the maps of daily and howly and anvnal spatial
distribartion of CO concentration by the best mterpolation techmicpue
in Tehran (step T)

Figure 3. The main steps of research algorithm.

Table 2. Mean absolute percentage error (MAPE) for hourly spatial distribution modeling of CO concentrations in Tehran for
different interpolation techniques

Interpolation Technique ‘ TPSS IDW

MPAE 110.5 85.3

Kriging Cokriging MARS2 MARS3

81.6 79.7 73.4 69

Table 3. Mean absolute percentage error (MAPE) for daily spatial distribution modeling of CO concentratiosn in Tehran for
different interpolation techniques

Interpolation Technique TPSS IDW
MAPE 109 95.2

Kriging Cokriging MARS2 ‘ MARS3

86.2 75.9 65.9 64.4
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MPAEs of MARS2 for hourly and daily modeling are 73.4 and 65.9,
respectively. Although the MARS2 utilized only the two input
variables, it presented better results than the Cokriging technique,
which used the three input variables. The better results of MARS2
over the Cokriging technique in the daily and hourly scales implies
the capability of MARS for spatial distribution modeling. It was
mentioned previously that MARS is able to consider the interaction
among the input variables. Thus, an example is presented to show
how MARS considers the interaction among input variables. For
spatial modeling of hourly CO concentration in Tehran by MARS2
on September 11th, 2008 (04:00am), two input variables—
Longitude (x;) and Latitude (x,)—are employed. The final MARS2
model is as in Equation (5):

CO = 1.3+ 2272 x BF1+ 2350.7 X BF2 — 272 X BF3 (5)

where, CO is the hourly CO concentration (ppm) on September
11th, 2008 (04:00 am), BF1=max(0,35.43—x,), BF2=max(0,35.43—x,)
xmax(0, x;—51.25) and BF3=max(0,35.42-x;).

It can be noted that BF1 and BF3 show the one-variable
influences on the CO concentration and BF2 exhibits the effects of
interaction of two input variables on the CO concentration. In BF2,
when x;>51.25 and x,<35.4, the interactive effect appears
explicitly. In addition, the intensity of BF2 effects on CO
concentration is about 10.3 (2 350.7/227.2) and 8.6 (2 350.7/272)
times more than BF1 and BF3, respectively. For instance, the basis
functions and the CO concentration in a location in Tehran with
x1=51.2 and x,=35.42 is estimated below:

BF1=0.009, BF2=0.00045, BF3=0 and CO=1.3+227.2x0.009+
2 350.7x0.00045-272x0=4.4 ppm.

MARS3 provided better results than the MARS2. It is easy to
judge that MARS3 is the best method for the retrieval of spatial
distribution of CO in hourly and daily time scales. Spatial modeling
using MARS is very easy and straightforward. MARS spatial
distribution is performed by definition of the model input
parameters without any pre—processing of data. MARS can
perform multivariate spatial modeling and the number of input
variables is not a limitation for MARS.

The performance of interpolation techniques is related to
characteristics of the spatial variation of the pollutants and the
characteristics of monitoring stations (e.g. sampling density and
distribution) (Briggs et al., 1997). The number of air pollution
monitoring stations is very low (16 stations for 22 zones) and the
distribution of stations is not suitable for spatial estimation; hence
the level of errors, presented in Tables 2 and 3, is relatively high.
Consequently, mapping of CO provides a limited picture of spatial
patterns of CO in Tehran, but it is suitable for mapping of relative
CO levels in different zones in Tehran. Therefore, the daily CO
concentration maps in 2008 were generated by the MARS3
method. Then the daily maps for 2008 were averaged and the map
of average annual CO concentration in Tehran was generated
(Figure 4). This figure exhibits that the southern, southeastern and
eastern parts of Tehran are more polluted than the other parts.
The most polluted part of Tehran is the southeastern part. The
annual CO concentration in each zone was averaged and then
ranked. The ranked zones with their average CO concentrations
have been presented in Table 4. The results show that the 22",
215t and 5th, zones (western parts of Tehran) have a lower CO
concentrations than the other parts of Tehran and the 13th, 14th
and 15t zones (southeastern part of Tehran) are the most polluted
regions in Tehran. Figure 4 implies that the central, eastern and
southeastern parts of Tehran (zones 6, 12, 13, 14 and 15) need
more effective air pollution mitigation programs and strategies.
The suitable mitigation strategies for Tehran are improvement of
new vehicles and motorcycles built in Iran (more energy efficient
and less polluting), discarding old vehicles, improvement of fuel

quality and adopting appropriate alternatives, inspection and
maintenance of vehicles, expanding the public transportation
system as well as its delivery, a traffic management system and
training programs, and promotion of public awareness and
education about air pollution conditions and its health effects
(Atash, 2007). In addition, it is proposed that the most vulnerable
people (infants and young children, the elderly, and people with
respiratory conditions and heart diseases) avoid heavy traffic into
these polluted zones.

€O Conc. (ppm)

22-28 ==
26-29

23-31
B1-33

Figure 4. The mean annual CO concentrations in 22 zones of Tehran in
2008, generated by MARS3 method.

Table 4. Ranking of average annual CO concentrations in 22 zones of
Tehran (The position of zones have been presented in Figure 2)

Zone CO Conc. (ppm) Zone CO Conc. (ppm)
22 2.61 19 3.65
21 2.85 11 3.79
5 2.98 16 3.86
1 3.1 8 3.94
3 3.36 20 4.1
2 3.4 7 4.12
9 3.39 6 4.19
18 3.43 12 4.26
17 3.43 13 4.44
4 3.44 14 4.57
10 3.63 15 4.58

4. Conclusions

The results showed that the Cokriging technique has better
performance than the other studied typical interpolation
techniques. The MARS2 and MARS3 presented better results than
the Cokriging technique in hourly and daily scales. This shows that
MARS has capability for spatial modeling. In addition, MARS3 is the
best method for spatial modeling of CO in Tehran and its MAPEs
for hourly and daily CO estimation are 69 and 64.4, respectively.
The spatial modeling using MARS is easy and straightforward.
According to the results and capabilities of MARS, it can be
introduced as an appropriate method for spatial distribution of air
pollutants. The map of average annual CO concentration in Tehran
showed that the central, eastern and southeastern zones of Tehran
are the most polluted regions and mean annual CO concentration
in these zones is between 4.2 and 4.6 ppm. These parts of Tehran
(zones 6, 12, 13, 14 and 15) need appropriate mitigation programs
and strategies.
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