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Statistically optimal analysis of state-discretized trajectory data

from multiple thermodynamic states

Hao Wu,! Antonia S. J. S. Mey,' Edina Rosta,? and Frank Noé'
' Free University of Berlin, Arnimallee 6, 14195 Berlin, Germany
2King’s College London, London, SE1 1DB, United Kingdom

(Received 28 August 2014; accepted 10 November 2014; published online 2 December 2014)

We propose a discrete transition-based reweighting analysis method (dTRAM) for analyzing
configuration-space-discretized simulation trajectories produced at different thermodynamic states
(temperatures, Hamiltonians, etc.) dTRAM provides maximum-likelihood estimates of stationary
quantities (probabilities, free energies, expectation values) at any thermodynamic state. In contrast
to the weighted histogram analysis method (WHAM), dTRAM does not require data to be sam-
pled from global equilibrium, and can thus produce superior estimates for enhanced sampling data
such as parallel/simulated tempering, replica exchange, umbrella sampling, or metadynamics. In ad-
dition, dTRAM provides optimal estimates of Markov state models (MSMs) from the discretized
state-space trajectories at all thermodynamic states. Under suitable conditions, these MSMs can be
used to calculate kinetic quantities (e.g., rates, timescales). In the limit of a single thermodynamic
state, - TRAM estimates a maximum likelihood reversible MSM, while in the limit of uncorrelated
sampling data, dTRAM is identical to WHAM. dTRAM is thus a generalization to both estimators.
© 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative

Commons Attribution 3.0 Unported License. [http://dx.doi.org/10.1063/1.4902240]

. INTRODUCTION

The dynamics of complex stochastic systems are often
governed by rare events — examples include protein folding,
macromolecular association, or phase transitions. These rare
events lead to sampling problems when trying to compute ex-
pectation values from computer simulations, such as molecu-
lar dynamics (MD) or Markov chain Monte Carlo (MCMC).

One approach to alleviate such sampling problems is to
increase the rate at which the rare events occur by generating
and combining simulations at different thermodynamic states.
For example, proteins can easily be unfolded at high temper-
atures, and protein-ligand complexes can dissociate at arti-
ficial Hamiltonians, where protein and ligand have reduced
interaction energies. Generalized ensemble methods, such as
replica exchange molecular dynamics,' parallel tempering,?
and simulated tempering® exploit this observation by cou-
pling simulations at different temperatures or Hamiltonians
within a MCMC framework. Yet another example is umbrella
sampling® which uses a set of biased Hamiltonians to ensure
approximately uniform sampling along a set of pre-defined
slow coordinates.

All of the aforementioned enhanced sampling methods
are constructed such that for long simulation times, the equi-
librium distribution of each thermodynamic state will be sam-
pled from. With that in mind, reweighting estimators make
use of all simulation data by reweighting each probability
density from the thermodynamic state sampled at to the con-
dition of interest via the Boltzmann density. The most fre-
quently used reweighting estimators are the weighted his-
togram analysis method (WHAM),”8 bin-less WHAM,® and
the multi-state Bennett acceptance ratio (MBAR) method.'?
The most common use of reweighting is to obtain equilibrium

0021-9606/2014/141(21)/214106/11

141, 214106-1

expectations or free energy differences. Reweighting can also
be applied to obtain dynamical information from the available
contiguous trajectory pieces.'! When the probability density
of trajectories can be evaluated, MBAR can be applied to tra-
jectories instead of sample configurations, obtaining estimates
of dynamical expectations.'>"!> Both WHAM and MBAR are
statistically optimal under specific assumptions as they can
be derived from maximum-likelihood or minimum variance
principles.”-® %16 However, a key assumption of both esti-
mators is that data are given as statistically independent sam-
ples of the respective equilibrium distributions. In reality, MD
and MCMC simulations provide time-correlated data trajecto-
ries. Consequently, estimators exploiting the time-correlation
in the data can achieve significantly better results.!”?° In par-
ticular, WHAM and MBAR cannot obtain unbiased estimates
from datasets for which the initial conditions of harvested
trajectories do not come from a probability density that is
known a priori. Examples of such datasets are swarms of
short uncoupled trajectories>’ >3 or Metadynamics and con-
formational flooding during the fill-up phase.’*?

A complementary approach to address sampling prob-
lems is Markov state modeling.'!-2632 A Markov state model
(MSM) transition matrix contains conditional transition prob-
abilities between discrete configuration states at some lag-
time t. Given the transition matrix, an equilibrium distribu-
tion can be computed that is unbiased if each transition event
used for estimating the MSM originates from a local equi-
librium distribution restricted to respective discrete state.’® In
this case, MSMs are able to reweigh trajectories that are not
sampled from global equilibrium without any a priori knowl-
edge of the transition probabilities. In order to use MSMs
for computing kinetics, T must be long enough for transition
events to approximately decorrelate for a given configuration

© Author(s) 2014
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space discretization.?”-3%33 Since MSM estimators are purely
based on observed transition statistics they cannot combine
the information from different thermodynamic states. There-
fore, the orders-of-magnitude speedup that can sometimes be
achieved with enhanced sampling methods has not been ac-
cessible to MSMs as yet.

The transition-based reweighting analysis method
(TRAM)'®1° aims at combining the advantages of reweight-
ing estimators and MSMs. In Ref. 19, we have defined
TRAM as a class of estimators that (1) take the statistical
weights of samples at different thermodynamic states into
account, in order to reweigh these samples; and (2) exploits
transitions observed in the sampled trajectories, without as-
suming that these trajectories are sampled from equilibrium.
Reference 34 introduced a statistically optimal estimator for
non-equilibrium trajectories given that the statistical weight
of each trajectory can be evaluated. Conceptually, an optimal
TRAM estimator could be formulated from this principle.
In practice, however, data are typically not stored at every
integration time step, such that trajectory probability densities
are not available.

In Ref. 18, we have introduced the first TRAM estimator
that is applicable to practical molecular dynamics data, and
could show that it can provide superior estimates of equilib-
rium probabilities and free energy compared with WHAM.
However, the estimator in Ref. 18 is only approximately opti-
mal and is very tedious to compute. Another TRAM estima-
tor is presented in Ref. 20 and called the dynamic histogram
analysis method (DHAM). DHAM was shown to avoid sys-
tematic errors that may occur when analyzing umbrella sam-
pling with WHAM. DHAM uses a dynamical model (diffu-
sion along a reaction coordinate) to relate transition matrices
of simulations at different bias potentials. This assumption is
helpful when a diffusion model is appropriate and there is one
or a few slow reaction coordinates only (e.g., as in the case
of umbrella sampling). In this way, it regularizes the solution
and therefore makes the estimates statistically more stable.
In Ref. 19, we introduced xXTRAM, which does not assume a
specific dynamical model but only exploits the fact that sam-
ples can be reweighted in order to couple different thermody-
namic states. Moreover, XTRAM is as yet the only TRAM es-
timator that avoids the discretization of reweighting factors re-
quired in the other TRAM methods and as well as in WHAM.
xTRAM may provide substantial improvements compared to
MBAR for time-correlated data, is shown to be asymptotically
exact, and is shown to converge to MBAR when the data are
not time correlated.!® However, xTRAM was not derived from
a maximum-likelihood or minimum-variance principle and is
therefore probably not statistically optimal for finite data sets.

In the present paper, we provide for the first time a sta-
tistically optimal TRAM method by presenting a maximum-
likelihood solution to the discrete TRAM problem formulated
in Ref. 18. We derive a set of self-consistent equations whose
solution yields the maximum likelihood dTRAM estimator.
It is shown that the dTRAM solution is an asymptotically
correct estimator, i.e., it converges to the exact equilibrium
probabilities and transition probabilities with an increasing
amount of simulation data. The dTRAM equations can be
solved using a Newton method, as done before for WHAM
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and MBAR,*>% or an easy-to-implement iterative algorithm
provided here.

We show that dTRAM becomes identical to WHAM in
the limit of statistically independent samples, i.e., sampled
from the global equilibrium at each thermodynamic state.
Moreover, dTRAM becomes identical to a reversible MSM
when we have only a single thermodynamic state. A number
of applications are shown to demonstrate the usefulness and
versatility of dTRAM.

Il. DISCRETE TRAM

A. Likelihood of WHAM, reversible Markov models,
and TRAM

We assume that a set of MD or MCMC simulations have
been performed, each in one of K thermodynamic states (in-
dexed by the superscript k € {1, ..., K}). For simulations in
which the thermodynamic state is frequently changed, such
as in replica-exchange simulations, each contiguous sequence
is treated as a separate trajectory at one of the K thermody-
namic states. Furthermore, we assume that the data have been
discretized to a configuration space partition (indexed by sub-
scripts i,j € {1, ..., n}). We are primarily interested in the free
energy, or equivalently, the equilibrium probability of discrete
states in some unbiased or reference ensemble (), _ . -
In addition, we might be interested in the equilibrium prob-
ability of states under all biased ensembles. If the simulation
trajectories are long enough, we will also be able to compute
kinetic properties, as discussed later.

We will be dealing with simulations where the unbiased,
or reference probability 7; and the biased probability at sim-
ulation condition £, ni(k) are related by a known and constant
(k)

bias factor y;

k k k
a® = f0g® 1)

1
k)’
DR

where f® is a normalization constant. Thus, the bias is multi-
plicative in probabilities or additive in the potential. This for-
malism is applicable whenever one has simulations conducted
at different thermodynamic states, such as replica-exchange
methods or umbrella sampling, but also direct simulations at
different temperatures or Hamiltonians. In Sec. III, we will
show how the reweighting factor yi(k) can be computed for a
few selected examples. The most common analysis method
used in the present scenario is WHAM. WHAM uses the his-
togram counts Ni(k) , 1.e., the number of samples falling into
bin i at thermodynamic state k. Although WHAM was orig-
inally derived as a minimum-variance estimator,”? it can be
derived as a maximum-likelihood estimator!'® using the like-
lihood

= @

)
Lyvuam = H l_[ (”i(k))N' 3)
Ko

which simply assumes that every count N, i(k) is independently

drawn from the biased distribution ni(k), which is linked to the
unbiased distribution & via Eq. (1).
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Let us now turn to reversible Markov state
models.?!»32:37-38 The maximum likelihood Markov model is
the transition matrix P = (p;;) between n discrete configu-
ration states, that maximizes the likelihood of the observed
transitions between these states. The likelihood of a Markov
model is well known,** and simply a product of all transition
probabilities corresponding to the observed trajectory. To
obtain a reversible Markov state model, this likelihood is
maximized using the constraints that the transition proba-
bilities p; must fulfill detailed balance with respect to the
equilibrium distribution &

Lysm = 1_[ l_[ P,’C]{/» 4)
i

sit. wpy; =mn;p;;  foralli, j, )

where ¢ is the number of times the trajectories were observed
in state i at time ¢ and in state j at a later time ¢ + 7, where ©
is the lag time at which the Markov model is estimated. For
a MSM, all simulation data producing counts c;;, have to be
generated at the same thermodynamic state (e.g., temperature,
Hamiltonian), and the estimated P is then only valid for this
thermodynamic state. The reversibility of the MSM is ensured
by the constraint equations (5). Estimators that maximize
Egs. (4) and (5) usually provide both P and the equilibrium
distribution 73238

In TRAM, we combine these two approaches as follows:
we avoid the WHAM assumption that every count is sam-
pled from global equilibrium, and instead treat every trajec-
tory at thermodynamic condition k as a Markov chain with the
configuration-state transition counts c i ). However, in contrast
to Markov models we exploit the fact that equilibrium prob-
abilities can be reweighted between different thermodynamic
states via (1) and (2). The resulting likelihood of all P%*) and
7, based on simulations at all thermodynamic states can be
formulated as

(k)

Ligam = l_[ 1_[ l_[ Pz(f) J ©)

(k) (k) (k) (k)

st.owlUp =P foralli, j, k. @)

Here, P® = (pg.)) is the Markov transition matrix at ther-
modynamic state k, and c<k) are the number of transitions
observed at that 51mulat10n condition. & is the vector of
equilibrium probabilities of discrete states at each thermo-
dynamic state. Note that all of these K equilibrium distri-
butions are coupled through Eqgs. (1) and (2). Because each
Markov model P* must have the distribution #® as a sta-
tionary distribution, all Markov models are coupled too. This
is what makes the maximization of the TRAM likelihood
Egs. (6) and (7) difficult, and it can neither be achieved by
WHAM, nor by existing MSM estimators. We call Egs. (1),
(2), (6), and (7) the discrete TRAM problem. In the present
paper, we will obtain the reweighting factors yl.(k) in Egs. (1)
and (2) by a configuration space discretization or binning,
such as in WHAM. For this reason, we call the present solu-
tion a discrete TRAM method, which should be distinguished
from approaches where the reweighting is done for individual
samples.'*1?
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B. dTRAM log-likelihood and self-consistent
solution equations

We will seek the maximum likelihood of Eq. (6). As in
common practice, we work with the logarithm of the likeli-
hood, because it has the same maximum point as the likeli-
hood but can be treated more easily

log Ligam = Z Z Z c(k) In p(k). ®)

k=1 i=1 j=I

Moreover, we have the following constraints. Using detailed
balance Eq. (7) with the reweighting equations (1) and (2)
results in

(k) (k) (k) (k)

YU Pi =TV P foralli, j, k. &)

Note that the normalization factors, f(k), have cancelled. In
addition, P® should be a transition matrix and & should be a
probability vector, so we have the normalization conditions

Z,ﬂ” =1 Vik, (10)

anzl. (11)
J

The normalization of £® is achieved by the normalization
constants in Egs. (1) and (2).

In order to solve the discrete TRAM problem, we have
to maximize the log likelihood (8) under the constraints (9)—
(11). The variables are both the unbiased equilibrium prob-
abilities & (providing n — 1 variables due to the constraint
(17)), and the biased transition matrices P® (each having
n(n — 1)/2 remaining free variables that are not fixed by con-
straints (9) and (10)).

Note that changing the simulation conditions, such as
bias or temperature, will modify the transition probabilities
in a non-trivial way that depends on the simulation condi-
tion, the integrator and thermostat used, and the state space
discretization. Therefore, we cannot relate the different P*)
without restricting the generality of our estimator. The only
general connection between these Markov models is the cou-
pling of their equilibrium distributions via Egs. (1) and (2).

In Appendices A 1-A 3, we use Lagrange duality the-
ory to show that the optimal solution of the discrete TRAM
problem above fulfills the following two conditions:

(k)+c(k)) ) (k)

T, U
Xk: Z y®r <k> Z ch?’ (12)
J i

(k)—f-)/ ;

(€ + e

Z ®_
J

Vi

W
(k)—i-y(k)n (k) =1, (13)

where vfk) are unknown Lagrange multipliers. In the setting

with detailed balance, we can unfortunately not give a closed
expression for them, but we can optimize them along with
the equilibrium distribution & . Note that the equations above
do not require the transition probabilities pg?) to be computed
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explicitly. If these are desired, they can be subsequently com-
puted from the solution of Egs. (12) and (13) (see Sec. Il D
below).

In Appendix A 4, we prove that the dTRAM equations
above are asymptotically correct. This means that in the limit
of alot of simulation data — either realized by long trajectories
or many short trajectories — the estimate will converge to the
correct stationary distributions 7 and & ®.

C. Solution methods

We can rewrite the self-consistent equations (12) and (13)
to derive the following iteration (fixed-point method), that can
be used to numerically solve the discrete TRAM problem.
First, we initialize & and v® by the simple guess

"t = 1/n, (14)

k)init ,_ )

v; = cij's (15)
J

and then we iterate the following equations until & is con-

verged:

(9 1 )y
1] + le )y]

(k),new ,__ (k)
v; = Z (k) (k) + 7/(k) (k)’ (16)
eyl
new .__ ]
i ' ( (k)+C(k))y(A)v(k) (17
Yy J W

Instead of the simple 1/n initialization for 7r; in Eq. (14), we
could use the standard WHAM algorithm to obtain a much
better guess.””® While a better starting point might be rele-
vant for optimizing computational performance, we have not
observed the estimation result to depend on this choice.

As an alternative to the fixed-point iteration (16) and (17),
we can solve Egs. (12) and (13) by using the multidimensional
Newton method for root finding available in many numerics
packages.

D. Kinetics and the selection of the estimation
lag time 7

Given 7 and v® at their optimal values, the transition

probabilities can be computed for any thermodynamic state k
simulated at by

( (k)(f)+C(k)(T)) (k)

y(k)ﬂ v(k)—l— (/<)7r U(k) )

P = (18)
See Appendix A 2 for the derivation. In Eq. (18), we have
explicitly stated that transition counts, and hence the tran-
sition probabilities are estimated at a given lag time 7. As
a consequence of the asymptotic correctness of dTRAM
(Appendix A 4), the estimates of pff)(r) are also asymptoti-
cally correct, that is, for either long trajectories or many short
trajectories we will get an unbiased estimate of the transition
probabilities.

J. Chem. Phys. 141, 214106 (2014)

In order to compute kinetics, such as transition rates or
timescales, the transition matrices P do not only have to
be valid for the lag time t estimated at, but they have to
be Markov models that predict the kinetics at longer times
correctly. How adequate P® is as a Markov model should
be tested by validating that the relaxation timescales com-
puted from the eigenvalues of P%® are approximately con-
stant in 727 and by checking that the Chapman-Kolmogorov
PX(nt) ~ [PX(1)]" approximately holds.??

The P® can only be used as Markov models when the
contiguous simulation trajectories are long enough to sup-
port a suitable lag time t. Generalized ensemble simula-
tions, such as replica-exchange, parallel or simulated temper-
ing generally only provide very short contiguous trajectory
pieces and are only suitable for constructing Markov mod-
els of small systems and using excellent configuration state
discretizations.!!- 1314

Based on umbrella sampling simulations, the construc-
tion of Markov models at the different umbrellas k is usu-
ally possible, but for the unbiased system we can only ob-
tain the equilibrium distribution & and not the Markov model.
The reason is that the transition matrices (18) can only be
estimated at the different simulation conditions k, whereas
the equilibrium probability of the chosen reference ensemble
 is computed through reweighting, and is thus also avail-
able for thermodynamic states not simulated at. However,
the umbrella-Markov models P® could still provide useful
information. For example, comparing the longest relaxation
timescale of each umbrella Markov model with the respec-
tive simulation length could be used as an indicator of con-
vergence, and whether some or all simulation lengths should
be increased.?”

Unbiased MD simulations at different thermodynamic
states are most suitable for constructing Markov models, be-
cause one has the choice of running simulations long enough
to accommodate a suitable lag time 7. A systematic way
of constructing such simulations is the random swapping
protocol.'” Note that such simulations may not only violate
the sampling from global equilibrium, but also the sampling
from local equilibrium, it is possible that the estimation of
s and all associated stationary estimates are biased for short
lag times t. Therefore, when using dTRAM to analyze unbi-
ased MD simulations at different thermodynamic states, one
should definitely compute the estimates as a function of t in
order to ensure that a large enough t is used to obtain unbi-
ased estimates.

E. WHAM is a special case of d-TRAM

We now show that the commonly used WHAM method
is obtained as a special case of dTRAM. Starting from the
dTRAM estimator, we employ the WHAM assumption that
each sample at thermodynamic state k is independently gener-
ated from the biased probability distribution ¥, This means
that transition probabilities pgl;) are equal to the probability of
observing state j without knowledge of i

pij =7, (19)
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In a setting where counts are generated independently, the
transition counts cff) can be modeled by splitting up the total
counts ending in bin j according to the equilibrium probability
that they have been in a given bin i before

(k) (k) (k)

¢j =m N . (20)
Note that this selection generates actually observed hlstogram
counts as Y cgf) = N](.k) o =N, “_ Substituting 7r
(19) and (20) using (1) and (2) and 1nsert1ng the result into
Eq. (18) yields the equalities

(k) + )/(k) (k) (1)

SIRE) k) (k
N( )yl( T —l—N( yj( )71 —yl ;

which must hold for all i and k. This is exactly the case when
the Lagrange multipliers become

(k) N(k) (22)

Substituting (20) and (22) into (17) gives us the solution for
the unbiased stationary probabilities

k
new __ Zk Ni( :
= S e (23)
3, N® foy,
Fle = >y l(k) : (24)

which is exactly the WHAM algor1thm.7’8 Therefore, WHAM
is a special case of dTRAM, suggesting that TRAM should
yield estimates that are at least as good as WHAM, but should
give better estimates when the WHAM assumptions of sam-
pling from global equilibrium at condition k does not hold.

F. A reversible Markov state model is a special case
of dTRAM

Now we relate dTRAM to reversible Markov models.
Suppose we only have a single thermodynamic state k and one
or several simulation trajectories generating counts ¢y at this
condition. In this case, we can drop the index £, all rewelght-
ing factors are unity y; = 1, and Eqs. (12) and (13) become

Z Cii (25)

Z (cl] +c; 7T v;
r TV +7rjv

(c;j +cjim;

Z—=1. (26)

~ TV + T

J p
We can combine both equations to

(¢c;; +c;)mv; (c;; +c;mv;
S = T

~ v+ ~ TV + T,

: j :
= Z(c,j +cj). (27)

Thus, we solve for the Lagrange multipliers

v =Y ¢; =N, (28)
J
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Substituting v; = N; into (13) leads to the optimality condi-
tion for
c..+c..
ij Ji
m; = Z L. (29)

i J

J  x .
i j

Inserting the result into (18) yields the reversible transition
matrix estimator

c..+c..

e (30)

. T,
J i

which is identical to the known optimality condition for a re-
versible Markov model transition matrix and the correspond-
ing iterative estimator.’?3® Therefore, a reversible MSM is a
special case of - TRAM.

lll. RESULTS
A. lllustrative example

We start with a simple example to illustrate a scenario
in which the classical WHAM estimator fails because the as-
sumption of sampling from global equilibrium is not fulfilled.
Fig. 1(a) shows the energy levels (u, = 4,u;q = 8,up = 0)
of a discrete three-state system. We consider a Metropolis-
Hastings jump process between neighboring states. Due to
the high-energy transition state 7, the minima A and B are
long-lived and escaping them is a rare event. Now we run a
simulation consisting of three independent trajectories:

1. An unbiased trajectory of length L starting state A,

2. An unbiased trajectory of length L starting state B,

3. A trajectory of length L using bias (b, = 4,b;y = 0,
= 8) starting in state TS.

The biased trajectory 3 samples from an energy land-
scape that is flat over A, B, and TS. Trajectories 1 and 2 will be
stuck in states A or B, respectively, and only be able to escape
them when L is sufficiently long.

Trajectories 1 and 2 are using the same unbiased Hamil-
tonian and are therefore in the same thermodynamic state
k = 1. The corresponding reweighting factor is simply

M _q

for all states i = A, TS, B. Trajectory 3 is in a different ther-
modynamic state with a biased Hamiltonian that we shall call
k = 2. We use the bias as a reweighting factor

for all states i = A, TS, B. In this way, we can reweigh all sam-
ples between the two thermodynamic states and produce es-
timates of the energies uy, iy, Uz using both WHAM with
Egs. (23) and (24) and dTRAM with Egs. (16) and (17).
Because states A and B are long-lived, we expect that the
unbiased trajectories 1 and 2 cannot sample from the global
equilibrium, unless the simulation times L is very long. As a
result, the WHAM estimator is strongly biased initially and
systematically underestimates the energy differences — see
solid lines in Fig. 1(b). Only after about L = 10000 steps,
the bias of the WHAM estimator is negligible. In contrast,
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FIG. 1. Comparison of WHAM and dTRAM estimation results using three
independent trajectories sampling from three discrete states (two unbiased
trajectories starting in A and B, respectively, and biased trajectory sampling
from a flat energy landscape over A, 7§, and B). (a) Schematic of the energies
of three states. Error bars correspond to one standard deviation of the estimate
computed over 25 independent runs. (b) Estimation of the energies of A, TS,
and B using WHAM (solid lines) and dTRAM (dashed lines).

the dTRAM estimate is unbiased even for short simulation
lengths — see dashed lines in Fig. 1(b). dTRAM does not suf-
fer from the WHAM bias because each transition is indeed
independent from the previous transition, even when the sim-
ulation does not sample from global equilibrium. Moreover,
the uncertainty of the dTRAM estimate is much smaller than
the uncertainty of the WHAM estimate. This is because every
transition is an independent sample, and therefore dTRAM
benefits from a much larger statistical efficiency than WHAM.

While illustrative, this example is over-simplistic. In re-
ality, we do not have discrete states and the dynamics is no
Markov chain. Let us investigate next how dTRAM performs
in a more realistic setting.

B. Umbrella sampling

In umbrella sampling, one introduces for each simulation
k an additive bias potential, such that our total potential in
simulation k is given by

ul =u; + b, 3D

where i is a bin index of one or several finely discretized coor-
dinates in which the bias potential is acting. u; is the unbiased

J. Chem. Phys. 141, 214106 (2014)
potential evaluated at bin i (usually at its center), and b;k) is
the value of the kth umbrella (bias) potential. All energies are
dimensionless (i.e., in units of the thermal energy k,T). The
biased equilibrium probabilities are proportional to

ni(k) xe ' = yi(k)ni (32)
with the unbiased equilibrium probability and the reweighting
factors given by

L — (33)

V,'(k) — e—bgk). (34)

Umbrella sampling is typically employed using stiff con-
straining potentials, such that the simulations quickly decor-
relate. In such a scenario, WHAM is a suitable estimator for
extracting unbiased equilibrium probabilities and free energy
differences. However, an analysis of umbrella sampling data
can indeed benefit from using dTRAM. First, - TRAM uses
conditional transition events, and the number of statistically
independent observations thus depends on a lag time T which
can be thought of as a local decorrelation time, i.e., a time at
which transitions become statistically independent. This time
is generally shorter than the global decorrelation time (or sta-
tistical inefficiency) ¢,,,,, at which samples generated by the
trajectory become statistically independent. Thus, whenever
t.,, 18 longer than the interval at which configurations are
saved, dTRAM will be able to exploit that this data more effi-
ciently than WHAM. This should lead to improved estimates.

Moreover, umbrella sampling can, in conjunction with
WHAM, result in systematic errors that can be avoided with a
TRAM estimator: As shown in Ref. 20, using umbrellas that
are too weak to stabilize the simulation at a transition state can
lead to umbrella simulations that still have high internal free
energy barriers and therefore do not generate samples that are
drawn from the respective equilibrium distribution. Although
a WHAM estimate would be correct in the limit of infinitely
long simulation times, it may provide drastically biased esti-
mates for practical simulation times.

Here, we employ umbrella sampling simulations on a
one-dimensional double-well potential with a dimensionless
energy

_ Ll 5o
u(x) = Jx* = 55 = 9.9874, (35)

illustrated in Figs. 2(b) and 2(c). The configuration space is
discretized using a one-dimensional binning: All x-values are
assigned to the closest point from the set { — 5, —4.9, ..., 4.9,
5}, generating up to 101 discrete states. However, in practice
only about 80 states are visited and we exclude empty bins
from the analysis. Umbrella sampling simulations are con-
ducted using K = 11 different biasing potentials given by

pOx) =4(x —x®)’, fork=1,...,11, (36)

where ¥®) =k — 6 is the center of the kth biasing poten-
tial. The dynamics are simulated using the Metropolis process
described in Appendix B. The bias potentials are chosen rel-
atively weak, such that the umbrella simulations near the
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FIG. 2. Estimation results of WHAM, the present method ({TRAM), and our
early approximate TRAM method (aTRAM) from Ref. 18 based on umbrella
sampling simulations in a double-well potential. (a) Mean and standard de-
viation of the energy barrier estimation error calculated over 30 independent
umbrella sampling runs with K = 11 umbrellas each. The x-axis shows the
number of steps in an umbrella trajectory. (b) Mean and standard deviation of
estimates of the potential u(x) generated by WHAM, dTRAM, and approx-
imate TRAM using a trajectory length of 500. (c) Same as (b), but with a
trajectory length of 10 000.

transition state contain rare events. In this case, WHAM is
a poor estimator because it takes relatively long to generate
statistically independent samples.

In order to apply dTRAM, we evaluate all bias potentials
for each discrete state, compute the reweighting factors ac-
cording to Eq. (34), and store this information in a reweight-
ing matrix. We additionally store all state-to-state transition

counts ¢ for each umbrella simulation k. Given these data

ij
the dTRAM estimation is computed by iterating Egs. (16) and

(17) to convergence.
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The performances of WHAM and dTRAM are compared
in terms of the mean error of the estimated energy barriers

error = l(|AMAB _ Au:l:’grox| 4 |AMBA _ AMZBPE“)X

2
where Au,; and Aug, are the energy barriers for the A — B
and B — A process, respectively, and the superscript “approx”
represents the approximate value obtained from the estimated
u(x). Fig. 2(a) compares the energy barrier estimation error
using WHAM (black) and dTRAM (red) as a function of the
length of the umbrella simulations. In addition, estimation re-
sults of our earlier approximate TRAM method from Ref. 18
are shown in blue. Figs. 2(b) and 2(c) show the energy pro-
file estimated from the data using trajectory lengths of 910
and 10000 steps per umbrella, respectively. All means and
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FIG. 3. Estimation results of WHAM and dTRAM based on umbrella sam-
pling simulations of Na™ passage through a GLIC channel using simulations
of Zhu and Hummer.*® (a) Structure of the ion channel. (b) Free energy pro-
file computed by WHAM and dTRAM when using 400 bins to discretize the
reaction coordinate (membrane normal). (c) Systematic estimating error of
the energies of the end-states, measured by its difference from 0, as a func-
tion of the number of discretization bins used.
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standard deviations are obtained by repeating the simulation
30 times.

It is apparent that both estimators converge to the cor-
rect energy barriers and energy profile in the limit of a large
amount of simulation data. For short simulations, the _ TRAM
estimates are significantly better than the WHAM and approx-
imate TRAM estimates — or in other words much less simula-
tion data are needed with dTRAM to obtain estimates of equal
quality than when WHAM or approximate TRAM are used.

In order to demonstrate the validity of _ TRAM on molec-
ular dynamics data of a large protein system, we have used it
to analyze umbrella sampling simulations of the passage of
Na' ions through the transmembrane pore of the GLIC chan-
nel (Fig. 3). The data were generated in the simulations of
Zhu and Hummer.*®* WHAM and dTRAM provide a similar
free energy profile (Fig. 3(b)), but for a given number of bins
used to discretize the membrane normal used as a reaction
coordinate, d-TRAM provides a smaller systematic error. The
systematic error is measured in terms of the energy difference
calculated for the two end-states which should be O as a result
of the periodic boundary conditions used in the simulation

(Fig. 3(c)).

IV. CONCLUSIONS

We have derived a maximum likelihood estimator for the
TRAM. This estimator optimally combines simulation tra-
jectories produced at different thermodynamic states. This is
done by taking into account both the time correlations in the
trajectories via transition counts, and by considering that the
weight of every configuration can be given in any thermo-
dynamic state via the Boltzmann distribution. The present
estimator operates a configuration space discretization, and
in particular also discretizes the reweighting factors between
different thermodynamic states. Hence, we call the present
method discrete TRAM, or in short dTRAM.

dTRAM combines ideas from the WHAM and reversible
MSMs. We have shown that dTRAM is in fact a proper
generalization of both methods, i.e., both the WHAM es-
timator and the reversible MSM estimator can be derived
as special cases from the dTRAM equations. Consequently,
dTRAM can be applied to any kind of simulation data
that either WHAM or MSMs can be applied to. In par-
ticular, dTRAM is useful for getting improved estimates
from general-ensemble simulations (replica-exchange molec-
ular dynamics, parallel or simulated tempering), multiple bi-
ased simulations (umbrella sampling, metadynamics, confor-
mational flooding, etc.). Like MSMs, dTRAM is useful for
obtaining estimates from swarms of short simulations that are
not in global equilibrium, but beyond MSMs it can do so for
trajectories produced under different thermodynamic condi-
tions, such as temperatures or Hamiltonians.

dTRAM provides estimates for both the equilibrium dis-
tribution at a thermodynamic state of interest, and the kinetics
at the thermodynamic states simulated at. The kinetic esti-
mates should be treated with care as they are only useful when
the data admit the choice of a lagtime that is sufficiently long
to parametrize a Markov model that can predict long-term
kinetics. For such estimates, it should be checked whether
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they are converged as a function of the lag time, as it is com-
mon practice in Markov state modeling. We will investigate
the suitability of dTRAM to estimate kinetic data in future
work. In the present paper, we have only worked with short
trajectory segments, and hence have only used dTRAM in or-
der to estimate equilibrium distributions and free energies. It
has been demonstrated that dTRAM provides superior esti-
mates of these properties compared to WHAM when applied
to biased simulations.

The present reweighting formulation is straightforwardly
applied when the configuration space can be discretized in
such a way that the bias factor yi(k) is approximately constant
within each bin. Although such a discretization is easily done
for umbrella sampling while biasing one or two coordinates, it
is unsuitable in other cases, such as replica-exchange simula-
tions. It has been suggested to construct a joint discretization
in configuration and energy space.*” An optimal solution to
the problem will involve a self-consistent evaluation of yi(k) in
a way that integrates the sampled configurations assigned to
bin i with a MBAR-like approach.'®

A python implementation of the I TRAM method is avail-
able under https://github.com/markovmodel/pytram.
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APPENDIX A: DISCRETE TRAM: DERIVATION
AND PROOFS

1. Lagrange duality

For a detailed description of Lagrange duality theory, we
refer to textbooks in Refs. 41 and 42. Here, we just summarize
a few aspects of the theory relevant for solving the TRAM
problem.

Consider a constrained minimization problem of the fol-
lowing form:

min, f(X)
(AL)
sit. f,(x)=0.
The Lagrangian function can be defined by
A, V) = f(X) + VT f,(x). (A2)

If (A1) is a convex problem and some technical assumption
such as Slater condition holds, it can be proven that (Al) is
equivalent to the following maximization problem:

max g(v), (A3)
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where g(v) is the Lagrange dual function defined by
g(v) := min A(X, V). (A4)
X

The equivalence here means the optimal values of the two
problems are equal, i.e., the solution x* to (A1) and the solu-
tion v* to (A3) satisfies g(v*) = f(x*). Moreover,

x* = arg min A(x, v¥). (A5)

2. Single thermodynamic state

We first consider the dual Lagrange approach to solving
dTRAM at a single thermodynamic state, i.e., the situation
that is equivalent with a reversible Markov state model. Here,
we first ignore the normalization of the stationary distribution
7T, i.€., Zi 7r; may not be equal to 1. The maximum likelihood
estimation of the transition matrix P with a fixed equilibrium
distribution 7 is given by the following optimization problem:

minp —L(P | C)
St TP = TP (A6)
Zj pij =1,
where

LP|C)=) ¢;lnp,; (A7)
iJ
is the log-likelihood function of P. By using the Lagrange
duality theory, we have the following lemma:

Lemma: The minimization problem (A6) is equivalent to
the maximization problem

rnvinhc(n, V) = Zcij ln(nivj + njvi)

iJ

—E ¢;jlnm; — E v;
ij i

— 2 cylnle Fe+d ey (AB)
iJ iJ
and the optimal solution P* to (A6) and the optimal solution
v* to (A8) satisfy

o Lot eom;
ij =

. A9
niv}f—i—njv;‘ (A9)

Proof: The Lagrangian function of (A6) is defined as

Ay A V) == c;lnp,+ Y AGrp; —m;p;)

ij ij
2o | 2op -
i J
= — Zcij In pl-j + Z(ni()”ij - )‘ji) + Ui)pij

J ij
— E v;.
i

(A10)
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Note that

Ay S m —a )+
. (A ji ;-
Pij Pij

Then the dual function of (A6) is

(Al1)

g.(A,v) = mPin A, (P, A, V)

_ iy
=A W
ﬂi()‘ij - )‘ji) +v;
C..
=—> ¢y -
— ﬂi()hij_)hji)'i'vi
ij -
DI
ij i

= Zcij In(; (A = 2) + ;) = Z v

iJj

= cjlne + Y ¢y (A12)
ij ij
and (A6) is equivalent to the maximization problem
n;ax 8., V). (A13)
,V

From (A12) we can get

98, (X, V) _ CijTT; CjiTT;
0y Oy = A+ w0 = A+,
(A14)
and
dg (A, v €TV — €T,
M =0& )‘ij —Aji =Wty g (A15)
I (c;; +¢;)mm;
Therefore,

(cij +cﬁ)7‘[inj

=D v eylne ) e
i i,j i,j
W CILTEE
i
i

(cij +cj,-)7rj
— E v; — E cijlncij—i— E ¢
i i,j i,j
= E Cij ln(nivj+njvi)— E cijlnnj
ij i,j
— E v; — E Ci_jln(cij+cji)+ E Cij
i i,j ij

(A16)

C..TT:V: —C::TT:V:
13 L 1 1
mf[xgn()_, V) = E Cij ln (nl# + vi)
iJ

= he(m, v)
and the optimal value of (A6) is equal to

rrxlax 8.(A, v) = max (mflx &, (A, V)) =max hq(m, V)
,V A\ v
(A17)
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and
x Cij

B (A — A5 +vf

C

ij
CUT[IUJ '“JT,UI
.~ U
L (c+e,mm, +

(e Feim;

= , Al8
niv7+njv;“ ( )

where
¢ vt — .. vf

ijrtivj Ji'tjti
(cij +cji)71irrj

A=A = (A19)
We now consider the case that the stationary distribution is
unknown. In this case, the maximum likelihood estimate of 7
is

¥ = arg min ( min —L (P))

b1 P is feasible to (A6)

= arg min ( max A (7, V)) . (A20)
T \4

3. Multiple simulations

If we further consider multiple biased simulations with
70 o y® I lude that th imum lik

; y;"'m;, we can also conclude that the maximum like-

lihood estimate of & can be given by the following min-max

problem:

i i (k) (k)
min max Xk: heo (diag(y w0y, (A21)
For the sake of convenience, here we define u; = —In ;. Then
(A21) can be rewritten as
; (k) _ ()
ml:n v“{[.].?l,x Zk: hew(diag(y™’) exp(—u), v\*). (A22)

Because h(exp(—u), v) is a concave function of v if u is fixed
and a convex function of u if v is fixed, the solution to (A22)
is a saddle point and characterized by (see Sec. 10.3.4 in
Ref. 43)

dhcw(diag(y®) exp(—u), v¥)

=0,
Bvi(k)
(A23)
i=1,....n, k=1,...,K,
0%, how (iagy ) exp(-wv®)
ou; ’
(A24)
i =1, N
Considering that
dhc(diag(y)exp(—u), V)  ~— (¢ +¢;)v;m;
av; Vi, +y;m;v;
(A25)
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and
dh¢(diag(y)exp(—u), v)

Vv + y]n v

du;
_ dhe(diagy)m.v) o, (A26)
om; du,
_ . (c;; +Cji)Vin _ Zj Cji
- ! ylnlv +y/ i
Ci;i T ¢V
_ Zcu Z (ci; + ¢;)vim; (A27)
J

We can conclude that the optimal solution to (A21) should
satisfy

6+t

./
=1, (A28)
k k k k
Xj: Vi( ) ( )+ VJ( ) ( )
(k) k) ., (k) (k)
+ei )y ®)
nz k’f k)f — Zc . (A29)
m Vz( ) ( + J/]( ) (

This leads to the following iterative algorithm for unbiased
estimation of multiple simulations:

( ® ,<k>) ®

(k),new (k) Vi T
i i J (y(k)n v(k)er(k)n U(A))

fori =1,...n, (A30)
®
phew _ i Cii
i (g(.‘.') +((!{))V_(k)L,(]<> ’
Zk ; 1J Jt L] J
fori=1,...n (A31)

4. Asymptotic correctness of dTRAM

Here, we show that dTRAM converges to the correct
equilibrium distribution and transition probabilities in the
limit of large statistics. In this limit, either achieved through
long simulation trajectories or many short simulation trajec-
tories, the count matrices C¥) = [cf]f)] become

(k) — Nz(k) l(f)’

(A32)

where P® = [ ﬁgf)] is the matrix of exact transition probabil-
ities (no statistical error), which satisfies

(k) (k) (k) (k)

Y, P =¥ P (A33)

where m = [77;] are the exact stationary probabilities of
configuration states. Inserting (A32) into the dTRAM
equations (12) and (13), we obtain

(k) (k)) *) = N(k)
ZZ s

= N(k)+y(k)— N(k) (A34)
J

k) ~(k k) ~(k k) = k
N() ()+N() ())Vz() zN()

1
= Z Z (k) _ (k) ®) -~ k)
k i N Ni

+yw;

(A35)
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k) (k) = k) (k) = k
N() () +N()Vz() )pjl)N()

- ZZ <k>- N(") " y(k)— N® (A36)
= Z Z N (A37)
= Z Z i (A38)

and thus the first i TRAM equation is satisfied. Furthermore,
we obtain

(4 W)y,

ji
(A39)
; ()= N(")+y(")‘ N(k)
k) —(k k) =(k —
(N >p1(1> +N(. >p§l>)yj<k>
= Z © G ® (A40)
T N;" +y; TN,
N® pff)y;")n 4 N(k) Pff)%(k) 7,
= Z v Pz N® <k) ®) (A4l)
T N;" +y; 7N,
=> "5 (A42)
j
=1 (A43)

and thus the second dTRAM equation is satisfied as well.
From the above two equations, we can conclude that in the
statistical limit (either achieved by long trajectories or many
short trajectories), the solution of the _ TRAM equations con-
verges to the correct equilibrium distribution and the correct
transition probabilities. Note that we have assumed that all
trajectory data are in local equilibrium within each starting
state 7 — if this is not the case the counts ¢; and thus also the
estimated m; and P will be biased. Thus, if the data are of
such a nature that local equilibrium is a concern (e.g., meta-
dynamics or uncoupled short MD trajectories), all estimates
should be computed as a function of the lag time t.

APPENDIX B: DOUBLE-WELL SIMULATION MODEL
The simulation trajectory {x, )}M o 1s generated by a

Metropolis simulation model, Wthh is a reversible Markov

chain with initial state x(()k) = x®, stationary distribution

k . _pk
n,i() u.—b

o e "% | and transition probability

Pr (xt(i)l =X |x(k) x)

- | exp(—u) b0 (') / / ’
mm[m‘l(m ) q g, x 7’”’(B1)

k k
I—Zy#xPr(xt(ﬁl —ylx() x), x'=x,

where g(x'|x) denotes the proposal distribution which satisfies
g(x'lx) o< 1, <op and 3o g(x'|x) = 1.
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