Benchmarking the Performance of Linked Data Translation
Systems

. *
Carlos R. Rivero
University of Sevilla, Spain
carlosrivero@us.es

Andreas Schultz
Freie Universitat Berlin,
Germany

a.schultz@fu-berlin.de

Christian Bizer
Freie Universitat Berlin,
Germany
christian.bizer@fu-
berlin.de

David Ruiz

University of Sevilla, Spain
druiz@us.es

ABSTRACT

Linked Data sources on the Web use a wide range of differ-
ent vocabularies to represent data describing the same type
of entity. For some types of entities, like people or biblio-
graphic record, common vocabularies have emerged that are
used by multiple data sources. But even for representing
data of these common types, different user communities use
different competing common vocabularies. Linked Data ap-
plications that want to understand as much data from the
Web as possible, thus need to overcome vocabulary hetero-
geneity and translate the original data into a single target
vocabulary. To support application developers with this in-
tegration task, several Linked Data translation systems have
been developed. These systems provide languages to express
declarative mappings that are used to translate heteroge-
neous Web data into a single target vocabulary. In this pa-
per, we present a benchmark for comparing the expressivity
as well as the runtime performance of data translation sys-
tems. Based on a set of examples from the LOD Cloud, we
developed a catalog of fifteen data translation patterns and
survey how often these patterns occur in the example set.
Based on these statistics, we designed the LODIB (Linked
Open Data Integration Benchmark) that aims to reflect the
real-world heterogeneities that exist on the Web of Data.
We apply the benchmark to test the performance of two
data translation systems, Mosto and LDIF, and compare
the performance of the systems with the SPARQL 1.1 CON-
STRUCT query performance of the Jena TDB RDF store.

Categories and Subject Descriptors
D.2.12 [Interoperability]: Data mapping;
H.2.5 [Heterogeneous Databases]: Data translation

*Work partially done whilst visiting Freie Universitéit Berlin.

Copyright is held by the author/owner(s).
LDOW2012, April 16, 2012, Lyon, France.

1. INTRODUCTION

The Web of Linked Data is growing rapidly and covers a wide
range of different domains, such as media, life sciences, pub-
lications, governments, or geographic data [4, 13]. Linked
Data sources use vocabularies to publish their data, which
consist of more or less complex data models that are repre-
sented using RDFS or OWL [13]. Some data sources try to
reuse as much from existing vocabularies as possible in or-
der to ease the integration of data from multiple sources [4].
Other data sources use completely proprietary vocabularies
to represent their content or use a mixture of common and
proprietary terms [7].

Due to these facts, there exists heterogeneity amongst vo-
cabularies in the context of Linked Data. According to [5],
on the one hand, 104 out of the 295 data sources in the
LOD Cloud only use proprietary vocabularies. On the other
hand, the rest of the sources (191) use common vocabularies
to represent some of their content, but also often extend and
mix common vocabularies with proprietary terms to repre-
sent other parts of their content. Some examples of the use
of common vocabularies are the following: regarding publi-
cations, 31.19% data sources use the Dublin Core vocabu-
lary, 4.75% use the Bibliographic Ontology, or 2.03% use the
Functional Requirements for Bibliographic Records; in the
context of people information, 27.46% data sources use the
Friend of a Friend vocabulary, 3.39% use the vCard ontology,
or 3.39% use the Semantically-Interlinked Online Communi-
ties ontology; finally, regarding geographic data sets, 8.47%
data sources use the Geo Positioning vocabulary, or 2.03%
use the GeoNames ontology.

To solve these heterogeneity problems, mappings are used
to perform data translation, i.e., exchanging data from the
source data set to the target data set [19, 21]. Data trans-
lation, a.k.a. data exchange, is a major research topic in
the database community, and it has been studied for re-
lational, nested relational, and XML data models [3, 10,
11]. Current approaches to perform data translation rely on
two types of mappings that are specified at different levels,
namely: correspondences (modelling level) and executable
mappings (implementation level). Correspondences are rep-
resented as declarative mappings that are then combined
into executable mappings, which consist of queries that are



executed over a source and translate the data into a tar-
get [7, 18, 19].

In the context of executable mappings, there exists a num-
ber of approaches to define and also automatically generate
them. Qin et al. [18] devised a semi-automatic approach
to generate executable mappings that relies on data-mining;
Euzenat et al. [9] and Polleres et al. [17] presented prelim-
inary ideas on the use of executable mappings in SPARQL
to perform data translation; Parreiras et al. [16] presented
a Model-Driven Engineering approach that automatically
transforms handcrafted mappings in MBOTL (a mapping
language by means of which users can express executable
mappings) into executable mappings in SPARQL or Java;
Bizer and Schultz [7] proposed a SPARQL-like mapping lan-
guage called R2R, which is designed to publish expressive,
named executable mappings on the Web, and to flexible
combine partial executable mappings to perform data trans-
lation. Finally, Rivero et al. [19] devised an approach called
Mosto to automatically generate executable mappings in
SPARQL based on constraints of the source and target data
models, and also correspondences between these data mod-
els. In addition, translating amongst vocabularies by means
of mappings is one of the main research challenges in the
context of Linked Data, and it is expected that research ef-
forts on mapping approaches will be increased in the next
years [4]. As a conclusion, a benchmark to test data trans-
lation systems in this context seems highly relevant.

To the best of our knowledge, there exist two benchmarks
to test data translation systems: STBenchmark and DTS-
Bench. STBenchmark [1] provides eleven patterns that oc-
cur frequently when integrating nested relational models,
which makes it difficult for at least some of the patterns
to extrapolate to our context due to a number of inherent
differences between nested relational models and the graph-
based RDF data model that is used in the context of Linked
Data [14]. DTSBench [21] allows to test data translation
systems in the context of Linked Data using synthetic data
translation tasks only, without taking real-world data from
Linked Data sources into account.

In this paper, we present a benchmark to test data trans-
lation systems in the context of Linked Data. Our bench-
mark provides a catalogue of fifteen data translation pat-
terns, each of which is a common data translation problem in
the context of Linked Data. To motivate that these patterns
are common in practice, we have analyzed 84 random exam-
ples of data translation in the Linked Open Data Cloud.
After this analysis, we have studied the distribution of the
patterns in these examples, and have designed LODIB, the
Linked Open Data Integration Benchmark, to reflect this
real-world heterogeneity that exists on the Web of Data.

The benchmark provides a data generator that produces
three different synthetic data sets, which reflect the pattern
distribution. These source data sets need to be translated
into a single target vocabulary by the system under test.
This generator allows us to scale source data and it also
automatically generates the expected target data, i.e., after
performing data translation over the source data. The data
sets reflect the same e-commerce scenario that we already
used for the BSBM benchmark [6].

Table 1: Prefixes of the sample patterns

Prefix | URI
rdfs: http://www.w3.0rg/2000/01/rdf-schema#
xsd: http://www.w3.org/2001/XMLSchema#
fb: http://rdf.freebase.com/ns/
dbp: http://dbpedia.org/ontology/
lgdo: http://linkedgeodataorg/ontology/
gw: http://govwild.org/ontology/
po: http://purl.org/ontology/po/
lgdp: http://linkedgeodata.org/property/
movie: http://data.linkedmdb.org/resource/movie/
db: http://www4.wiwiss.fu-berlin.de
— /drugbank/resource/drugbank/
skos: http://www.w3.0rg/2004/02/skos/core#
foaf: http://xmlns.com/foaf/spec/
grs: http://www.georss.org/georss/

LODIB is designed to measure the following: 1) Expressiv-
ity: the number of mapping patterns that can be expressed
in a specific data translation system; 2) Time performance:
the time needed to perform the data translation, i.e., load-
ing the source file, executing the mappings, and serializing
the result into a target file. In this context, LODIB provide
a validation tool that examines if the source data is repre-
sented correctly in the target data set: we perform the data
translation task in a particular scenario using LODIB, and
the target data that we obtain are the expected target data
when performing data translation using a particular system.

This paper is organized as follows: Section 2 presents the
mapping patterns of our benchmark; in Section 3, we de-
scribe the 84 data translation examples from the LOD Cloud
that we have analyzed, and the counting of the occurrences
of mapping patterns in the examples; Section 4 deals with
the design of our benchmark; Section 5 describes the eval-
uation of our benchmark with two data translation systems
(Mosto and LDIF), and compares their performance with
the SPARQL 1.1 performance of the Jena TDB RDF store;
Section 6 describes the related work on benchmarking in the
Linked Data context; and, finally, Section 7 recaps on our
main conclusions regarding LODIB.

2. MAPPING PATTERNS

A mapping pattern represents a common data translation
problem that should be supported by any data translation
system in the context of Linked Data. Our benchmark pro-
vides a catalogue of fifteen mapping patterns that we have
repeatedly discovered as we analyzed the heterogeneity be-
tween different data sources in the Linked Open Data Cloud.
In the rest of this section, we present these patterns in de-
tail. Note that for vocabulary terms in concrete examples
we use the prefixes shown in Table 1.

Rename Class (RC). Every source instance of a class C
is reclassified into the same instance of the renamed
class C’ in the target. An example of this pattern is
the renaming of class fb:location.citytown in Freebase
into class dbp:City in DBpedia.

Rename Property (RP). Every source instance of a
property P is transformed into the same instance



of the renamed property P’ in the target. An example
is the renaming of property dbp:elevation in DBpe-
dia into property lgdo:ele in LinkedGeoData, in which
both properties represent the elevation of a geographic
location.

Rename Class based on Property (RCP). This pat-

tern is similar to the Rename Class pattern but it is
based on the existence of a property. Every source
instance of a class C is reclassified into the same
instance of the renamed class C’ in the target, if
and only if, the source instance is related with an-
other instance of a property P. An example is the
renaming of class dbp:Person in DBpedia into class
fb:people.deceased_person in Freebase, if and only if,
an instance of dbp:Person is related with an instance
of property dbp:deathDate, i.e., if a deceased person in
Freebase exists, there must exist a person with a date
of death in DBpedia.

Rename Class based on Value (RCV). This pattern

is similar to the previous pattern, but the prop-
erty instance must have a specific value v to re-
name the source instance. An example is the re-
naming of class gw:Person in GovWILD into class
fb:government.politician in Freebase, if and only if|
each instance of gw:Person is related with an instance
of property gw:profession and its value is the literal
“politician”. This means that only people whose pro-
fession is politician in GovWILD are translated into
politicians in Freebase.

Reverse Property (RvP). This pattern is similar to the

Rename Property pattern, but the property instance
in the target is reversed, i.e., the subject is inter-
changed with the object. An example is the reverse of
property fb:airports_operated in Freebase into property
dbp:operator in DBpedia, in which the former relates
an operator with an airport, and the latter relates an
airport with an operator.

Resourcesify (Rsc). Every source instance of a property

P is split into a target instance of property P’ and
an instance of property . Both instances are con-
nected using a fresh resource, which establishes the
original connection of the instance of property P. Note
that the new target resource must be unique and con-
sistent with the definition of the target vocabulary.
An example is the creation of a new URI or blank
node when translating property dbp:runtime in DBpe-
dia into po:duration in BBC by creating a new instance
of property po:version.

Deresourcesify (DRsc). Every source instance of a prop-

erty P is renamed into a target instance of property P’,
if and only if, P is related to another source instance
of a property @, that is, both instances use the same
resource. In this case, the source needs more instances
than the target to represent the same information. An
example of this pattern is that an airport in DBpe-
dia is related with its city served by property dbp:city,
and the name of this city is given as value of rdfs:label.
This is transformed into property lgdp:city_served in
LinkedGeoData, which relates an airport with its city
served (as literal).

1:1 Value to Value (1:1). The value of every source in-
stance of a property P must be transformed by means
of a function into the value of a target instance of
property P’. An example is dbp:runtime in DBpedia
is transformed into movie:runtime in LinkedMDB, in
which the source is expressed in seconds and the target
in minutes.

Value to URI (VtU). Every source instance of a prop-
erty P is translated into a target instance of prop-
erty P’ and the source object value is transformed
into an URI in the target. An example of this pattern
is property grs:point in DBpedia, which is translated
into property fb:location.location.geolocation in Free-
base, and the value of every instance of grs:point is
transformed into an URI.

URI to Value (UtV). This pattern is similar to the pre-
vious one but the source instance relates to a URI
that is transformed into a literal value in the target.
An example of the URI to Value pattern is property
dbp:wikiPageFExternalLink in DBpedia that is trans-
lated into property fb:common.topic.official_website in
Freebase, and the URI of the source instance is trans-
lated to a literal value in the target.

Change Datatype (CD). Every source instance of a
datatype property P whose type is TYPFE is renamed
into the same target instance of property P’ whose
type is TYPE’. An example of this pattern is property
fb:people.person.date_of birth in Freebase whose type
is wsd:dateTime, which is translated into target prop-
erty dbp:birthDate in DBpedia whose type is xsd:date.

Add Language Tag (ALT). In this pattern, every source
instance of a property P is translated into a target
instance of property P’ and a new language tag TAG is
added to the target literal. An example of this pattern
is that db:genericName in Drug Bank is renamed into
property rdfs:label in DBpedia and a new language tag
“@en” is added.

Remove Language Tag (RLT). Every source instance
of a property P is translated into a target instance of
property P’ and the source instance has a language tag
TAG that is removed. An example is skos:altLabel in
DataGov Statistics, which has a language tag “@en”,
is translated into skos:altLabel in Ordnance Survey
and the language tag is removed.

N:1 Value to Value (N:1). A number of source instances
of properties Pi, P2, ..., P, are translated into a sin-
gle target instance of property P’, and the value of the
target instance is computed by means of a function
over the values of the source instances. An example
of this pattern is that we concatenate the values of
properties foaf:givenName and foaf:surname in DBpe-
dia into property fb:type.object.name in Freebase.

Aggregate (Agg). In this pattern, we count the number of
source instances of property P, which is translated into
a target instance of property @Q. An example is prop-
erty fb:metropolitan_transit.transit_system.transit_lines
in Freebase whose values are aggregated into a single
value of dbp:numberOfLines for each city in DBpedia.



Table 2: Mapping patterns in the LOD Cloud

Code | Source triples Target triples

RC 7x aC 7xaC
RP %P7y x Py
7xa C
FILTER EXISTS {
‘? ?
RCP | o poyy unton | X2 €
{7y P 7%} }
7xaC
‘? Iy
RCV %P v ’x a C
RvP xP?y 7y P’ 7x
xQ 7z
? ?
Rsc ’x P 7y %P 7y
7% Q 7z ,
DRsc 2% P 7y x P 7y
1:1 7x P 7y 7x P {(?y)

VtU 7x Py
UtV %P7y
CD 7x P 7y TYPE

7x P? toURI(?y)
7x P’ toLiteral(?y)
7x P’ 7y TYPE’

ALT %P7y 7x P’ 7yQTAG

RLT 7x P 7yQTAG x P 7y
?X P1 ?’U1

N:1 7x P {(?v1, ..., Tupn)
?x P, Tvn

Agg 7x P 7y 7x Q count(?y)

Finally, we present a summary of these mapping patterns
in Table 2. The first column of this table stands for the
code of each pattern; the second and third columns establish
the triples to be retrieved in the source and the triples to
be constructed in the target using a SPARQL-like notation.
Note that properties are represented as P and @, classes as
C, constant values as v, tag languages as TAG, and data
types as TYPE.

3. LODIB GROUNDING

In order to base the LODIB Benchmark on realistic real-
world distributions of these mapping patterns, we analyzed
84 data translation examples from the LOD Cloud and
counted the occurrences of mapping patterns in these ex-
amples. First, we selected different Linked Data sources by
exploring the LOD data set catalog maintained on CKAN?.
The criteria we followed was to choose sources that comprise
a great number of owl:sameAs links with other Linked Data
sources, i.e., more than 25,000. Furthermore, we tried to se-
lect sources from the major domains represented in the LOD
Cloud. Therefore, the selected Linked Data sources are the
following: ACM (RKB Explorer), DBLP (RKB Explorer),
Dailymed, Drug Bank, DataGov Statistics, Ordnance Sur-
vey, DBpedia, GeoNames, Linked GeoData, LinkedMDB,
New York Times, Music Brainz, Sider, GovWILD, Pro-
ductDB, and OpenLibrary. Note that, for each domain of
the LOD Cloud, there are at least two Linked Data sources
that contribute to our statistics except from the domain of
user-generated content.

After selecting these sources, we randomly selected 42 exam-
ples, each of which comprises a pair of instances that are con-
nected by an owl:sameAs link. For each of these examples,

'http://thedatahub.org/group/lodcloud

we analyzed both directions: one instance is the source and
the other instance is the target, and backwards. Therefore,
the total number of examples we analyzed was 84. Then,
we manually counted the number of mapping patterns that
are needed to translate between the representations of the
instances (neighboring instances were also considered to de-
tect more complex structural mismatches). These statistics
are publicly-available at [22].

In the next step, we computed the averages of our mapping
patterns grouped by the pair of source and target data set.
To compute them, in some cases, we analyzed the translation
of one single instance since the data set of the Linked Data
source comprises only a couple of classes, such as Drug Bank
or Ordnance Survey. In other cases, we analyzed more than
one instance since the data set comprises a large number of
classes, such as DBpedia or Freebase.

Table 3 presents the statistics of the mappings patterns that
we have found in the LOD Cloud. The two first columns
stand for the source and target Linked Data data sets, the
following columns contain the averages of each mapping pat-
tern according to the source and the target, i.e., we count the
occurrences of mapping patterns in a number of examples
and compute the average. Note that, for certain data sets,
we analyzed several examples of the same type; therefore,
the final numbers of these columns are real numbers (no in-
tegers). Finally, the last column contains the total number
of instances that we analyzed for each pair of Linked Data
data sets.

On the one hand, Rename Class and Rename Property map-
ping patterns appear in the vast majority of the analyzed
examples, since these patterns are very common in practice.
On the other hand, there are some patterns that are not so
common, e.g., Value to URI and URI to Value patterns ap-
pear only once in all analyzed examples (between DBpedia
and Drug Bank). Table 4 presents the average occurrences of
the LODIB mapping patterns over all analyzed examples.

4. LODIB DESIGN

Based on the previously described statistics, we have de-
signed the LODIB Benchmark. The benchmark consists of
three different source data sets that need to be translated
by the system under test into a single target vocabulary.
The topic of the data sets is the same e-commerce data set
that we already used for the BSBM Benchmark [6]. The
data sets describe products, reviews, people and some more
lightweight classes, such as product price using different
source vocabularies. For translation from the representation
of an instance in the source data sets to the target vocab-
ulary, data translation systems need to apply several of the
presented mapping patterns. The descriptions of these data
sets are publicly-available at the LODIB homepage [22].

These data sets take the previously computed averages of
Table 4 into account by multiplying them by a constant
(11), and divided each one by another constant (3, the total
number of data translation tasks, i.e., from each source data
set to the target data set). As a result, each of the three data
translation tasks comprises a number of mapping patterns,
and we present the numbers in Table 5, in which the total
number of mapping patterns for each task is 18.



1] 000|000 000 | 000/ 000]| 000]| 000|000 000 | 000 | 000 | 000 | 000][00T]O00T s[ueg Sni 19pIg
1] 000|000 000]| 000/ 000]| 000]| 000|000 00T | 000 | 000| 000 | 000000000 AreiqryuedQ gaenpoid
1] 000|000 00T | 000/ 000]| 000]| 000|000 000 | 0000 | 0000 000 000|000 00T sye}g aopeje( | Aeaing eourupIQ
1] 000|000 000 | 000 000]| 000]| 000|000 000 | 00T | 000 | 000 | 000|000 000 aqgrnpoid LrexqrjuedQ
1] 000|000 000]| 000/ 000]| 000]| 000]|00¢ 000 | 0000 | 0000 000]| 000] 000|000 eipadg | sewlLf, S0 MON
1] 000|000 000| 000 000]| 000]| 000|000 000 | 0000 | 000 000 000|000 00T erpadg g zZurexg OISn
9| 000 ] 000]| 000]| 000]000]| 000 000 €£0 000 | 000 | €e0| 000] 000]0SS|00T erpadgq GNP U]
8| 000 | 000]| 000 000]¢SZZ | 000 000]|€T0 000 | 06T | 000 6.0 | 880 0S¢ 00T erpodg @ | ®yRQO0n) poyuI
| 000]0s0]| 000] 000|000 000 000|000 000 | 002 | 000 0S0| 000 ]| 0S¥ | 00T 9seqoaL] ATIMACD
1] 000|000 000]| 000/ 000]| 000]| 000|000 000 | 000] 000 | 000| 000]00€] 00T erpadgq soure ooy
1] 000|000 000| 000/ 000]| 000]| 000|000 000 | 0000 | 000 000]| 000 00T | 00T sueg Sni(g 9seqoL]
| 000]000]| 000]| 000|000 000| 000 ]| 00T 002 | 0000 | 000 000 | 000 ]| 0S¥ | 00T ATIMACD 98eqoOL]
¥T | $1°0 | 0000 | 000 | 000 | #T'T | 000 | 000 | 6L0 62C | 000 12C| L00| 680|288 |¥1¢C erpadgq 98BqoOL]
1] 000|000 000| 000/ 000]| 000]| 000|000 000 | 0000 | 000 000]| 000|000 00T powA[reg sueg Sni(g
1] 000|000 000| 000/ 000]| 000]| 000|000 000 | 0000 | 000 | 000 | 000 00T | 00T I9pIg s[ueg Sni(g
1] 000|000 000]| 000/ 000]| 000]| 000|000 000 | 000 | 000]| 000 000 00T ]| 00T oseqooL] sueg Sni(g
1] 000|001 | 000] 00¢|000]| 00T | 000 | 00T 000 | 0000 | 000 000]| 000 00T 00T erpadgq sueg Sni(g
1] 000|000 000| 000/ 000]| 000| 000|000 000 | 0000 | 000 | 000 | 000|000 | 00T Zurerg OISnN erpadgq
1] 000|001 | 000]| 000/ 000]| 000]| 000|000 000 | 0000 | 000 000 000|000 | 000 | sowL], JI0X MON erpedgQq
1] 000|000 00€| 000]000]| 0000 | 00T |00T 000 | 0000 | 000 000]| 000 00T 00T s[ueg Sna(g erpadgq
9| 000 ]000]| 000]| 000]000]| 000 000 €£0 000 | 0000 | €80 000 | €£0 ] 0SS | 00T JANPOYUIT erpadgq
8| 000 | 000]| 000/ 000]¢SZg | 000 000]€T0 0ST | 0000 | 000 ] 000] 000]0S¢€]| 00T | ®reqos pasury erpadg g
¢ | 000]000] 000]| 000]000]| 000]| 000|000 000 | 000| 000| 000] 000]00¢€]| 00T SOwIeuooy) erpedg Qg
1| 00| #1°0 | 000 | 000 | ¥TT | 000 | 000|280 000 | 62| T8¢ | 000 | %90 | 288 | ¥1¢C 98eqoaL ] erpadgq
1] 000|000 000]| 000/ 000]| 000]| 000|000 000 | 0000 | 000] 000] 000000000 WOV d19d
1] 000|000 000]| 0071 |000]| 000]| 000000 000 | 0000 | 0000 ]| 000]| 000|000 | 00T | £eaing soueupiy syels AoDeIR(]
1] 000 000| 000 | 000 000]| 000]| 000|000 000 | 0000 | 000 | 000 000|000 | 00T s[ueg Sni(g powre(q
1] 000|000 000]| 000/ 000]| 000]| 000|000 000 | 0000 | 000 ] 000]| 000000000 d1dd DV
1oL | S8V | !N | ITH | IV | dD | AN | NIA | T:T | 959 | °S¥ | JAY | ADY | dDY | dY | DY jo8ae], 22anog

S92INO0S 'Ye(] posul] ul suiejyyed Surddepy :¢ o[qe],




Table 4: Average occurrences of the mapping patterns

RC | RP | RCP | RCV | RvP | Rsc | DRsc | 1:1 | VtU | UtV | CD | ALT | RLT | N:1 | Agg
0.87 | 2.01 | 0.08 0.05 0.18 | 0.24 | 0.24 0.30 | 0.04 | 0.04 | 0.24 | 0.14 | 0.14 | 0.09 | 0.01
Table 5: Number of mapping patterns in the data translation tasks
Task RC | RP | RCP | RCV | RvP | Rsc | DRsc | 1:1 | VtU | UtV | CD | ALT | RLT | N:1 | Agg
Task 1 | 3 7 1 0 1 1 1 1 0 1 1 0 1 0 0
Task 2 | 3 7 0 1 0 1 1 1 1 0 1 1 0 1 0
Task 3 | 3 7 0 0 1 1 1 1 0 0 1 1 1 0 1

We have implemented a data generator to populate and scale
the three source data sets that we have specified in the previ-
ous section, which is publicly-available at the LODIB home-
page [22]. In the data generator, we defined a number of data
generation rules, and the generated data are scaled based on
the number of product instances that each data set contains.
In our implementation, we use an extension of the language
used in [8], which allows to define particular value genera-
tion rules for basic types, such as zsd:string or zsd:date. In
addition, missing properties often occurs in the context of
the Web of Data, therefore, we also provide 44 statistical
distributions in our implementation to randomly select dis-
tribute properties, including Uniform, Normal, Exponential,
Zipf, Pareto and empirical distributions, to mention a few.

In this section, we provide examples on how a data transla-
tion system needs to translate the data from the source to
the target vocabulary regarding the mapping patterns in the
three data translation tasks. Specifically, Figure 1 presents
a number of source triples that are translated into a number
of target triples. Note that we use prefixes srci:, src2:, src3:
and tgt: for referring to the source data sets and the single
target vocabularies of the data sets; and srcI-data:, src2:-
data, src3:-data and tgt:-data for referring to the source and
target data. These examples are the following;:

Rename Class (RC). Class srcl:Product needs to be re-
named into class tgt:Product, e.g., srcl-data:Canon-
Irus-20010 product instance.

Rename Property (RP). Property srcl:name needs to
be renamed into property rdfs:label, e.g., the name of
src1-data:Canon-Irus-20010 product instance.

Rename Class based on Property (RCP). In this case,
class srcl:Person needs to be renamed into class
tgt: Reviewer, if and only if, property srcl:author ex-
ists, e.g., srcl-data:Smith-W person instance.

Rename Class based on Value (RCV). In this exam-
ple, class src2:Product needs to be renamed into
class tgt:OutdatedProduct, if and only if, property
src2:outdated exists and has value “Yes”, e.g., src2-
data:HTC-Wildfire-S product instance.

Reverse Property (RvP). In this example, property
srcl:author is reversed into property tgt:author, e.g.,
src1-data: Review-CI-001 review instance and srcl-
data:Smith-W person instance are related and reversed
in the target.

Resourcesify (Rsc). Property srcl:birthDate needs to be
renamed into property tgt:birthDate and a new target
instance of property tgt:birth is needed, e.g., the date
of birth of src1-data:Smith-W person instance.

Deresourcesify (DRsc). Property src2:revText needs to
be renamed into property tgt:text, if and only if, the
instance of property src2:revText is related to another
source instance of property src2:hasText, e.g., the text
of src2-data:Review-HTC-W-S review instance.

1:1 Value to Value (1:1). Property src2:price needs to
be renamed into property tgt:productPrice, and the
value must be transformed by means of function us-
DollarsToFuros, since the source price is represented
in US dollars and the target in Euros, e.g., the price
of src2-data: HTC-Wildfire-S product instance.

Value to URI (VtU). In this example, we need to re-
name property srcl:personHomepage into property
tgt:personHomepage, and the values of the source in-
stances are transformed into URIs in the target, e.g.,
the homepage of srci-data:Smith-W person instance.

URI to Value (UtV). In this example, we need to re-
name property src2:productHomepage into property
tgt:productHomepage, and the URIs of the source in-
stances are transformed into values in the target, e.g.,
the homepage of src2-data:HTC-Wildfire-S product
instance.

Change Datatype (CD). Property dc:date in the first
source needs to be translated into dc:date, and its
type is transformed from zsd:string into zsd:date, e.g.,
the date of src1-data:Review-CI-001 review instance.

Add Language Tag (ALT). property src2:mini-cv needs
to be renamed into property tgt:bio and a new tag
language “@en” is added in the target, e.g., the CV of
src2-data:Doe-J person instance.

Remove Language Tag (RLT). property srcl:revText
needs to be renamed into property tgt:text and the
tag language of the source is removed, e.g., the text of
srcl-data:Review-CI-001 review instance.

N:1 Value to Value (N:1). properties foaf:firstName and
foaf:surname in the second source need to be trans-
lated into property tgt:name, and their values are
concatenated to compose the target value, e.g., the
first name and surname of src2-data:Doe-J person
instance.



srcl-data:Canon-Ixus-20010
a srcl:Product ;
srcl:name
src2-data:HTC-Wildfire-S
a src2:Product ;

"Canon Ixus"~~xsd:string .

src2:outdated "Yes xsd:string ;
"199.99"~~xsd:double ;
src2:productHomepage <htc.com/> .
src3-data:VPCS
a src3:Product ;
src3-data:Review-VPCS-01 ;
src3-data:Review-VPCS-02 ;

src3-data:Review-VPCS-03 .

src2:price

src3:hasReview
src3:hasReview
src3:hasReview
srcl-data:Review-CI-001
a srcl:Review ;
srcl-data:Smith-W ;
"01/10/2011"~"xsd:string ;
"This camera is awesome!"Qen .

srcl:author

dc:date

srcl:revText
src2-data:Review-HTC-W-S

a src2:Review ;

src2:hasText src2-data:Review-HTC-W-S-Text
src2-data:Review-HTC-W-S-Text

a src2:ReviewText ;

src2:revText e
srcl-data:Smith-W

"Great phone"~~"xsd:string .
a srcl:Person ;
srcl:birthDate "06/07/1979"~"xsd:date ;
srcl:personHomepage "wsmith.org"~“xsd:string .

src2-data:Doe-J
a src2:Person ;
src2:mini-cv "Born in the US."""xsd:string ;

foaf:firstName "John"~"xsd:string ;

foaf:surname "Doe"~"xsd:string .

srcl-data:Canon-Ixus-20010

a tgt:Product ;

rdfs:label "Canon Ixus"~"xsd:string .
src2-data:HTC-Wildfire-S

a tgt:0utdatedProduct ;

"152.59"~"xsd:double ;
tgt:productHomepage "htc.com/"~"xsd:string .

tgt:productPrice

src3-data:VPCS
a tgt:Product ;

tgt:totalReviews "3"~"xsd:integer .

srcl-data:Review-CI-001
a tgt:Review ;
dc:date "01/10/2011"~~xsd:date ;

tgt:text "This camera is awesome!"

src2-data:Review-HTC-W-S

a tgt:Review ;

tgt:text "Great phone"~"xsd:string .
srcl-data:Smith-W

a tgt:Reviewer ;

tgt:author srcl-data:Review-CI-001 ;

tgt:birthDate tgt-data:Smith-W-BirthDate .
tgt-data:Smith-W-BirthDate

a tgt:Birth ;

tgt:birthDate "06/07/1979"~"xsd:date ;

tgt:personHomepage <wsmith.org> .
src2-data:Doe-J

a tgt:Person ;

tgt:bio "Born in the US."@en ;

tgt:name "John Doe"~"xsd:string .

(a) Source triples

(b) Target triples

Figure 1: Sample data translation tasks.

Aggregate (Agg). we count the number of instances
of source property src3:hasReview, and this num-
ber needs to be translated as the value of property
tgt:totalReviews, e.g., the reviews of src3-data:VPCS
product instance.

S. EXPERIMENTS

The LODIB benchmark can be used to measure two per-
formance dimensions of a data translation system. For one
thing we state the expressivity of the data translation sys-
tem, that is, the number of mapping patterns that can be
expressed in each system. Secondly we measure the perfor-
mance by taking the time to translate all source data sets to
the target representation. For our benchmark experiment,
we generated data sets in N-Triples format containing 25, 50,
75 and 100 million triples. For each data translation system
and data set the time is measured starting with reading the
input data set file and ending when the output data set has
been completely serialized to one or more N-Triples files.

We have applied the benchmark to test the performance of
two data translation systems:

Mosto It is a tool to automatically generate executable
mappings amongst semantic-web ontologies [20]. It is
based on an algorithm that relies on constraints such

as rdfs:domain of the source and target ontologies
to be integrated, and a number of 1-to-1 correspon-
dences between TBox ontology entities [19]. Mosto
tool also allows to run these automatically generated
executable mappings using several semantic-web tech-
nologies, such as Jena TDB, Jena SDB, or Oracle 11g.
For our tests we advised Mosto to generate (Jena
specific) SPARQL Construct queries. The data sets
were translated using these generated queries and Jena
TDB (version 0.8.10).

LDIF It is an ETL like component for integrating data
from Linked Open Data sources [24]. LDIF’s inte-
gration pipeline includes one module for vocabulary
mapping, which executes mappings expressed in the
R2R [7] mapping language. All the R2R mappings
were written by hand. LDIF supports different run
time profiles that apply to different work loads. For
the smaller data sets we used the in-memory profile,
in which all the data is stored in memory. For the
100M data set we executed the Hadoop version, which
was run in single-node mode (pseudo-distributed) on
the benchmarking machine as the in-memory version
was not able to process this use case.

To allow other researchers to reproduce our results, the con-



figuration and all used mappings for Mosto and LDIF are
publicly-available at the LODIB homepage [22]. To set the
results of these two systems into context of the more popu-
lar tools in the Linked Data space, we compared the perfor-
mance of both systems with the SPARQL 1.1 performance
of the Jena TDB RDF store (version 0.8.10). All the map-
pings for Jena TDB were expressed as SPARQL 1.1 Con-
struct queries, which were manually written by ourselves.
For loading the source data sets we used the more efficient
tdbloader?, which also generates data set statistics that are
used by the TDB optimizer.

Table 6 gives an overview of the expressivity of the data
translation systems. All mapping patterns are expressable
in SPARQL 1.1, so all the mappings are actually executed on
Jena TDB. The current implementation of the Mosto tool
generates Jena-specific SPARQL Construct queries, which
could, in general, cover all the mapping patterns. However,
the goal of Mosto tool is to automatically generate SPARQL
Construct queries by means of constraints and correspon-
dences without user intervention, therefore, the meaning of
a checkmark in Table 6 is that it was able to automatically
generate executable mappings from the source and target
data sets and a number of correspondences amongst them.
Note that Mosto tool is not able to deal with RCP and RCV
mapping patterns since it does not allow the renaming of
classes based on conditional properties and/or values. Fur-
thermore, it does not support Agg mapping pattern since
it does not allow to aggregate/count properties. In R2R it
is not possible to express aggregates, therefore no aggrega-
tion mapping was executed on LDIF. In order to check if
the source data has been correctly and fully translated, we
developed a validation tool that examines if the source data
is represented correctly in the target data set. Using the
validation tool, we verified that all three systems produce
proper results.

To compare the performance and the scaling behaviour of
the systems we have run the benchmark on an Intel i7 950
(4 cores, 3.07GHz, 1 x SATA HDD) machine with 24GB of
RAM running Ubuntu 10.04.

Table 7 summarizes the overall runtimes for each mapping
system and use case. Since Mosto and R2R were not able
to express all mapping patterns, we created three groups:
1) one that did not execute the RCV, RCP and AGG map-
pings, 2) one without the AGG mapping and 3) one execut-
ing the full set of mappings. The results show that Mosto
and Jena TDB have — as expected — similar runtime per-
formance because Mosto internally uses Jena TDB. LDIF
on the other hand is about twice as fast on the smallest
data set and about three times as fast for the largest data
set compared to Jena TDB and Mosto. One reason for the
differences could be that LDIF highly parallelizes its work
load, both in the in-memory as well as the Hadoop version.

6. RELATED WORK

The most closely related benchmarks are STBenchmark [1]
and DTSBench [21]. Alexe et al. [1] devised STBenchmark,
a benchmark that is used to test data translation systems
in the context of nested relational models. This benchmark
provides eleven patterns that occur frequently in the infor-
mation integration context. Unfortunately, this benchmark

is not suitable in our context since semantic-web technolo-
gies have a number of inherent differences with respect to
nested relational models [2, 14, 15, 25].

Rivero et al. [21] devised DTSBench, a benchmark to test
data translation systems in the context of semantic-web
technologies that provides seven data translation patterns.
Furthermore, it provides seven parameters that allow to
create a variety of synthetic, domain-independent data
translation tasks to test such systems. This benchmark
is suitable to test data translation amongst Linked Data
sources, however, the patterns that it provides are inspired
from the ontology evolution and information integration
contexts, not the Linked Data context. Therefore, it allows
to generate synthetic tasks based on these patterns, but not
real-world Linked Data translation tasks.

There are other benchmarks in the literature that are suit-
able to test semantic-web technologies. However, they can-
not be applied to our context, since none of them focuses on
data translation problems, i.e., they do not provide source
and target data sets and a number of queries to perform data
translation. Furthermore, these benchmarks focus mainly on
Select SPARQL queries, which are not suitable to perform
data translation, instead of on Construct SPARQL queries.

Guo et al. [12] presented LUBM, a benchmark to compare
systems that support semantic-web technologies, which pro-
vides a single ontology, a data generator algorithm that al-
lows to create scalable synthetic data, and fourteen SPARQL
queries of the Select type. Wu et al. [26] presented the ex-
perience of the authors when implementing an inference en-
gine for Oracle. Bizer and Schultz [6] presented BSBM, a
benchmark to compare the performance of SPARQL queries
using native RDF stores and SPARQL-to-SQL query rewrit-
ers. Schmidt et al. [23] presented SP?Bench, a benchmark
to test SPARQL query management systems, which com-
prises both a data generator and a set of benchmark queries
in SPARQL.

7. CONCLUSIONS

Linked Data sources try to reuse as much existing vocab-
ularies as possible in order to ease the integration of data
from multiple sources. Other data sources use completely
proprietary vocabularies to represent their content or use a
mixture of common terms and proprietary terms. Due to
these facts, there exists heterogeneity amongst vocabularies
in the context of Linked Data. Data translation, which re-
lies on executable mappings and consists of exchanging data
from a source data set to a target data set, helps solve these
heterogeneity problems.

In this paper, we presented LODIB, a benchmark to test
data translation systems in the context of Linked Data. Our
benchmark provides a catalogue of fifteen data translation
patterns, each of which is a common data translation prob-
lem. Furthermore, we analyzed 84 random examples of data
translation in the LOD Cloud and we studied the distribu-
tion of the patterns in these examples. Taking these results
into account, we devised three source and one target data
set based on the e-commerce domain that reflect the map-
ping pattern distribution. Each source data set comprises
one data translation task.



Table 6: Expressivity of the mapping systems

RC RP RCP RCV RvP Rsc DRsc 1:1 VtU UtV CD ALT RLT N:1 Agg
Mosto queries v v v v v v v v v v v v
SPARQL 1.1 Vv v v v v v v v v v v v v v v
R2R Vv v v v v v v v v v v v v v
Table 7: Runtimes of the mapping systems for each use case (in seconds)
25M 50M 75M 100M
Mosto SPARQL queries / Jena TDB! 3,121 7,308 10,622 15,763
R2R / LDIF! 1,506 2,803 4,482 *5,718
SPARQL 1.1 / Jena TDB! 2,720 6,418 10,481 16,548
R2R / LDIF? 1,485 2,950 4,715 *5,784
SPARQL 1.1 / Jena TDB? 2,839 6,508 12,386 19,499
SPARQL 1.1 / Jena TDB 2,925 6,858 12,774 20,630

* Hadoop version of LDIF as single node cluster. Out of memory for in-memory version.

b without RCP, RCV and AGG mappings
2 without AGG mapping

Current benchmarks concerning data translation focus on
nested relational models, which is not suitable for our con-
text since semantic-web technologies have a number of in-
herent differences with respect to these models, or in the
general context of semantic-web technologies. To the best of
our knowledge, LODIB is the first benchmark that is based
on real-world distribution of data translation patterns in the
LOD Cloud, and that is specifically tailored towards the
Linked Data context.

In this paper, we compared three data translation systems,
Mosto, SPARQL 1.1/Jena TDB and R2R, by scaling the
three data translation tasks. In this context, Mosto is able to
deal with 12 out of the 15 mapping patterns described in this
paper, SPARQL 1.1/Jena TDB deals with 15 out of 15, and
R2R deals with 14 out of 15. Furthermore, the results show
that R2R outperforms both Mosto and SPARQL 1.1/Jena
TDB data translation systems when performing the three
data translation tasks. Our empirical study has shown that,
to translate data amongst data sets in the LOD Cloud, there
is only needed a small set of simple mapping patterns. In this
context, the fifteen mapping patterns identified in this paper
were enough to cover the vast majority of data translation
problems when integrating these data sets.

As the Web of Data grows, the task of translating data
amongst data sets moves into the focus. We hope that
LODIB benchmark will be considered useful by the develop-
ers of the currently existing Linked Data translation systems
as well as the systems to come. More information about
LODIB is publicly-available at the homepage [22], such as
the exact specification of the benchmark data sets, the data
generator, examples of the mapping patterns, or the statis-
tics about these mappings that we found in the LOD Cloud.

Acknowledgments

Supported by the European Commission (FEDER), the
Spanish and the Andalusian R&D&I programmes (grants
P07-TIC-2602, PO8-TIC-4100, TIN2008-04718-E, TIN2010-

21744, TIN2010-09809-E, TIN2010-10811-E, and TIN2010-
09988-E), and partially financed through funds received
from the European Community’s Seventh Framework Pro-
gramme (FP7) under Grant Agreement No. 256975 (LATC)
and Grant Agreement No. 257943 (LOD2).

8. REFERENCES

[1] B. Alexe, W. C. Tan, and Y. Velegrakis.
STBenchmark: Towards a benchmark for mapping
systems. PVLDB, 1(1):230-244, 2008.

[2] R. Angles and C. Gutiérrez. Survey of graph database
models. ACM Comput. Surv., 40(1), 2008.

[3] M. Arenas and L. Libkin. Xml data exchange:
Consistency and query answering. J. ACM, 55(2),
2008.

[4] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data -
the story so far. Int. J. Semantic Web Inf. Syst.,
5(3):1-22, 2009.

[5] C. Bizer, A. Jentzsch, and R. Cyganiak. State of the
LOD cloud. Available at: http://www4.wiwiss.
fu-berlin.de/lodcloud/state/#terms, 2011.

[6] C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. Int. J. Semantic Web Inf. Syst.,
5(2):1-24, 2009.

[7] C. Bizer and A. Schultz. The R2R framework:
Publishing and discovering mappings on the Web. In
1st International Workshop on Consuming Linked
Data (COLD), 2010.

[8] D. Blum and S. Cohen. Grr: Generating random
RDF. In ESWC (2), pages 16-30, 2011.

[9] J. Euzenat, A. Polleres, and F. Scharffe. Processing
ontology alignments with SPARQL. In CISIS, pages
913-917, 2008.

R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa.
Data exchange: semantics and query answering.
Theor. Comput. Sci., 336(1):89-124, 2005.

A. Fuxman, M. A. Hernandez, C. T. H. Ho, R. J.
Miller, P. Papotti, and L. Popa. Nested mappings:

(10]

(11]



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

[26]

Schema mapping reloaded. In VLDB, pages 6778,
2006.

Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. J. Web Sem.,
3(2-3):158-182, 2005.

T. Heath and C. Bizer. Linked Data: Evolving the Web
into a Global Data Space. Morgan & Claypool, 2011.
B. Motik, I. Horrocks, and U. Sattler. Bridging the
gap between OWL and relational databases. J. Web
Sem., 7(2):74-89, 2009.

N. F. Noy and M. C. A. Klein. Ontology evolution:
Not the same as schema evolution. Knowl. Inf. Syst.,
6(4):428-440, 2004.

F. S. Parreiras, S. Staab, S. Schenk, and A. Winter.
Model driven specification of ontology translations. In
ER, pages 484-497, 2008.

A. Polleres, F. Scharffe, and R. Schindlauer.
SPARQL++ for mapping between RDF vocabularies.
In ODBASE, pages 878-896, 2007.

H. Qin, D. Dou, and P. LePendu. Discovering
executable semantic mappings between ontologies. In
ODBASE, pages 832-849, 2007.

C. R. Rivero, I. Herndndez, D. Ruiz, and

R. Corchuelo. Generating SPARQL executable
mappings to integrate ontologies. In ER, pages
118-131, 2011.

C. R. Rivero, I. Herndndez, D. Ruiz, and

R. Corchuelo. Mosto: Generating SPARQL executable
mappings between ontologies. In ER Workshops,
pages 345-348, 2011.

C. R. Rivero, I. Herndndez, D. Ruiz, and

R. Corchuelo. On benchmarking data translation
systems for semantic-web ontologies. In CIKM, pages
1613-1618, 2011.

C. R. Rivero, A. Schultz, and C. Bizer. Linked Open
Data Integration Benchmark (LODIB) specification.
Available at:
http://wuwd.wiwiss.fu-berlin.de/bizer/lodib/,
2012.

M. Schmidt, T. Hornung, G. Lausen, and C. Pinkel.
SP?Bench: A SPARQL performance benchmark. In
ICDE, pages 222—233, 2009.

A. Schultz, A. Matteini, R. Isele, C. Bizer, and

C. Becker. LDIF - Linked Data integration framework.
In 2nd International Workshop on Consuming Linked
Data (COLD), 2011.

M. Uschold and M. Griininger. Ontologies and
semantics for seamless connectivity. SIGMOD Record,
33(4):58-64, 2004.

Z. Wu, G. Eadon, S. Das, E. I. Chong, V. Kolovski,
M. Annamalai, and J. Srinivasan. Implementing an
inference engine for RDFS/OWL constructs and
user-defined rules in oracle. In ICDE, pages
1239-1248, 2008.



