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Recently, transcranial alternating current stimulation (tACS) has emerged as a tool to enhance human cognitive processes. Here, we
provide a brief summary of the rationale behind tACS-induced effects on task-relevant brain oscillations and associated cognitive
functions and review previous studies in young subjects that have applied tACS in cognitive paradigms. Additionally, we present
pilot data where we administered theta-tACS (6 Hz) over the temporoparietal cortex and a supraorbital reference for 20 min during
implicit language learning in healthy young (mean/SD age: 22/2) and older (mean/SD age: 66/4) adults, in a sham-controlled
crossover design. Linear mixed models revealed significantly increased retrieval accuracy following tACS-accompanied associative
learning, after controlling for session order and learning success. These data provide the first implementation of tACS during
cognitive performance in older adults and support recent studies suggesting that tACS in the theta frequency range may serve
as a tool to enhance cognition, possibly through direct modulation of task-relevant brain oscillations. So far, studies have been
heterogeneous in their designs, leaving a number of issues to be addressed in future research, including the setup of electrodes and
optimal stimulation frequencies to be employed, as well as the interaction with age and underlying brain pathologies in specific

patient populations.

1. Introduction

The modulation of ongoing brain activity with transcranial
electrical stimulation has been shown to result in changes
on the behavioral and neuronal level [1-3]. Most evidence
exists for transcranial direct current stimulation (tDCS) that
modulates the neuronal response threshold in a polarity-
specific manner by inducing depolarization or hyperpolar-
ization [1, 4]. This technique has been implemented most
often and is currently understood most clearly [5]. Beneficial
effects of tDCS have been demonstrated on the behavioral as
well as neuronal level in various cognitive domains and study
populations [6-10]. Only in the last few years, transcranial
alternating stimulation (tACS) has attracted attention as a
promising alternative approach aiming to directly interact

with ongoing oscillatory cortical activity and, as a conse-
quence, to enhance cognitive processes in healthy adults (for
recent reviews, see [1, 11-13]).

In tACS, a sinusoidal current is applied to the scalp, oscil-
lating above and below zero with a given stimulation strength
(i.e., peak-to-peak amplitude) in a particular frequency (cf.
[13]). Whereas tDCS modulates the excitability thresholds of
neuronal membrane potentials [1, 4], tACS directly interacts
with ongoing neuronal activity during cognitive or sensory-
motor processes, leading to an entrainment or synchroniza-
tion of brain network oscillations [1, 2, 13, 14]. Ideally, the
stimulation frequency is chosen within the range of the
human electroencephalography (EEG) frequency band and
close to the frequency of the predominant oscillations of neu-
ronal networks and cognitive processes under study [11-13,



15]. As brain oscillations are known to represent various brain
functions, certain frequencies reflecting particular ongoing
cognitive or sensory-motor processes [11, 13], tACS enhances
ongoing processes through exogenous augmentation of those
oscillations [11, 16]. Hence, the potential of tACS may lie not
only in the frequency-specific synchronization of neuronal
networks leading to a behavioral change [12] but also beyond
that in the possibility of inferring causal associations between
brain oscillations and cognitive processes [1, 11, 12].

The majority of experiments that have investigated the
neurophysiological effects of tACS using EEG recordings
consistently confirmed that tACS in a particular frequency
modulates ongoing oscillations (e.g., [17-20]). For instance,
alpha-tACS increased individual alpha amplitudes directly
[18] and 30 min after stimulation offset [17]. tACS interferes
with ongoing brain oscillations by increasing or decreasing
frequency power depending on the endogenous brain state
(e.g., task versus rest), predominant EEG frequency (e.g.,
theta versus alpha), and site (e.g., frontal versus parietal
brain regions) [20, 21]. For instance, Pahor and JauSovec
observed reduced alpha power in posterior areas after
theta-tACS in resting EEG while theta power in frontal
areas was enhanced [20]. Three studies have examined the
tACS-induced modulation of the blood oxygenation level
dependent (BOLD) response using functional magnetic res-
onance imaging (fMRI) [22-24]. Alpha-tACS with a cen-
trooccipital electrode (Cz-Oz) montage induced task-related
BOLD signal decreases in occipital areas [22, 24]. BOLD
decreases after alpha-tACS (Cz-Oz montage) were observed
in (nonstimulated) temporal and frontal brain areas [22].
Cabral-Calderin et al. failed to find the expected occipital
BOLD decrease after alpha-tACS (Cz-Oz montage) but rather
observed overall tACS effects in regions not activated by the
task [23]. In particular, the authors showed BOLD increases
in frontoparietal areas during beta-tACS (16 Hz). Altogether,
research findings with regard to tACS-related neuronal effects
are rather scarce and complex, showing that effects depend on
the task, frequency, and intensity under study and emphasize
the need for further investigations.

Neurophysiological as well as behavioral tACS-induced
effects have more extensively been studied in the sensory
(e.g., auditory [25], visual system [19, 24, 26]) and motor
domain [23, 27] (see also [2, 11] for reviews). Moreover,
tACS effects on clinical symptoms due to tinnitus [28] or
Parkinson’s [29] and recovery after stroke [30] have been
evaluated. Here, we focus on studies that examined tACS-
induced modulation of cognitive functions in healthy adults,
specifically executive functions and working memory capac-
ity as well as learning and memory formation. Noteworthily,
we will omit the discussion of studies that have applied
slow oscillatory stimulation during sleep to promote memory
consolidation (e.g., [31-33]) as it reflects a special form of
oscillatory stimulation, representing a combination of direct
and alternating current stimulation [11, 21]. For a com-
bined review and discussion of sleep-oscillatory stimulation
studies, see [11, 12]. The tACS interventions reviewed here
assessed cognitive performance after [20, 34-36] and during
[37-43] stimulation, using similar designs to those of tDCS
approaches, and are summarized in Table 1.

Neural Plasticity

Executive Control. Six studies have examined tACS-induced
enhancement of executive control processes with parietal [20,
43] and frontal stimulation targets [20, 39-41, 43, 44]. Tasks
under study included problem-solving (Ravens progressive
matrices) [20, 39, 44], decision-making (Balloon Analog
Risk Task [40], perceptual and value-based rating [43]), and
conflict processing (color-location Simon tasks) [41].

Pahor and JauSovec recorded participants EEG and
performance on tests of fluid intelligence after theta-tACS
or sham stimulation was applied [20]. The authors found
increases in frontal theta and decreases in posterior alpha
power followed by tACS-induced performance increases in
both, the frontal and the parietal stimulation groups, with
more prominent effects in the parietal group. The superior
performance after tACS compared to sham in the parietal
stimulation group was ascribed to the tACS-induced increase
in working memory storage capacity. On the contrary, San-
tarnecchi and his colleagues observed increased performance
speed in a similar task during gamma-tACS over frontal areas
[39]. Gamma-tACS significantly improved logical reasoning
abilities compared to alpha-, theta-, and beta-tACS (which all
showed no effect) and sham stimulation. In a more recent
study, the authors confirmed the specific gamma-tACS-
induced enhancement of logical problem-solving, while spa-
tial working memory was found to be unaffected. Further,
individual differences in tACS responsiveness were supported
by the observation that beneficial effects particularly emerged
in participants with slower response times at baseline [44].

Sela et al. compared decision-making under risk perfor-
mance during theta-tACS between left- and right-frontal and
sham stimulation groups [40]. Participants in the left-frontal
tACS group showed a riskier response strategy compared to
right-frontal and sham stimulation groups which was inter-
preted as a disruption of risk-averse decision-making due
to tACS-induced interhemispheric imbalance. The authors
failed to find the expected enhancement of decision-making
strategies during right-frontal tACS. Similarly, Polania et
al. observed more inaccurate choices between food rewards
during tACS which induced oscillatory frontoparietal desyn-
chronization [43]. In a recent study investigating tACS effects
on conflict processing, van Driel et al. observed reduced
response times on low-conflict trials (resulting in reduced
response conflict) during midfrontal theta-tACS compared to
an alpha-tACS control [41]. The authors concluded that theta-
tACS leads to a more cautious (i.e., slower) response strategy.

Memory. Six studies have examined tACS-induced enhance-
ment of working memory [34-38, 42] while one study looked
at declarative memory [45]. As for executive functions, stim-
ulation targets in all studies either were frontal [34-38, 42, 45]
or also included parietal sites [35, 36, 38, 42]. Tasks included
memory storage and matching (letter discrimination, visual-
array comparison, and n-back) [34-38, 42], memory span
(digits and Corsi blocks) [36, 42], and word-pair learning
[45].

Polania et al’s study was the first to look at frontoparietal
tACS during a visual memory-matching task. Participants
were faster during phase synchronized (0°) and slower during
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phase desynchronized (180°) theta-tACS compared to sham
stimulation [38]. These findings were interpreted as causal
evidence that theta phase coupling between frontal and
parietal brain areas is crucial for cognitive performance (cf.
[11]). A further study confirmed the beneficial effects of
theta-tACS on verbal working memory accuracy compared
to sham stimulation with a bifrontal electrode setup [37].
The authors also found an association between tACS-induced
improvements and subsequent retrospective self-evaluation.

Jausovec and his colleagues found higher memory scores
after parietal theta-tACS compared to sham and no effects
of frontal stimulation [35, 36]. In addition, the authors
demonstrated a latency decrease of the event-related poten-
tial component P300 during task performance indicative of
an improved capability to solve the task after tACS [35].
Vosskuhl and his colleagues could not replicate the benefi-
cial tACS effects on backward memory span and memory
matching (i.e., n-back task) in a frontoparietal electrode setup
along the central line using a frequency below the individual
theta [42]. Apart from that, participants in the tACS group
performed better in forward digit span during stimulation,
reflecting short-term memory, compared to the sham group.
Higher task-related theta amplitudes after stimulation in the
tACS but not sham group, as assessed by EEG, confirmed
successful modulation of brain oscillations. However, this
study also observed that behavioral effects disappeared after
tACS offset. The most recent study by Hoy and her col-
leagues was the first to directly compare frontal gamma-
tACS with tDCS on change in working memory performance
[34]. While tDCS had unexpectedly no effects compared to
sham, tACS significantly enhanced performance at higher
memoryloads (i.e., 3-back task) compared to sham and tDCS.
Noteworthily, the authors observed considerable baseline
differences between stimulation conditions that impede their
conclusions.

The first study that looked at tACS-induced effects on
declarative memory (excluding the sleep and slow oscillatory
stimulation studies, see above) applied tACS in the hip-
pocampal ripple range (140 Hz) during the encoding of word
pairs and found that while a night of sleep induced forgetting
(i.e., reduction of the number of recalled word pairs) after
sham, there was no such difference between immediate (after
stimulation) and delayed (after sleep) recall after tACS [45].
tACS and sham condition did not per se differ in immediate
or delayed recall.

In sum, recent studies on cognitive processes in healthy
young samples indicate successful modulation of brain oscil-
lations and behavioral outcome through frontal or parietal
stimulation. The majority of the studies suggest a particularly
beneficial effect of tACS in the theta frequency (either fixed
for all study participants or determined individually). Oscil-
lations in the theta frequency are associated with memory
processes and reflect the encoding of new information [46].
Thus, they mirror cortical communication with the hip-
pocampus and support cognitive operations such as learning
[47]. While executive and working memory processes have
been examined in several studies, the investigation of tACS-
induced improvement of learning processes is underrepre-
sented. Although the studies point to effectiveness of tACS,
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TABLE 2: Participant characteristics.

Young adults Older adults
Age mean + SD (years) 223+15 66.3+3.9
N (f) 12 (6) 12 (6)
Education mean + SD (years) 155+ 1.4 158 +3.2

there is substantial heterogeneity in the study designs and
various stimulation parameters that restrict overall con-
clusions. Moreover, previous studies only included healthy
young subjects. Given that task-related as well as resting
brain oscillatory activity may show altered patterns across the
human lifespan [48-51], the impact of stimulation protocols
on older healthy adults, and even more so on older adults with
emerging brain pathology, is particularly relevant but so far
unknown.

Our Study. In our randomized, sham-controlled pilot study,
we asked whether retrieval of implicitly learned associations
between objects and pseudowords can be improved by
concurrent theta-tACS over the left temporoparietal cortex.
We used the same paradigm and electrode montage as Floel
et al. who showed that accuracy in retrieval after learning
was improved by anodal tDCS compared to sham and
cathodal stimulation [52]. Here, we examined the effects of
temporoparietal theta-tACS (6 Hz) on performance accuracy.
To the best of our knowledge, no previous study has explored
tACS effects on implicit learning success so far. Moreover,
this study is the first administering tACS in a group of older
adults.

2. Materials and Methods

2.1. Participants and Study Design. Twenty-four healthy
young and older adults participated in the study (see Table 2
for participant characteristics). All were native German
speakers, were right-handed, and had no history of neuro-
logical or psychiatric disorders. All older participants under-
went neuropsychological testing prior to study inclusion in
order to assure normal cognitive functioning (CERAD-Plus,
https://www.memoryclinic.ch/de/). Performance levels on all
cognitive domains lay within age- and education-related
norms. The study was approved by the ethics committee of the
Charité University Medicine and conducted in accordance
with the Helsinki Declaration. Written informed consent was
obtained from all participants prior to participation.

We implemented a single-blind sham-controlled crosso-
ver design. Participants underwent two stimulation condi-
tions (tACS and sham) in a counterbalanced order. Sessions
were separated by seven days to avoid carryover effects and
were administered at the same time of the day. During
stimulation, participants were given a language learning
paradigm [52, 53]. Two older participants were excluded
from further analysis due to difficulties in understanding task
instructions, as indicated by subjects’ pressing only one of
the two response buttons throughout the entire task. Figure 1
illustrates the task and study design.
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FIGURE 1: (a) Sample auditory (presented via headphones) and visual (presented on the screen) stimuli of the experiment. (b) Duration and
composition of each trial (120 in total in each block). (c) Illustration of the electrode positions and experimental design. The two stimulation
electrodes were placed over the left temporoparietal area (CP5; 5 x 7 cm”) and the right supraorbital area (10 x 10 cm?). L1-L5, learning blocks

1-5. R, retrieval testing.

2.2. Transcranial Alternating Current Stimulation. A battery-
driven stimulator (NeuroConn, Ilmenau, Germany) was used
to deliver alternating current to the scalp via two sponge-
electrodes soaked into saline solution. One electrode (5 x
7 cm) was placed centrally over the CP5 area (left hemisphere)
according to the 10-10 EEG system; the other (10 x 10 cm)
was placed over the right supraorbital area (see Figure 1(c)
for electrode position). This electrode montage has been
used in previous studies investigating tDCS-induced effects
in the same [52] and an explicit vocabulary learning task
[54]. Electrodes were fixed with two rubber bands and
impedance was kept below 5kOhm. Stimulation parameters
were set as follows: 6 Hz, 20 min (7200 cycles), 10s fade
in/out, 0° phase, and 1 mA peak-to-peak amplitude. Placebo
or sham stimulation, respectively, was delivered identically to
previous studies [52, 54] where current was applied only for
30 sec.

2.3. Language Learning Paradigm. The paradigm was
adapted from previous studies (see [52, 53, 55] for detailed
description) and presented using the software Presentation

(Neurobehavioral Systems, http://www.neurobs.com/, ver-
sion 18.1). In brief, the paradigm consists of the presentation
of pseudoword-picture pairs. For each participant, a set of 30
pseudowords and 30 visually presented pictures of daily life
objects were randomly matched up to 30 “correct” pairings.
Two different sets of stimuli existed for the two experimental
sessions (cf. [52]).

During the learning phase of the experimental session,
five training blocks with 120 trials each were presented (600
trials in total). “Correct” pairings (e.g., /pari/ and elephant)
occurred ten times (twice per block); in addition, each picture
occurred ten times with varying “incorrect” pseudowords
(e.g., /ralm/ and elephant) (see Figure 1(a) for sample stim-
uli). “Incorrect” pairings were shown only once. The order
of trial presentation was randomized. Response buttons were
reversed for one-half of the participants. In each trial, the
picture was presented 200 ms after the onset of the auditory
spoken pseudoword (all normalized to the same loudness
and a length of 600 ms). During the picture presentation,
participants had to decide whether the pairing was “correct”
or “incorrect” by button press. This time window was raised



8 Neural Plasticity
Retrieval Learning
0.9 1 0.9 1
%
0.8 1 % } { 0.8 1 {
2 0.7 } 2 0.7 1 }
5 5 }
QO |©) {
0.6 A 0.6 { {
Young  Older % Young { { Older }
0.5 1 0.5 1
adults  adults adults adults L)
LIL2L31L4L5 L1 L2L31L4L5L1 L2L3L4L5L1 L2 L3 L4 L5
B¢ Sham
@ A tACS B¢ Sham
@® A tACS

()

()

FIGURE 2: (a) Retrieval performance in the transfer task which directly followed the learning blocks. Model-based estimates are depicted.
N = 22 subjects/44 measures. “ P < .05. (b) Learning performance in the five learning blocks. Blue rectangles/rhombs for sham condition in
young/older adults, red circles/triangles for tACS condition in young/older adults. N' = 22 subjects/220 measures. Means and 95% CI.

up to 1500 ms compared to 1000 ms in [52, 53, 55] in order to
adapt the experiment to older adults (see Figure 1(b) for trial
timings).

During the subsequent retrieval phase, learning success
was measured in a “transfer” block. Here, instead of visually
presented objects, corresponding spoken German words
were presented together with the pseudowords with identical
stimuli count, trial timings, and underlying frequency prin-
ciple. Completion of the experimental session took 35 min
in total; hence, stimulation was administered during the first
four learning blocks (see Figure 1(c) for study design). Both
accuracy and reaction times were assessed during each block.

Main outcome measure was the accuracy on the retrieval
block.

2.4. Questionnaires. Before and after stimulation mood rat-
ings were administered using the Positive and Negative Affect
Schedule (PANAS) [56]. Participants rated their positive
and negative affect (10 items each) on a scale ranging
from 1 to 5, where higher values describe more positive
or negative feelings, respectively. After completion of the
second experimental session, participants were asked to ret-
rospectively report the occurrence of potential adverse effects
(symptoms like tingling, itching, burning, and headache)
during stimulation in a standardized questionnaire as well
as blinding effectiveness [57] (“tACS first session”; “tACS

second session”; “do not know”).

2.5. Statistical Analysis. Statistical analyses were conducted
with IBM SPSS 23 (http://www-0Libm.com/software/de/ana-
lytics/spss/). Linear mixed models (random intercept mod-
els) [58] were calculated for task performance (retrieval and

learning) as well as for the mood ratings (differences in
positive and negative affect) with repeated measurements as

level-one units nested in individuals who were level-two
units. Models included the factors condition (tACS and
sham) and group (old and young) as well as their interaction
in order to examine differences of stimulation effects between
groups. For the main outcome variable retrieval performance,
the model was adjusted for mean learning performance
(derived from the learning phase) to control for overall
task-related performance and session effects. We additionally
included the interaction between mean performance and
condition in order to test whether tACS effects were depen-
dent on initial performance levels. The regression coefficient
for this interaction was not significant (§ = -.17, SE = .22,
F59) = 59, and p = .45) and was therefore excluded in the
final model. For the learning variable, linear and quadratic
terms for time points (centered) were entered into the model
in order to describe the learning curve throughout the blocks.
The model was adjusted for session order effects and included
a group by learning curve interaction in order to test for
differences in learning curves between groups. Model-based
post hoc pairwise comparisons of the estimated fixed effects
were computed. A two-sided significance level of & = 0.05
was used. No adjustment for multiple testing was applied.

3. Results

3.1 Retrieval Performance. Figure 2(a) depicts model-based
means for retrieval performance separately for condition and
age groups. The linear mixed model revealed a significant
effect of condition, indicating superior performance in the
tACS compared to sham condition (mean difference (95%
CI): .04 (.01-.07), F 15 = 6.36, and p = .021). A significant
effect of group further indicated superior performance in
young compared to older adults (mean difference (95% CI):
.04 (.003-.08), F(; 5;y = 5.13, and p = .034). Interaction of
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condition and age group showed a trend towards significance
(B = .05, SE = .03, Fyy 5 = 325, and p = .089). Model-
based post hoc tests showed a significant difference between
conditions in the older (mean difference (95% CI): .06 (.02-
A1); p = .010) but not the young (mean difference (95% CI):
.01 (~.03-.05); p = .586) group.

3.2. Learning Performance. Task performance improved over
the learning blocks in both groups (Figure 2(b)). Improve-
ment was significant with regard to the five learning blocks in
a curvilinear convex manner indicated by a significant linear
increase (3 for the five blocks (centered and linear) = .07, SE =
003, F; 75 = 62518, and p < .001) and an additional
significant coefficient for the square of block order (f for
the five blocks (squared) = .01, SE = .002, F; 73y = 28.66,
and p < .001). A significant interaction of group and block
indicated flatter learning curves in older adults (3 =-.03,SE =
005, Fy 75 = 29.87, and p < .001). Interaction of age
group and condition was not significant (3 = —.04, SE = .04,
F(39) = .86, and p = .36). Model-based post hoc tests did
not show significant differences in learning between the tACS
and sham condition neither in older (mean difference (95%
CI): —.04 (-.10-.02); p = .171) nor in young (mean difference
(95% CI): —.004 (-.06-.05); p = .873) adults.

3.3. Mood Ratings and Stimulation Side Effects. Mood ratings
before and after stimulation are displayed in Table 3. Mixed
effects models showed that there was no significant difference
in mood rating changes neither on the positive nor on the
negative scale between conditions (positive affect: § = —.14,
SE = 10, and p = .19; negative affect: 3 = .00, SE = .05, and
p = 1.0) or groups (positive affect: § = —.07, SE = .11, and
p = .528; negative affect: § =.05, SE = .05, and p = .280).
Both groups tolerated the stimulation well in both condi-
tions. Only few participants reported adverse effects. Table 4
shows the amount of participants retrospectively reporting
the occurrence of the respective adverse events for the
conditions. Note that none of the participants reported the
occurrence of phosphene perception or visual sensations.
In line with typical sensations induced by tDCS [59], par-
ticipants could not differentiate between tACS and sham
stimulation (young adults: four incorrect and three correct
guesses and five “do not know”; older adults: one correct
guess, four “both sessions,” and seven “do not know”).

4. Discussion

The current pilot study explored the effects of theta-tACS over
the left temporoparietal cortex with a right supraorbital ref-
erence during implicit language learning in young and older
adults, in a sham-controlled randomized crossover design.
The results suggest that tACS application during implicit
learning improved subsequent retrieval performance, after
controlling for learning and session effects. This effect
was driven by the superior performance of older adults
in the tACS compared to the sham condition. Effects of
tACS on learning performance and mood ratings were not
significant.

TABLE 3: Mean and standard deviations of positive and negative
mood ratings.

tACS Sham
Pre Post Pre Post
PA 28+.6 28+ .6 28+.7 3.0+.6
Young adults
NA 1.2+ .2 1.1+.1 1.1+.1 1.1+.2
Older adults A 35+.8 34+ 9 33+.7 33+.9
NA 1.1+.3 1.1+ 4 1.2+ 4 1.1+.3

PA, positive affect; NA, negative affect.

TABLE 4: Number of participants reporting adverse events during
stimulation.

tACS  Sham  Both
Pain — 1 1
Tingling — 3 6
Young adults ltching 4 L N
Burning — 2 2
Tiredness — 4 —
Loss of concentration 1 1 1
Tingling — 3
Itching — 1 1
Older adults  Tiredness 1 2 1
Loss of concentration — 4 2

Headache — 2 —

Adverse events that were not reported by any of the participants are not listed.
N in each group = 12.

4.1. tACS Effects on Cognitive Functions. Our results of a
tACS-induced performance enhancement are in line with
other studies that have applied tACS in the cognitive domain
(and are reviewed above, Table1). Consistently, research
studies that have administered theta-tACS over the pos-
terior (parietal) brain area with a contralateral reference
electrode observed stimulation-enhanced after-effects on
working memory capacity and executive functions [20, 35,
36]. These studies of the Jausovec group compared frontal
and parietal tACS effects between groups finding more pro-
nounced behavioral improvement in the parietal stimulation
group [20] for tests of fluid intelligence (i.e., problem-solving
and visual-spatial reasoning) and no effect in the frontal
stimulation group [35, 36] on memory storage capacity.
The authors hypothesized that their findings may indicate
a specific memory storage enhancement through parietal
theta-tACS versus attention enhancement through frontal
theta-tACS. In contrast to our study as well as all other studies
reviewed above, stimulation in the studies of the JauSovec
group has been applied before the task under study instead
of during task performance.

Two studies have applied frontal high-frequency tACS
during word-pair encoding [45] and working memory pro-
cessing [34] showing tACS-induced behavioral benefits after
stimulation. Equivalent to our results, no effects emerged
during stimulation. While Hoy et al. observed selective
performance improvement, Ambrus et al. showed reduced
forgetting after a night of sleep. In contrast to our study,
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Ambrus et al. applied tACS bifrontally in the ripple range
(140 Hz) with mastoid reference electrodes in order to use
the electrode setup of sleep studies [31, 32]. Moreover, in
the present study, an implicit associative learning paradigm
was used which mimics naturalistic language acquisition
with high ecological validity [53, 55], rather than explicit
word-pair encoding [45]. Implicit learning paradigms may
be particularly suitable for stimulation-accompanied training
interventions in older adults [60]. Altogether, these obser-
vations provide further support for the potential of tACS to
produce sustained after-effects [17, 18]. However, the exact
underlying mechanisms remain unknown. We speculatively
interpret the fact that the observed oftline effect on retrieval
found in our study may reflect the impact of parietal theta
oscillations during associative learning on learning-induced
plasticity, without altering the actual learning curve.

Other research studies in the cognitive domain have
demonstrated online tACS effects in working memory [37,
38, 42], short-term memory [42], and cognitive control tasks
[39-41, 44]. Two of these studies have also assessed perfor-
mance after stimulation which was unaffected [37, 42]. None
of the previous studies have applied tACS during a learning
process where paired associations have to be encoded (except
[45]). In sum, due to their different paradigms, designs, and
stimulation parameters, results cannot be easily compared
between studies.

This is the first study to use theta-tACS during associative
learning in healthy participants and the first to implement
tACS in older adults. Previous studies have provided evi-
dence for tACS effects in young adults. Moreover, the most
recent study by Santarnecchi and his colleagues suggests
that individual baseline performance levels may account for
tACS responsiveness [44], similar to what has been shown
for tDCS-induced effects particularly in older adults [61].
However, due to age-related brain network alterations [49,
51], it is unknown whether beneficial effects and underlying
mechanisms transfer to the aged population. Research stud-
ies on tDCS-induced cognitive improvement and neuronal
enhancement suggest that stimulation effects may differ
between young and older adults with potentially divergent
neuronal mechanisms [3, 7]. We provide the first evidence for
the feasibility of tACS in older adults.

4.2. Limitations. Several limitations have to be considered
when interpreting the results of our study. First, the sample
size was rather modest. However, it was comparable to similar
previous studies (see Table1), and we chose a statistical
model that included the whole sample of young and older
adults. Second, only stimulation in the theta frequency
was applied based on theoretical considerations ascribing a
central role of theta in cognitive and particularly memory
processes [16, 46, 47] and on previous tACS studies using
this frequency to improve memory processes [35, 36, 38]. This
theta frequency was set to 6 Hz with no individual variation.
Note though that previous studies have also found beneficial
effects with fixed stimulation frequencies [20, 35, 36, 41, 42],
suggesting that individual variation may not necessarily be
required [21]. However, as no control conditions were applied,
we cannot conclude that the effects were specific to the
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electrode montage or frequency applied. Third, stimulation
setup resembled tDCS studies, as did most other tACS
investigations. To date, it is not clear whether observations
from tDCS studies including the optimal (and maximal)
stimulation duration, intensity, or electrode montages can be
translated to tACS at all [13].

4.3. Outlook. The heterogeneity of study designs (within
versus between subjects), tasks domains (executive func-
tions, working memory, and declarative memory), electrode
montages (frontal and parietal site of active electrode and
number and position of electrodes), stimulation parameters
(frequency and oscillatory phase, intensity, duration, and
electrode sizes), and control conditions (sham stimulation
and different frequencies) hampers comparisons between
studies, as well as joint conclusions so far [11, 13]. Further,
conclusive interpretation needs combined evidence from
both recoding (i.e., EEG or fMRI) and stimulation techniques
(cf. [39]). However, approaches including both behavioral
and brain physiological outcomes before, during, and after
stimulation are difficult to realize from a technical point of
view and still scarce [11]. Only few studies assessed tACS
effects on both cognition and brain function [20, 35, 42].
Moreover, the possibility of analyzing physiological effects
during tACS is still limited (EEG: [19], fMRI: [23, 24]). In
the cognitive domain, only one study assessed behavioral
performance before, during, and after stimulation and EEG
frequency spectra before and afterwards [42].

Further, a recent technical guide by Woods and colleagues
emphasizes the role of the various parameters chosen in
transcranial electrical stimulation techniques [62]. Partic-
ularly, tACS compared to tDCS may be a more complex
technique which needs additional careful consideration of
stimulation parameters. The authors stress that, contrary to
tDCS where one electrode serves as the active and the other
as the reference electrode, in tACS, all cortical areas under
the electrodes are modulated similarly. Thus, stimulation
modes that are specific to tACS such as the induction
of corticocortical desynchronization versus synchronization
(achieved by the placement of a third electrode) still need
to be refined [62]. An important approach to investigate and
compare different conditions of interregional phase coupling
has been presented by Polania and his colleagues [38, 43]. We
argue that tACS might be ideally suited to alter oscillations
within large-scale neuronal networks that are affected by
aging [50, 51].

Notwithstanding, findings of positive effects have been
observed despite differences in stimulation protocols, tasks,
and study populations. Hence, current empirical findings
point to the potential benefit of tACS. Yet, this rather newly
emerged research field still poses a number of open issues to
be scrutinized in further investigations.

5. Conclusions

The few research studies that have investigated tACS-induced
effects on higher-order cognitive performance in healthy
young adults to date suggest a performance-enhancing effect
of theta-tACS or gamma-tACS over frontal and parietal areas.
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However, study designs are heterogeneous with partly con-
tradictory results, underlining the complexity of parameter
choice for tACS (as compared to tDCS, e.g.). In our pilot
study, we present the first application of theta-tACS during
associative learning in healthy older adults and demonstrate
asmall but significant improvement in retrieval performance.
These data, together with several previous reports in the
field, encourage further exploration of tACS with the aim
to improve cognition. However, we acknowledge that a
number of questions need to be addressed now, including
methodological and technical decisions about the number,
position of electrodes, stimulation frequency, duration, and
timing [62], before tACS should be introduced as a means to
ameliorate age-related cognitive decline.
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