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We provide a theory of the electronic transport properties of a graphene layer functionalized
with molecular switches. Our considerations are motivated by the spiropyran-merocyanine system
which is non-polar in its ring-closed spiropyran form and zwitterionic in its ring-open merocyanine
form. The reversible switching between these two isomers a�ects the carriers in graphene through
the associated change in the molecular dipole moment, turning the graphene layer into a sensor
of the molecular switching state. We present results for both the quasiclassical (Boltzmann) and
the quantum-coherent regimes of transport. Quite generally, we �nd a linear sensitivity of the
conductance on the molecular dipole moment whenever quantum interference e�ects play an essential
role which contrasts with a quadratic (and typically weaker) dependence when quantum interference
is absent.

I. INTRODUCTION

In recent years molecular switches on surfaces have
attracted much interest due to both intrinsic scienti�c
motivations and possible future applications in nanoelec-
tronics. An interesting example for photochromic molec-
ular switches are spiropyrans which allow for the re-
versible switching between two conformational states, a
ring-closed and an open form. The chemical transforma-
tion between these two conformations can be driven ther-
mally or by irradiation with light. In the ring-opening re-
action a C-O bond breaks, cf. Fig. 1, and the two isomers
di�er signi�cantly in their geometry and electronic con-
�gurations. In particular, due to its zwitterionic form the
resulting merocyanine has a large dipole moment1 which
may open new design possibilities for technological ap-
plications.

In order to incorporate these switches into nanoscale
devices it is of major importance to study how the molec-
ular switches interact with a substrate. Central issues are
both how the substrate a�ects the molecular switch and
how the switch functionalizes the substrate. For instance,
the substrate can modify the switching process, e.g., by
steric hindrance or by quenching of excitations.2,3 Con-
versely, the switch may cause a reversible modi�cation
of the substrate. As an example, the optical absorption
of carbon nanotubes functionalized with spiropyrans has

Figure 1: Switching between the ring-closed (three-
dimensional) spiropyran and the ring-open (planar), zwitteri-
onic merocyanine.

recently been observed to depend on the switching state.4

In this paper, we consider the electronic transport
properties of graphene layers functionalized by spiropy-
ran. Speci�cally, we consider how the conductance of
the graphene layer di�ers between the switching states
which are characterized by very di�erent electric dipole
moments. For isolated molecules, it is estimated4 that
the dipole moment is of order of 6.2D in the ring-closed
spiropyran form, while it is 13.9D in the zwitterionic
merocyanine. Graphene5 provides a particularly attrac-
tive substrate for decoration with molecular switches
due to its unique conduction properties, such as the
absence of backscattering and an easily tunable carrier
concentration,7,8 as well as its strictly two-dimensional
nature. Especially this last fact suggests that the con-
duction properties of graphene could serve as a sensitive
detector for the conformational state of the molecular
switches.

Our calculations of the conductance of the graphene
layer consider both the Boltzmann regime and the meso-
scopic regime of coherent quantum transport. When the
electronic mean free path is much larger than the Fermi
wavelength and the system is su�ciently large compared
to the phase coherence length, electronic transport is
characterized by the quasiclassical Boltzmann conduc-
tivity. In contrast, in the mesoscopic regime, the sam-
ple size is no longer large compared to the phase co-
herence length, so that quantum interference e�ects be-
come important and the conductance becomes sensitive
to the particular impurity con�guration. The average
magnitude of these �uctuations about their mean value
is universal and of order of the conductance quantum
e2/h,9�12 and rather small changes in the precise con-
�guration of the impurities cause signi�cant changes in
the conductance due to interference of multiple scattering
trajectories.13,14 Besides the dependence on the confor-
mational state of the decorating molecules, we also con-
sider the in�uence of the densities of charge carriers and
impurities, as well as the density and orientation of the
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dipolar switches.
This paper is organized as follows. We give a brief

introduction to the transport properties of graphene in
Sec. II. The in�uence of the dipoles on the conductivity
is studied in Sec. III. Coherent processes are considered
in Sec. IV. Some technical details of the calculations are
relegated to an appendix.

II. MODEL

A. Electronic properties of graphene

The honeycomb lattice of graphene is formed by two
inequivalent sublattices between which electrons hop as
described in a tight-binding approximation. The relevant
low-energy bandstructure is captured by a Dirac Hamil-
tonian, describing the two inequivalent Dirac cones inside
the �rst Brillouin zone. The Hamiltonian for a single
Dirac cone is given by5

H0 = ~vσ · k, (1)

where k is the momentum, v denotes the Fermi velocity
and σα (α = x, y) are Pauli matrices acting in the space
of the two sublattices. The corresponding eigenfunctions
are

ψs,k(r) =
〈
r|k
〉

=
1√
2Ω

exp(ik · r)

(
s

eiϕ(k)

)
, (2)

with the linear dispersion εs,k = s~vk (k = |k|), where
s = ±1 labels the conduction and valence bands, respec-
tively, cosϕ(k) = kx/k, and Ω is the sample area. While
in principle, the relevant low energy band structure of
graphene consists of two Dirac cones (valleys), we con-
sider them to be completely decoupled as is the case in
the absence of short-range scatterers. Consequently, we
account for the two valleys simply through the appropri-
ate degeneracy factor.
The concentration of charge carriers in graphene can be

tuned via external gate voltages which allows one to vary
the Fermi wavenumber kF. The density n of conduction
electrons is related to kF through

n = g

ˆ εF

0

dε ν(ε) =
k2F
π
, (3)

where ν(ε) = ε/2π(~v)2 is the density of states per spin
and valley, εF is the Fermi energy, and g = 4 accounts
for the spin and valley degeneracy. We refer to Refs. 5
and 6 for a detailed review of the electronic properties of
graphene.

B. Green's functions

Our discussion of the transport properties is based on
a Green's function approach. The free retarded (ad-
vanced) Green's function for electrons (focusing on one

Dirac cone) is

G
R(A)
0 (ε,k) =

1

2

∑
s=±1

1 + sσ · k/k
ε− εs,k ± iη

. (4)

The numerators in these expressions act as projectors
onto states in the conduction (s = +1) and valence
(s = −1) band, respectively. In the following we con-
sider only electron-doped systems with a su�ciently high
Fermi energy, such that all relevant processes occur in the
conduction band. This allows us to restrict attention to
s = +1 only. In fact, both our quasiclassical and our di-
agrammatic approaches are valid only when the system
is su�ciently far from the Dirac point (characterized by
electron and hole puddles in real samples6).
Scattering on impurities broadens the electronic spec-

tral function, so that the impurity averaged matrix ele-
ments of the retarded (advanced) electronic Green's func-
tion become〈
k′
∣∣GR(A)

ε

∣∣k〉 =
δk,k′

ε− εk ± i~/2τ(εk)
≡ δk,k′G

R/A

ε (k).

(5)

Here, the elastic scattering time, evaluated in the Born
approximation, is

1

τ(εk)
=

2π

~
∑
k′

|
〈
k
∣∣Vi∣∣k′〉|2 δ(εk − εk′), (6)

in accordance with Fermi's golden rule. The electronic
mean free path is related to the scattering time through

l = vτ . The impurity potential Vi(r) =
∑Ni

j=1 V (r −
rj) is a sum over the individual potentials V of the Ni

(non-magnetic) impurities which we take to be randomly
distributed. Averaging over the impurity con�gurations
(indicated by the overbar) yields

|
〈
k
∣∣Vi∣∣k′〉|2 =

ni
Ω
|Vk−k′ |2(1 + cosϑ)/2, (7)

with ϑ the angle between k and k′, Vk−k′ the Fourier
transform of V (r), and ni = Ni/Ω the impurity density.
The factor (1+ cosϑ) re�ects the absence of backscatter-
ing in graphene, even for isotropic scattering potentials.

C. Quasiclassical transport properties

Before discussing the in�uence of molecular switches
on the conductivity, we brie�y review the conductivity of
doped graphene within a Boltzmann approach.7,8,15�19

For zero temperature, the longitudinal conductivity is
given by the Kubo formula

σ = g
~
πΩ

Tr
[
ĵxImGRεF ĵxImGRεF

]
, (8)

where the Green's functions are evaluated at the Fermi
energy. The current operator is ĵx = (−e) i

~ [H0, x] =
(−e)vσx, with matrix elements

(jx)k,k′ = (−e)v
〈
k′
∣∣σx∣∣k〉 = (−e)v cosϑ. (9)
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Figure 2: (Color online) Diagram for the conductivity. The
conductivity loop consists of a retarded (blue) and an ad-
vanced (red) impurity averaged Green's function meeting at
two current vertices. The bare current vertices are denotes by
wiggly lines and the dressed vertex is de�ned in Fig. 3.

To lowest order, the diagram for the impurity-averaged
conductivity is depicted in Fig. 2, and following standard
procedures20 we obtain

σ = ge2 ν0D, (10)

with D = v2τtr/2 the di�usion constant. The transport
scattering rate,

1

τtr(εk)
=

2π

~
∑
k′

|
〈
k
∣∣Vi∣∣k′〉|2(1− cosϑ) δ(εk − εk′)

=
π

~
niν(εk)

〈
|Vk−k′ |2 sin2 ϑ

〉
ϑ
, (11)

is the rate at which the memory of the k-direction of the

incoming electron is lost. Here,
〈
...
〉
ϑ

=
´ 2π
0

dϑ (...)/(2π)
denotes an angular average over the Fermi circle. From
now on, τ and τtr without explicit momentum labels are
calculated at the Fermi energy. We also use the notation
ν0 ≡ ν(εF). We close this section with a brief discussion
of the transport scattering time for two common sources
of scattering, namely short-range and Coulomb scatter-
ers.

1. Short-range scatterers

Scatterers with a short-range potential, e.g., point de-
fects or neutral impurities, have a Fourier transform
which is (approximately) independent of momentum,
Vk−k′ = V . Thus, due to the density-of-states factor, Eq.
(11) yields a transport scattering rate which is propor-
tional to k and the conductivity becomes independent of
the electron density. (We assume that the potential still
varies smoothly enough that the two Dirac cones remain
uncoupled.)

2. Coulomb scatterers

Another frequent source of scattering in graphene sam-
ples are charged impurities, located at a distance z above
the graphene sheet. The Fourier transform of the corre-
sponding single-impurity potential is

V c
q =

2πα~v
q

e−zq, (12)

Figure 3: (Color online) Vertex corrections. The star denotes
impurity scattering. Note that one only has to include di-
agrams with a retarded and an advanced Green's function
meeting at a current vertex, see Refs. 12,21,22.

where q = |k − k′| = 2k sin(ϑ/2) for elastic scattering
processes. Here, α = e2/(~vκ) denotes the e�ective �ne
structure constant which involves the average dielectric
constants of the neighboring media, κ = (κ1 + κ2)/2.6,18

Charged impurities are screened by the conduction elec-
trons, resulting in the e�ective potential Ṽ c

q = V c
q /ε(q),

where the dielectric function, in the limit of zero temper-
ature, can be approximated by

ε(q) ' 1 + qTF/q. (13)

This Thomas-Fermi approximation involves the charac-
teristic wave vector qTF = 2πα~vgν0.15,16
The average conductivity is found to be

σc =
ge2

h

1

πα2I0

n

nci
, (14)

which is valid at zero temperature, showing that the con-
ductivity increases linearly with the density of charge car-
riers n participating in the transport. This result follows
from inserting the transport scattering time τ ctr into Eq.
(10). The scattering rates evaluated at the Fermi level,
see Eqs. (11) and (6), are

1/τ ctr
1/τ c

}
=

nci π
2α2v

2kF

{
I0
J0

, (15)

with nci the density of charged impurities and the abbre-
viations

Im
Jm

}
=

ˆ 2π

0

dϑ

2π

sinm(ϑ/2)e−4zkF sin(ϑ/2)

[sin(ϑ/2) + gα/2]
2

{
sin2 ϑ
1 + cosϑ

.

(16)

For qTF/(2kF) = gα/2 ≈ 2 (corresponding to graphene
on a SiO2 substrate

18) and 4zkF � 1 we have I0 ≈ 0.071,
I1 ≈ 0.046, I2 ≈ 0.033, J0 ≈ 0.18, J1 ≈ 0.065, and
J2 ≈ 0.035.
In summary, the conductivity of graphene is indepen-

dent of the electron density n for short-range scatterers
and linear in the density for Coulomb scatterers.15,16,18

Combining both contributions, one obtains a linear rise
of the conductivity which saturates at higher n. At low
temperatures this behavior is in agreement with many
experiments.7,8,23
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III. EFFECT OF SWITCHES ON THE

CONDUCTIVITY � BOLTZMANN THEORY

We now consider graphene samples with a dilute and
random covering by molecular switches whose switch-
ing states are characterized by di�erent electric dipole
moments.24 In this section, we will assume that the
electronic scattering is adequately described within a
Boltzmann approach which treats consecutive scattering
events as independent. We will also assume that the
switching is only e�ected externally, e.g., by irradiation
of the sample, and that all molecules are switched so
that we need only discuss the conductivity for the static
dipole moments associated with the two di�erent confor-
mations.
Consider a molecule with a nonzero electric dipole mo-

ment d attached to graphene. We assume that the elec-
tric dipole is located at a distance z above the graphene
sheet with the dipolar potential

V d(r, z) = (−e)
d‖ · r + d⊥z

(r2 + z2)3/2
. (17)

Here, d‖ and d⊥ are the components of the dipole mo-
ment parallel and perpendicular to the substrate, respec-
tively, and r is a two-dimensional vector in the surface.
The two dimensional Fourier transform of the dipolar
potential follows readily from Gauss's law ∇2V d = 4πeρ,
where ρ is the charge density of the dipoles. (Note that
V d is de�ned as the potential energy of an electron in
the �eld of the dipole.) Fourier transforming Gauss's law
and integrating over the out-of-plane component of the
wave vector, one obtains

V d
q = 4πie

ˆ
dq⊥
2π

d‖ · q + d⊥q⊥
q2 + q2⊥

eiq⊥z, (18)

and therefore

V d
q = V

d‖
q + V d⊥

q , (19)

V
d‖
q = 2πiα~v(d‖/e) cosφ e−qz, (20)

V d⊥
q = −2πα~v(d⊥/e)e

−qz, (21)

where φ denotes the angle between q and d‖. Note that

V d⊥
q is real, while V

d‖
q is imaginary, re�ecting their sym-

metry properties. The resulting screened potential is
given by Ṽ d

q = V d
q /ε(q), with the dielectric function in

Eq. (13).
We �rst consider a clean graphene sample where the

scattering is entirely due to the decorating molecular
switches with dipolar impurity potential. In such a sys-
tem, the electrons are scattered at impurities with a
dipole moment (but without monopole potential), and
the averaged matrix elements of the impurity potential
read

|
〈
k
∣∣V d

i

∣∣k′〉|2 =
ndi
Ω

(α~vd̃/e)2

1 + qTF/q

1 + cosϑ

2
, (22)

with ndi the density of dipoles. We use d̃2 =
d2
(
1 + cos2 ξ

)
/2, where the angle ξ measures the ori-

entation of the dipole moment with respect to the plane
such that d⊥ = d cos ξ. To be speci�c, we assume that
d‖ is oriented along an arbitrary direction within the
graphene layer while the perpendicular component is (ap-
proximately) the same for all dipolar switches. Inserting
Eq. (22) into Eqs. (11) and (6) yields the scattering rates

1/τdtr
1/τd

}
= 2(πα)2ndi vkF (d̃/e)2

{
I2
J2

, (23)

where I2 and J2 are given by Eq. (16). In the absence of
other types of scatterers, Eq. (10) yields the conductivity

σd =
ge2

h

1

(2πα)2I2

1

ndi (d̃/e)2
. (24)

Note that this result for the conductivity is independent
of the electron concentration.
If the graphene sample is disordered even in the ab-

sence of the molecular switches, it is natural to con-
sider a situation in which the dominant source of scat-
tering is due to N c

i charged impurities, supplemented
by Nd

i additional dipolar scatterers. For the moment,
we assume that these latter scatterers are not associ-
ated with a monopolar potential. If the distributions of
these two di�erent types of scatterers are statistically in-
dependent, the total transport scattering rate is obtained
by Matthiessen's rule through adding the two individual

scattering rates, 1/τ c,dtr = 1/τ ctr + 1/τdtr. Hence, switch-
ing the dipole moments causes a relative change of the
conductivity

δσ

σc ' −2(πα)2
J0I2
I0

δni kFlc (d̃/e)2, (25)

re�ecting the fact that the conductivity decreases when
scatterers are added to the system. We have used σd �
σc which holds for kFd/e � 1. This limit is relevant
for typical electron densities in graphene, n ≈ 1012cm−2,
and even rather large dipole moments d ≈ 10D (yield-
ing kFd/e ≈ 0.03). The prefactor in Eq. (25) is given by
2(πα)2J0I2/I0 ≈ 1.7 for impurities close to the graphene
sheet, zkF � 1, see Eq. (16). Note that the mean
free path lc = vτc is proportional to kF, see Eq. (15).
Thus, the in�uence of the dipoles on the conductivity is
quadratic in (kFd/e), which increases linearly with the
electron density n.
Frequently, an attached molecular switch will a�ect

electronic transport not only through its dipole moment,
but may also be associated with a monopolar scatter-
ing potential, e.g., due to some degree of charge transfer
between graphene and the molecular switch. For this
reason, we generalize our results to situations with Ni

charged impurities (with screened potential Ṽ c
q ) and δNi

impurities with an additional dipole moment, where the
latter also transfer an amount δe = ζe of charge to the
graphene. Then, the scattering potential for the latter
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takes the form Ṽ c+d
q = Ṽ c

q + Ṽ d
q . The corresponding

transport scattering rate, Eq. (11), is

1

τ c+d
tr

=
1

τ ctr
+

1

τdtr
+

1

τ c,d⊥
tr

, (26)

where τ ctr and τ
d
tr are given by Eqs. (15) and (23), and we

introduce the shorthand

1/τ c,d⊥
tr

1/τ c,d⊥

}
= −2δniπ

2ζαv
d⊥
e

{
I1
J1

, (27)

with δni the density of switched molecules. This latter
contribution involves interference between monopole and
dipole scattering. Interestingly, d⊥ enters linearly into
this contribution while the in-plane component of the
individual dipoles cancels out. This cancellation follows

from the fact that V
d‖
q in Eq. (20) is purely imaginary,

while the Coulomb potential is real. I1 and J1 follow
from Eq. (16) and we have used the (impurity averaged)
matrix element of the total impurity potential

|
〈
k
∣∣V c+d

i

∣∣k′〉|2 =
1 + cosϑ

2Ω

[
(ni + δniζ

2)|Ṽ c
q |2

+2δniζṼ
c
q Ṽ

d⊥
q + δni|Ṽ d⊥

q |2 +
1

2
δni|Ṽ

d‖
q |2

]
. (28)

The relative change of the conductivity due to switching
of the dipole moments is then

δσ

σc ' δni
2J0(πα)2

I0

[
I1ζ lcd⊥/e− I2 kFlc (d̃/e)2

]
, (29)

with δσ =
(
σc+d − σc

)
and again assuming that the

switching induced change in the conductivity is small.
The prefactors can be approximated by 2(πα)2J0I1/I0 ≈
2.3 and 2(πα)2J0I2/I0 ≈ 1.7 for qTF/(2kF) = gα/2 ≈ 2
and 4zkF � 1, see Eq. (16).
In the Boltzmann limit scattering events are indepen-

dent and thus interference can only appear for scattering
channels (such as monopole and dipole contributions) as-
sociated with the same scatterer. Nevertheless, our re-
sult (29) indicates that such interference contributions
can signi�cantly increase the sensitivity of the conduc-
tivity to changes of the molecular switching state. In-
deed, while the change in conductivity due to switching
is quadratic in the molecular dipole moment in the ab-
sence of interference, see Eqs. (24) and (25), interference
gives rise to a contribution which is linear in d⊥, and thus
dominant in the relevant limit kFd/e� 1.

IV. EFFECT OF SWITCHES ON THE

CONDUCTANCE � QUANTUM COHERENT

TRANSPORT

A. Mesoscopic �uctuations

In the previous section we have seen that interference
between charge and dipole scattering originating from

the same scatterer can be favorable for the readout of
the switching state. Now we consider quantum coher-
ent transport, implying that interference between partial
waves scattered at di�erent impurities becomes relevant
such that one might again expect an enhanced sensitivity
to the switching state of the molecules.
Because a macroscopic sample can be viewed as built

of a number of mesoscopic phase coherent subsystems,
which are quantum mechanically independent of each
other, the macroscopic measurement e�ectively aver-
ages over these subsystems. The system becomes self-

averaging and is characterized by intensive quantities,
such as the impurity-averaged electric conductivity σ.
At this level, the conductivity can be obtained from the
Boltzmann equation, as we did in the previous section.
In contrast, in the mesoscopic regime (i.e., at su�-

ciently low temperatures and small system sizes where
the phase coherence length becomes larger than the sam-
ple dimensions), interference between multiple scattering
trajectories is important and a change in the microscopic
impurity con�guration or a continuous system parame-
ter, such as the Fermi energy or an applied magnetic �eld,
yields reproducible variations of the conductance. It is
well known that the typical magnitude of these �uctu-
ations about the mean value of the conductance is uni-
versal in the sense that it depends only on the sample
geometry but is independent of the microscopic details
of disorder.9�12 Importantly, such changes in the conduc-
tance are already e�ected by rather small changes in the
impurity potential.13,14 This suggests that indeed, inter-
ference terms involving di�erent scatterers may make a
graphene sheet, in the regime of quantum coherent trans-
port, a particularly accurate sensor of the switching state
of the attached molecules. The general concepts of meso-
scopic �uctuations have been introduced in Refs. 9�12
(see Ref. 20 for a pedagogical account). For the peculiar-
ities of universal conductance �uctuations in graphene,
we refer to Refs. 25�29.

B. Diagrammatic calculation

We consider charged impurities as the dominant source
of scattering and an impurity potential Vi, which is
formed by Ni of these Coulomb scatterers. We are in-
terested in the change of the conductance when the im-
purity potential changes, Vi → V ′i . To be speci�c, we as-
sume that δNi charged impurities acquire an additional
dipole moment causing the change in the impurity poten-
tial. (We note that the derivation would follow the same
lines, and leave our results una�ected, when dipolar im-
purities were added to a background of charged impuri-
ties.) For generality, we consider the correlation function
of the conductance evaluated not only for di�erent im-
purity potentials, but also at di�erent Fermi energies εF
and ε′F.
A measure for the e�ect of the microscopic modi�ca-

tions is the conductivity-conductivity correlation func-
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Figure 4: (Color online) Diagrams involved in the UCF. The building blocks of these diagrams are shown in Figs. 5 and 6.

tion,

∆σ(ξ)∆σ(ξ′) = [σ(ξ)− σ(ξ)] [σ(ξ′)− σ(ξ′)], (30)

where ξ is the quantity which is modi�ed (e.g. ξ =
{εF, Vi}), and the conductivity σ is given by Eq. (8). The
diagrams representing ∆σ∆σ consist of two conductivity
loops (one evaluated for Fermi energy εF and impurity
potential Vi, the other for ε

′
F = εF + ω and impurity po-

tential V ′i ) which are connected by impurity lines. There
are two distinct possibilities to connect the two loops,

∆σ∆σ = ∆σ∆σ
(a)

+ ∆σ∆σ
(b)
, as shown in Figs. 4(a)

and (b), respectively. Note that unconnected loops cor-
respond to σ2 and hence do not enter into the variance.
Based on the standard Feynman rules for disordered

systems,20 Fig. 4(a) and (b) translate into the analytical
expressions

∆σ(ξ)∆σ(ξ′)
(a)

=
( g~

4πΩ

)2
4β
∑
q

(H1)2
∣∣D̃ω(q)

∣∣2, (31)
and

∆σ(ξ)∆σ(ξ′)
(b)

=
( g~

4πΩ

)2
8β
∑
q

(H2)2 Re
[(
D̃ω(q)

)2]
,

(32)

which are valid in the di�usive limit, kFl � 1 and
ωτ � 1. The building blocks of the diagrams, the short
ranged Hikami boxes H1(2) and the long ranged di�uson

D̃ω(q), are depicted in Figs. 5 and 6. The corresponding
analytical expressions are given below in Eqs. (36) and

(39). The expressions for ∆σ∆σ
(a)

and ∆σ∆σ
(b)

also
involve a combinatorial factor of 4, which re�ects that
the diagrams in Fig. 4(a) and (b) are invariant under in-
terchange of retarded and advanced Green functions as
well as of momentum labels. In a time reversal invariant
system, additional contributions stem from replacing the
di�usons by Cooperons.20 This is taken care of by the
symmetry factor β = 2 (1) for a system with (without)
time reversal invariance.
We now turn to a brief discussion of the constituents

of these �uctuation diagrams, namely the di�usons D̃ω

and the Hikami boxes H1(2). The di�usons D̃ω describe
the di�usive motion of electrons across the sample. As
depicted in Fig. 5, they are represented diagrammatically
by ladder diagrams in which the two Green's functions
are connected by any number of parallel impurity lines.

Analytically, this series of ladder diagrams satis�es the
integral equation

D̃ω(k̂, k̂′, q) = U2(k̂ − k̂′)

+
1

Ω

∑
k̂′′

D̃ω(k̂, k̂′′, q)G
R

εF(k)G
A

εF−ω(k − q)U2(k̂′′ − k̂′),

(33)

where we leave implicit that the two Green's functions are
evaluated for the impurity potentials Vi and V

′
i , respec-

tively, while impurity lines connecting them represent the
correlators ViV ′i . For convenience, we use the shorthand
notation

U1(k̂ − k̂′) =
Ω

2

(
|
〈
k
∣∣Vi∣∣k′〉|2 + |

〈
k
∣∣V ′i ∣∣k′〉|2), (34)

U2(k̂ − k̂′) = Ω
〈
k
∣∣Vi∣∣k′〉〈k′∣∣V ′i ∣∣k〉. (35)

Solving the integral equation (33), as described in App.
A 1, results in

D̃ω(q) ' ~/(2πν0τ2)

Dq2 − iω +
(〈
U1

〉
/
〈
U2

〉
− 1
)
/τ
, (36)

which is valid for small changes
〈
U1

〉
−
〈
U2

〉
in the im-

purity con�guration. Here, we have used the notation〈
Ui
〉
≡
〈
Ui(k̂ − k̂′)

〉
k̂′ for the angular average, evaluated

at k = kF. Explicitly evaluating these averages for our
model, we obtain〈

U1

〉
=

~
2πν0

(
1

τ c
+

1

2τd
+

1

2τ c,d⊥

)
(37)

and 〈
U2

〉
=

~
2πν0

(
1

τ c
+

1

2τ c,d⊥

)
. (38)

In Eq. (36), we also introduced the scattering rate 1/τ =
(2π/~)ν0

〈
U1

〉
.

In the �uctuation diagrams, see Fig. 4, the di�usons
are connected by Hikami boxes, shown in Fig. 6, which
contain the current vertices. Evaluating them in the stan-
dard manner,20 one obtains

H1 = 2H2 =
4π

~3
Dν0τ

2. (39)

For the bene�t of the reader, we sketch their calculation
in App. A 2.



7

Figure 5: (Color online) Ladder series for the di�uson. The
retarded (advanced) Green's function, shown in blue (red), is

given by G
R
εF(k) (G

A
εF−ω(k − q)).

We can now combine these building blocks and obtain
the correlation function of the conductance. Relating
conductivity and conductance through Ohm's law, G =
(Ly/Lx)σ, we obtain from Eqs. (31), (32), (36) and (39)

∆G(ξ) ∆G(ξ′) =
2βg2

π4

(e2
h

)2
×

×
∑
m

{
Re

(
1

λm + ∆λ

)2

+ 2

∣∣∣∣ 1

λm + ∆λ

∣∣∣∣2
}
. (40)

Here, we use the abbreviations m = {mx,my} and

λm =(mx)2 + (my Lx/Ly)
2
, (41)

∆λ =− L2
x

Dπ2

[
iω +

1

τ

(
1−

〈
U1

〉
/
〈
U2

〉)]
. (42)

The boundary conditions of the system, namely perfect
leads and hard walls at the transverse boundaries, imply
the quantization qα = mαπ/Lα (α = x, y) with mx =
{1, ...,∞} and my = {0, 1, ...,∞}. We note that both the
Hikami boxes and the di�usons depend separately on the
microscopic details of the sample, as encapsulated in the
scattering rates and the density of states. Nevertheless,
in the conductance-conductance correlation function, Eq.
(40), these quantities cancel against each other such that
all microscopic details enter only through ∆λ.

C. Results

In order to see the in�uence of the quantum coher-
ent processes, we �rst review20,25�29 the variance of the

conductance, (∆G)2 =
[
G−G

]2
, describing the aver-

age magnitude of the universal conductance �uctuations.
From Eq. (40) (with ∆λ = 0) we obtain

(∆G)2 =
6β

π4

(
ge2

h

)2∑
m

1

(λm)2
= βη

(
ge2

h

)2

, (43)

where η ' 1/15 for Lx � Ly, and η ≈ 0.1 for a square
device. Hence the amplitude of the �uctuations depends
on the sample geometry but is universal in the sense,
that it is independent of the electron concentration and
the microscopic type or con�guration of disorder. Com-
paring the amplitude of the �uctuations with the average

Figure 6: (Color online) Hikami boxes H1 (top) and H2 (bot-
tom).

conductance yields√
(∆G)

2

G
=

2I0
√
βη

J0

Lx
Ly

1

kFlc
, (44)

again assuming that charged scatterers, cp. Eq. (14),
predominantly limit the conductance. For a square de-

vice this yields

√
(∆G)

2
/G ≈ 0.35/(kFlc). This indicates

that for charged impurities, the quantum coherent pro-
cesses are more important at large Fermi wavelengths
and high impurity concentrations (albeit such that our
underlying assumption of kFlc � 1 still holds).
Switching the decorating molecules a�ects the correla-

tion function ∆G(Vi) ∆G(V ′i ), see Eq. (40), via a change
of the di�uson pole,

∆λ =
L2
x

Dπ2

〈
U1

〉
−
〈
U2

〉〈
U2

〉 1

τ
' L2

x

Dπ2

1

2τd

' (2α2I0J2/J0) (Lx/Ly)δNi (kF/lc) (d̃/e)2, (45)

see Eq. (42). Note that this depends linearly on the num-
ber of switches δNi and is independent of the electron
concentration. Again, we assume that the monopole con-
tribution of the charged impurities predominantly lim-
its the conductivity, and thus

(〈
U1

〉
−
〈
U2

〉)
/
〈
U2

〉
is a

small quantity. The prefactor can be approximated by
(2α2I0J2/J0) ≈ 0.028, see Eq. (16). The dependence of

∆G(Vi) ∆G(V ′i ) on ∆λ can be easily evaluated numeri-
cally and is depicted in Fig. 7. One �nds that the correla-
tion function varies linearly with ∆λ for small modi�ca-
tions of the microscopic impurity con�guration. We thus
conclude that the typical variation of the conductance
with switching state is given by√

[G(Vi)−G(V ′i )]
2√

(∆G)
2

' χ
√
δNi√
kFlc

(kFd̃/e), (46)

where we lumped the numerical prefactors into χ =
2α
√

(I0J2/J0)Lx/Ly which is χ ≈ 0.23 for a square de-
vice. Note that Eq. (46) depends linearly on the dipole
moment d. In contrast to the Boltzmann interference re-
sult, this also holds for dipoles which are oriented parallel
to the graphene sheet, d = d‖, as well as for molecular
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0

0.25
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1
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V

′ i
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∆λ

Figure 7: (Color online) The normalized correlation function

C(Vi, V
′
i ) = ∆G(Vi)∆G(V ′i )/(∆G)2, plotted as a function of

∆λ.

switches which are pure dipole scatterers. We also note
that in the Boltzmann limit, the changes of the conduc-
tance scale with δni and are larger for clean devices and
large electron densities, see Eq. (29). In contrast, in the
mesoscopic regime larger impurity concentrations ni and
small Fermi wavelengths are favorable for the e�ect of
interference, and the changes are proportional to

√
δNi,

cf. Eq. (46).

V. SUMMARY AND CONCLUSIONS

Due to its two-dimensional nature, graphene layers are
attractive substrates for functionalization by molecular
switches. In this paper, we considered how the con-
ductance of a graphene layer depends on the switch-
ing state of the decorating molecules. Speci�cally, we
considered the spiropyran-merocyanine system where the
two switching states a�ect the charge carriers via large
changes in the electric dipole moment. We �nd that the
sensitivity of the electronic properties of the graphene
layer to the switching state is particularly strong when
quantum interference is relevant in the transport process.
This strong sensitivity is expressed as a linear dependence
on the change in dipole moment, which contrasts with a
quadratic dependence when quantum interference is in-
e�ective.
Within a quasiclassical Boltzmann approach, quantum

interference has to emerge from scattering on a single im-
purity. In this case, we �nd a strong sensitivity to the
switching state when the molecular switches cause scat-
tering of carriers both through a monopolar contribu-
tion (e.g., due to charge transfer between graphene and
the molecular switches) as well as a dipolar contribution.
Speci�cally, the interference contribution involving the
corresponding scattering amplitudes is nonzero whenever
the molecular dipole moment has a component perpen-
dicular to the graphene layer.
In mesoscopic samples, interference contributions to

the conductance (universal conductance �uctuations) are
well known to be sensitive to small changes in the im-
purity potential. This provides an alternative mecha-
nism for how the conductance is a�ected by the molecu-

lar switching state. We �nd that again, these quantum
interference contributions result in a switching-induced
change of the conductance which is linear in the change
of the molecular dipole moment, albeit with a random
sign.
The quasiclassical and the mesoscopic regimes di�er

in the dependence of the sensitivity on other parameters
such as the doping level of graphene or the coverage with
molecular switches. In the Boltzmann limit high densi-
ties of electrons and switches, but otherwise clean sam-
ples, are favorable for the read-out of the switching state.
Assuming a perpendicular dipole moment and charge
transfer to the graphene, we estimate that a density of
switches δni ≈ 5 × 1010cm−2 is required for changing
the conductivity by 1%, see Eq. (29). (Here we assume
n ≈ 1012cm−2, l ≈ 50nm and d ≈ 10D.) The mesoscopic
contribution becomes particularly important in samples
with low carrier density. In this regime, the conductance
of mesoscopic samples (here assuming Lx = Ly ≈ 5µm)
would be modi�ed by 10% of the UCF even for moder-
ately low densities of switches δni ≈ 109cm−2, as indi-
cated by Eq. (46).
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Appendix A: Details of the calculation

In this appendix we sketch the derivations of the dif-
fuson and the Hikami boxes, which are used in Sec. IV.
We follow standard procedures,20 which have been also
applied to the study of graphene.25�29

1. Di�uson

The ladder series for the di�uson, Eq. (33), is depicted
in Fig. 5. For low temperatures we consider only pro-
cesses at the Fermi energy, yieldingˆ

dεkν(εk)G
R

εF(k)G
A

εF−ω(k − q) ' fω(k̂, q)〈
U1

〉 . (A1)

Here we use the abbreviation

fω(k̂, q) = 1 + iωτ − (vτ)2(q · k̂)2 − ivτq · k̂, (A2)

where the approximation holds in the limit of small ω
and q. Hence, the ladder series for the di�uson, Eq. (33),
becomes

D̃ω(k̂, k̂′, q) = U2(k̂ − k̂′)

+
1〈
U1

〉〈D̃ω(k̂, k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)
〉
k̂′′ , (A3)
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cf. for example the derivation in Ref. 20. First we average
over k̂ in order to obtain D̃ω(k̂′, q) ≡

〈
D̃ω(k̂, k̂′, q)

〉
k̂

which satis�es the integral equation

D̃ω(k̂′, q) =
〈
U2

〉
+

1〈
U1

〉〈D̃ω(k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)
〉
k̂′′ . (A4)

We approximate

D̃ω(k̂′, q) ' D̃ω(q) + 2k̂′ ·
〈
k̂′D̃ω(k̂′, q)

〉
k̂′ , (A5)

and introduce the shorthand D̃ω(q) ≡
〈
D̃ω(k̂′, q)

〉
k̂′ .

Then, averaging over k̂′ results in

D̃ω(q) =
〈
U2

〉
+ D̃ω(q)

〈
U2

〉〈
U1

〉(1 + iωτ − (vτq)2

2

)
− ivτq ·

〈
k̂′D̃ω(k̂′, q)

〉
k̂′ . (A6)

Multiplying Eq. (A5) with k̂′ and then averaging over k̂′

yields〈
k̂′D̃ω(k̂′, q)

〉
k̂′ = γ

(〈
k̂′D̃ω(k̂′, q)

〉
k̂′ − iq(vτ/2)D̃ω(q)

)
,

(A7)

with γ =
〈
k̂ · k̂′U2(k̂ − k̂′)

〉
k̂′/
〈
U1

〉
. Multiplication of

the last line with q yields

q ·
〈
k̂′D̃ω(k̂′, q)

〉
k̂′ = −i

vτq2

2

γ

1− γ
D̃ω(q). (A8)

Plugging this result into Eq. (A6) brings after straight-

forward algebra Eq. (36) for the di�uson D̃ω(q), as stated
in the main text.

2. Hikami boxes

We evaluate the Hikami boxes, labeled H1 and H2, re-
spectively, which are depicted in Fig. 6. Approximating
kFl� 1 and ωτ � 1, three diagrams contribute to lead-

ing order to the Hikami boxes Hi = H
(a)
i +H

(b)
i +H

(c)
i ,

with i = 1, 2.

The diagram H
(a)
2 consists of two retarded and two

advanced Green's functions with momentum k. In
contrast to the evaluation of the di�uson, the Hikami
boxes are rather short-ranged and we can neglect the q-
dependences. Because of the vertex corrections a factor
τtr/τ comes with each of the current vertices so that we
obtain

H
(a)
2 =

(
ev
τtr
τ

)2∑
k

cos2 ϑ
(
G
R

εF(k)G
A

εF(k)
)2

= 2π
(
ev
τtr
τ

)2
ν0τ

3, (A9)

assuming (U1 − U2) to be small.
The diagram H

(b)
2 consists of twice two retarded and

one advanced Green's function with the same wave vec-
tor, respectively, and an additional impurity cross, so
that

H
(b)
2 =

(
ev
τtr
τ

)2∑
k

cos2 ϑ
(
G
R

εF(k)
)2
G
A

εF(k)×

×
∑
k′

ni|Vq|2
1 + cosϑ′

2

(
G
R

εF(k′)
)2
G
A

εF(k′)

= −1

2
H

(a)
2 . (A10)

Here we have replaced the sum by an integral and used
that the integration over two retarded and one advanced
Green's function yields a factor −i(τ)2 while the extra
factor |Vq|2 contributes a factor 1/τ .

The calculation of H
(c)
2 follows similar lines, but here

the two current vertices are evaluated at di�erent wave
vectors with the consequence that the extra |Vq|2 yields
a factor (1/τ − 1/τtr), resulting in

H
(c)
2 =

(τtr
τ
− 1
)
H

(a)
2 . (A11)

In a similar manner the other type of Hikami boxes,

H1, is evaluated. One �nds H
(a)
1 = H

(a)
2 , and H

(b)
1 =

H
(c)
1 = H

(c)
2 . Combining these contributions yields Eq.

(39) of the main text for the Hikami boxes.
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