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Decoherence effects on weak value measurements in double quantum dots
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We study the effect of decoherence on a weak value measurement in a paradigm system consisting of a double
quantum dot continuously measured by a quantum point contact. Fluctuations of the parameters controlling the
dot state induce decoherence. We find that, for measurements longer than the decoherence time, weak values are
always reduced within the range of the eigenvalues of the measured observable. For measurements at shorter
time scales, the measured weak value strongly depends on the interplay between the decoherence dynamics of
the system and the detector backaction. In particular, depending on the postselected state and the strength of the
decoherence, a more frequent classical readout of the detector might lead to an enhancement of weak values.
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I. INTRODUCTION

In quantum mechanics the measurement process is most
simply described as a probabilistic event through the projection
postulate.1 While it satisfactory describes several simple
experimental configurations, some measurement protocols,
including conditional quantum measurements, can lead to
results that cannot be interpreted in terms of classical probabil-
ities, due to the quantum correlations between measurements.
A striking evidence of that is provided by the so-called
weak values (WVs) obtained from the measurement scheme
originally developed by Aharonov, Albert, and Vaidman.2

The WV measurement protocol consists of (i) initializing
the system in a certain state |�〉 (preselection), (ii) weakly
measuring an observable Â of the system by coupling it to
a detector, and (iii) retaining the detector output only if the
system is eventually measured to be in a chosen final state |�〉
(postselection). The average signal monitored by the detector
will then be proportional to the real part of the so-called WV
�〈Â〉weak

� = 〈�|Â|�〉/〈�|�〉.
The most surprising property of WVs is that they can

be complex or negative,2,3 whereas a strong conventional
measurement would lead to positively definite values.

After the original debate on the meaning and significance
of WVs,4–6 they have proven to be a successful concept in
addressing fundamental problems and paradoxes of quan-
tum mechanics,7,8 in accessing elusive quantities (e.g., the
definition of the time a particle spends under a potential
barrier in a tunneling process,9 the direct measurement of the
wave function10), in defining measurements in counterintu-
itive situations (e.g., the simultaneous measurement of two
noncommuting observables7,11), as well as in generalizing the
definition of measurement.12 By now a number of experiments
in quantum optics has reported the experimental observation
of WVs and its application to quantum paradoxes.13–16

Recently, a series of interesting works has explored the
potential of WVs measurement protocols for precision mea-
surements. Weak-value-based measurement techniques have
been successfully employed in quantum optics experiments
to access tiny effects13 and detect ultrasmall (subnanometric)
displacements.15,16 Parallel research has introduced the idea
of WVs also in the context of solid-state systems.17–19 Here,
further works have shown that WVs are related to the violation
of classical inequalities in current correlation measurements,20

and a WV measurement technique for ultrasensitive charge
detection has also been proposed.21

Due to the fact that WVs stem from quantum-mechanical
correlations between two measurements they are expected
to be particularly sensitive to decoherence. The effect of
decoherence is important for WV ultrasensitive measurements
where decoherence could suppress the amplification effect and
become crucial in possible solid-state implementations, where
it is known that decoherence plays a significant role in most
systems. This is, in fact, the case for all the actual proposed
implementations of WVs in solid-state systems.17–19,21,22 So
far, the effect of decoherence on WVs has recently been
addressed at a formal level, showing how WVs are defined
in a general open quantum system,3 while a quantitative
evaluation of the effects of decoherence in a specific system
exists only for WVs of spin qubits in a simple limit17,23 and
for correlated spin measurements of (unpolarized) electronic
currents.24 Therefore, a general characterization of the effects
of decoherence within a WV measurement in an open quantum
system is, in addition to its theoretical significance, a relevant
step in the direction of WV implementation in condensed-
matter systems.

In this work we precisely address this question. We
approach the problem by considering the effect of decoherence
in a paradigm system, namely a quantum point contact (QPC)
sensing the charge in a nearby double quantum dot.25,26 The
model captures all the essential features of a continuous quan-
tum measurement, corresponding to the typical measurement
schemes of quantum states in nanoscale solid-state systems
(which is the case for all the above-mentioned proposals), and
allows us to fully describe the interplay between the detector
backaction and the decoherence process.

The key features of our analysis and the main results are as
follows. We describe the double quantum dot as a two-level
system, |L〉,|R〉, corresponding to the electron being in the
left or right dot, respectively. In the system dynamics, we
introduce fluctuations of the system’s parameter,for example,
the gate voltages, that suppress the quantum mechanical
oscillations between these two states at the decoherence time,
1/γ . The QPC detector, while distinguishing between the two
system states, affects the system dynamics on the scale of the
backaction time, τD . As long as the measurement duration, τ ,
is shorter than τD , the measurement is weak and can lead to
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WVs upon proper postselection. The postselection, obtained,
for example, by a second detector, is effectively described as
a projective measurement on a specific state, |ψf 〉.

The quantity of interest in such a WV protocol is the
detector signal conditional to a positive postselection, with
a particular attention to the appearance of peculiar WVs, that
is, WVs which lie beyond the range of eigenvalues of the
measured observable. By taking advantage of the Bayesian
formalism, which allows us to consider the correlations for
single shot measurements, we obtain a general expression
for the WV in terms of the system state only [cf. Eqs. (16)
and (17)].

We identify two different regimes depending on whether
the detector readouts (i.e., relaxation processes) are slow or
fast compared to the duration of the measurement. In both
regimes, measurements longer than the decoherence time
lead to the WVs bounded by the eigenvalue spectrum. In
the former case, dubbed coherent detection, we show that
the WV is exclusively determined by the system dynamics
undergoing decoherence [cf. Eqs. (26) and Figs. 3, 4]. In
the latter case, named continuous readout, instead, even at
time scales τ � τD , the WVs are affected by the interplay
of the detector and the decoherence dynamics [cf. Eqs. (30),
(31) and Figs. 5, 6]. In the coherent detection regime, the
WV is sensitive to the average quantum-coherent correlation
between measurement and postselection [Eq. (27)], vanishing
for long-time measurements. The frequent projection in the
continuous regime freezes the postselection, leading to a
finite WV for long measurements. This difference reflects at
shorter time scales, where a continuous detection can enhance
the corresponding WV obtained for a coherent detection. In
particular, depending on the various parameters, for example,
orientation of the postselection, it could give rise to WVs
beyond the range of eigenvalues, whereas a coherent detection
would not (cf. Fig. 6).

The paper is primarily separated into four parts. In Sec. II
we present the model and its description in terms of the
Bayesian formalism. Hereafter, Sec. III presents a general
expression for the WV in terms of the density matrix of the
combined qubit-detector system. In Sec. IV we discuss the
system dynamics of the two regimes of “coherent detection”
(Sec. IV A) and continuous readout (Sec. IV B). In the former
regime, the detector and system dynamics are decoupled from
each other in the weak measurement regime; in the latter
regime, we show that the detector induced decoherence and
the intrinsic system decoherence act together in affecting the
measurement outcome. Section V summarizes our results.

II. THE MODEL

The system under study is illustrated in Fig. 1. It consists
of a double quantum dot with an adjacent QPC, which serves
as a detector continuously measuring the charge state in the
double dot.

We consider the case where, due to charging effects, the
double dot can host only one electron in two orbital levels,
|L〉 and |R〉 corresponding to the lowest orbital level for the
left and right dot, respectively. In this case the double dot can
be thought as a charge qubit. Throughout the paper we refer
to the “dot plus QPC” as the combined qubit-detector system

FIG. 1. (a) Scheme of a double quantum dot with a nearby QPC
measuring its charge states, labeled as |L〉,|R〉. (b),(c) Scheme of the
detection mechanism. The conductance of the detector is sensitive
to the qubit’s occupancy: The tunneling amplitude in the QPC is
� + δ� when the right dot is occupied (b) and � − δ� when the left
dot is occupied (c).

which is then described by the Hamiltonian

H (t) = H0(t) + Hint + Ĥ , (1)

where H0(t) denotes the Hamiltonian of the double dot, Hint

characterizes the system-detector interaction and Ĥ describes
the Hamiltonian of the detector. Specifically,

H0(t) = ε(t) σz + �(t) σx, (2)

Ĥ + Hint = 1
2 (�Ĥ+ + �Ĥ− ⊗ σz), (3)

where

�Ĥ+ =
∑

r

Era
†
r ar +

∑
l

Ela
†
l al +

∑
r,l

(�lra
†
l ar + H.c.),

(4)

�Ĥ− = 2
∑
lr

(δ�lra
†
l ar + H.c.). (5)

Here σz = | R 〉〈 R | − | L 〉〈 L |, σx = | R 〉〈 L | + | L 〉〈 R |, and
| R 〉,| L 〉 are, without loss of generality, the eigenstates of
the operator measured by the QPC.27 The on-site energy
difference, 2ε(t), and the tunneling between such states,
�(t), are controlled by the externally applied voltage biases,
VL, VR , Vh. In Eqs. (3) and (5), the operators in the QPC
space are indicated by a ,̂ and we do so henceforth. The
creation and annihilation operator in the two leads of the QPC
are denoted by a

†
i and ai , respectively, where i = l,r refer

to the left and the right reservoir, respectively. Ei characterizes
the energy of the reservoir states, which are maintained at
the corresponding Fermi energies μL = μR + eVd > μR , and
�l,r ± δ�l,r denotes the tunneling amplitude between the
reservoirs when | R 〉 or | L 〉 is occupied.

This model has been extensively studied in the
literature.25,28–30 The current through the detector directly
measures the “position” of the electron in the dot. Under the as-
sumptions of uniform tunneling matrix elements, δ�l,r ≡ δ�,
�l,r ≡ �, and density of states in the QPC’s reservoirs, ρL, ρR ,
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FIG. 2. (a) Qubit plus detector interaction with a classical pointer
reading out the number mk of electrons having penetrated to the
detector’s right reservoir at certain discrete times t = tk . Illustration
of the continuous readout (b) and coherent (c) measurement regimes,
respectively.

the average current for an electron being in the left or right dot
reads 〈I 〉± = eD/2 · (1 ± δ�/�)2, where D ≡ T Vd/(2π ) =
2πρlρr�

2Vd . Throughout the work we set h̄ = 1. The QPC’s
shot noise power SI = eI (1 − T ) sets the time scale τD ∼
SI /(I+ − I−)2 ≈ 1/D(�/δ�)2(1 − T ) needed to distinguish
the detector’s signal form the background noise. The weak
measurement regime is then identified by measurements of du-
ration τ � τD , which can be controlled, in principle, by tuning
the system-detector coupling, the duration of the measurement,
or the voltage bias across the QPC. The QPC is effectively a
detector at finite Vd , where it leads to a finite signal 〈I 〉 ∝ Vd .
In particular, we assume Vd 
 kBT (the temperature T is the
smallest energy scale throughout the paper) and Vd 
 ρ�2 as
clarified below. In this regime we neglect the extra decoherence
effect due to the detector equilibrium backaction, for example,
orthogonality catastrophe dephasing.31,32

An important aspect of the model is that the Hamiltonian in
Eq. (1) describes the qubit and the detector as a closed quantum
system. However, the QPC is continuously converting the
information about the state of the system in a classical—
macroscopic—information output, which is the current. In
other words, while Eq. (1) will evolve the detector to a
coherent superposition of states with different charges in
the reservoirs, the classical knowledge of the current would
correspond to a well-defined number of electrons in each
reservoir. A solution of this problem, as pointed out in Ref. 30,
consists of introducing a macroscopic pointer which interacts
with the detector. The pointer provides, in fact, an effective
description of the various relaxation processes confining the
QPC electrons in one of the two QPC reservoirs. The pointer
can be modeled to interact instantaneously at certain times,
t1,t2, . . . ,tk, . . . ,tN , with t0 = 0 and tN = τ , and reads out the
change of the number of electrons in the right reservoir, μR , as
schematically depicted in Fig. 2. At any time t = tk the pointer
reads the number of electrons, mk , transmitted to the collector
within the time interval �tk = tk+1 − tk , and collapses the
qubit-detector system onto a corresponding state depending
on the measured value mk . Note that the introduction of the

pointer results in a new time scale �tk in the problem which
is a free parameter in our model. We discuss in the Results
section the different regimes corresponding to the relation of
this time scale to other time scales in the problem.

The model allows us to include decoherence by considering
fluctuations, which naturally arise in the system, of the external
parameters, namely the voltage biases VL, VR , Vh. In turn,
they lead to fluctuations of the dots’ parameters, ε(t) = ε0 +
ξ (t) and �(t) = �0 + η(t) around their average values ε0 and
�0. Since the explicit relation between Vh, VL, VR and ε0,
�0 depends on microscopic details, we effectively assume
here a general linear relation and the effect of decoherence is
therefore described by replacing the dot’s Hamiltonian with
H0(t) → H0 + Hξ (t), with

H0 = ε0 σz + �0 σx = ωm · σ , (6)

Hξ (t) =
∑

i

ξi(t) ki · σ . (7)

Here ω =
√

ε2
0 + �2

0 is the oscillation frequency of the system
and m defines the corresponding eigenstates. To this regard, the
index i labels the different independent decoherence sources,
ideally corresponding to the independent voltage sources. For
each of them ki indicates the direction of the fluctuations with
|ki | = 1 and ξi(t) is assumed to be a Gaussian white noise,
that is,

〈 ξi(s)〉ξ = 0, 〈 ξi(s1) ξj (s2)〉ξ = γi δ(s1 − s2) δij , (8)

where γi describes the strength of the correlation function.
For the sake of simplicity we present in the following our
general results for the case of a single decoherence source. The
results in the case of several noise sources are a straightforward
extension and are discussed at the end.

Finally, we can include in the model the description of
postselection, as required by the WV measurement protocol.
As pointed out in Ref. 17, a second QPC strongly measuring
the charge on the dot at any time after the weak measurement
can effectively realize a postselection in any given qubit state,
|�f 〉. Without loss of generality we therefore consider the
situation where the postselection takes place immediately after
the weak measurement. Within our model the postselection
into the state |�f 〉 is described by the action of the corre-
sponding projection operator �f acting at the end of the weak
measurement.

III. GENERAL EXPRESSION FOR THE WEAK VALUE
IN THE PRESENCE OF DECOHERENCE

The WV protocol we are interested in consists of preparing
the double dot in a given initial state |�(t0)〉 at time t0, making
the system interact with the detector for a time τ , and finally
strongly measuring it in the postselected state in |�f 〉. The
quantity of interest is the WV of the electron’s occupancy in the
double dot, that is, the value of σz(τ ) conditional to a positive
postselected outcome, which we denote by �f 〈σz(τ )〉�(t0). In
fact, such a quantity is inferred from the postselected output of
the detector, that is, the average current in the QPC conditional
to the postselection �f 〈I (τ )〉�(t0) = e/τ �f 〈n(τ )〉�(t0) through

�f 〈σz(τ )〉�(t0) = �f 〈I (τ )〉�(t0) − eD/2h

I+ − I−
. (9)
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The average conditional (postselected) value of the number of
electrons, �f 〈n(τ )〉�(t0), having passed through the QPC during
the measurement time τ is

�f
〈n(τ )〉�(t0) =

∑
m

m P (m | �f ). (10)

In Eq. (10) m indicates the total number of electrons having
reached the collector and P (m | �f ) is the conditional proba-
bility that m electrons have been transmitted through the QPC
given that the qubit is finally found to be in a state represented
by the projection operator �f . Note that Eq. (10) is valid for
any strength of the measurement. We keep our analysis valid
for a general measurement strength until specified differently.

The conditional probabilities in Eq. (10) can be directly
expressed in terms of the total density matrix R(t) of the
qubit-detector system. Following the formalism of Gurvitz25

and Korotkov,30 a pure state of the qubit-detector system is
described by a wave function |�(t)〉 = (|�↑(t) 〉,|�↓(t) 〉),
where σ =↑ , ↓ labels the eigenstates of σz and |�σ (t)〉 is
a many-body state of the QPC,

|�σ (t)〉 =
⎛⎝b(0) σ (t) +

∑
l�μl ;r>μr

b
(1) σ
lr (t) a†

r al

+
∑

l,l′�μl ;r,r ′>μr

b
(2) σ
ll′rr ′ (t) a†

r a
†
r ′alal′+ · · ·

⎞⎠|0〉,

(11)

and |b(i)(t)|2 describes the probability of finding the entire
qubit-detector system in the corresponding state described by
the creation and annihilation operators with l, r labeling the
single particle states in the left, right reservoirs, respectively.
The corresponding qubit-detector density matrix R(t) has
components

Rσσ ′(t) =

⎛⎜⎜⎜⎝
R

(0,0)
σσ ′ (t) R

(1,0)
σσ ′ (t) . . .

R
(0,1)
σσ ′ (t) R

(1,1)
σσ ′ (t)

. . .

...
... R

(m,n)
σσ ′ (t) . . .

⎞⎟⎟⎟⎠.

(12)

Here each entry R
(m,n)
σσ ′ (t) is a matrix whose dimen-

sions are given by the infinitely many states labeled
by l,r,l′,r ′,l′′,r ′′, . . . ,l(m),r (m) and l,r,l′,r ′,l′′,r ′′, . . . ,l(n),r (n).

Each of the entries b
(m) σ
l1,...,lmr1,...,rm

(t) b
(n) σ ′

l1,...,lnr1,...,rn
(t) (the · indi-

cates the complex conjugate) in R
(m,n)
σσ ′ (t) characterizes the

coherences between all the possible states with m and n

electrons detected in the collector of the QPC at time t . In
particular, the trace of each diagonal matrix R

(m,m)
σσ ′ (t) identifies

the probability that exactly m electrons have passed through
the detector until time t , namely,

P (m) = trsys{R(m)(t)} = trsys{trdet{R(m,m)(t)}}, (13)

where we introduced the quantity R(m)
σσ ′(t) = trdet{R(m,m)

σσ ′ }.
Also the reduced density matrix of the dot, ρ(t) = trdet {R(t)},
can be written as

ρ(t) =
∑
m

R(m) =
∑
m

P (m) · ρ(m)(t), (14)

where ρ(m)(t) = R(m)(t)/(tr{R(m)(t)}) describes the state of
the qubit where m electrons have reached the collector.

Besides the inherent quantum-mechanical fluctuations,
the stochastic parameter ξ (t) assumes different values at
each replica of the experiment according to its probability
distribution. In order to properly take into account the
average over fluctuations, we can first rewrite the conditional
probability Eq. (10) using Bayes’ theorem as P (m|�f ) =
P (m)P (�f |m)/

∑
m P (�f ). The WV of each run of the ex-

periment is now weighted with the probability of a successful
postselection in the corresponding run of the experiment,
which also depends on the specific noise realization. This
means that the average over the fluctuations ξ (t) in the WV
is properly taken into account by separately averaging over ξ

both the conditional average value of m and the postselection
probability.23 This leads to

�f 〈n(τ )〉�(t0) =
〈∑

m m P (�f |(m|ξ )) P (m|ξ )
〉
ξ〈∑

m P (�f |(m|ξ )) P (m|ξ )
〉
ξ

. (15)

Identifying the emerging probabilities in terms of the matrix
R(m) similar to Eq. (13) yields the conditional current

�f 〈I (τ )〉�(t0) = e

τ

∑
m m tr{�f · 〈R(m)(τ )〉ξ }∑

m tr{�f · 〈R(m)(τ )〉ξ } . (16)

As already pointed out, the weak measurement regime is
obtained when (δ�/�)2τ � 1/D(1 − D/Vd ). The WV can
be identified from the coefficients in the expansion

�f
〈I (τ )〉�(t0) = 〈I (τ )〉 + �f

〈I (τ )〉weak
�(t0) · δ�

�
+ O

(
δ�2

�2

)
.

(17)

We discuss the validity of this expansion later. From the
definition of the weak measurement regime, we expect to be
sensitive to coherence effects for time scales τ � 1/D(1 −
D/Vd )(�/δ�)2. The WV is completely determined by the
knowledge of the probabilities P (m) and the conditional
reduced dot’s density matrix 〈ρ(m)(τ )〉ξ . Further analysis now
focuses on the evaluation of 〈R(m)(τ )〉ξ .

IV. SYSTEM-DETECTOR DYNAMICS IN
PRESENCE OF DECOHERENCE

A. Coherent detection

First we consider the case where a single readout by the
external pointer takes place at the end of the measurement
process, that is, at t = τ , immediately followed by the
postselection. In this case the coherent evolution of the system
and detector is not disturbed by the pointer, and we thus name
it coherent detection.

The WV is fully determined by the knowledge of the
averaged matrices 〈R(m)(τ )〉ξ . We can derive a differential
equation for 〈R(m)(τ )〉ξ starting from the von Neumann
equation for the qubit-detector system, i∂tR(t) = [H (t),R(t)].
After inserting the Hamiltonian in Eq. (1) with the specific
choice of a single fluctuation source, that is, ε(t) = ε0 + kz ·
ξ (t), �(t) = �0 + kx · ξ (t), one obtains for the qubit-detector
evolution

∂tR(t) = −i [ M,R(t) ] − i ξ (t) [ N,R(t) ] , (18)
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where ∂t = ∂/∂t . Here,

M = 1
2 �Ĥ+ + � · σx + 1

2 (�Ĥ− + 2 ε0) ⊗ σz,

N = σ · k. (19)

Introducing an interaction picture with respect to M , which
transforms the arbitrary operator A as AI (t) = e−iMt · A ·
eiMt , transfers Eq. (18) into ∂tRI (t) = −i ξ (t) [ NI (t), RI (t) ].
Iteratively solving this equation, one obtains after taking the
average with respect to ξ (t)

〈RI (t)〉ξ = 〈R(0)〉ξ − i

∫ t

0
ds1〈ξ (s1)〉ξ [NI (s1), 〈RI (0)〉ξ ]

+ (−i)2
∫ t

0
ds1

∫ s1

0
ds2〈ξ (s1)ξ (s2)〉ξ

· [NI (s1),[NI (s2), 〈RI (0)〉ξ ]]

+ (−i)3
∫ t

0
ds1

∫ s1

0
ds2

∫ s2

0
ds3〈ξ (s1)ξ (s2)ξ (s3)〉ξ

· [NI (s1),[NI (s2),[NI (s3), 〈RI (0)〉ξ ]]] + · · · .

(20)

Due to the δ-like time correlations in Eq. (8), the average can
be performed exactly order by order. The so-obtained integral
equation for R(t) is more conveniently written in a differential
form as

∂t 〈R(t)〉ξ = − γ

2
[ N, [N, 〈R(t)〉ξ ]] − i [M,〈R(t)〉ξ ]. (21)

The density matrix is expressed as a linear combination of
Pauli-matrices of the dot’s space,

〈R(t)〉ξ = 1

2

3∑
j=0

v̂j (t) · σj , (22)

where each v̂j (t) is a matrix in the QPC Hilbert space with
tr {v̂0(t)} ≡ 1. Substituting Eq. (22) into the averaged von
Neumann equation (21) yields a set of differential equations
for v̂j (t) which fully describes the averaged evolution of the
qubit-detector system:

˙̂v0 = − i

2
[�Ĥ−,v̂z(t)] − i

2
[�Ĥ+,v̂0(t)],

˙̂vx = 2γ
((

k2
x − 1

)
v̂x + kxkyv̂y + kxkzv̂z

) − 2ε0v̂y

− i

2
[�Ĥ+,v̂x] − 1

2
{�Ĥ−,v̂y},

˙̂vy = 2γ
(
kxkyv̂x + (

k2
y − 1

)
v̂y + kykzv̂z

) + 2ε0v̂y (23)

− 2�v̂z − i

2
[�Ĥ+,v̂y] + 1

2
{�Ĥ−,v̂y},

˙̂vz = 2γ
(
kxkzv̂x + kykzv̂y + (

k2
z − 1

)
v̂z

) + 2�v̂y

− i

2
[�Ĥ−,v̂0] − i

2
[�Ĥ+,v̂z].

Equations (23) describe a set of infinitely many coupled
differential equations. They are a generalization to a density
matrix of the results obtained in Ref. 25 for the simple case of
a pure state. Note that such a generalization is essential in our
case to properly treat fluctuations of ξ . One may further note

that the fluctuations treated here differ from Ref. 30, where
the system’s evolution for a given stochastic measurement
output I (t) is studied. Considering the matrix elements of
R(t) between two sectors (m,n) with m and n electrons having
passed through the QPC, we trace out the QPC degrees of
freedom to obtain a differential equation for

〈R(m)(t)〉ξ = 1
2 (v(m)(t) · σ ), (24)

where v
(m)
j (t) = trdet{v̂(m,m)

j (t)}. The details of the calculation
are presented in Appendix A. Here we report the resulting
differential equation, which can be recast as a differential
equation for v

(m)
j (t), that is,

∂t v(n)(t) = (G0 + Gk + G1) · v(n)(t) + G2 · v(n−1)(t), (25)

with

G0 =

⎛⎜⎜⎜⎝
0 0 0 0

0 0 −2 ε0 0

0 2 ε0 0 − 2 �0

0 0 2 �0 0

⎞⎟⎟⎟⎠,

Gk = 2 γ

⎛⎜⎜⎜⎝
0 0 0 0

0 k2
x − 1 kx ky kx kz

0 kx ky k2
y − 1 ky kz

0 kx kz ky kz k2
z − 1

⎞⎟⎟⎟⎠,

G1 = − D

2

⎛⎜⎜⎜⎜⎝
1 + δ�2

�2 0 0 2 δ�
�

0 1 + δ�2

�2 0 0

0 0 1 + δ�2

�2 0

2 δ�
�

0 0 1 + δ�2

�2

⎞⎟⎟⎟⎟⎠,

G2 = D

2

⎛⎜⎜⎜⎜⎝
1 + δ�2

�2 0 0 2 δ�
�

0 1 − δ�2

�2 0 0

0 0 1 − δ�2

�2 0

2 δ�
�

0 0 1 + δ�2

�2

⎞⎟⎟⎟⎟⎠.

The above equation is obtained to lowest order in ρ�2 �
Vd , under the assumptions that: (i) the detector’s transition
amplitude only weakly depends on the energies, that is,
�lr ≡ �; (ii) the densities of states in the QPC’s collectors
are constant, ρl(Elk ) ≡ ρl and ρr (Erk

) ≡ ρr ; (iii) at t = 0 the
energy levels of the detector are filled up to the Fermi-level
so that m = 0; that is, v(n)(0) = (1,vx,vy,vz) · δn,0. As evident
in Eq. (25), for D → 0 or δ� → 0, respectively, the system
evolves undisturbed, while for γ → 0 our result reduces to
that in Ref. 25.

According to Eqs. (16) and (17) we can obtain the
expression for the WV by solving the differential equations
(25) perturbatively in the regime δ� � �. The details of the
derivation are given in Appendix B. We highlight here that
the perturbative solution is a valid approximation for τ �
1/D(�/δ�)2 exactly corresponding to the weak measurement
regime. This finally yields the expression for the WV:

�f
〈I (τ )〉weak

�(t0) = e D

1
τ

∫ τ

0 ds vz(s) + 1
τ

∫ τ

0 ds nz(s)

n · v(τ )
. (26)
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Here τ is the duration time of the weak measurement
and we effectively introduced a time dependence in the
postselection operator �f (τ ) = 1/2 (n(τ ) · σ ), n = n(τ ) is
then the postselected state at time t = τ instantaneously
after the measurement. In the notation in Eq. (26), v(s)
is defined by v(s) = exp [(G0 + Gk) s] · v(0), while n(s) =
exp [(−G0 + Gk) s] · n(0).

The result in Eq. (26) is already captured by a minimal
model where the coupling to the detector is described by a
von Neumann Hamiltonian1 Hint(t) = λg(t) p̂ σz. It linearly
couples the measured observable σz to a detector’s variable
p̂, λ indicates the coupling constant, and the time dependency
of the interaction is included in the function g(t). The WV
of σz is inferred from the conditional value of the conjugate
variable q̂,

�f
〈q̂(τ )〉weak

�(t0) = λ Re
∫ τ

0
ds

〈�f (τ ) σz(s)〉
〈�f (τ )〉 , (27)

obtained to leading order in the coupling. The effect of deco-
herence is included in the correlation function 〈�f (τ ) σz(s)〉
resulting in Eq. (26). Equation (27) elucidates the role of
coherent system evolution between the measurement at time s

and the postselection at time τ .

B. Continuous readout

Opposed to a coherent detection, the regime of continuous
readout is characterized by the detector’s state being frequently
read out by the pointer. This limit is described by a sequence of
readouts at times t = tk , k = 1, . . . ,N , where the time interval
between readouts �tk := tk+1 − tk ≡ �t is the shortest time
scale in the problem, that is, �t � min{1/ω,1/γ,1/D}. The
conditional number of transmitted electrons Eq. (16) can now
be expressed as the sum over all permutations describing
quantum jumps at all possible times,

�f
〈n(τ )〉�(t0) =

∑∑
j mj =m m tr{�f · 〈R(m1,...,mN )(τ )〉ξ }∑∑

j mj =m tr{�f · 〈R(m1,...,mN )(τ )〉ξ } , (28)

where j = 1, . . . ,N and R(m1,...,mN )(τ ) characterizes the
qubit’s density matrix weighted with the probability that
exactly mk electrons have passed within each time interval �tk .
Each readout corresponds to a collapse of the qubit-detector
system in the sector of mk electrons having passed with the
corresponding probability P (mk; tk).

In the regime �t � min{1/ω,1/γ,1/D} at most one
electron penetrates through the QPC between two subsequent
readouts.33 The probabilities that either exactly one (quantum
jump30,34) or zero electrons accumulate in the collector
within a readout period time are computed in Appendix C.
They are given by P (0; �t) = {A · v(nk )(tk)}0 and P (1; �t) =
{B · v(nk )(tk)}0, respectively, where the index {· · · }0 denotes
the zeroth component and

A = 1(4) + (G0 + Gk + G1) �t + O(�t2),
(29)

B = G2�t + O(�t2).

O(�t2) indicates higher-order terms for �t � min{1/ω,

1/γ,1/D}. In the limit of N → ∞, �t → 0 while keeping
N · �t = τ constant, the conditional number of transferred

electrons in Eq. (28) can be analytically evaluated (cf.
Appendix C), yielding the exact result

�f
〈n(τ )〉�(t0) = τ

n · G2 · e(G0+Gk+G1+G2) τ · v(0)

n · e(G0+Gk+G1+G2) τ · v(0)
. (30)

The WV can be easily extracted by �f 〈I (τ )〉weak
�(t0) =

limδ�/�→0(�f 〈I (τ )〉�(t0)), where

�f
〈I (τ )〉weak

�(t0) = e�

δ�

(
1

τ
· �f 〈n(τ )〉�(t0) − D

2

)
+ O

(
δ�2

�2

)
.

(31)

The simultaneous presence of G1 + G2 and Gk in Eq. (30)
defines a new time scale 1/γ � 1/D(�/δ�) which describes
the extra source of decoherence emerging from the detector
itself. Note also that Eqs. (30) and (31) are valid at any time.
The derivation indeed relies on the perturbative solution in
Appendix B, which is valid in the limit �t → 0; hence, the
exact composition of subsequent evolution between different
readouts holds at any time.

V. RESULTS

Equations (26), (30), and (31) represent the main results
of our paper. They express the WVs in the two limiting
cases of coherent detection and continuous readout in terms
of the system dynamics. Generally, they give rise to four
different time scales, which characterize (i) the system’s
dynamics, 1/ω, (ii) the decoherence, 1/γ , (iii) the detector
dynamics, 1/D, and (iv) the backaction, 1/D · (�/δ�)2. We
realistically assume 1/D to be the shortest time scale in
our problem and focus on τ 
 1/D. The effects of the
detector at this time scale dominated by the Zeno effect,26

though inherent in Eq. (25), do not play a significant role
at the larger time scales of interest where decoherence takes
place. Consistently with our perturbative analysis, we further
consider τ � 1/D · (�/δ�)2.

The WV can be visualized via the motion of v(t) and n(t)
on the Bloch sphere for v = (vx,vy,vz) and n = (nx,ny,nz), as
depicted in Fig. 3. |v(t)| � 1 characterizes the coherence of
the qubit’s state, which is initially prepared in a pure quantum
state with |v(t = 0)| = 1.

We start with analyzing the case of coherent detection,
that is, the dynamical evolution obtained in Eq. (26). In this
regime the effect of decoherence essentially reduces to the
dynamics of the qubit alone in the presence of decoherence.
Accordingly, the WV presents different behaviors in different
regimes defined by the durations of the measurement, τ ,
compared to the remaining time scales 1/ω, 1/γ .

For long measurement durations τ 
 1/γ , the qubit’s state
generally relaxes towards a fully statistical mixture, v(t) = 0,
as shown in Fig. 3(c), except for the special case �k ‖ �m, which
is discussed later. Consequently, at time scales where decoher-
ence effects come to play we obtain max| �f

〈I (τ )〉weak
�(t0)| � eD

and, hence, the peculiar characteristics of WVs are washed
out.

For measurements shorter than the decoherence time,
the results depend on the system’s evolution time scale.
For short measurements, τ � 1/ω, which correspond to
negligible dynamics and fluctuations, the vectors v(s) and
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FIG. 3. (Color online) Schematic evolution of v(s) and n(s) on the Bloch sphere for (a) m �= k and (b) m = k. (c) Weak value as a function
of τ for different γ ; (d) WV for different γ at τ1 = 0.10ns and τ2 = 1.31 ns, marked in panel (c). In all plots the parameters are chosen as
ε0 = 20 μeV, �0 = 3 μeV, k ≈ −0.89 ex + 0.45 ez, v(0) = (0.5, − 0.33,0.80), and n = (−0.20,0.75,0.63).

n(s) in Eq. (26) are constant so that a measurement of the
averaged detector’s response trivially reflects the WV of the
observable σ̂z independent from the measurement duration
time τ , �f 〈σz(τ → 0)〉weak

�(t0) = Re(〈f|σ̂z|�〉/〈f|�〉).
The system’s dynamics for intermediate durations of the

measurement, τ 
 1/ω, however, are appreciable. Here, both
vectors n(s) and v(s) precess about the eigenvector m of G0

with a frequency of 2 ω. Note that, due to its backward-in-time
evolution, n(s) precesses in the opposite direction as compared
to v(s). Due to the oscillatory dependence of the denominator
in Eq. (26), peculiar WVs may occur for properly fine-tuned

measurement duration times. Weak values much larger than
1 are realized, for instance, for orthogonal states when |1 +
n · v(τ )| 
 1, which leads to τ = n · π

ω
± �τ , with �τ �

1
| sin2 α|

1
2 ω

, where α denotes the altitude angle between v(0)
and m. The effect of the strength of the fluctuations on short
and intermediate measurements is shown in Figs. 3(c) and
3(d), resulting in a trivial decay towards the steady-state value.

As already anticipated, an important role is played by
the “direction” of the noise term. Its effect is illustrated in
Fig. 4(a). As long as k becomes more and more parallel to the
m, the relaxation time toward the steady state becomes longer.

4ns 8ns 12ns
Τ
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0.4
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FIG. 4. (Color online) Weak value as a function of τ for (a) different k (θ = 0 corresponds to k ‖ m) and (b) different n (φ = 0 corresponds
to n ‖ m). (c) Same as in (a) in the presence of multiple decoherence sources, where γ = 1.0 μeV, k = 1√

2
ex + 1√

2
ez, k1 = 1√

2
ex , k2 = 1√

2
ez,

γ1 = 1√
2

μeV γ2 = 1√
2

μeV, k1 = m, k2 = m⊥, γ 1 = (k · m) μeV, γ 2 = (k · m⊥) μeV; all the other parameters are as in Fig. 3.
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FIG. 5. (Color online) Weak value for continuous detection for (a) different γ with D = 0.270 eV and (b) different D with γ = 0.1 μeV;
other parameters as in Fig. 3. In all plots δ�/� = 0.001.

In the limiting case, it relaxes to a partially coherent state.
The direction of the postselection orientation plays a similar
role, as shown in Fig. 4(b). We also note that, in the presence
of multiple decoherence sources, even for a given effective
direction and strength of the fluctuating term, the decay of the
WV still strongly depends on the relative directions between
different sources [cf. Fig. 4(c)].

The case of a continuous readout is characterized by a
rather different behavior. While in both, the coherent and
continuous readout regimes, a significant strong decoherence
destroys the peculiarities of WVs [cf. Fig. 5(a)], in the latter
the detector itself introduces decoherence on the time scale of
its backaction. This is visualized in Fig. 5(b). It also shows
that D effects the results at the time scales τ � 1/D(�/δ�)2

relevant for WVs, in contrast to the coherent case. The
difference between the two cases is highlighted in Fig. 6,
comparing the two regimes for different decoherence strength

and postselection. The WV in the continuous case can be
enhanced as compared to the coherent measurement, leading
to peculiar WVs, where a coherent measurement would not
[cf. Figs. 6(c) and 6(d)]. This effect depends on the chosen
postselection [cf. Fig. 6(a) vs Fig. 6(c); Fig. 6(b) vs Fig. 6(d)]
and is suppressed by decoherence [cf. Fig. 6(c) vs Fig. 6(d)].
We can understand these results by analyzing the asymptotic
behavior after decoherence has taken place. Equation (31)
gives a WV

�f 〈σz〉weak
�(t0) = tr{(1 + n · σ ) σz(s) ρ}

tr{(1 + n · σ ) ρ} = nz (32)

for a fully incoherent state ρ ∝ 1. This is the WV of an
incoherent state.17 The results from Eq. (26) for the coherent
case lead instead to �f 〈σz〉weak

�(t0) = 0 for ρ ∝ 1. This difference
arises because of the coherent evolution in the correlation
between measurement and postselection [cf. Eq. (27)], which
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FIG. 6. (Color online) Weak value for continuous detection and coherent readout for different γ and pre- and postselection states n, v; γ =
1.0 μeV in (a),(c) and γ = 0.1 μeV in (b),(d); v(0) = (0.5, − 0.33,0.80), n = (−0.20,0.75,0.63) in (a),(b) and v(0) = (−0.5,0.33, − 0.80),
n = (0.50,0.20,0.84) in (c),(d). In all plots D = 0.270 eV, δ�/� = 0.001 and the other parameters as in Fig. 3.
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FIG. 7. (Color online) Validity perturbation. (a) Left-hand side of Eq. (33) and (b) the corresponding WV for γ = 1.0 μeV, D = 0.270 eV,
δ�/� = 0.001; all other parameters are as in Fig. 3.

does not take place in the continuous readout due to the
frequent “pointer” readout. The different steady states are
shown in Fig. 6. Though the steady states correspond to
times beyond the weak measurement regimes, their difference
reflects at shorter time scales as well. There it leads to enhanced
WVs exceeding the strong boundary in one case and not in the
other [cf. Figs. 6(c) and 6(d)]. This explains the sensitivity of
the effect to postselection (that counts the steady state of the
continuous case) and to decoherence (that suppresses faster
peculiar WVs within the standard range in both cases).

The perturbative solution of the system’s dynamics under-
lying the result of the coherent detection allows us to discuss, to
some extent, the validity of the WV expression in Eq. (26). As a
first check we can require that the second-order contribution is
irrelevant compared to the first-order contribution discussed
so far, that is, |�f 〈I (τ )〉weak(2)

�(t0) | · δ�2/�2 � |�f 〈I (τ )〉weak
�(t0)| ·

δ�/�, leading to the condition

η(τ ) = δ�

�
· Dτ

2
·
∣∣∣∣∣ vx(τ ) nx + vy(τ ) ny

1
τ

∫ τ

0 ds vz(s) + 1
τ

∫ τ

0 ds nz(s)

∣∣∣∣∣ � 1.

(33)

This imposes a restriction on the validity of the WV’s result
also within the regime of weak measurement, as shown in
Fig. 7. Indeed, for specific qubit’s parameters ε0 and �0 and
particular boundary conditions vz(0) and nz, the numerator
in Eq. (33) vanishes at finite duration times for τ � 1/γ so
that the perturbation is valid at discrete times which depend
on the chosen parameters (cf. Fig. 7). For τ 
 1/γ , on the
contrary, η ∝ τ 2 e−c τ , where c > 0 and the perturbation is
asymptotically valid unless k = m = ex .

VI. CONCLUSIONS

In this work we have addressed the effects of decoherence
on WV measurements involving postselection. We have
considered the paradigm model of a charge measurement
in a double quantum dot by a nearby QPC, where we
have included fluctuations of the parameters due to external
noise sources. After deriving a general expression for the
postselected signal (current) in the QPC in terms of the reduced
density matrix of the qubit, we have evaluated it explicitly in

two different regimes determined by the detector’s readout,
namely continuous vs “single-time” detector’s readout.

We have characterized the WV’s dependence on the various
parameters of the system. In particular, we have shown that
statistical fluctuations of the qubit’s parameters generally
reduce the WV into the classical range for measurements
longer than the decoherence time. On shorter time scales we
have determined a boundary for the region of validity of the
WV result. Remarkably, there the continuous readout can lead
to an enhancement of peculiar WVs as compared to the case
of coherent detection.

ACKNOWLEDGMENTS

We would like to thank O. Ziberberg and Y. Gefen for very
useful discussions. We acknowledge the financial support of
ISF and the Minerva Foundation.

APPENDIX A: DERIVATION OF AVERAGED
RATE EQUATIONS

In this Appendix we derive the differential equation (25) out
of Eqs. (23) of the main text. In the following, the derivation
is presented exemplarily only for v̂(m)

x = tr{ ˙̂v(m,m)
x (t)} since the

other terms (v̂(m)
y , v̂(m)

z ) are treated completely analogously.
It is useful to perform a “Laplace” transform for the whole
matrices,

v̂
(m,n)
j (E) = lim

δ→0

∫ ∞

0
v̂

(m,n)
j (t) exp [i (E + i δ) t] dt, (A1)

in order to include the initial conditions of the differential
equations that m = 0 electrons have penetrated through the
collector at t = 0 and, hence, the qubit-detector system is
in a pure state. Here, δ > 0 ensures the convergence of the
integral. A high-energy cutoff is introduced concerning the
inverse transform, so that the upper limit of the integral in
the inverse transform is � → ∞.

We can write the differential equations for the Laplace
transformed components, ˙̂v(m,m)

j (t). In this regard, the matrix
products in Eq. (23) can be easily calculated by evaluating
each (m,n) block, as introduced in Eq. (12). Due to the fact
that the definition of �Ĥ+ includes terms proportional to
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a
†
r ar and a

†
l al , diagonal blocks of �Ĥ+ are nonzero, whereas

the diagonal blocks �Ĥ− (m,m) vanish. Moreover, since �Ĥ±
consists of combinations a

†
l ar + H.c. which raise or lower,

respectively, the number of electrons in the detector by exactly

one electron, only the off-diagonal blocks �Ĥ± (m,m+1) and
�Ĥ± (m+1,m) neighboring the diagonal blocks are nonzero.
Consequently, a blockwise evaluation of the matrix products
can be written as

(v̂j · �Ĥ−)(m,n) = v̂
(m,n−1)
j · �Ĥ− (n−1,n) + v̂

(m,n+1)
j · �Ĥ− (n+1,n), (A2)

(v̂j · �Ĥ+)(m,n) = v̂
(m,n−1)
j · �Ĥ+ (n−1,n) + v̂

(m,n)
j · �Ĥ+ (n,n) + v̂

(m,n+1)
j · �Ĥ+ (n+1,n), (A3)

and analogous for (�Ĥ+/− · v̂j )(m,n). Note that v̂
(m,k)
j · �Ĥ− (k,n) still describes a product of matrices which are of infinite

dimension. Thus, applying the Laplace transform to Eqs. (23) for j = x by considering exemplarily k = ez leads to

tr
{

˙̂v(m,m)
x (t)

} = −£−1
[
tr
{
(i E − δ) v̂(m,m)

x (E) + v̂(m,m)
x (0)

}]
= £−1

[
tr

{
−2 γ v̂(m,m)

x (E)︸ ︷︷ ︸
=v̂a (E)

− 2 ε0 v̂(m,m)
y (E)︸ ︷︷ ︸

=v̂b(E)

− i

2

(
�Ĥ+ (m,m−1) · v̂(m−1,m)

x (E)︸ ︷︷ ︸
=v̂c(E)

+�Ĥ+ (m,m) · v̂(m,m)
x (E)︸ ︷︷ ︸

=v̂d (E)

+�Ĥ+ (m,m+1) · v̂(m+1,m)
x (E)︸ ︷︷ ︸

=v̂e(E)

)

+ i

2

(
v̂(m,m−1)

x (E) · �Ĥ+ (m−1,m)︸ ︷︷ ︸
=v̂f (E)

+ v̂(m,m)
x (E) · �Ĥ+ (m,m)︸ ︷︷ ︸

=v̂g (E)

+ v̂(m,m+1)
x (E) · �Ĥ+ (m+1,m)︸ ︷︷ ︸

=v̂h(E)

)

− 1

2

(
�Ĥ− (m,m−1) · v̂(m−1,m)

y (E)︸ ︷︷ ︸
=v̂i (E)

+�Ĥ− (m,m+1) · v̂(m+1,m)
y (E)︸ ︷︷ ︸

=v̂j (E)

+ v̂(m,m−1)
y (E) · �Ĥ− (m−1,m)︸ ︷︷ ︸

=v̂k (E)

+ v̂(m,m+1)
y (E) · �Ĥ− (m+1,m)︸ ︷︷ ︸

=v̂l (E)

)}]
, (A4)

where £−1 denotes the inverse Laplace transform. We analyze the various terms separately. We start with observing that
£−1[v̂a(E)] = −2 γ tr{v̂(m,m)

x (t)} and £−1[v̂b(E)] = −2 ε0 tr{v̂(m,m)
y (t)}. Moreover, due to the cyclic invariance of the trace

£−1[v̂d (E)] + £−1[v̂g(E)] = 0. Employing the explicit expression of �Ĥ±, reduces the evaluation of the remaining terms to
the calculation of(

�Ĥ+ (m,m+1) · v̂
(m+1,n)
j

)
(l1r1,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n) =

∑
lm+1rm+1

(−1)m2 �lm+1rm+1 · (v̂(m+1,m)
j

)
(l1r1,...,lmrmlm+1rm+1);(l′1r

′
1,...,l

′
nr

′
n) (A5)

and (
�Ĥ+(m,m−1) · v̂(m−1,n)

j

)
(l1r1,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n)

= −2 �l1r1 · (v̂(m−1,m)
j

)
(l2r2,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n) + 2 �l2r2 · (v̂(m−1,m)

j

)
(l1r1l3r3,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n)

− 2 �l3r3 · (v̂(m−1,m)
j

)
(l1r1l2r2l4r4,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n) · · · + (−1)m 2 �lmrm

· (v̂(m−1,m)
j

)
(l1r1...lm−1rm−1);(l′1r

′
1...l

′
nr

′
n) (A6)

for products concerning the off-diagonal boxes and(
�Ĥ+ (m,m) · v̂

(m,n)
j

)
(l1r1,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n) = 2

(
Er1 + · · · + Erm

− El1 − · · · − Elm

) · (v̂(m,n)
j

)
(l1r1,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n) (A7)

for products with nonzero matrices on the diagonal (m,m). Here, the indices (l1r1, . . . ,lmrm); (l′1r
′
1, . . . ,l

′
nr

′
n) precisely determine

the scalar entries of the matrices. The analogous multiplications involving �Ĥ− are evaluated by replacing � → δ�. In
principle, these products are not restricted to the usage of v̂j (t) and, thus, are valid for a generic matrix of the dimension
of v̂

(m±1,m)
j . It is sufficient to consider products where �Ĥ± is on the left, since in the end we need to evaluate the

traces and all products can always be arranged such that �Ĥ± is on the left by relying on the cyclic invariance of the
traces.
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To lowest order in ρ �2 � Vd , we find that

�2
∑
lkrk

(
v̂

(m,n)
j

)
(l1r1,...,lkrk ,...,lmrm);(l′1r

′
1,...,l

′
nr

′
n)

Ẽ + Elk − Erk
+ i (δ + 2 γ )

≈ 0, �2
∑
l′kr

′
k

(
v̂

(m,n)
j

)
(l1r1,...,lmrm);(l′1r

′
1,...,l

′
kr

′
k ,...,l

′
nr

′
n)

Ẽ + El′k − Er ′
k
+ i (δ + 2 γ )

≈ 0, (A8)

if the sum runs over indices occurring in v̂
(m,m)
j (E) with the abbreviation Ẽ = E − El1 − · · · − Elk−1 − Elk+1 − · · · − Elm +

Er1 + · · · + Erk−1 + Erk+1 + · · · + Erm
. This result holds within the approximation where the energy levels of the detector’s

reservoirs are almost continuous so that the sum can be replaced by an integral, that is,
∑

lkrk
→ ∫

ρl(Elk ) ρr (Erk
) dElk dErk

.
Additionally, the hopping amplitudes are assumed to depend weakly on the energy levels, hence, being constant, that
is, �lr ≡ �, and also the density matrices of the emitter and collector, respectively, are approximated to be constant,
with ρl(Elk ) = ρl and ρr (Erk

) = ρr . In order to understand that the integral vanishes, it is helpful to realize that the all
entries of v̂

(m,n)
j essentially characterize higher-order retarded Green’s functions which describe the averaged evolution

of the density matrix. These Green’s functions have poles in the lower half of the complex plane proportional to
[Ẽ + Elk − Erk

+ i δ]−1 which can be shown by iteratively solving the Laplace transformed differential equations (23)
for each v̂

(m,n)
j (E). Thus, a contour integral yields zero since the integrand decreases ∝1/E2. On the contrary, if the

sum does not include a summation over indices of v̂
(m,n)
j (E), it can be calculated within the same approximation as

being

�2
∑
lkrk

1

Ẽ + Elk − Erk
+ i (δ + 2 γ )

≈ −i π ρl ρr �2 (Vd + Ẽ) ≈ − i

2
D (A9)

to lowest order in ρ �2 � Vd with D = 2 π ρl ρr �2 Vd .25 Concerning this, the integral is separated into a singular part and the
principal-value part. While the principal part redefines the energy levels, the singular parts lead to the presented result by relying
on the Sokhatsky-Weierstrass theorem. Thus, one obtains

v̂c(E) ≈ i

4
D ·

(
2 tr

{
v̂(m−1,m−1)

x (E)
}+ 2 i

δ�

�
tr
{
v̂(m−1,m−1)

y (E)
})

− tr

{
v̂(m−1,m)

x (0) ·
(

(i E − δ − 2 γ ) 1̂(m,m) + i

2
�Ĥ+ (m,m)

)−1

· �Ĥ+ (m,m−1)

}
, (A10)

v̂e(E) ≈ − i

4
D ·

(
2 tr

{
v̂(m,m)

x (E)
}− 2 i

δ�

�
tr
{
v̂(m,m)

y (E)
})

− tr

{
�Ĥ+ (m,m+1) ·

(
(i E − δ − 2 γ ) 1̂(m+1,m+1) + i

2
�Ĥ+ (m+1,m+1)

)−1

· v̂(m+1,m)
x (0)

}
, (A11)

v̂i(E) ≈ i

4
D ·

(
− 2

δ�

�
tr
{
v̂(m−1,m−1)

y (E)
}+ 2 i

δ�2

�2
tr
{
v̂(m−1,m−1)

x (E)
})

− tr

{
v̂(m−1,m)

y (0) ·
(

(i E − δ − 2 γ ) 1̂(m,m) + i

2
�Ĥ+ (m,m)

)−1

· �Ĥ− (m,m−1)

}
, (A12)

v̂j (E) ≈ i

4
D ·

(
2

δ�

�
tr
{
v̂(m,m)

y (E)
}+ 2 i

δ�2

�2
tr
{
v̂(m,m)

x (E)
})

− tr

{
�Ĥ− (m,m+1) ·

(
(i E − δ − 2 γ ) 1̂(m+1,m+1) − i

2
�Ĥ+ (m+1,m+1)

)−1

· v̂(m+1,m)
y (0)

}
, (A13)

which couples (m,m) blocks to (m − 1,m − 1) and (m + 1,m + 1) blocks, respectively. Note that it is trivial to take the
inverses since the corresponding matrices are diagonal. Similar calculations eventuate in analogous expression for all the other
terms by replacing m with m + 1 or m − 1, respectively, that is, v̂f (E) = v̂e(E)(m → m − 1), v̂h(E) = v̂c(E)(m → m + 1),
v̂k(E) = v̂j (E)(m → m − 1), and v̂l(E) = v̂i(E)(m → m + 1). Inserting the achieved results for v̂a(E) to v̂l(E) into Eq. (A4)
and iteratively solving in m yields the desired differential equation for v

(m)
j (t) := tr{v̂(m,m)

j (t)} with j = x after performing the
re-Laplace transform, that is,

v̇(m)
x (t) =

(
−2 γ − D

2

(
1 + δ�2

�2

))
v(m)

x (t) + D

2

(
1 − δ�2

�2

)
v(m−1)

x (t) − 2 ε0 v(m)
y (t). (A14)
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Likewise, calculations for each v
(m)
j (t) finally end up in the rate equations

v̇
(m)
0 (t) = − D

2

(
1 + δ�2

�2

)
v

(m)
0 (t) + D

2

(
1 + δ�2

�2

)
v

(m−1)
0 (t) − D

δ�

�
v(m)

z (t) + D
δ�

�
v(m−1)

z (t), (A15)

v̇(m)
y (t) =

(
−2 γ − D

2

(
1 + δ�2

�2

))
v(m)

y (t) + D

2

(
1 − δ�2

�2

)
v(m−1)

y (t) + 2 ε0 v(m)
x (t) − 2 �v(m)

z (t), (A16)

v̇(m)
z (t) = − D

2

(
1 + δ�2

�2

)
v(m)

z (t) + D

2

(
1 + δ�2

�2

)
v(m−1)

z (t) − D
δ�

�
v

(m)
0 (t) + D

δ�

�
v

(m−1)
0 (t) + 2 �v(m)

y (t), (A17)

for the special case of considering fluctuations in the z direction. The general case is treated analogously.

APPENDIX B: PERTURBATIVE SOLUTION OF THE RATE EQUATIONS

In this Appendix we present the perturbative solution for δ� � � of the rate equations (25) which describe the averaged
evolution of the density matrix with the initial conditions that m = 0 electrons have penetrated to the right reservoir at t = 0 so
that the initial state of the system is described by v

(m)
j (t = 0) = δm,0 · v

(0)
j (t = 0), j = 0,x,y,z. Hereto, we introduce the Fourier

transform

ṽj (q,t) =
∑
m

v
(m)
j (t) e− imq, (B1)

with respect to m. Hence, 〈R(m)(t)〉ξ becomes 〈R̃(q,t)〉ξ = 1/2 · (̃v(q,t) · σ ), which eventuates in an expression of the conditional
current in terms of ṽj (q,t) by comparing to Eq. (16), that is,

�f 〈I (τ )〉�(t0) = − i e

τ
∂q ln[tr {�f · (̃v(q,t) · σ )}]|q=0. (B2)

If assuming that ṽ(q,t) is an analytic function of q and t , it can perturbatively be expanded in order to describe the evolution of
the system’s density matrix within a weak measurement regime,

ṽ(q,t) =
∞∑

n=0

un(q,t)

(
δ�

�

)n

, (B3)

where n denotes the order of perturbation. Substituting this perturbation into Eq. (B2) the zeroth-order contribution reads

〈I (τ )〉 = −i
e

τ
∂q ln[tr {�f · (u0(q,t) · σ )}]|q=0, (B4)

and the first-order contribution, that is, the averaged WV for the current, is identified as

�f 〈I (τ )〉weak
�(t0) = −i

e

τ
[tr {�f · (u0(q = 0,t) · σ )} · tr {�f · (∂qu1(q,t)|q=0 · σ )}

− tr {�f · u1(q = 0,t) · σ )} · tr {�f · (∂qu0(q,t)|q=0 · σ )}] · [tr {�f · (u0(q = 0,t) · σ )}]−2. (B5)

Thus, the WV is completely expressed in terms of the averaged density matrix. Further analysis now focuses on the evaluation
of un(q,t) for n = 0,1, aiming at finding an illustrative expression for the WV. Inserting the power series of Eq. (B3) into the
Fourier transformed rate equations (25) leads to a set of differential equation for each un(q,t). The resulting equations for the
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lowest orders are

∂

∂ t
u0(q,t) =

[
G0 + Gk − D

2
(1 − ei q) · 1(4)

]
· u0(q,t), (B6)

∂

∂ t
u1(q,t) =

[
G0 + Gk − D

2
(1 − ei q) · 1(4)

]
· u1(q,t) − D (1 − ei q) · G01 · u0(q,t), (B7)

∂

∂ t
u2(q,t) =

[
G0 + Gk − D

2
(1 − ei q) · 1(4)

]
· u2(q,t) − D

2
· Gq · u0(q,t)

−D (1 − ei q) · G01 · exp

[(
G0 + Gk − D

2
(1 − ei q) · 1(4)

)
t

]
· u1(q,t). (B8)

Here, we have introduced

G01 :=

⎛⎜⎝0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

⎞⎟⎠ , G10 :=

⎛⎜⎝0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞⎟⎠ , and Gq :=

⎛⎜⎜⎝
1 − ei q 0 0 0

0 1 + ei q 0 0
0 0 1 + ei q 0
0 0 0 1 − ei q

⎞⎟⎟⎠ . (B9)

Higher orders in un(q,t) are not relevant for the expression for the WV. Pertinent for the expression of the WV are solutions for
the special cases un(q = 0,t) and ∂qun(q,t)|q=0.

The initial conditions are equivalent to u0(q,t = 0) = (1,v(0)
x (t = 0),v(0)

y (t = 0),v(0)
z (t = 0)). Thus, u0(q,t = 0) does not

depend on q initially and un(q,t = 0) ≡ 0 for n � 1. Furthermore, ∂qun(q,t = 0)|q=0 ≡ 0 for all n ∈ N and tr{〈ρ(t)〉ξ } ≡ 1
implies (u0(q = 0,t))0 ≡ 1 and (un(q = 0,t))0 ≡ 0 at any time t . Additionally, ∂tun(q = 0,t) ≡ 0 at any t to keep tr{〈ρ(t)〉ξ }
unchanged.

The perturbative solution is obtained iteratively with v(t) = exp [(G0 + Gk) t] · v(0), where v(0) = (v(0)
x (0),v(0)

y (0),v(0)
z (0)). It

reads

u0(q = 0,t) =
(

1
v(t)

)
, u1(q = 0,t) =

(
0
0

)
, u2(q = 0,t) =

(
0

D t(vx(t) ex + vy(t) ey)

)
, (B10)

∂qu0(q,t)|q=0 = i
D

2
t

(
1

v(t)

)
, ∂qu2(q,t)|q=0 =

(
0
0

)
, (B11)

∂qu1(q,t)|q=0 = i D

(
e T
z · ([G0 + Gk]−1 · exp [(G0 + Gk) t] − [G0 + Gk]−1

) · v(t = 0)(
[G0 + Gk]−1 · exp [(G0 + Gk) t] − [G0 + Gk]−1

) · ez

)
. (B12)

Hereafter we conclude that

tr{�f · (u0(q = 0,t) · σ )} = 1 + v(τ ) · n, tr {�f · (u1(q = 0,t) · σ )} = 0 (B13)

and

−i tr{�f · (∂qu1(q,t)|q=0 · σ )} = −i

∫ t

0

∂

∂ s
tr{�f · (∂qu1(q,s)|q=0 · σ )} ds = D

∫ τ

0
vz(s) + nz(s) ds. (B14)

Inserting Eqs. (B14) and (B13) into the expression for the conditional value in Eq. (B2) then yields the expression for the WV,
that is, Eq. (26), which is presented in the main text.

Similar, the second-order contribution to the WV is evaluated by noting that

−i tr{�f · (∂qu0(q,t)|q=0 · σ )} = D τ

2
(1 + v(τ ) · n) (B15)

and

tr {�f · (u2(q = 0,t) · σ )} = D τ

2
(vx(τ ) nx + vy(τ ) ny), (B16)
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which eventuates in the expression

�f
〈I (τ )〉weak(2)

�(t0) = − e D2 τ

2
· vx(τ ) nx + vy(τ ) ny

1 + n · v(τ )
. (B17)

Note that the second-order contribution in Eq. (B17) has the same characteristics, that is, the same denominator, as the first-order
term in Eq. (26), which implies analogous conditions for divergencies or peculiar WVs.

APPENDIX C: ANALYSIS OF THE CONTINUOUS DETECTION

Here, we derive Eq. (30) of the main text for the case of a continuous detection. We start by assuming �t �
min{1/ω(�/δ�),1/γ (�/δ�),1/D(�/δ�)}. The evolution between two subsequent readouts is still exactly given by
Eq. (25) with the modified initial condition that precisely nk electrons have been read out at t = tk so that v(n)(tk) =
δn,nk

· (1,v(nk )
x (tk),v(nk )

y (tk),v(nk )
z (tk)). In order to solve these modified differential equations it is useful to introduce a vector

w(t) = (v(0)(t),v(1)(t), . . . ,v(n)(t), . . . ) where n labels the number of transferred electrons so that Eq. (25) reads

d

dt
w(t) = (M1 + M2) · w(t), (C1)

with M
(m,n)
1 = (G0 + Gk − D/2) δm,n + D

2 1(4) δm,n+1 and M
(m,n)
2 = (G1 + D

2 1(4)) δm,n + (G2 − D
2 1(4)) δm,n+1. This differential

equation is solved trivially in the limit �t � 1/ω(�/δ�),1/γ (�/δ�),1/D(�/δ�) we are interested in, by noting that M1 is a
block-diagonalized matrix in Jordan form, with the solution

v(nk )(t) = exp

[(
G0 + Gk − D

2
1

)
(t − tk)

]
·
(

1(4) +
(

G1 + D

2
1(4)

)
�t

)
· v(nk )(tk),

(C2)

v(nk+m)(t) = fm · exp

[(
G0 + Gk − D

2
1

)
(t − tk)

]
·
((

G2 − D

2
1(4)

)
�t + D

2
(t − tk)

(
1(4) +

(
G1 + D

2
1(4)

)
�t

))
· v(nk )(tk),

where fm = 1
m! (

D
2 (t − tk))m−1 with m � 1. Within our approximation, in Eq. (C2) probability conservation is ensured by

tr{ρ(system)(t)} = ∑∞
n=0 v

(n)
0 (t) ≡ 1. Setting the reading time scales as the smallest in the problem, that is, �t � 1/D, which

corresponds to a continuous readout, the solution in Eq. (C2) becomes

v(nk )(t) = exp[(G0 + Gk)(t − tk)] · (1(4) + G1(t − tk)) · v(nk )(tk),

v(nk+1)(t) = exp[(G0 + Gk)(t − tk)] · G2(t − tk) · v(nk )(tk), (C3)

v(nk+m)(t) = 0, m � 2.

This is the limit where at most one electron penetrates through the QPC between two subsequent readouts. The probability
that exactly one electron will have accumulated in the collector within a readout period time is given by P (0; �t) = tr{A ·
v(nk )(tk)}0, while zero electrons penetrate with a probability P (1; �t) = tr{B · v(nk )(tk)}0, where the matrices A and B are given
by Eqs. (29) and {· · · }0 denotes the zeroth component. With these definitions the conditional number of transmitted electrons can be
expressed as

�f 〈n(τ )〉�(t0) = n · (∑N
m=0 m

∑
perm[AN−m · Bm]perm

) · v

n · (∑N
m=0

∑
perm[AN−m · Bm]perm

) · v
, (C4)

where v is evaluated at t = 0. N describes the total number of readouts and
∑

perm indicates the sum over all possible orders of
A and B in the string of products AN−mBm. In the limit of N → ∞, �t → 0 while keeping N · �t = τ constant, the sum over
all permutations in Eq. (C4) can be analytically evaluated.

Defining the auxiliary function f (m,�t,N ) = ∑
perm[AN−m · Bm]perm, the numerator of Eq. (C4) is evaluated as follows:

n ·
(

N∑
m=0

m · f (m,�t,N )

)
· v = i n · ∂q

[
N∑

m=0

f (m,�t,N ) e−imq

]
· v

= i n · ∂q

[
N∑

m=0

∑
perm

[AN−m · (B e−iq)m]perm

]
· v

= i n · ∂q[(1 + (G0 + Gk + G1 + G2 e−iq)�t)N ] · v,

where the last step is valid since
∑N

m=0

∑
perm[AN−m · Bm]perm = (A + B)N and due to the definitions in Eqs. (29). In the limit

N → ∞, �t → 0, N · �t = τ , this readily yields τ n · G2 · exp ((G0 + Gk + G1 + G2)τ ) · v(0). The denominator is treated
analogously, which finally leads to Eq. (30).
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