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Due to the importance of both static and dynamical correlation in the bond formation, low-
dimensional beryllium systems constitute interesting case studies to test correlation methods. Aiming
to describe the whole dissociation curve of extended Be systems we chose to apply the method of
increments (MoI) in its multireference (MR) formalism. To gain insight into the main characteristics
of the wave function, we started by focusing on the description of small Be chains using standard
quantum chemical methods. In a next step we applied the MoI to larger beryllium systems, starting
from the Be6 ring. The complete active space formalism was employed and the results were used
as reference for local MR calculations of the whole dissociation curve. Although this is a well-
established approach for systems with limited multireference character, its application regarding the
description of whole dissociation curves requires further testing. Subsequent to the discussion of the
role of the basis set, the method was finally applied to larger rings and extrapolated to an infinite
chain. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4955317]

I. INTRODUCTION

Despite the tremendous progress in ab initio quantum
chemical methods and algorithms in the past few decades
enhanced by the constantly increasing computer power,
a proper description of electronic correlation in extended
and periodic systems still constitutes in many cases an
unfeasible problem for standard wave function methods.
Density functional theory (DFT)1–3 generally allows to
achieve reliable results for systems which cannot be treated
with single-reference post-Hartree-Fock methods due to their
unfavourable scaling, but it fails for systems with strong static
correlation. These systems require a multiconfigurational
(MC) description. Furthermore, DFT cannot be systematically
improved, therefore wave function methods are always
preferable when feasible. The need for novel approaches,
which might deal with such strongly correlated and large
systems, led to the development of a variety of approximations
based on different approaches such as local methods,4–15 tensor
product states,16–21 and/or stochastic approaches.22–31

In the framework of local correlation methods, approaches
based on Møller-Plesset perturbation theory (MP)4,5,14,15 and
coupled cluster theory (CC)7,10–13,32,33 constitute a powerful
and effective alternative to DFT, but once again their single-
reference formalism is not suitable for dealing with strongly
correlated electrons. Among other local approaches, the
method of increments (MoI)34–45 offers a powerful tool for
calculating the correlation energy of extended and periodic
systems. This method is based on a many-body expansion of
the correlation energy in terms of localized molecular orbitals
and can be used in different formalisms along with any size-
extensive correlation method. In the past, this flexibility of the
MoI has been utilized to accurately calculate the ground state
energy of different bulk metals in their equilibrium structure
using a multireference (MR) formalism.46

Moreover, in a recent work47 Fertitta et al. applied
a complete active space self-consistent field (CAS-SCF)
formalism of the MoI (CAS-MoI) to calculate the dissociation
curves of highly correlated pseudo-one dimensional systems,
such as beryllium rings. By comparison with the benchmarks
obtained with various methods, including the ab initio density
matrix renormalization group (DMRG),16–21,48–50 it could be
shown how accurate results can be obtained via MoI for
regions of the dissociation curve close to avoided crossings
where the static correlation drastically increases. The Be
ring system was chosen to model periodic one-dimensional
arrangements in order to test the CAS-MoI. Indeed, by
exploiting the locality of the method it was possible to
calculate the correlation energies of a system as large as Be90
and via extrapolation the value for the limit corresponding
to the infinite chain could be evaluated. However, this
preliminary work was carried out using a very poor one-
particle description of our model system with a minimal basis
set (8s,3p) → [2s,1p], neglecting the effect of dynamical
correlation and the influence of more diffuse basis functions.
Therefore, in the present work we aim to apply this approach
to investigate the behavior of the MoI in a more sophisticated
formalism which allows us to include the previously neglected
effects. We have therefore employed larger basis sets and apply
multireference methods on top of CAS-MoI calculations and
discuss the contributions to the total electron correlation
yielded by the different approaches.

Before dealing with the method of increments treatment,
however, we will focus on small Be clusters which can
be described by means of standard methods. By doing so
and analyzing the respective dissociation curves as well as
the evolution of the wave functions, we will gain a better
understanding.

This paper is structured as follows: in Section II we
describe the details of the calculations and justify our choice
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of a proper basis set; in Section III we report the dissociation
curves of small chains discussing the change in the nature of
the bond with system size as well as the problems arising from
the growth of the active space; in Section IV the method of
increments is presented in its different formalisms as applied
in this work; the results obtained by applying the MoI to Be6
and larger clusters are reported and discussed in Section V;
finally we draw our conclusions in Section VI.

II. COMPUTATIONAL DETAILS

All calculations, including Hartree-Fock (HF), post-HF,
localization, and MoI, were performed employing the quantum
chemical program package MOLPRO.51 The localizations
were performed using the Foster-Boys52 procedure. All the
dissociation curves presented in this work are reported as a
function of the Be–Be internuclear distance. Independently of
the choice of our model, a linear chain or a ring, we always
imposed the condition of equal nearest neighbour distances
in the whole system. In the case of rings, this means that the
symmetry Dnh is conserved all over the dissociation curve.
Fig. 1 schematically depicts the shapes of the Be systems
dealt with in Sections III and V A. In order to allow an easier
comparison among the different systems, all energies are
specified per atom, whether we are dealing with dissociation
energies or correlation energy contributions. It has to be
underlined that no counterpoise correction was applied for
the calculation of the dissociation energies since we mainly
aimed to compare different methods rather than to achieve an
accurate result for comparison with experiments.

The basis sets for the larger systems were selected
after performing different tests on the beryllium dimer.
These are shown in Fig. 2, where we compare CAS(4,8)
and CAS(4,8)+MRCISD(+Q) (multireference configuration
interaction singles and doubles with Davidson corrections)
calculations using different basis sets of the Dunning’s
family53 cc-pVXZ (with X = D, T, Q, 5) and a minimal
(9s,4p) → [2s,1p] basis set derived from a contraction of
cc-pVDZ. As can be seen, in order to achieve reasonable
qualitative and quantitative results, the VTZ basis set can be
considered reliable. The results obtained with the minimal
basis set, on the other hand, deviate a lot from the CAS(4,8)
obtained with the other basis sets. Nevertheless, we will keep
track of the results achievable with this basis set since this

FIG. 1. Schematic depiction of the Be arrangements discussed in Sections III
and V A, including Ben linear chains with n up to 5 and a Be6 ring with
equidistant spacings between the atomic centers.

FIG. 2. Dissociation curve of the beryllium dimer calculated using CAS(4,8)
and a successive MRCISD(+Q). Different basis sets cc-pVXZ were em-
ployed as well as a minimal (9s,4p)→ [2s,1p] basis set for comparison.
The close-up in the upper panel highlights the difference among cc-pVTZ,
cc-pVQZ, and cc-pV5Z.

can be used to understand the qualitative structure of the wave
function and allows to easily test the local method that we
will employ for large beryllium rings.

III. ELECTRONIC STRUCTURE OF SMALL
BERYLLIUM SYSTEMS

A. Linear chains

As already stated, the interest in these systems lies
in the important role of static correlation in the bonding,
which becomes hard to correctly describe as system size
increases. The bond of a beryllium dimer has been the subject
of many investigations54–57 showing how a multireference
approach is crucial for achieving a quantitative description
of the dissociation. Indeed, single-reference methods, such as
truncated configuration interaction (CI) and coupled cluster,
fail in providing a proper description.58,59 This can be seen
by comparing the dissociation energies obtained through
different methods for different chain lengths which are
reported in Table I. In the case of Be2, CI singles and doubles
(CISD) underestimate the dissociation energy by one order
of magnitude, while CC singles and doubles (CCSD) yield
a repulsive dissociation curve. The inclusion of perturbative
triples by CCSD(T) allows for achieving a minimum which,
however, still strongly underestimates the dissociation energy.
On the other hand, better results are obtained by means of
multireference CI methods, such as MRCISD, MRCISD(+Q),
and the averaged coupled pair functional (ACPF). In particular,
the latter yields a dissociation energy which is in excellent
agreement with full CI (FCI), namely, −1.42 mEh. However,
the choice of the multiconfigurational reference is crucial.
As expected and explained by Evangelisti et al.,58,60 a full
valence CAS(4,8) reference guarantees to achieve this goal.
On the other hand, CAS(2,2) gives inconsistent results, but
a CAS(4,4), which includes σ orbitals only, allows to obtain
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TABLE I. Dissociation energy per atom of small beryllium chains calculated at different level of theory with a
cc-pVTZ basis set in the respective minima, which are reported in Table SI in the supplementary material.61 The
values are reported in mEh. The symbol “!” indicates a repulsive dissociation curve. Dissociation energies are
calculated with respect to the energy at internuclear distance Be–Be= 10.0 Å.

CAS(2n,2n) CAS(2n,4n)

CISD CCSD CCSD(T) MRCISD MRCISD(+Q) MRCISD MRCISD(+Q) ACPF

Be2 −0.13 ! −0.90 −1.37 −1.40 −1.38 −1.53 −1.45
Be3 −2.24 −2.40 −7.43 −7.68 −7.02 −7.32 −7.82 −7.66
Be4 −6.35 −8.54 −15.5 −14.7 −14.0 −14.0 −14.6 −14.4
Be5 −10.6 −13.8 −21.0 −19.5 −19.0 . . . . . . . . .

reliable data if a multireference method is applied on top
of it, which can be seen by comparing the MRCI data in
Table I.

Analyzing the data for the longer chains, one can see
how the dissociation energy per atom increases rapidly
and independently of the method employed. This indicates
a sudden change in the character of the bond which is
dominated by dispersive forces in the dimer. CISD and
CCSD still heavily underestimate the dissociation energy,
while CCSD(T) seems to retrieve better values as the number
of atoms increases. These numbers, however, cannot be fully
trusted either since the T1 diagnostics yields values of 0.06
for Be3 and longer chains, which is definitely higher than
the recommended threshold of 0.02-0.025. This indicates a
pronounced multiconfigurational nature of the wave function
that seems to increase with system size. Moreover CCSD
shows instabilities in the convergence procedure in the region
of the minimum, underlining, once again, the necessity of
employing a multireference approach.

As one can see, the MRCISD results obtained by using
a CAS(2n,4n) and a CAS(2n,2n) reference are in general
in good agreement also when the Davidson corrections are
included. Indeed, close to the minimum, the configurations
with the largest weight involve only σ orbitals and σ → π
excitations become important at larger internuclear distances
as discussed in the supplementary material (see Section S.B).61

In Fig. 3 we show the weights of the two main configurations
for Ben chains with n = 2,3,4,5 as calculated with a

FIG. 3. Weights of the two leading configurations for the dissociation of
Ben chains (with n = 2,3,4,5) calculated at the CAS(2n,4n) level with a
minimal (9s,4p)→ [2s,1p] basis set. Full and dashed lines indicate the most
important and second most important configurations, respectively.

minimal basis set. It is evident that as system size grows,
the multireference character increases especially for short
internuclear distances, where the two configurations have
comparable weights.

In Fig. 4 we compare the dissociation curves of beryllium
chains of different lengths in their ground state 1Σ+g . Going
from the upper to the lower panel, we report the results
obtained at the CAS(2n,4n) level with the minimal and
VTZ basis set and the dissociation curves calculated with
MRCISD(+Q) on top of the CAS-SCF wave function with
VTZ basis set. It has to be underlined that for Be5 the
complete active space (10,20) was already too large, therefore
we performed restricted active space (RAS)-SCF calculations
using 6 active electrons in 20 orbitals. The accuracy of these
results is discussed in Section S.B of the supplementary
material.61 We will start with the evaluation of the CAS-
SCF results with the minimal basis set. As can be seen,
even at this low level of approximation the character of
the bond changes drastically when going from the dimer to
longer chains. Indeed, from a purely repulsive curve for Be2
and Be3, a minimum at around 2.3 Å appears for Be4 and
Be5 as well as a barrier at 2.7 Å. Despite the minimum
is energetically unfavorable with respect to the dissociation
limit, the dissociation energy per atom gets significantly lower
as system size increases. The situation is more pronounced
when the VTZ basis set is employed since in this case already
for Be3 a minimum occurs. Despite a shift of the minimum
and the barrier towards smaller internuclear distances, the
main characteristics of the dissociation curve are the same.
On the other hand, a decrease of the dissociation energy
can be observed, furthermore at this level of theory Be4
is already weakly bound, exhibiting a dissociation energy
in the order of 4 mEh per atom. As already stated, this
substantial change in the strength of the Be–Be bond by
going from the dimer to longer chains indicates a change
in the nature of the bond itself. The bond seems to evolve
from purely dispersive to a covalent or metallic character
which can be qualitatively described by introducing static
correlation at the CAS-SCF level. Finally, when introducing
dynamical correlation, all clusters are bound even though the
differences between Be2 and the longer chains are evident. The
dissociation energy increases in magnitude by roughly 10 mEh
with respect to the CAS-SCF calculations and the barrier
disappears.

Keeping in mind that we are interested in under-
standing how the binding situation changes towards the
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FIG. 4. Dissociation curves of small linear beryllium chains calculated
with different methods and basis sets. From the upper to the lower
panel: CAS(2n,4n) with a minimal basis set; CAS(2n,4n) with cc-pVTZ;
CAS(2n,4n)+MRCISD(+Q) with cc-pVTZ.

thermodynamical limit, one should perform similar calcu-
lations on larger systems. However, as already stated, even for
Be5 we had to employ a RAS reference wave function instead
of the full valence CAS-SCF and MRCI on top of this was not
feasible.

B. Ring shaped systems

So far we have discussed the electronic structure of
linear beryllium chains which could be successfully calculated
up to Be4 applying a CAS(2n,4n)+MRCI(+Q). As system
size increases and we move towards the thermodynamical
limit, also the use of CAS(2n,2n) or RAS-SCF is destined
to be unfeasible and a local approach becomes a more
(if not the only) efficient way to proceed. In order to

do so, however, it becomes preferable to adopt different
boundary conditions for our system. Indeed, by using a
cyclic cluster one can fully exploit its rotational symmetry
which allows to reduce the number of individual local
calculations that have to be performed. Furthermore, the
use of rings gives us the chance of moving naturally towards
a description analogous to the one offered by the Born von
Karman boundary conditions which are used in periodic
calculations.

Our investigation will focus on the Be6 ring system
first. As discussed in the previous works47,62 by Fertitta et al.,
p-functions of Be rings do not only play an important role for a
multiconfigurational treatment, but are also strongly affecting
the Hartree-Fock wave function. Indeed, for the ground state
(1A1g in D6h symmetry) HF configuration, the character of
the HOMO strongly varies along the dissociation curve. If we
consider a minimal basis set, for large interatomic distances
it is an antibonding linear combination of 2s atomic orbitals,
while for short interatomic distances the HOMO shows a
pure p-character (see the insets in Fig. 5). As a consequence,
its symmetry changes from b1u to b2u. The ground state HF
configurations arising from such a situation are labeled as
Conf 1 and Conf 2 for short and large interatomic distances,
respectively, and reported beneath Fig. 5. In this figure we also
report the weights of these two configurations, as square of
the corresponding CI coefficients, for the ground state of Be6
ring as obtained from a RAS(4,24) calculation. Once again, it
can be seen that Conf 1 is the configuration with the highest
weight at short Be–Be distances while Conf 2 is predominant
at dissociation. At around 2.8 Å, a crossing occurs and it is
evident that a multireference treatment becomes necessary in
this region.

The electronic structure of Be rings is very reminiscent
of the one of linear chains, whereby a few differences are
present. Since the point group is reduced from D∞h to Dnh,

FIG. 5. Weights of the two leading configurations (Conf 1 and Conf 2) of
the ground state of the Be6 ring calculated with a RAS(4,24) calculation
employing a minimal basis set. The valence occupations of Conf 1 and Conf 2
are given beneath in terms of the molecular orbitals in D6h symmetry.
In the insets, depictions of the 1b2u (left) and 2b1u (right) orbitals are
shown.
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the π orbitals clearly lose their degeneracy and the in-plane
orbitals go over to σ symmetry. A clear distinction between σ
and π orbitals cannot be done anymore, therefore CAS(2n,2n)
calculations are no longer possible. On the other hand, the
HOMO and LUMO will have a pure s or p character due
to the boundary conditions. As an indirect consequence, two
distinct configurations will be dominant in different regions
of the dissociation curve. This will play in our favour when
applying the MoI. Moving forward in our discussion, we will
then switch to this structure in order to model one-dimensional
beryllium systems.

IV. THE METHOD OF INCREMENTS

Due to the short-range nature of electron correlation,
many successful model Hamiltonians, like Hubbard’s, yield
surprisingly good predictions. For example, when considering
nearest neighbor interactions. A similar philosophy is adopted
by quantum chemical local methods, which sometimes allow
to retrieve an impressive amount of the correlation energy
of extended systems, exploiting an expansion in terms of
contributions from locally limited parts of the system. For this
purpose, one has to perform first a unitary transformation of
the molecular orbital basis in order to obtain localized orbitals
(LOs) which will then be employed as a new orbital basis for
the post-Hartree-Fock calculations.

Within the method of increments, correlation calculations
are carried out with a properly defined set of orbitals allocated
at specific centers to which we will refer as bodies. This allows
to evaluate contributions to the total correlation energy, Ecorr,
associated with different regions of the system which can be
finally summed up.

Once the N bodies in which the system has been split
have been chosen, a first approximation for Ecorr is given by
the sum of all individual N correlation energy contributions
associated with each body,

E(1)
corr =

N
i

ϵ i. (1)

We will refer to these individual contributions ϵ i as one-
body increments. At the one-body level, a significant fraction
of Ecorr can be retrieved if the bodies are chosen in a
reasonable fashion. This is of course not enough to obtain
highly precise predictions concerning chemical processes.
However, by introducing contributions derived from higher
order increments one can achieve such a goal. These can be
calculated by considering the correlation between two bodies,
three bodies, and so on. Therefore, sets of local orbitals at
multiple bodies are included in correlation calculations leading
to values ϵ ij...z. By subtracting the values corresponding to
the respective lower order increments one can calculate the
required terms. As an example, for the two-body increment
we have the expression

∆ϵ ij = ϵ ij − (ϵ i + ϵ j). (2)

This procedure can be extended with more and more bodies
taken into account, analogously subtracting all lower-order
contributions, therefore the three-body increment can be

expressed as

∆ϵ ijk = ϵ ijk − (∆ϵ ij + ∆ϵ jk + ∆ϵ ik) − (ϵ i + ϵ j + ϵk). (3)

Finally, the total correlation energy can be evaluated including
all contributions,

Ecorr =


i

ϵ i +

i<j

∆ϵ ij +


i<j<k

∆ϵ ijk + · · ·. (4)

Once again, since the electron correlation is short-ranged, it
is generally safe to state that if the distance r between the
contributing bodies or the incremental order increases, the
incremental contributions decrease

|∆ϵ ij| > |∆ϵ ik| for rij < rik, (5)

|∆ϵ ij| > |∆ϵ ijk| > |∆ϵ ijkl|. (6)

If the relations above are all fulfilled and the expansion
converges rather quickly, a reasonable truncation of the
expression in Eq. (4) can be done and the method can be
successfully applied. The advantage of such a procedure is
obvious. Instead of performing one single expensive (or even
unfeasible) calculation, our task will be rather limited to
several smaller calculations.

So far we have been quite vague on the choice of LOs
constituting the bodies as well as concerning which molecular
orbitals are considered for the localization procedure. This
is because there exists no absolute “recipe” for this, but it
depends rather on the chemistry and physics of the system.
Moreover, there are different formalisms of the MoI which
depend on the extent of the static correlation. However,
independently of the choice of the formalism employed, the
equations described in this section are always valid.

Depending on the electron correlation method applied,
different localization patterns are necessary. Within this
work, three approaches were used along with the method
of increments as follows:

1. when using a single-reference method (CCSD(T)), only
the occupied orbitals are localized. Excitations are then
allowed into the complete delocalized virtual space;

2. if a multiconfigurational method (CAS-SCF) has to be
applied, both occupied and a properly chosen set of virtual
orbitals have to be localized. These are then used in the
MC-SCF procedure allowing orbital relaxation. It has to
be underlined that only the LOs constituting the chosen
body (or bodies) are optimized since the others are kept
frozen. This approach allows to obtain the static part of the
electron correlation;

3. a multireference treatment on top of the multiconfigura-
tional calculation can be performed allowing for excitations
from the localized active space into the delocalized virtual
space to obtain the dynamical contributions of the electron
correlation. As MR approaches we employed MRCISD
with (+Q) and without Davidson correction and ACPF.

We will refer to these approaches as CCSD(T)-MoI, CAS-
MoI, MRCISD-MoI, MRCISD(+Q)-MoI, and ACPF-MoI,
respectively. A schematic depiction of the formalism is given
in Fig. 6. The overall energy up to a specific body order is
calculated as the sum of the HF energy and all incremental
contributions to the correlation energy up to this body order.
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FIG. 6. Schematic illustration of the
method of increments. The areas of
different color represent the one-body
(red), two-body (green), and three-
body (blue) fractions of the correlation
energy in an assembly with three cen-
ters. Excitations into the different vir-
tual spaces are depicted by arrows. In
the single-reference case only occupied
orbitals are localized, whether in the
multireference formalism also properly
chosen virtuals are localized. In this
case the static correlation contribution
is calculated using LOs only, while the
excitations into the delocalized virtuals
allow to evaluate the dynamical contri-
bution.

V. RESULTS

A. Be6 ring

In this section we will discuss the results obtained for
the Be6 ring using different formalisms of the method of
increments. In addition, we will briefly analyze the differences
among the different approaches, focusing on the effect of
static and dynamical correlation on the overall dissociation
energy, on the position of the crossing and on the individual
increments. This will serve to gain insight into the application
of the method before moving to larger rings.

In order to apply the MoI, we will employ the two
configurations Conf 1 and Conf 2 as reference, dominat-
ing in the minimum regime and towards dissociation,
respectively. By performing a localization procedure on
both configurations, two different sets of localized orbitals
emerge, where the LOs obtained by unitary transformation
of the orbitals from Conf 1 are bond-centered, while those
from Conf 2 are centered near the positions of the nuclei,
indicating the bonding and non-bonding character of the two
configurations.

We start by describing the results obtained with the
cc-pVDZ as an illustrative example, before applying the
same procedure with larger basis sets. Fig. 7 shows the
dissociation curves calculated with HF, CAS-, MRCISD-,
MRCISD(+Q)-, ACPF-, and CCSD(T)-MoI using Conf 1 and
Conf 2 as starting configurations. At each level of theory, the
two curves obtained by these references cross as follows:
the energies obtained starting from Conf 1 are lower than
those for Conf 2 for short interatomic distances and vice versa
at larger bond lengths. We already highlighted the inability
of the approach to describe this avoided crossing,47 but by
employing high accuracy benchmarks we concluded that the
error in the energy was very small in this regime too.

As for small linear chains, the minimum of the
dissociation curve occurs at around 2.20 Å for all methods.
As one can see, the HF minimum of the dissociation curve
is lower in energy than the ones obtained by post-HF-MoI
calculations. This should not be surprising because of the
large correlation contributions necessary to correctly describe
the dissociation limit. By including static correlation by CAS-
MoI, a dissociation curve reminiscent of the ones obtained
for Be chains at the CAS-SCF level is obtained as follows:
the system is weakly bound and a small barrier appears as
a consequence of the repulsive dissociation curve yielded

FIG. 7. Dissociation curves of the Be6 ring calculated with the method
of increments at different levels of theory and using cc-pVDZ basis set.
Two starting configurations Conf 1 and Conf 2 were employed, leading to a
crossing.
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FIG. 8. Correlation energy contributions of the Be6 ring calculated with the method of increments at different incremental orders. Two starting configurations
Conf 1 and Conf 2 with cc-pVDZ basis set were employed. The minimum as well as the crossing regime are indicated by a dotted and a dashed vertical line,
respectively.

by Conf 2. The inclusion of static electron correlation has
a large impact on the position of the crossing which is
shifted to around 2.70 Å in contrast to 2.90 Å obtained with
Hartree-Fock.

The inclusion of dynamical correlation is achieved by
different methods which yield similar results independently of
the choice of a single-reference or a multireference approach.
MRCISD(+Q)- and ACPF-MoI dissociation energies are
almost identical for all distance regimes and they are only

slightly lower than the ones obtained with CCSD(T)- and
MRCISD-MoI, with a difference of just 3 mEh in the
minimum.

In Fig. 8 we report the individual incremental contribu-
tions for both configurations. As expected, the values of the
increments decrease as their order rises respecting the desired
convergence expressed by Eq. (6). This happens regardless
of the distance regime and it ensures that the method can
be correctly applied. It should not be surprising that at the

FIG. 9. Dissociation energies per atom for the Be6 ring obtained with CAS- and ACPF-MoI by employing different basis sets, including a minimal one,
cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, aug-cc-pVTZ, and cc-pVQZ. The two starting configurations Conf 1 and Conf 2 were used and up to three-body
increments were included. The energies are presented with respect to the energy of an isolated Be atom on the corresponding level of theory and basis set.
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one-body level, no difference is observed for all methods
including dynamical correlation, due to the fact that at this
level only two electrons are correlated.

It can be seen that for Conf 1, roughly 90% of the electron
correlation can be obtained at the one-body level by applying
CAS-MoI. On the other hand, the contributions introduced

by the multireference approaches play a more important role
for the two- and three-body increments where these are even
larger than the fraction of correlation energy obtained by CAS-
MoI. The inclusion of excitations into the delocalized virtual
space leads to an energy lowering for the one- and two-body
corrections, but the three-body increments are positive. In

FIG. 10. Correlation energy contributions of the one-, two-, and three-body increments as well as the overall dissociation energy of larger Ben rings with
n = 6,10,14,18,22,30. The reported values were calculated for Conf 1 at 2.30 Å and Conf 2 and 3.00 Å by using CAS- and ACPF-MoI with the cc-pVDZ basis
set. The data were fitted by means of a function of the form a/nb+c. This way we extrapolated the correlation and dissociation energy for the infinite chain.
The data corresponding to Be6 and Be10 were not included in a few fits where they deviate from the general trend.
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general, the difference between MRCISD-, MRCISD(+Q)-,
and ACPF-MoI energies is negligible while CCSD(T)-MoI
values are slightly higher at the two-body and lower at the
three-body level. The amount of correlation energy introduced
by MRCISD(+Q)- and ACPF-MoI is about 23% at 2.10 Å
and about 25% in the crossing region.

For Conf 2, as expected, the one-body increments
converge towards the atomic correlation energy as the
interatomic distance increases, while the two-, three-, and four-
body increments drop to zero. For this reference configuration,
dynamical correlation corrections seem to be particularly
important as we move towards the crossing, while the effect is
less important for larger internuclear distances. For instance,
at 2.70 Å the fraction of the introduced correlation energy is
about 18% for both, MRCISD(+Q)- and ACPF-MoI, and it
drops to about 7% for the isolated atoms. As can be seen,
the four-body increments are one order of magnitude smaller
than the three-body increments and have a negligible effect
on the overall energy, so that the application of the MoI for
more accurate basis sets and larger rings will be limited to the
three-body level.

In the following, the impact of the choice of the basis set
on the correlation energies retrieved with different methods
shall be discussed, using cc-pVDZ, cc-pVTZ, cc-pVQZ,
aug-cc-pVDZ, and aug-cc-pVTZ basis sets. In Fig. 9 the
dissociation curves calculated at the three-body level for
both configurations with CAS- and ACPF-MoI and different
basis sets are shown. As previously discussed, there are only
minor differences between the applied methods which include
dynamical correlation. Therefore ACPF-MoI was chosen as a
representative example. For CAS-MoI also the results with a
minimal basis set are included for comparison. Those values
clearly differ from the lower lying VDZ and VTZ results
for almost each internuclear distance. The inclusion of more
and diffuse functions has a pronounced effect on the binding
energy, as well as on the position of the crossing which is
shifted towards larger Be–Be distances with increasing basis
set size.

It is not surprising that with the inclusion of excitations
into the delocalized virtuals also the basis set effects get more
pronounced. This is more evident for the change from VDZ to
VTZ basis sets than from the non-augmented to the augmented
ones. Furthermore, a clear energetic separation occurs also for
the values obtained with Conf 2, which differed less on a
CAS-MoI level.

As can be seen, the energy difference between the
values obtained with the cc-pVTZ and cc-pVQZ basis sets
is significantly smaller than the separation of cc-pVDZ
and cc-pVTZ values, indicating a rapid convergence of the
correlation energies with respect to basis set size. To take a
closer look, the cubic basis set extrapolation formula proposed
by Helgaker, Klopper, Koch, and Noga63,64 was used along
with the CAS- and ACPF-MoI results to obtain approximate
values for the correlation energy at the complete basis set
limit in the minimum distance regime at 2.10 Å. For the fitted
curves, see Figure S2 of the supplementary material and for the
extrapolated values Table SII of the supplementary material.61

With the cc-pVDZ basis set, CAS-MoI yields about 93% of the
correlation energy retrievable at the complete basis set (CBS)

limit with this method, while 86% of the total correlation
at the CBS limit is obtained with ACPF-MoI. Using the
VTZ basis set, these values increase to about 97% and 95%,
respectively, emphasizing the already stated accuracy of the
cc-pVTZ basis set.

B. Larger rings

In larger beryllium rings, we expect a similar electronic
structure to the one observed for Be6 which would allow an
analogous application of the MoI. Clearly the active space
will be larger, but we can expect that two major configurations
will play a main role in two distinct regions of the dissociation
curves. In the previous investigation of Fertitta et al., beryllium
rings up to a size of 90 atoms were treated employing the
CAS-MoI approach. By doing so, the values for the increments
and the total correlation energy for the infinite system could
be extrapolated. Herein we intend to apply the same procedure
for the dynamical correlation.

In Fig. 10 we report the one-, two-, and three-body
increments as well as the dissociation energy per atom of
Ben rings as a function of 1/n as calculated with CAS-MoI
and ACPF-MoI. The data are reported for two internuclear
distances, 2.30 Å and 3.00 Å and for n = 6, 10, 14, 18, 22,
and 30. As one can see, both correlation energy contributions
present a clear trend as a function of the system size which
allows us to evaluate the values corresponding to the infinite
chain by employing a fitting function as described in Table
SIII and Figs. S3 and S4 of the supplementary material.61

The extrapolated values are reported in Table II. While this
procedure was easily performed for ACPF-MoI, it was not
possible for other MR methods. As we have seen, for Be6 the
difference between MRCISD-, MRCISD(+Q)-, ACPF-, and
CCSD(T)-MoI is small, but this is not the case for the larger
rings. The reason lies in the lack or poor correction of size-
extensivity introduced by the different approaches. Indeed,
since the increments are calculated as differences between
correlation energies, an error is introduced if the scaling with
particle number is not correctly taken into account. Such
an error will eventually become particularly large for high
order increments as system size increases, as can be seen in
Figs. S5–S7 of the supplementary material.61 Among the MR
methods employed, only ACPF-MoI performed well, while
MRCISD- and MRCISD(+Q)-MoI show a divergence of the

TABLE II. Extrapolated correlation energy contribution of the one-, two-,
and three-body increments as well as the dissociation energy for the infinite
beryllium chain. The data used for the extrapolation were obtained for Ben
rings with n = 6,10,14,18,22,30 by means of CAS- and ACPF-MoI using the
cc-pVDZ basis set. The reported data were calculated for Conf 1 at 2.30 Å
and Conf 2 and 3.00 Å. All values are in mEh.

Conf 1 2.30 Å Conf 2 3.00 Å

CAS-MoI ACPF-MoI CAS-MoI ACPF-MoI
ϵi −27.913(1) −32.09(5) −31.0(2) −34.38(6)
∆ϵij −3.069(1) −9.144(2) −7.8(1) −15.0(2)
∆ϵijk −0.407(1) −0.18(2) −3.9(2) −0.84(4)

Diss. Energy −24.50(1) −32.96(1) 4.143(3) −1.45(4)
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FIG. 11. Dissociation curves of Ben rings, with n = 6,10,14,18,22, calculated with CAS-MoI and ACPF-MoI by using the cc-pVDZ basis set. In each case, the
two starting configurations Conf 1 and Conf 2 were employed. The energies are presented with respect to the energy of an isolated Be atom on the corresponding
level of theory.

three-body increments. The size-extensive CCSD(T)-MoI also
shows the correct behavior. Finally, the dissociation curves
calculated for the beryllium rings up to Be22 with CAS- and
ACPF-MoI are reported in Fig. 11. Here we can see how
the dissociation curves change with system size, converging
towards the limit of the infinite chain.

VI. CONCLUSION

Different single-reference and multireference standard
quantum chemical methods have been compared for small
Be chains highlighting the role of static and dynamical
correlation. Aiming to describe large systems for which
standard methods are unfeasible, we employed the information
deduced by analyzing the CI coefficients of these systems
which helped us when applying the method of increments.
The CAS- and MR-MoI formalisms were first applied to the
Be6 ring testing different approaches and the effect of the
basis set. Having analyzed the CI coefficients of this system
we found that two main configurations play a major role in
different regions of the dissociation curve and they must be
used separately in the MoI procedure as starting configurations
for the localization. Assuming a similar structure of the
wave function for larger rings, we applied the method to
the calculation of the dissociation curves of rings up to
Be22 and performed single-point calculations for Be30 as well.
Besides the interest in describing the change of the dissociation
energy with system size which allows to extrapolate values for
the infinite chain/ring, we were mostly concerned in testing
different MR methods within the MoI formalism and whether
the method can be used for describing the whole dissociation
curve. It turns out that the choice of the correlation method
is crucial for the application of the MoI for large systems.
Indeed, if size-extensivity is not correctly described, the error
introduced into the calculation of high order increments leads
to divergent behavior. The extrapolated correlation energies for
the infinite system using the CAS- and ACPF-MoI calculations
suggest that the first method takes into account about 76%
of the electron correlation in the minimum region, while the
remaining 24% are obtained by the multireference approach.

At larger distances the ratio of correlation energy introduced
by CAS- and ACPF-MoI is about 85% to 15%. The obtained
data are very promising, but discontinuities occur at the
crossing. Further studies will be dedicated to the solution of
this problem.
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