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Abstract

Hyperspectral radiative transfer simulations are a versatile tool in remote sensing but
can pose a major computational burden. We describe a simple method to construct
hyperspectral simulation results by using only a small spectral subsample of the sim-
ulated wavelength range, thus leading to major speedups in such simulations. This5

is achieved by computing principal components for a small number of representative
hyperspectral spectra and then deriving a reconstruction matrix for a specific spec-
tral subset of channels to compute the hyperspectral data. The method is applied and
discussed in detail using the example of top of atmosphere radiances in the oxygen
A band, leading to speedups in the range of one to two orders of magnitude when10

compared to radiative transfer simulations at full spectral resolution.

1 Introduction

Radiative transfer simulations are a key tool for the development of remote sensing
algorithms in the field of earth observation. Depending on the spectral domain, a variety
of techniques is used to solve the radiative transfer equation (RTE). Such simulated15

radiances can be compared to measurements and thus used for the inversion for the
actual physical state of the atmosphere-surface or atmosphere-ocean (e.g., Thomas
and Knut, 2008, and references therein).

Most radiative transfer models for the UV to SWIR region, that we are aware of, solve
a monochromatic version of the RTE and are used for channel based radiative transfer20

simulations. Even if models are capable of treating problems with inelastic scattering,
monochromatic RTE solvers with additional radiance sinks and sources are generally
used (e.g., Landgraf et al., 2004, and their treatment of atmospheric Raman scattering).

Therefore, for problems involving hyperspectrally resolved radiance measurements,
the obvious approach is to perform large numbers of independent simulations. Various25

techniques for the increase of the computational efficiency of these radiative transfer
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simulations have been developed (e.g., Kokhanovsky, 2013, , chapter 10 by Vijay Na-
traj). Two main approaches can be distinguished. Firstly, by relaxing the constraints on
the accuracy of the solution of the radiative transfer equation, the computational time
needed for each individual radiative transfer simulation is reduced. Examples are the
use of two stream methods (e.g., Meador and Weaver, 1980), reduced order of scat-5

terings (e.g., Natraj and Spurr, 2007), or replacing line by line absorption calculations
by k-bin or ESFT techniques (e.g., Wiscombe and Evans, 1977; Bennartz and Fis-
cher, 2000). The error with respect to more rigorous solutions of the RTE in general
depends on the scene and spectral band and can be estimated by carrying out rigor-
ous simulations. Secondly, by making use of the inherent redundancy of line by line10

calculations by using data reduction techniques such as principal component analysis
(e.g., Efremenko et al., 2013; Jolliffe, 2002), the number of individual radiative transfer
simulations is reduced. Approaches have been published for the IR spectral region by
Liu et al. (2006) or the VIS to SWIR region by Natraj et al. (2010, 2005) and Lindstrot
and Preusker (2012).15

In this paper, we propose a simple method in which only a small subset of the spec-
tra is simulated and used to generate a reconstruction matrix, based on principal com-
ponent analysis, the expansion coefficients of the data, and the pseudo inverse of a
spectral sub-sample of the data. Then, for the bulk of the spectra to be simulated, only
a relatively small spectral subset of the simulations is carried out and hyperspectral20

results are constructed using multiplication with the reconstruction matrix. The method
is explained and tested using the oxygen A band as test case. We provide numbers on
the accuracy of the method vs. the achievable speedup. The method is independent
of the underlying radiative transfer model and simple enough to be easily applied to
existing radiative transfer schemes. The method is entirely based on post processing25

techniques, so that the RT scheme itself does not have to be modified.
The oxygen A band was chosen since it allows a broad range of applications which

could benefit from faster and more accurate radiative transfer simulations. Among oth-
ers, possible applications are the retrieval of cloud top pressure (Koelemeijer et al.,
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2001; Fischer and Grassl, 1991; Preusker and Lindstrot, 2009, e.g.,) and aerosol ver-
tical distribution (e.g., Dubuisson et al., 2009; Sanghavi et al., 2012). Also, more and
more hyperspectral radiance measurements will become available with current and fu-
ture sensors such as TANSO-FTS on GOSAT (Suto et al., 2010), GOSAT-2 (Nakajima
et al., 2012), TROPOMI on S-5 P (Veefkind et al., 2012), or OCO2 (e.g., Boesch et al.,5

2011), to name a few.

2 Notation

Throughout this paper a convenient matrix notation is employed which allows to de-
note matrix elements and subsets of matrix elements. A real a×b matrix is defined
as M∈Ra×b and Mi ,j ∈R, 0< i , j ≤a, b identifies a single element of M. Row and10

columnar subsets are accessed using a − sign: Mi ,− = (Mi ,1, . . . , Mi ,b)∈Rb, as well as
M−,j = (M1,j , . . . , Ma,j )∈Ra. To access subsets of elements in rows and columns, a no-

tation of index sets is introduced: sn,l = (s1, . . . , sl ) with s1 >0, si <si+1, sl ≤n, si ∈N,
and n, l ∈N. This notation denotes an ordered list of l unique elements between 1
and n. A specific index set is defined when its elements (s1, . . . , sl ) are set. With the15

introduced matrix notation, such an index set can be used to access subsets of rows
and columns: Mi ,sb,l = (Mi ,s1

, . . . , Mi ,sl )∈Rl .

3 Principal components as data reduction technique

The method was developed having in mind a radiative transfer forward operator based
on a lookup table, although an application to other usage scenarios, e.g. forward radia-20

tive transfer simulations, is straightforward. Here we assume a forward radiative transfer
operator RT which relates the state vector x∈Rnx to the top of atmosphere (TOA) ra-
diance spectrum y ∈Rnλ , using a spectral calibration vector λ= (λ1, . . . , λnλ)∈Rnλ with
∀ i , j , i 6= j : λi 6= λj :

8342

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8339/2013/amtd-6-8339-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8339/2013/amtd-6-8339-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 8339–8370, 2013

Reconstruction of
hyperspectral RTS by

using subsets

A. Hollstein and
R. Lindstrot

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

y = RT(x, λ). (1)

For simplicity, the radiative transfer simulations are stored in a two-dimensional
lookup table matrix L∈Rnλ×nL , with nL =

∏nx
j=1 ‖ x̂j ‖, where ‖ · ‖ denotes the number

of elements of a vector and the vectors x̂
j = (x̂j

1, . . . , x̂j
‖x̂j ‖) contain grid points for each

state vector dimension. The corresponding parameter states are stored in the param-5

eter matrix X∈ (R)nx×nL such that for all rows i :

L−,i = RT
(
X−,i , λ

)
. (2)

The matrices X and L could be used to construct a fast forward operator based
on multivariate interpolation. A main problem of this approach is that even for small
parameter spaces the matrix L can become large, especially if a very high spectral10

resolution is needed. This naturally leads to the employment of data reduction tech-
niques like principal component analysis. The main idea is to replace the large matrix
L with two much smaller matrices P∈Rnλ×nP and C∈RnP×nL with np �nλ, such that
each spectrum L−,i can be expressed as:

L−,i = P · C−,i + O [nP] . (3)15

The matrix P contains the principal components up to the order nP and the matrix C
contains the expansion coefficients which express the original spectra in the nP dimen-
sional space spanned by the principal components:

C−,i = Pᵀ · L−,i . (4)

The principal components are orthogonal by construction and thus P is a semi or-20

thogonal matrix with PT =P−1, which simplifies the computation of the expansion coef-
ficients C−,i .
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The reconstruction of a spectrum L−,i is associated with an error O[nP] which in gen-
eral declines with increasing nP. For a given problem, nP has to be chosen such that the
residual O[nP] is below the user requirement. The memory requirement for the matrix
C is much smaller than for L and interpolation can be implemented much faster. There
are two main downsides to this approach. Firstly, the singular vector decomposition of5

L becomes increasingly expensive with respect to computational time with increasing
nL. Secondly, to compute the matrix C, the complete matrix L must be computed and
stored in advance which in general is time-consuming and costly in terms of storage
and backup.

Both of these downsides are discussed in detail in this paper using the oxygen A10

band as example. Strictly speaking, the presented analysis is thus only valid for this
part of the spectrum, but we do not see any substantial obstacles for applying the
technique to other parts of the spectrum.

4 Constructing the principal components from small parameter state space
subsets of L15

The computation of P becomes numerically more expensive with increasing size of the
lookup table L and increasing spectral resolution. For actual computations we used the
PCA algorithm provided by the Python package Scikit-learn (Pedregosa et al., 2011).
Throughout this paper a moderately small lookup table is discussed with the parameter
state space sampling given in Table 1. The variability of the data base is illustrated in20

Fig. 1. The lookup table was computed using the MOMO radiative transfer model (see
Fell and Fischer, 2001; Hollstein and Fischer, 2012) which is a matrix operator model
widely used at Freie Universität Berlin. The gaseous absorption was computed using
line parameters from the HITRAN spectral database (Rothman et al., 2009) and a mod-
ified scheme to compute the k-distribution (Bennartz and Fischer, 2000). As shown25

in Table 1, the variation of the atmospheric state includes surface pressure, aerosol
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optical thickness, aerosol mean height, aerosol type, surface reflectance1, aerosol type,
and the viewing geometry. This state vector variability was set up to reproduce the vari-
ability of a clear sky scene over land. The temperature profile was explicitly excluded
from the state vector to keep the state vector simple but realistic. As shown by Lindstrot
and Preusker (2012), the spectral variability due to the temperature profile of the atmo-5

sphere can be accounted for by performing radiative transfer simulations only for a set
of principal temperature components. The radiance spectrum can then be constructed
as linear superposition of the simulated spectra for the principal temperature profile
components, by using the expansion coefficients of the actual temperature profile in
the space spanned by the principal temperature profile components.10

The oxygen A band was simulated with a spectral sampling of 0.005 nm, which led to
4500 spectral channels. The parameter sampling as stated in Table 1 led to 121 500 dif-
ferent parameter states.

Numerical experiments show that for this particular data set, the principal component
matrix P can be computed without using the complete matrix L, but by using a much15

smaller subset of the state space L−,rnL,nr , where rnL,nr is an index set with nr randomly
chosen members from the nL =121 500 available states. The reconstruction SNR is
used as simple scalar figure to test the reconstruction quality of each spectrum:

SNR(r , t) = mean(t)/stdev(r − t). (5)

It is computed as the ratio of the mean value over all channels for a spectrum la-20

beled as truth t and the standard deviation of the differences of t and a reconstructed
spectrum r .

Figure 2 shows the mean and standard deviation of this value for all spectra in the
lookup table L with respect to the size of the random sample which was used to com-
pute the principal components matrix P. Randomly selected parameter states are used25

1The surface reflectance spectrum is assumed to be linear and is modeled using a re-
flectance value at 755 nm and at 780 nm.
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to compute nP =15 principal components with nP kept constant throughout this pa-
per. The number of used principal components in general controls the reconstruction
quality, where more components are leading to a better reconstruction. Then, the re-
construction SNR is computed for all spectra in the lookup table and these values are
reduced to their mean value and standard deviation. This procedure was repeated5

50 times to remove the effects of a particular realization of a random state sample and
mean values are shown.

The data clearly shows a SNR convergence to ≈2500 for randomly chosen sets
larger then a few hundreds. The standard deviation of the reconstruction SNR also
converges to a finite number. This can be understood by analyzing the underlying his-10

tograms of the reconstruction SNR for various sample sizes, which is shown in Fig. 3.
The analysis shows that the histograms for a sample size of 500 and 5000 are very
similar. For these, the wide range of the reconstruction SNR is entirely controlled by
the number of principal components and not the sample size which was used to con-
struct the matrix P. The case with a sample size of only 5 is clearly below that range15

and shows much smaller SNR values, which is caused by the small sample size.
It is probably of interest for users, which of the state vectors in the lookup table are

associated with the largest reconstruction errors. Figure 4 shows a histogram of state
vector element values of those 10 % of the state vectors exhibiting the smallest recon-
struction SNR, that is, the largest reconstruction errors. For this figure, 500 randomly20

selected states were used to compute the principal components. The states are clearly
not equally distributed within this sample, but the over- and under-representation of
some states over others is approximately within a factor of two. This fraction is domi-
nated by cases with lower reflectivity where the reconstruction SNR is naturally smaller.
This is clearly shown by the fact that surface reflectivity values of 0.7 are not repre-25

sented within this sample and that the 0.1 case is largely over-represented. In a similar
manner, this behavior is shown by the frequency of occurrence of the different viewing
angles.
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This analysis shows that a fairly small subset of states within L is sufficient to con-
struct the principal components for the whole data set. This fact immediately raises the
question, whether the complete lookup table L is needed to compute the coefficient
matrix C as defined in Eq. (4), which is discussed in the next section.

5 Choosing small spectral subsets to construct the coefficient matrix C5

Equation (4) states how the coefficient matrix C can be computed from the whole
lookup table matrix L if the principal components matrix P is already known. In the
previous section, it was shown that only a relatively small subset of the states within L
is needed to compute the principal component matrix P. In this section, it will be dis-
cussed how the expansion coefficients can be computed without requiring the knowl-10

edge of the total spectrum, such that far less radiative transfer simulations have to be
carried out. Our ansatz is to assume that spectral sub samples λn = λnλ,n, n�nλ exist,
which are sufficient to compute the expansion coefficients up to an error O[λn]:

C−,i = Pᵀ · L−,i = P̃ᵀ (λn) · Lλn,i + O
[
λn

]
, (6)

where P̃(λn)∈Rn×nP acts as an effective principal component matrix for a spectral15

subset, which, after multiplication with the simulations at the selected spectral sub-
set points, produces the coefficients of the original expansion coefficients C−,i . In that
respect, P̃ is a function of a particular spectral subset and the channel subset λn ideally
identifies the channels carrying the information sufficient to reconstruct the complete
spectrum. Such an idea of identifying the channels which carry the most information20

has been used in the past, e.g. to specify the channel layout in the O2A band of the
space borne remote sensing instrument MERIS on board the ENVISAT platform (e.g.,
Kollewe and Fischer, 1994). This led to the definition of three channels with moder-
ate spectral width between 3.75 and 15 nm. Here, we focus on reconstruction of the
complete hyperspectral dataset using the channels which carry sufficient information.25
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By assuming that O[λn] vanishes, P̃ can be computed as the matrix product of the
coefficient matrix and the pseudo inverse of the lookup table matrix for the chosen
subsets of states and spectral channels:

P̃ᵀ (λn) = C−,sns ·
(
Lλn,nns

)−1
. (7)

Here, sns = snL,ns is used as a shorthand notation for the state subset that was used5

to construct P. Necessary for P̃ to exist is the existence of the pseudo inverse of the
lookup table with respect to both, the spectral and the state subset.

The Eqs. (7) and (6) are the two main equations within this paper, since they define
the effective principal components matrix P̃ and show how it can be used to compute
the hyperspectral expansion coefficients.10

As a consequence, two points must be discussed. Firstly, how can spectral sub-
sets be chosen optimally? And secondly, how many channels according to a selection
scheme are required in order to reduce the reconstruction error O[λn] to a level well
below the user requirements.

Three different methods for the selection of spectral subsets are discussed and com-15

pared within the next subsections. Other, potentially more efficient methods might exist,
as the following discussion is based entirely on heuristic approaches.

5.1 Equal sampling

Probably the most simple, while still reasonable, method to construct spectral sub sam-
ples is to define the size of the sample and spread the channels evenly throughout the20

spectral band. The reasoning behind this approach is to try to cover as much variabil-
ity in the spectral band while also employing the high correlation of channels within a
spectral interval.

Figure 5 shows this approach for three test cases which correspond to the selection
of every 500th, 200th, and 100th channel from the original simulations. The resulting25

first principal component and the three first effective principle components are shown
in Fig. 6.
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5.2 Optimization based on random walks

While an equal sampling selection is simple and intuitive, better results might be
achieved using optimization techniques. These can be distinguished by the minimized
or maximized cost function and the technique employed for the optimization. While for
this case it is straightforward to define various cost functions, choosing the optimiza-5

tion technique is more difficult. Commonly used techniques such as the Newton or
Levenberg–Marquardt algorithm are based on computing first and second orders of
partial derivatives of the optimized cost function. Here, the position of selected chan-
nels is to be optimized and it does not seem straightforward how to apply the standard
techniques to this problem. The computation of derivatives is not necessary for random10

walk techniques which we apply to this problem using two different cost functions.
The random walk starts from a selection of evenly distributed sampling points and

the random step is achieved by adding a randomly chosen step to each position of
a selected channel. The maximum range of a random step is chosen to be half the
difference of the initial distribution. If a random step leads to an improvement in the15

cost function it is chosen as basis for the next step, otherwise the previous state is
used again for the next step. This procedure is repeated several times and a maximum
number of possible step attempts is prescribed.

Two cost functions appear naturally in this framework:

1. maximization of the l2 condition of L−1
λn,sP with respect to λn: maxλn(‖ L

−1
λn,sP ‖2)20

2. minimization of the sum of squares of the difference between the original coeffi-
cients C−,SP and the reconstructed ones: minλn

∑
i ,j ((C−,SP)i ,j − (P̃(λn) ·L−1

λn,sP)i ,j )
2.

Resulting spectral subsets using the minimization of C matrix residuals are shown
in Fig. 7 and the resulting principal components in Fig. 8, while results for all three
techniques are shown in Fig. 9.25
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5.3 Discussion of the reconstruction SNR

Figure 9 shows a comparison of the mean reconstruction SNR for the whole lookup
table for the three discussed selection techniques. From the selection of thirty spec-
tral bands on, the techniques show only minor differences and are hence equally well
suited to solve the problem. Furthermore, the achieved mean reconstruction SNR is5

equal to the results when using all available spectral bands (compare with Fig. 2).
This shows that the highly correlated spectra, when represented with nP =15 principal
components, can be equally well represented with using only thirty selected chan-
nels with already known hyperspectral principal components. This behavior is similar
to that shown in Fig. 3. There, the number of randomly selected state vector samples10

approaches a number above which no increase of the reconstruction SNR could be
gained by increasing the sample size. In that respect, the state vector sample and the
spectral sample show quite similar behavior with respect to their sample size.

For sample sizes below thirty, the techniques show differences, with the least
squares minimization of the C matrix residuals showing the best results. If one is will-15

ing to accept a larger error by choosing a smaller spectral subsample, the optimization
methods are to be preferred. Using these techniques, similar ranges of the reconstruc-
tion SNR can be achieved by using only half of the spectral sample sizes.

One should note that the result for the equal sample selection technique could be
optimized by using more suited borders of the spectral interval, but as a matter of20

fact the result of the optimization techniques are quite similar and might be of smaller
importance for the solution of the overall problem.

The effect of choosing different selection techniques is demonstrated in Figs. 10
and 11, showing spectral residuals for the used reconstruction techniques. If 23 spec-
tral bands are used, the results are similar which corresponds to the results shown25

in Fig. 9. However, if fewer spectral channels are used, significant differences are ap-
parent. The equal sample technique shows much larger residuals in the 761 nm and
slightly smaller errors elsewhere than the C matrix residuals minimization technique.
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This can be nicely explained with the chosen spectral sampling (compare Figs. 5
and 7). The optimization technique has an additional channel moved to that spectral
area to compensate for such errors.

Reconstruction SNR histograms for the discussed techniques are shown in Fig. 12.
The optimum histogram is reached for the case using 45 channels for both techniques.5

A good representation of the optimal histogram is achieved by using only 23 channels.
For both cases the selection techniques show similar results. Only for the case of using
only 9 spectral bands, the optimized selection technique shows much better results.

The main goal of this technique is to reduce the number of radiative transfer calcu-
lations needed for a certain problem, which is clearly fulfilled. The achievable speedup10

however strongly depends on the problem. For a lookup-table-like problem as dis-
cussed here, the speedup depends on the number of states in the lookup table nL, the
number of states used for the computation of the principal components ns, the number
of original wavelengths nλ, and the size of the spectral sub sample n. A speedup sp
can be computed:15

sp(nL, ns, nλ, n) =
nLnλ

ns · nλ + (nL − ns) n
. (8)

The speedup for the discussed lookup table is shown in Fig. 13. It becomes evident
that speedups in the order of two magnitudes are readily possible using this technique.
A special point in this figure unfolds if the additional error introduced by this method
is negligible. Figure 2 shows, that, from a selection of several hundred spectra on,20

the mean reconstruction error reaches the limit controlled by the number of principal
components. Furthermore, Fig. 9 shows, that from thirty channels on the reconstruction
error reaches its optimum. For the discussed application of a lookup table, a speedup
of 120 comes at almost no cost in additional error. Further speedup can be easily
achieved, but introduces errors which have to be checked with the user requirements.25

If the radiative transfer is used as forward model in an inverse problem and the time
spent for the computations of the hyperspectral principal is neglected, the speedup with
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almost no additional error is given by the ratio of the original spectral resolution and the
number of channels needed to reconstruct it; here: nλ/n=4500/30=150.

6 Conclusions

The presented analysis shows, that the presented spectral sub sampling technique
could be employed to achieve major speedups for hyperspectral radiative transfer sim-5

ulations. Its application to the oxygen A band showed that about thirty spectral channels
are sufficient to reproduce the full hyperspectral data in a space spanned by 15 princi-
pal components. This number will in general depend on the spectral domain at which
this method is applied and for other domains the validity of the method has to be proven
again. However, this is not a major drawback of the method. As it was shown, a number10

of hyperspectral simulations have to be performed to produce the principal components
of the data set. From there, one can establish the validity of the method and benefit
from major speedups. If the validity can not be established, one has to proceed using
different techniques.

We want to highlight two of the main impacts of this technique for problems involving15

hyperspectral radiative transfer. Firstly, formerly used techniques to gain speedups can
be revised. Such techniques could involve the reduction of the vertical resolution of the
model atmosphere, neglecting polarization, or only including certain orders of scatter-
ing. This method could be used to avoid many of the simplifications made with respect
to strict solutions of the radiative transfer equation, and thus to increase the radiative20

transfer calculation accuracy.
Secondly, this method enables a path to facilitate computationally costly radiative

transfer simulations such as full 3-D simulations including polarization. These models
have even more complexity in their state vector, including the description of a hori-
zontally and vertically heterogeneous scene, and they are much more demanding in25

terms of computation time as compared to traditional 1D methods. Hence, this method
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could be used to employ 3-D radiative transfer for applications which depend on fast
hyperspectral radiative transfer.

As a last point, we want to highlight that this method is entirely based on post pro-
cessing techniques and requires no changes in the used radiative transfer code. These
are often complex in their implementation and thus practically inaccessible for many5

users. The method is also simple enough to be implemented with ease using modern
interpreted languages and high level functions for the computation of pseudo inverses
and principal component analysis.
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Table 1. State vector parameters of the discussed lookup table database. The state space
contains physical parameters as well as the viewing geometry of a hypothetical instru-
ment. The nadir viewing geometry is constrained to 0–40◦ where the solar zenith angle
and the relative viewing azimuth are less constrained. Here, a rather coarse resolution
for all parameter states was chosen to simplify the presented analysis. A total number of
3×3×3×5×3×3×4×5×5=121 500 physical cases is considered. The spectral sampling
is 0.005 nm and 4500 channels within the O2A band were simulated. Altogether this table rep-
resents 121 500×4500≈5.5×108 radiative transfer simulations.

Surface pressure ρ nρ =3 ρ=800, 950, 1050 hPa
Aerosol optical thickness nτ =3 τ =0.0, 0.1, 1.0
Aerosol center height nh =3 h=500, 2500,4500 m
Aerosol type nt =5 t=1, 2, 3, 4, 5 (dust, urban, continental, neutral, absorbing)
Surface reflectance at 755 nm nα1

=3 α1 =0.1, 0.4, 0.7
Surface reflectance at 780 nm nα2

=3 α1 =0.1, 0.4, 0.7
Viewing zenith angle µ nµ =4 µ=0.00, 13.63, 25.88, 38.10 in deg
Solar zenith angle µS nµS

=5 µS =0.0, 13.63, 25.88, 38.10, 50.32, 62.53 in deg
Relative azimuth angle φ nφ =5 φ=0.00, 37.89, 75.79, 113.68, 151.58 in deg
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Fig. 1. The left panel illustrates the variability of the used spectral data base with showing some
randomly selected spectra. The right panel shares the reflectance axis with the left panel and
shows logarithmic histograms for four selected wavelengths.
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Fig. 2. Reconstruction SNR for a lookup table of top of atmosphere radiances in the oxygen A
Band (see Table 1 and Fig. 5 for reference). The reconstruction SNR was defined as the ratio
of the standard deviation of the residual and the mean value of the truth where the residual
was defined as the difference between truth and reconstruction. The considered index set was
randomly chosen and for each step, computations were repeated 50 times and the mean value
is shown. Shown is the mean reconstruction SNR which is the mean value over the recon-
struction SNR for all cases in the lookup table. The grey shaded area shows the corresponding
standard deviation. A histogram for the whole dataset is shown in Fig. 3.
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Fig. 3. Histograms of the reconstruction SNR for various sample sizes.
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Fig. 4. Normalized histograms for parameter state occurrence in the lowest 10 % fraction of
a reconstruction SNR data set based on 500 samples. The occurring states are scaled to a
range of [0, 1] such that they can be shown on the same axes. The corresponding values are
shown in the legend. The occurrences are normalized by the sample size and multiplied by
the number of unique parameter values (e.g. three for surface pressure and five for the aerosol
type). A value of one indicates equal representation of this particular parameter value within
the data set while larger and smaller values represent over- and under-representation.
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Fig. 5. The grey line shows an example spectrum from the lookup table. The red,green and
blue lines are the result if only every 500th, 200th, or 100th channel of the original spectrum is
considered.

8362

http://www.atmos-meas-tech-discuss.net
http://www.atmos-meas-tech-discuss.net/6/8339/2013/amtd-6-8339-2013-print.pdf
http://www.atmos-meas-tech-discuss.net/6/8339/2013/amtd-6-8339-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


AMTD
6, 8339–8370, 2013

Reconstruction of
hyperspectral RTS by

using subsets

A. Hollstein and
R. Lindstrot

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

755 760 765 770 775
wavelength in nm

1.0

0.5

0.0

0.5

1.0

pr
in

ci
pl

e 
co

m
po

ne
nt

Nch=4481 Nch=9 Nch=23 Nch=45

Fig. 6. The grey line shows the first principal component for the complete spectral resolution
(P0,−) while the colored lines show the corresponding rows for P̃ for three sample sizes. The
equal distribution sampling technique was used.
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Fig. 7. Similar to Fig. 5, but the position of the spectral channels were chosen with the opti-
mization technique based on the minimization of C matrix residuals.
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Fig. 8. Similar to Fig. 6, but the optimization technique was used.
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Fig. 9. Results of the mean reconstruction SNR for the three discussed spectral subset selec-
tion techniques.
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Fig. 10. Residuals between original and reconstructed spectra. The black line with the grey
shaded area shows the residual between the original spectra and the one reconstructed using
the full spectral information and 15 principal components. The red line shows the residual using
only 9 spectral bands which were selected using the equal sampling technique. The green line
shows similar results, but the optimization of C matrix residuals was used to select the spectral
sample.
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Fig. 11. Similar to Fig. 10, but 23 spectral bands were used.
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Fig. 12. The grey area shows the reconstruction SNR histograms for the original, i.e. using the
full spectral information, reconstruction and two of the discussed reconstruction techniques us-
ing small spectral sub samples. The dashed lines show result for the equal sampling technique
while the lines show results for the selection based on the minimization of C matrix residuals.
The colors indicate the different size of the spectral sub samples.
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Fig. 13. Shown are lines of constant speedup using the presented technique for the lookup
table like problem as defined in Table 1. The speedup is presented as a function of the size
of the chosen spectral sub sample and the size of the state space sub sample used for the
computation of the principal components. Equation (8) was used to create the figure and the
speedup for n=30 and ns =200 is highlighted.
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