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Abstract

Interacting quantum many-body systems are expected to thermalize, in the sense that the evolution of
local expectation values approaches a stationary value resembling a thermal ensemble. This intuition
is notably contradicted in systems exhibiting many-body localisation (MBL). In stark contrast to the
non-interacting case of Anderson localisation, the entanglement of states grows without limit over
time, albeit slowly. In this work, we establish a novel link between quantum information theory and
notions of condensed matter physics, capturing this phenomenon in the Heisenberg picture. We show
that the mere existence oflocal constants of motion, often taken as the defining property of MBL,
together with a generic spectrum of the Hamiltonian, is already sufficient to rigorously prove
information propagation: these systems can be used to send a classical bit over arbitrary distances, in
that the impact of alocal perturbation can be detected arbitrarily far away. This counterintuitive result
is compatible with and further corroborates the intuition of a slow entanglement growth following
global quenches in MBL systems. We perform a detailed perturbation analysis of quasi-local constants
of motion and also show that they indeed can be used to construct efficient spectral tensor networks,
as recently suggested. Our results provide a detailed and at the same time model-independent picture
of information propagation in MBL systems.

1. Introduction

When driven out of equilibrium, interacting quantum many-body systems are usually expected to thermalize
[1-3], in the sense that local expectation values can be described by thermal ensembles. For this to be at all
possible, local expectation values need to equilibrate to an apparent stationary state and energy has to be
transported through the entire system. Such an expected generic behaviour is prominently violated by many-
bodylocalized (MBL) systems [4, 5] that show a strong suppression of transport [6—9] and fail to serve as their
own heatbath [10, 11]. Thus, these systems do not thermalize and energy remains largely confined within certain
regions.

On the level of static properties of the Hamiltonian, equilibration in expectation is guaranteed by non-
degenerate energy values and gaps [3, 12—14]; a condition that is expected to hold with unit probability if small
random interactions are added to the system. While these equilibration results are rather well understood, the
question to what extend the local equilibrium values can be captured by thermal ensembles is still open to
debate. A direct way to ensure thermal behaviour is given by the eigenstate thermalisation hypothesis [15-17],
one reading of which assumes that most individual eigenstates are already highly entangled and locally
indistinguishable from Gibbs states.

For MBL systems, the static properties are markedly different. While the randomness typically occurring in
these models will almost surely guarantee non-degenerate energy values and gaps, the individual eigenstates
generically have low entanglement [10, 11, 18] and are expected to be efficiently described in terms of tensor
networks [18-20]. Moreover, one typically finds that the system has local constants of motion [21-24] that are
invariant in time. In fact, it has been shown that such local constants of motion can be used to infer the structure
of the eigenstates and obtain an efficient tensor network description of the eigenprojectors [20].

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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The investigation of information propagation in interacting many-body systems has a long tradition, with
upper bounds, giving an effective speed of sound, being provided early on by Lieb and Robinson [25]. For
localized systems, the non-interacting case notably leads to a full suppression of propagation, at least in the limit
of infinite systems. It came as some surprise that this is no longer the case in the presence of interactions and that
entanglement entropies very slowly grow without limit over time [7, 8, 26]. These numerical findings indicate
that information is allowed to propagate in these models, at least for the infinite energy states usually considered,
in a sense made more precise subsequently.

In this work, we present a rigorous proof for information propagation in MBL systems, using remarkably
few and innocent assumptions: only the existence of local constants of motions and a generic spectrum. While
local constants of motion slow down the spreading of information in comparison to the ballistic behaviour
expected from thermalizing systems, in our proof, we are able to use those constants of motion to show
information propagation counter physical intuition. Our approach is entirely model independent and assumes
no specific structure of the Hamiltonian. This is achieved by basing the proof on a recently established link
between spreading in the Heisenberg picture and equilibration behaviour [3, 27]. Our results are a considerable
step forward in the quest to prove that information is allowed to propagate in generic quantum many-body
systems, which so far has only been achieved in highly specific systems.

2. Many-body localisation

In this work, we will focus on systems exhibiting MBL, which can be seen as a generalisation of Anderson
localisation to interacting quantum many-body systems. While a comprehensive definition of this phenomenon
is still lacking, it is generally expected that it is closely connected to the existence of approximately local constants
of motion [10, 20]. These are operators that commute with the Hamiltonian

[H, Z] =0, (¢Y)

but are nevertheless to some extent local. In order to access the locality of operators, we consider systems on a
cubic lattice A of fixed dimension, with a spin or fermionic degree of freedom at each site with local dimension d.
Hence, the system’s Hilbert space is given by ®,cp Hioc, Where Hjo, is the Hilbert space of the local degree of
freedom. We will denote the total number of sites by L and local regions will be denoted by S or X. The support of
an operator is the region where it acts different from the identity. Of particular importance for our work are
operators that are not strictly local, but only approximately local. To this end, it is convenient to introduce a map
I's, which restricts an operator A to aregion S

Ts(A) = Iy @ d[ltrse(a), )

where 5¢ = A\ S denotes the complement of Sand trg:(A) denotes the partial trace of A over S €. The
normalisation d~!5lis chosen such that the norm of operators that are already local on S remains unchanged. In
order to analyze the locality of an operator, we assume a central support region X, enlarged regions X; that also
contain all I-nearest neighbours and investigate how the approximation error scales with the size of the enlarged
regions X;. We choose the following description

1A — Ty (A)| < 0 : strictly local, 3)
X ~ g :approximately local,
where g maps positive integers to positive real numbers is some rapidly decaying functionand || - || denotes the

operator norm, amounting for Hermitian operators to the largest eigenvalue. Naturally, for strictly local
observables, the initial region X needs to be taken large enough to include the full support.

In order to investigate the structure of the local constants of motion, we employ two simple models of MBL.
In one setting, it is assumed that the Hamiltonian is a sum of these commuting approximately local terms [9]

H= Z h;. (4)
]

In the second setting, the Hamiltonian is a higher order polynomial in terms of the approximately local constants
of motion [22, 23]

H:Zhizi‘l'zji,jzizj‘l' BN (5)
j ij
where J;; € R forall i, j and the interactions decay both with their order and with the distance of the involved
spins. There is a very important difference between these two models. MBL is typically associated to a randomly
chosen local potential as in the original work of Anderson [28]. Due to this disorder, it is strongly expected that
the spectrum of the corresponding Hamiltonians is generic in the sense that it has non-degenerate energies
and gaps.
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Figure 1. The geometry underlying definition 2 on information propagation on average. An observable A evolving in the Heisenberg
picture under a many-body Hamiltonian of a many-body system of size L, initially locally supported, will necessarily leak out of any
region S containing the originally local support of A, leading to a measurable signal under measurements in the complement of S, for
suitably long times.

These assumptions already give us some information about the spectrum of the constants of motion. Since
the Hamiltonian in equation (4) is defined as a sum of commuting operators, it can only have a generic spectrum
if each local constant of motion already has a generic spectrum. In contrast, the Hamiltonian in equation (5)
allows for higher order interactions in the constants of motion. Thus, each constant of motion might only have a
small number of distinct eigenvalues similar to a simple local simple Pauli-Z-matrix, even though the total
Hamiltonian has generic spectrum.

This is the situation expected to occur in MBL systems and we will follow the intuition provided by the
Hamiltonian with these higher order interaction between constants of motion, leading us to the following
definition [9].

Definition 1 (Local constant of motion). Let Z be an operator that commutes with the Hamiltonian and has M
disjoint eigenvalues, all separated by a spectral gap lower bounded by v > 0, independent of the system size. Z
is an exactly local constant of motion, if it is strictly local and an approximately local constant of motion, if it is
approximately local.

The precise value of M is not crucial for our purposes, since our results apply as long as the number M is
independent of the system size. One direct consequence of the simple spectrum of the constants of motion is that
the dimension of their eigenspaces has to grow exponentially in the system size. This can be seen from a
perturbation theoretical point of view, where the exponentially small tails are not sufficient to create transitions
between distinct eigenvalues. Thus the spectrum is approximately given by that of a strictly local operator, which
has the feature of exponentially growing eigenspaces since it is extended by tensoring with identity. Moreover,
using such constants of motion also allows to prove that the spectral tensor networks construction using exactly
local constants of motion [20] can still be carried out in the approximately local case (section A.2 of the
appendix).

This leads to the interesting situation that for systems exhibiting MBL, eigenstates will typically efficiently be
captured in terms of matrix-product states with low bond dimension. Whereas, product states will build up
arbitrary large entanglement over time [7, 8, 26]. We now turn to our main result, namely a rigorous proof of
information propagation based only on the existence of a single constant of motion and a non-degenerate
spectrum.

3. Main result: proof of information propagation

In order to capture how classical information can be send through these models, we imagine that there are two
parties, for brevity referred to as Alice and Bob, who have control over different parts of a spin system [29]. For
simplicity, let this model be 1D and let Alice control some part at the right end (figure 1). We further assume a
fixed separation between the parties and finally that Bob controls the rest of the chain. Alice encodes a classical
bit by either doing nothing or acting on her part left the spin chain with a local unitary V. At later time, Bob
measures some local operator A. How well these two parties can communicate with such a protocol is captured
by the difference in expectation value for Bob, depending on Alice’s action

(VI VA VT ) — (4] A [9). (6)

Such a procedure amounts to a positive channel capacity in the language of information theory. Inless
information theoretic terms: a local modification will necessarily lead to a measurable state modification far
away in the chain for later times. At time zero, the support of Vand A are spatially separated and the above
quantity is zero. Over time, the support of A, might grow and thus eventually lead to a signal. Thus, whether the
two parties can communicate crucially depends on the growth of an operator in the Heisenberg picture. In this
way, the following quantity is a meaningful way to capture the capability of a Hamiltonian to propagate
information.
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Definition 2 (Information propagation on average). A Hamiltonian allows for information propagation on
average, if forany ¢ > 0, there exists a strictly local observable A with unit operator norm, such that, for each
finite region S, truncation of the Heisenberg evolution to that finite region necessarily leads to a fixed error ¢, as
long as the system size L is large enough

Ve>0 dA local VSdLyVL > Lg:
A — Ts(A )| =1 = e. (7)

- . 1 pT . o
Here A; = limy_ T f drA, denotes the infinite time average of A.
0

This definition is very restrictive, as it demands that the lower bound can be chosen arbitrarily close to 1. On
the other hand, it does not require any information on the corresponding time scale and allows for the support of
the observable to take exponentially long to grow. In order to connect this definition to the information
propagation protocol introduced above, we use that

Ty(A) = fs  dUUAUY, (8)

which gives

f;c du U, A1U7) = HL_ dUU, AU = [A “ L@ = 1 — . o)

Thus, for systems showing information propagation according to definition 2, we can find a state vector ),
such that an excitation created by some local unitary V will be, on average, detectable at distances arbitrary far
away

WIVAVTI)) = (W1 A 1) = @IV, AV ) > 1 — e (10)

Hence, we can interpret 1 — ¢ asasignal strength. Thus, if a Hamiltonian allows for information propagation in
the above sense, Alice and Bob can indeed communicate by the described protocol, no matter how large their
separation, as long as Bob is allowed to measure on a large enough subsystem. Our main result states that this
information propagation can be rigorously deduced from only the existence of alocal constant of motionand a
suitably non-degenerate spectrum of the Hamiltonian.

Theorem 1 (Information propagation). Let H be a Hamiltonian with non-degenerate energies and gaps and Z be
an approximately local constant of motion with decay function g, localisation region X, spectral gap v > 0 and
eigenspaces with dimension larger than dyn. Then H necessarily has information propagation on average in the sense
that there exists a local operator A initially supported on X; O X with||A|| = 1such that A, on average, has support
outside any finite region S

VYR gy 4"
A, — Ts(A )| > 1 1355 - o (11)

The first non-constant term in equation (11) can be chosen arbitrarily small by picking the initial support X;
large enough and the second term decays exponentially with system size L, due to the growth of the degeneracy
domin- This result shows that for MBL Hamiltonians, a zero velocity Lieb—Robinson bound does not occur and it is
always possible to use the system to send classical information as long as a specific initial state consisting of a
superposition of arbitrary energy states is assumed. Hence, it is perfectly compatible with the existence of a
dynamical mobility edge, in the sense of a zero-velocity Lieb—Robinson bound for low energy states [ 19, 30]. Let
it be noted that while MBL systems provably allow for information propagation, we expect that they do not

exhibit particle or energy transport.

4. Proofidea: equilibration implies information propagation

Our results only rely on the existence of an approximately local constant of motion and assume no specific
structure of the Hamiltonian. In order to first present the argument in its simplest form, however, we will use the
following MBL model

H = Z th’? —+ Z],‘JO’?(T?, (12)
J L]

z

where o j

are thelocal Pauli-Z-matricesand J;; € R decays exponentially with the distance between the spins.

4
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To carry out the proofin this simplified setting, we construct two objects. Firstly, a state that is the equal
superposition of all eigenstates of the Hamiltonian and secondly, a local operator A that initially has expectation
value one with respect to this state, but at the same time has a zero diagonal in the energy eigenbasis and thus zero
expectation value for the equilibrated infinite time average. Since equilibration guarantees that local expectation
values are described by the infinite time average, this will allow us to conclude that the Heisenberg evolution of
the operator A has to be non-local.

Lemma 1 (Diagonal Hamiltonians). Let H be a diagonal Hamiltonian on a spin-1/2 lattice with non-degenerate
eigenvalues and gaps. Let A = o7 be the Pauli-X-matrix supported on spin j. Then H necessarily has information
propagation on average in the sense that the operator A, has, on average, support outside any finite region S

14, = Ts(A)| > 1 — disSI-N/2, (13)

Proof. From the concrete form of the Hamiltonian in equation (12), we could calculate the time evolution of the
X-operator and see that it acquires strings of Z-operators that sooner or later extend over the whole chain. In the
following, we will show how this spreading behaviour can be derived when no specific Hamiltonian structure is
used. For the argument, we use a state vector [¢) that is initially a product with | + ) on all sites, which also is the
equal superposition of all eigenstates of the system. Since we assume that the Hamiltonian has non-degenerate
energies, we know that the infinite time average of p = |1} (| is diagonal, since all off-diagonal elements
correspond to non-zero energy gaps and are dephased away. Moreover, as the diagonal is invariant under the
time evolution, the time-averaged state wis the normalized identity matrix. Considering a subsystem S, we can
use the non-degenerate energy gaps to employ known equilibration results [12] for the expected deviation from
the time average

dsys
2d4?

lerge(p, — dNT) 1 < < diSIN2, (14)

Here N is the total number of spins and the effective dimension counts how many eigenvectors |k) of the
Hamiltonian are part of the state

deff = (Z [(kl) |4J . (15)
k

The above result states that, for most times, the reduced state of p, looks like the identity. Due to the way
equilibration is proven, the results also applies to the inverse evolution p_, [12].

To investigate how information propagates under the Hamiltonian, we look at the time evolution of an
observable A consisting of a single Pauli-X-operator somewhere in the region S. The key trick is to use the initial
expectation value and to insert time evolution operators

1= tr(AopO) = tr(Atp,t). (16)

Since we know that the equilibrated state is the normalized identity, the expectation value of any local traceless
operator B has to vanish on average

tr(Bpft) = 0. (17)

Since Ay is traceless and the time-evolution leaves the trace invariant, the operator A, on average cannot be local
anymore. More precisely, we have that

A, — FS(At)H = A, - AISI-NIgcotrs(4,)

>|t(ap,) — dov ()] (18)

where we have used that [tr(Ap)| < ||A||||p|l and have defined p5 = trg(p). Next we use the inverse triangle
inequality, equation (16) and insert 0 = tr(d~!S!I; trs(A)) which is using the fact that the reduced observable
has zero expectation value with the infinite time average

tr(Atpft) — tr5<pftd|5|*Ntrsf(At))‘ >1— trs(pftdm*NtrSf(At))‘

>1— trs((pft — dﬁlslﬂs)dlsliNtl’sc(At))‘. (19)

Another application of [tr (Ap)| < ||A|||| o] allows to use the equilibration results discussed previously. Using
[|d1$1=Ntrse(A;)|| < 1concludes the estimate
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14, = Ts( Al = 1 = [|p%, — d1SLgly |5 Nerse(4, )| > 1 — dISIN/2, (20)
O

The above proof explicitly establishes a recently proposed connection between information propagation and
equilibration [3, 27]. Thus, the assumption of non-degenerate energy gaps is only needed to guarantee
equilibration, which means that the condition can be substantially relaxed [13]. The main idea for the proof still
can be carried out in the setting where the Hamiltonian is no longer assumed to be diagonal, but where only the
existence of an approximately local constant of motion is guaranteed.

5. Constants of motion imply information propagation

In order to generalize the proof to rely only on the existence of a single approximately local constant of motion, it
is first assumed that the constant of motion is exactly local. This implies that it is possible to distinguish different
sets of eigenvectors locally and thus allows to construct local observables that have zero diagonal in the
eigenbasis of the Hamiltonian. Moreover, a state with large expectation value with respect to this observable can
be constructed, again allowing to use equilibration results, together with the off-diagonality of the observable in
order to prove information propagation. Finally, a perturbation analysis extends the argument to approximately
local constants of motion. We will now present this argument in detail.

In case the Hamiltonian has exactly local constants of motion [20] Zy supported on some region X, they can
be employed to obtain the operators A in the above construction. For this, let us assume that

M
Zx= > MNPy (21
k=1

with exactly local projectors P, supported on X and M distinct eigenvalues. The goal is then to construct an
operator that is block-off-diagonal with respect to the projectors Py. For this, let d;,, be the smallest dimension
of the eigenspaces of Zy, when viewed as a local operator. For the construction, we fix two eigenspaces of Zx.
The larger of the two is then truncated down to the dimension d;. of the smaller one. Note that the resulting
dimension of both spaces is lower bounded by d.,;,. In these subspaces, we further fix some basis labelled by two
indices |k, r) where k labels the eigenspaces of Zx and r the basis vectors in each of these subspaces. We will
denote the eigenspaces by k = 0 and k = 1. The operator A is constructed to be supported on the small region X
and taken to be the flip operator between the subspaces

dirunc

A=) lk=0,r{k=1r|+ k=171 {k=0,r| (22)

The operator norm of this observable is one and we will proceed by constructing an initial state that is an
eigenstate of A to eigenvalue 1, but still has large effective dimension. For this, we pick the subspace with smaller
dimension and take the equal superposition of all eigenvectors in this subspace denoted by |v). For this, it is
crucial to choose the subspace with smaller dimension, as the truncation in general, is not aligned with the
eigenstates of the global Hamiltonian. The number of eigenvectors in the untruncated subspace will be lower
bounded by Arin = diin dN~1X1 which is simply the smallest eigenspace dimension of Zx when viewed as an
operator on the full lattice. The initial state vector is then taken to be

L

W) =7

(Iv) + A |v). (23)

Itis straightforward to check that this is indeed an eigenstate of A, since A? |v) = |v). Whatis more, the state
vector |1)) has an effective dimension lower bounded by d ;. This gives the following result.

Corollary 3. (Information propagation: strictly local constants). Let H be a Hamiltonian with non-degenerate
energies and gaps and Zyx be a strictly local constant of motion supported on X, with eigenspaces with dimension larger
than d ;. Then H necessarily has information propagation in the sense that for any finite region S containing X there
exists a local operator A initially supported on X with ||A|| = 1such that A, on average, has support outside S

AISI+1X1/2
o q1/2

min

4, = Ts(A)ll =1 N, (24)

Proof. To prove this statement, we can directly follow the proof of lemma 1. Using the construction of the initial
state and the observable A described above, we immediately obtain

6
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YR d

A, = Ts(A)l > 1 - 2%, 25)
deff
from the equilibration results in equation (14). Inserting the effective dimension described above

deft > dmin = dimin dV"1¥land d,y, = d!S! concludes the proof. [

In many localized systems, one does not expect the constants of motion to be strictly local, but only
approximately local [20]. Using perturbation theory, it follows that this bound is sufficient to obtain local
approximations for the eigenprojectors and makes it possible to once again construct an observable A that
propagates through the system. We will now present this argument in detail and prove theorem 1 .

Proof. The first step of the proofis to show that the approximate locality of the constant of motion also implies
quasi-local eigenprojectors. Let

M
Z=>" MPx (26)
k=1

and let y denote the smallest spectral gap. Due to locality, we can express Z for each fixed /, as

Z2=TIx(2)+ Vp (27)

with abounded perturbation V;satisfying
Vi=Z - Ix(2), (28)
IVill < g . (29)

Let P} be the eigenprojectors for the truncated observable. Perturbation theory assures us that the perturbed
eigenspaces stay approximately orthogonal (theorem VII.3.11in [31])

Vi 0)
g (1 — ey < LML _ 20 (30
Y v
which also implies
2|V 2¢(l
I - oy < 2 _ 280 (31)
v v

Choosing the distance [ large enough such that the function gbecomes smaller than /2, we know that the
perturbed and unperturbed eigenspaces have the same dimension [31]. This local approximation of the
eigenprojectors of the constant of motion will be the basis for the construction of the observable A as well as the
initial state p.

In order to construct the observable, we will work with the truncated constant of motion Iy, (2), fix two
subspaces and construct the same flip operator as in the case of exactly local constants of motion

dtrunc

A=) lk=0,r{k=1r|+ k=171 ({k=0,r| (32)

Without loss of generality, let k = 0 be the space with smaller dimension and k = 1 the one truncated to d ;..
Let P! |; be the projector on the truncated subspace of P corresponding to the image of A.

For the initial state, we will use the corresponding subspaces, again labelled by k = 0,1 of the full constant of
motion Z. Again we pick the smaller of the two subspaces and define |v) to be the equal superposition of all
eigenstates within this space. The initial state vector is then

1
lv) = Nl
By construction, the effective dimension and the equilibration results will be as in the case of a strictly local
constant of motion.

Crucial in the above construction is that we use the truncated constant of motion I'y,(Z) for the observable A
in order to ensure locality, while we use the full object Z for the initial state in order to achieve a large effective
dimension. What remains to be shown is that despite this locality difference in the construction, we still achieve a
large expectation value of A with |}, but an almost vanishing expectation value with the infinite time average.

As afirst step, we will show that A is almost block-off-diagonal with respect to the eigenprojectors of the full
constant of motion Z. Introducing the identity I = P} 4 Q/, this takes the following form

(Iv) + A v)). (33)

)
IPLAP|| < [[PePRAQLPK| + [|PxQLAPLPY| < ng- (34)
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Here we used that A is block-off-diagonal with respect to the truncated constant of motion I'y,(Z). The same
estimate holds for the projectors Qy. Using this, bounding the expectation value with the infinite time average is
straightforward

l
tr(Aw) = tr(APowPy ) + tr(AQuwQy ) < PoAPY|| + [[QoAQu]| < 4g§) (35)
We now have to show that the expectation value of A with p is large initially
1
<¢|A|¢>><V|AA|V>—E|<V|A|V>+<V|AAA|V>|- (36)

In the following, we will show that the first term is almost one, while the other two almost vanish due to the
block-off-diagonality. For the first term, we will use that A2 = P} + P} |;, where P} | is the projector onto the
image of Ain P/. Usingthat (v| Q |v) can only increase if we enlarge the subspace of the projector Q, we obtain

I I
(v| AA |v) > (v| P} |v) — ‘(v| Q} |v)| = (v| Py [v) — ‘ v| Qo |v) ‘ - 4g'(y) =1- 4gi) (37)
where we have used (31). The second term can be bounded directly using block-off-diagonality
I
[(v] A [v)] < |[PoAPy|| < 2gi) (38)
The last term, finally can be bounded as follows
[(v] AAA 19} | =] (v] PoA (P} + Pl 11)Po Iv)]
<||PoAPg|| + [P Pol
( 0
<IIpbapj) + 252 4+ £2
~y
< 3&1). 39)
v
To summarize, we have
I
WIA 1) 21— 95 (40)

Putting together the estimates for the expectation value of A with the initial state, the equilibration result and the
expectation value of A with the infinite time average w, we obtain the desired bound. More precisely, we choose

p = |1} (¢|and proceed as follows
tr (I‘S(A,U)pft)

> tr(Ap) — lw — plh — |tr(FS(Afo)W)|

lAr = Ts(A: )l > tr(ap) —

dS S
> tr(Ap) — 1}’/2 — |tr (Fs(AtO)W)l. (41)
2deff
Inserting the effective dimension des = dinand using equations (35) and (40)

N ) - LC AR {0

v 2di? gl
>1- 1380 flf/z (42)
7 deln
concludes the proof. O

6. Discussion and outlook

In this work, we have shown that for systems with suitably non-degenerate spectrum a single approximately
local constant of motion is sufficient to rigorously derive information propagation. We explicitly construct local
excitation operators whose effect spreads over arbitrary distances, thus giving rise to a protocol for using MBL
systems for signalling. This implies that the recently derived logarithmic light cone [9] can never be tightened to a
zero-velocity Lieb—Robinson bound, at least if one allows for infinite energy in the system. These results
strengthen and are concomitant with the observation of a logarithmic growth of entanglement entropies in MBL
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models. It is notable how little has to be assumed to arrive at the conclusion of having information propagation.
Not only do the approximately local constants of motion not prohibit information propagation in this sense:
they give rise to a protocol for the transmission of classical information for all Hamiltonians with a generic
spectrum, which is quite a counterintuitive result.

As future work, it would be interesting to clear up the precise role of local constants of motion in MBL
systems. As described above, current analytical descriptions of MBL are usually connected to an extensive set of
approximately local constants of motion and are capable of accurately capturing the phenomenology
[10,23,26]. However from a numerical point of view, it seems still unclear whether important models such as
the XXZ chain allow such a description [21, 32]. In fact, the occurrence of rare states with large entanglement
[18,30] seems to contradict this, as it is not compatible with the eigenstates described in terms of a spectral
tensor network [20]. Assuming that those rare eigenstates are indeed present in the XXZ chain, they seem to have
little influence on the physical behaviour such as the entanglement growth or the breakdown of thermalisation
[7,8, 10, 30]. However, a more careful analysis, especially of the role of the disorder strength is surely needed. We
would therefore speculate that systems could still show MBL properties even if no complete set of constants of
motion can be constructed. To what extent models with only a single local constant of motion can be devised is
currently unclear, even though MBL systems coupled to generic thermalizing models are certainly candidates in
this direction.

Aside from a clarifying discussion of constants of motion, it would be interesting to explore the speed of the
information propagation, which naturally is linked to the open problem of deriving physically meaningful time
scales of equilibration in local models. Another important question is how the information propagation derived
above is linked to the available energy scale in the system. In particular, it would be interesting how our results
relate to the possibility of having a mobility edge and how they are connected to the presumed suppression of
energy and particle transport in MBL systems.

Acknowledgments

We thank Christian Gogolin for many interesting discussions on possible links between equilibration and
transport and Henrik Wilming and Tobias Osborne for numerous discussions on many-body localisation. We
are grateful for support by the EU (SIQS, RAQUEL, AQuS, COST), the ERC (TAQ), the BMBF, the
Studienstiftung des Deutschen Volkes, and the EPSRC.

Appendix

A.1. Simple MBL model implies information propagation

In this appendix, we prove information propagation in two simple MBL models, one where the Hamiltonian is
diagonal in the computational basis and one where the eigenstates are deformed by an f-local unitary (definition
4). We start with the following simple model

H= Z hio? + Z]i,ja,-zaj, (43)
j irj

which consists of interacting Pauli-Z-matrices with suitably random coefficients J; ; that decay with the distance
between sites 7and j. In this system, the eigenvectors are the computational basis and the energies and gaps will
be non-degenerate due to the randomness in the model. For local dimension d > 2, one can easily extend the
model, by allowing for coupling with arbitrary local and diagonal matrices. In this case, we further require a
generalized Pauli-X-matrix on site j defined via matrix elements

1-6
~X _ 7,5
(oj )m = T = (44)
As discussed in the main text, thiS model implies information propagation in the following way.

Lemma 1 (Diagonal Hamiltonians). Let H be a diagonal Hamiltonian with non-degenerate eigenvalues and gaps.
Let A = &} bethe generalized Pauli-X-matrix supported on spin j. Then H necessarily has information propagation
on average in the sense that the operator A, has, on average, support outside any finite region S

14, = T(A )| > 1 — disI-NZ2, (45)

The proofis contained in the main text and directly carries over to the case with local dimension d > 2. Here, we
will extent this result and show that the same construction can still be carried out in the case of approximately
local eigenvectors. For this, we introduce approximately local operators and unitaries.
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Definition 3 (Local observable). An operator A will be called (g, X)-local, if there exists a finite localisation
region X such that

A = Ty I < [[Allg D) (46)
for some function g: N — R with suitable decayin I.

Definition 4 (Local unitary). A unitary operator U will be called f-local, if the conjugation of a local observable A
with localisation region X remains local in the sense that

|UAU* — T (UAUT) | < [1AIF () “7)
for some function f : N — R with suitable decay in /.

Correspondingly, we will say that a Hamiltonian has f-local eigenvectors, if the unitary diagonalizing it is f-
local. With this, we are able to present a generalized version of lemma 1 to the case of approximately local
eigenvectors.

Corollary 2 (f-local eigenvectors imply information propagation). Let H be a Hamiltonian with f-local
eigenvectors and non-degenerate energies and gaps. Then H necessarily has information propagation on average in
the sense that for any fixed finite region X; of diameter I, there exists a local operator A initially supported on X; with
[Al| = 1such that A, has, on average, support outside any finite region S

1A, = Ts(A )] = 1 — diSN2 — 2f (), (48)

Proof. We will now use lemma 1 in order to provide a proof for corollary 2 . For this, we use that the Hamiltonian
can be diagonalised by a f~local unitary V and work with the observable

A= VErVT, (49)

where 57 is the generalized Pauli-X-matrix on some spin j within the set S. This operator will no longer be
strictly local, but due to the f-locality of the unitary V, the operator can be truncated

A = Tx, (W < fD), (50)

where X; denotes the set that contains the inital support, namely site j and all I-nearest neighbours. Here we used
that the operator norm of A is one. From this, we can use the local reduction A' = Ty,(A) as the local operator
that will display information propagation. We will further need the time evolution of this truncated operator

Al = el Ale=itH where we first truncate and then evolve it in time. Naturally the unitary time evolution does
not change the norm difference. The proofrelies on a series of triangle inequalities. First we use that for any state

A = (Al = 1ee(alp )1~ | tr(Fs(A,l)p_t)l. (51)
Next, we look at the two terms separately, which gives
ltr(Afp, )= Itr ("1Tx, (A)e Hp. )|
> lr(Acp, )] = 114 = Tx ()]
> |tr(A0p0)|—f(l) =1—f(©, (52)

where we have inserted a zero term =tr (A, p_, ) and have used the above truncation estimate in equation (50) .
The other term can be estimated as follows

jer (Ts(A!) ) 1 = fer (T (T )e ) )|
<Irs(e (T ) — A)e )|
+ Jtrs(Ts (40 )trse (o)) - (53)
Here we again inserted a zero term

itrs(FS(At))trsf( p.)) (54)

and used a norm estimate. To proceed, we insert one more zero term +trg (Is(A,)d~!S!Is) and use the triangle
inequality
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|t T(A/) oo, | < T (@) — Al + [Jerse(po) — d7S1Tg)
+ Jtrs(Ts(4, ) d L)1, (55)

and use that I is a norm contractive map. These three terms can now easily be bounded. The first is small due to
the f-locality of the unitary Vinvolved in constructing A, see equation (50) . The second term becomes small,
once the time average is taken, which allows us to use known equilibration results [12]

|trS(P5(At)d*|5|]I)‘ < disSI-N/2, (56)

The third term vanishes completely, since the observable A has zeros on its diagonal. This completes the estimate
of the second term in equation (51)

e (5(41) )

Patching the estimates in equations (52) and (57) together concludes the proof

1A - lﬂs(Atl)II >1—2f () — diSI-N/2, )

<fy + AlSI-N/2. (57)

O

The above Hamiltonians are special instances of systems having local constants of motion. In the diagonal
case, the constants of motion are simply the local Pauli-Z-matrices. Once they are deformed by a quasi-local
unitary, exact locality is lost, but one still obtains a full set of approximately local constants of motion.

A.2. Approximate spectral tensor networks

In [20], it is shown that if a Hamiltonian has suitable local constants of motion, then each eigenprojector can be
efficiently represented as a matrix product operator. Moreover, it is rigorously derived that there exists an
efficient spectral tensor network for all eigenprojectors at the same time. Reference [20] then proceeds to sketch
the case of approximately local constant of motion, for which similar conclusions are reached. In this appendix,
we show that indeed, even for approximately local constants of motion with robust spectrum (definition 1 in the
main text), one can rigorously obtain a spectral tensor network.

Result. (Efficient spectral tensor networks). Let H be a Hamiltonian with an extensive number of approximately
local constants of motion (definition 1 in the main text) with | X | < Land g(I) < g exp(—aol), for suitable
constants ¢, ¢ > 0. Weassume that the approximately local constants of motion are algebraically independent,
commute with each other and have suitable distributed support on the lattice. Then there exists an efficient
spectral tensor network representation for all eigenprojectors of H.

The proof of this statement directly follows from [20], together with our corollary 3 in the main text. We start
from the observation that the approximate locality of the constant of motion also implies quasi-local
eigenprojectors, in the sense that

2a(l
[Py — Pl < %’ (59)

and that the perturbed and unperturbed eigenspaces have the same dimension. Using this approximation, one
finds that projectors onto an eigenspace of an approximately local constant of motion can be efficiently
approximated by matrix-product operators. For a given site j, call A the subset of sites for which the MPO
approximations have a support that includes j. With the same argument as in [20], choosing a path in the
supports of the strictly local constants of motion and performing singular value decompositions, as outlined in
[20], one finds that the collection of all approximately local constants of motion in A can again be written as a
matrix-product operator. The stability lemma 2 below concludes the proof.

Lemma 2 (Stability). Let { Z;} be a set of N approximately local constants of motion with a lower uniform bound
v > 0 on their minimal spectral gaps and uniform upper bounds L and g(I) on size and decay of their localisation
regions X, such that

12 = Txox(25) < g (60)

for anyX; containing X together with a buffer region of sizel. Then if P; ,,, denotes the eigenprojector of Z,; for
eigenvalue m we have
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g
||pj1,m1"'PjN,mn - P}I,ml'”P]l‘N,NIH <2N ~ (61)
with P]l-i o =T X! (Pj,m,) being strictly local.

Proof. The proof utilizes perturbation theory on the level of the single eigenprojectors P;_’mi similar to the proof
of corollary 3 in the main text. Using the triangle inequality we can upper bound the norm difference as

N
! ! !
1P P, = Pjom = Pi il < D0 1P = Pl (62)
k=1
The result now follows from equation (31) and our uniformity assumptions. O
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