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Kurzfassung

In der vorliegenden Arbeit wird das Wechselspiel von kohärenten Elektronen und kollek-
tiven Freiheitsgraden, wie z.B. Vibrationsmoden oder lokalen Spins, untersucht. Diese
Kopplung definiert nanoelektromechanische Systeme (NEMS) oder beeinflusst Trans-
portmessungen durch einzelne Moleküle. Dies ist sowohl für die Grundlagenforschung
als auch für Anwendungen in der Miniaturisierung elektronischer Bauelemente von
Bedeutung.

Die wichtige Annahme dieser theoretischen Arbeit ist, dass sich die kollektiven Frei-
heitsgrade auf den typischen elektronischen Zeitskalen nur langsam verändern, so dass sich
die Leitungselektronen in einer näherungsweise statischen Konfiguration bewegen. Dies
ermöglicht die Beschreibung im Rahmen einer Nichtgleichgewichts-Born-Oppenheimer-
[engl.: non-equilbrium Born-Oppenheimer (NEBO)] Näherung. Dadurch können sowohl
die vom Strom auf die kollektiven Freiheitsgrade ausgeübten Kräfte als auch vice versa
die Auswirkungen dieser Kräfte auf den Strom beschrieben werden. Hierbei wird der
Landauer-Büttiker Formalismus, in dem kohärenter Transport als ein Streuproblem
aufgefasst wird, auf die Theorie strominduzierter Kräfte erweitert, so dass diese Kräfte
in allgemeinen Nichtgleichgewichtssituationen durch die Streumatrix des Systems aus-
gedrückt werden können.

Die in dieser Arbeit hergeleiteten strominduzierten Kräfte beinhalten eine möglicherweise
nichtkonservative mittlere Kraft, eine geschwindigkeitsabhängige Reibungskraft, eine
Pseudo-Lorentz- sowie eine fluktuierende Langevin-Kraft. Die gewählte NEBO-Näherung
erlaubt es Nichtlinearitäten in der Kopplung und die Abhängigkeit von Bias- und Gate-
Spannung zu berücksichtigen. Mit diesem Ansatz werden einige für NEMS exemplarische
Modell-Systeme untersucht. Die dargelegte Theorie wird auf die Wechselwirkung zwischen
Elektronen und einem anisotropen magnetischen Molekül erweitert und es wird die Schalt-
dynamik der Spinorientierung beschrieben.

Die Kopplung zwischen kohärenten Elektronen und kollektiven Freiheitsgraden bietet
faszinierende Möglichkeiten für Anwendungen auf nanoskopischen Größenskalen. Als
ein Beispiel für diese Art der Anwendung wird betrachtet, dass den kollektiven Frei-
heitsgraden durch die Wechselwirkung mit kohärenten Elektronen Energie kontrolliert
entzogen wird. Es wird diskutiert wie ein Oszillator bis auf den quantenmechanischen
Grundzustand herunter gekühlt werden kann. Als weiteres Beispiel wird mit moleku-
laren Schaltern funktionalisiertes Graphen untersucht. Wie sich dessen elektronische
Transporteigenschaften, insbesondere der Leitwert, in Abhängigkeit des Schaltzustandes
verändern wird diskutiert wobei gezeigt wird, dass im Bereich kohärenten Transports
Interferenzeffekte die Empfindlichkeit erhöhen. Weitere mögliche Anwendungen der
hier dargelegten Betrachtung beinhalten z.B. den Einsatz von NEMS als Schalter und
Sensoren für Ladung oder Masse, als auch den Betrieb molekularer Motoren.
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Abstract

In this thesis we investigate the interplay between quantum transport of coherent electrons
and collective modes. We consider both vibrational modes in nanoelectromechanical
systems and localized spin degrees of freedom in single-molecule junctions. This field has
attracted considerable interest for reasons of basic research and for possible applications
in nanoelectronics.

This thesis focuses on the regime in which the collective modes are slowly varying on
the typical time scale of the electrons. While the latter observe a quasistatic configuration,
justifying the use of a non-equilibrium Born-Oppenheimer approximation (NEBO), they
can affect the collective modes significantly through current induced forces. Within this
approach we study these forces and the associated backaction on the current. Most
prominently, we generalize the Landauer-Büttiker approach, in which coherent electronic
transport is treated as a scattering problem, to the study of current-induced forces
expressing the latter in terms of the scattering matrix of the phase coherent conductor.

These current-induced forces include a, possibly non-conservative, mean force, a
velocity-dependent frictional force, and a Lorentz-like force, as well as a fluctuating
Langevin force. Starting from a microscopic description we derive these forces in terms of
the scattering matrix in general out-of-equilibrium situations. The NEBO approximation
allows us to include non-linearities of the coupling between collective modes and electrons
and to study the dependence of the forces on bias and gate voltages. We apply our
approach to a number of illustrative models of nanoelectromechanical systems, focusing on
generic situations and interesting dynamical behavior, such as limit-cycles. We generalize
our approach to a localized magnetic moment coupled to a coherent conductor and study
how its spin orientation can be switched electronically.

Coupling coherent electrons and collective degrees of freedom opens new roads towards
fascinating functional devices. We explore this possibility in two projects. First, we
consider graphene decorated with photochromic molecular switches. Due to this function-
alization the switching state affects the conductance of graphene which can be used for
the electronic read-out, being particularly sensitive in the presence of interference effects.
Second, we study how the possibility of exchanging energy between vibrational modes and
electrons can be utilized for the design of a refrigerator on the nanoscale. We investigate
how one can cool an oscillator by these means to the quantum mechanical ground state.
Furthermore, our general theory can be useful for the understanding and optimization of
sensors of charge or mass, molecular switches operated in an all-electronical fashion, and
machines, such as molecular motors, at the nanoscale.
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1. Introduction

The ongoing miniaturization of electronic devices, which can be operated at low tem-
peratures, allows for the study of coherent electronic transport through nanostructures.
Quantum mechanical interference effects manifest themselves in a number of transport
phenomena which are accessible by today’s experimental techniques.

The quantization of conductance in a quantum point contact, or measurements of the
magnetoresistance, which probe the Aharonov-Bohm effect are hallmarks of coherent
transport. Similarly, an increased resistivity due to partial interference of scattered
electron waves, known as weak localization, or universal and reproducible variations of
the conductance as a function of external parameters, such as the chemical potential or
an applied magnetic field, show the influence of coherence on transport properties. In
the presence of interactions additional phenomena such as the Coulomb blockade or the
Kondo effect have to be considered. For the theoretical description of coherent transport
the approach by Landauer and Büttiker has been particularly fruitful, which describes
electronic transport through nanostructures as a scattering problem.

Figure 1.1. Illustration of a typical setup
under study. A suspended NEMS can be
controlled by means of applied voltages.

In recent years the interplay between coher-
ent electrons and collective degrees of freedom
has attracted considerable interest. Systems
under study include nanoelectromechanical sys-
tems (NEMS), or molecular junctions in which
electrons can couple to vibrational modes or
to localized spin degrees of freedom, as in
single-molecule magnets. Fabrication of these
nanoscale devices proceeds, for instance, by
etching down larger structures, or by produc-
ing hybrid structures, or by confining regions
by electrostatic means. In contrast to these
top-down approaches, single molecules have
been incorporated into transport junctions, cp.
Fig. 1.2, and have been extensively studied. In typical setups, the system (a molecule, a
quantum dot, or a nanomechanical resonator) is attached to electrodes and heat baths
which set the temperature of the environment. The chemical potentials of the leads can
be controlled by an applied bias voltage, while gate voltages are conventionally used
in order to control the energy levels of the system, turning the device into a transistor.
Measuring the current through such a device can then be viewed as a spectroscopic study
of the microscopic properties of the system.

The coupling between coherent electrons and collective degrees of freedom in these
systems is conceptually interesting. It gives rise to qualitatively new dynamics and
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1. Introduction

Figure 1.2. Illustration of the breakjunction as considered in the work by Smit et al.
[2002]. A Pt-wire is bent until it breaks so that surrounding H2 molecules can enter
the gap. Transport measurements can reveal that indeed a single molecule has been
adsorbed.

mechanisms of exchanging energy between electrons and collective modes, directly affects
the current through the device, and may add new functionalities to devices, with potential
applications. Transferring energy from the electronic to the collective degrees of freedom,
enables one to maintain stable mechanical motion by compensating for dissipation
mechanisms. This is the foundation for the fabrication of nanoscale machines, such
as nano-cars and molecular motors. The reduced size and high sensitivity of NEMS,
accompanied with strong non-linear behavior, make them also attractive for the usage as
very accurate sensors of displacement, force, mass, and charge. While heat production can
even destroy the device, the opposite process of this energy transfer between electronic
and collective degrees of freedom, namely the possibility of energy-harvesting, might also
be utilized for cooling the system via backaction. This might allow one to study quantum
phenomena at the mesoscopic level, maybe even allowing one to cool a mechanical
oscillator to the quantum ground state. For possible applications it is also important to
control electronically transitions between distinct configurations of the system and to
read out these states through the current, constituting the operation of switches at the
nanoscale.

In this thesis we focus on the interplay between coherent electrons and the collective
modes. We provide a general theoretical description of the action of the current on the
collective modes and the backaction on the current, and we illustrate these concepts
within a number of model systems.

1.1. Electronic transport and collective degrees of freedom

There has been much recent research interest in the effects of vibrations in molecules
and NEMS, and local magnetic moments (molecular spintronics). In order to cope with
the plethora of phenomena in the context of current-induced forces, it is instructive to
treat the relevant limits individually. Independent of the coupling strength between
electrons and the collective modes, two well defined limits can be identified, for which
electronic and vibrational or precessional time scales decouple and which give rise to
different experimental phenomena.

2



1.1. Electronic transport and collective degrees of freedom

1.1.1. Slow electrons

The limit of slow electronic time scales and weak coupling to the leads is often realized
in molecular junctions which are the building blocks of molecular electronics. When the
electrons reside on the mesoscopic system for times large compared to typical vibrational
or precessional periods, the system can be described in the exact eigenstate basis of
the collective degrees of freedom. For instance the Fock states of the vibrational modes
provide an appropriate basis, which is altered by the presence of electrons depending on
the coupling strength between electrons and phonons.

Due to this interaction, the electronic transport is accompanied by the emission and
absorption of phonons affecting the transport properties. For instance, when the electron-
phonon coupling is weak, vibrational side bands due to phonon assisted tunneling can be
observed in the current-voltage characteristics [Park et al., 2000; Yu et al., 2004]. When
electron-phonon coupling is strong, the current can be strongly suppressed by means
of the Frank-Condon blockade. Leturcq et al. [2009] have measured and analyzed the
electronic transport through a quantum dot on a suspended carbon nanotube, in which
the strong coupling between a longitudinal stretching mode and the electrons in a sample
of high quality allowed them to observe this suppression of the low-bias current.

In this limit of slow collective degrees of freedom the system can be appropriately
described theoretically within a rate- or Master equation, allowing one to study these
phenomena both for fast vibron relaxations and for slow vibron relaxation with the ensuing
non-equilibrium effects. For instance, in the limit of strong electron-phonon coupling,
this can be used for the description of the Franck-Condon blockade physics, ascribing
the pronounced suppression of the low-bias sequential tunneling to an exponentially
small overlap between harmonic oscillator wave functions before and after tunneling, also
explaining vibrational sidebands in the current-voltage characteristics and self-similar
avalanches of electrons which affect the current-noise significantly [Koch and von Oppen,
2005; Koch et al., 2006].

1.1.2. Fast electrons

In the context of nanoelectromechanics, there has recently been much interest in the
opposite regime of adiabatic vibrational dynamics, in which the electronic processes are
fast compared to the vibrational degrees of freedom. Here, electrons propagate through
the nanostructure rapidly, observing a quasistatic configuration of the vibrational modes,
but affecting their dynamics profoundly at the same time. It is this regime of slow
collective modes that the present thesis focuses on.

Seminal experiments on current-induced forces have been performed by Steele et al.
[2009] and Lassagne et al. [2009] who have investigated suspended carbon nanotubes
hosting a quantum dot. These experiments have focused on the flexural mode of the
carbon nanotube, which is considerably slower than the longitudinal ones which we have
mentioned above. The nanomechanical resonator has been excited externally by a nearby
antenna [Steele et al., 2009] or an alternating gate voltage [Lassagne et al., 2009]. The
experiments have been performed at cryogenic temperatures and the vibrations have
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1. Introduction

Figure 1.3. (A) Current as a function of the gate voltage demonstrating the regime of
the Coulomb blockade, cp. also Fig. 1.4. (B) Resonance signal as function of resonance
frequency and gate voltage. Due to the electrostatic coupling the frequency increases with
the number of electrons N on the dot. When current flows through the device current-
induced forces are excited, as indicated by the dips, in agreement with expectations
(inset). Figure taken from [Steele et al., 2009].

been monitored by measuring the current through the device. Since the vibrations couple
to the density of the electrons on the quantum dot, the rigidity of the oscillator can be
tuned by a gate voltage, in analogy with a guitar string, affecting the resonance frequency,
see Fig. 1.3. When current flows through these devices, the electrons move rapidly on the
timescale of the vibrational frequency of the flexural mode. Then a significant backaction
of the single-electron tunneling on the resonator can be observed. Importantly, the
current itself can also excite the oscillator in the absence of an external driving force.
These current-induced forces generally contain non-linear effects and provide damping
mechanisms of the vibrational mode.

In both regimes of fast and slow vibrational degrees of freedom, the electronic transport
through the device can be accompanied by substantial energy transfer between electrons
and phonons. This opens perspectives for cooling nanomechanical systems [Clerk, 2012].

1.2. Outline of the thesis

In this thesis we study the interaction between charge transport and collective degrees
of freedom in electronic nanostructures, focusing on the regime of fast electrons. This
central issue is addressed in the context of several specific projects which we outline in
the remainder of this introduction.

1.2.1. Current-induced forces in NEMS

We study NEMS in which the electrons couple to slowly varying vibrational degrees of
freedom. In the strictly adiabatic limit and in the absence of interactions, the Landauer-
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1.2. Outline of the thesis

Figure 1.4. Energy levels and current-voltage characteristics. (left) The electronic levels
of the system are broadened due to the coupling to the leads (blue, dotted line). Inside
the latter the electrons are described by the Fermi-Dirac distribution which are smeared
out at finite temperatures (indicated by the dashed lines). The chemical potentials are
controlled externally such that a bias voltage eVbias = µL−µR drives electronic transport.
(right) Typical plot of the differential conductance dI/dV as a function of Vbias and a
gate voltage which controls the position of the electronic levels. Current flows when
electronic levels are inside the transport window and the differential conductance is
peaked (indicated by the green lines) when the number of them changes.

Büttiker approach conventionally provides a powerful description of phase coherent
conductors. The success of this formalism raises the question whether it can be also
applied when the slow dynamics of the collective mode affects the conductor. In particular
it would be useful to extend the formalism to the study of current-induced forces in order
to connect with the existing literature and to obtain a general description of these forces.

In fact, this is what we do in Chapter 3. We give a microscopic description of a
nanomechanical system coupled to electronic reservoirs, and derive and study the resulting
forces as well as the backaction of the oscillator on the electronic current in terms of the
scattering matrix. Our main assumption is that the vibrational modes are slow, justifying
to work in a non-equilibrium Born-Oppenheimer (NEBO) approximation. This allows
us to retain the non-linearities of the mechanical motion and the full dependencies on
external parameters, such as the coupling to the environment and the applied voltages.

Our approach delivers an alternative viewpoints compared to previous studies of
NEMS. The case of one electronic level coupled to a single vibrational mode has been
studied with a Green’s function approach in [Mozyrsky et al., 2006; Pistolesi et al.,
2008], where the authors showed that the current-induced forces can lead to a bistable
effective potential and consequently to switching. Lü et al. [2010] have studied the
case of multiple vibrational modes within a linear approximation, finding a Lorentz-like
current-induced force arising from the electronic Berry phase [Berry and Robbins, 1993].
In simple situations, the current-induced forces have been also studied within a scattering
matrix approach in the context of quantum measurement backaction [Bennett et al.,
2010] (see also [Bennett et al., 2011]), and momentum transfer statistics [Kindermann and
Beenakker, 2002]. Further studies of slowly varying mechanical modes include e.g. recent
works on NEMS near continuous mechanical instabilities [Weick et al., 2010; Brüggemann
et al., 2012], or the cooling and amplification of mechanical motion by the backaction of
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1. Introduction

conduction electrons [Naik et al., 2006; Stettenheim et al., 2010; Dundas et al., 2009].

It is an advantage of our approach that it allows us to obtain the various forces exerted
by the conduction electrons – namely the average force, a fluctuating force and the
velocity dependent forces (appearing as first-order corrections in the NEBO) – in a
non-perturbative manner, including their dependence on the system’s parameters as well
as non-linear effects of the electron-phonon coupling. We derive these current-induced
forces in general out-of-equilibrium situations and express them in terms of the scattering
matrix of the phase-coherent conductor. Indeed, within the NEBO approximation we can
express the forces in terms of two fundamental quantities, the adiabatic S-matrix and
the so-called A-matrix, of the system. Thus we extend the Landauer-Büttiker formalism
to the study of NEMS, resulting in a unified description of forces and backaction and
providing the opportunity to draw general conclusions from symmetry arguments.

Our study includes several general and interesting features of current-induced forces in
non-equilibrium situations. The dissipation coefficient acquires a non-equilibrium contri-
bution that can be negative. When the electrons couple to more than one vibrational
mode we find that a Lorentz-like force acts on the oscillator and that the mean force
exerted by the electrons can become non-conservative. Electronic control over the details
of the current-induced forces can be utilized for designing switches on the nanoscale. Ad-
ditionally, energy transfer between electrons and vibrational modes can cause interesting
dynamics with possible applications for molecular motors and refrigerators. In Chapter 4
we study illustrative toy models which capture some of these properties.

We discuss the cooling of a mechanical resonator via coupling to conduction electrons
in Chapter 6. There we focus on the regime of slow electrons which absorb single phonons,
providing the possibility of reaching the quantum ground state of the oscillator.

1.2.2. Switching of anisotropic magnetic molecules

In a similar way to our study of the coupling of electrons to vibrational degrees of
freedom, we can also treat the exchange interaction between electrons and a local
molecular magnetic moment.

Using the spin degree of freedom in electronic devices has opened new roads in
nanoelectronics and data storage [Fert, 2008]. In this context of (molecular) spintronics it
is important to have reliable mechanisms for writing and reading the stored information.
Specifically, it is essential to have protocols for manipulating and for detecting the
orientation of the magnetic moment. To this end it is convenient to take advantage of
the coupling between the spins of the electrons, which tunnel from the electrodes, and
the localized magnetic moment of the molecule.

We consider current-induced switching in single-molecule junctions containing an
anisotropic magnetic molecule. Again, our theory applies in the limit in which the
electrons are fast compared to the precession time of the magnetic moments and allows
us to describe the current-induced torques including possible implications for designing
molecular switches in spintronics. Starting from a microscopic description, we can derive
semiclassical equations of motion for the local magnetic moment that have the structure
of generalized Landau-Lifshitz-Gilbert (LLG) equations. These ideas are presented in
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1.2. Outline of the thesis

Figure 1.5. Illustration of a molecular switch. An anisotropic magnetic molecule is
described by a bistable potential. The spin orientation can be switched by a current
between the (possibly spin-polarized) leads.

Chapter 5 of this thesis.

In previous works describing magnetic nanoparticles, LLG equations have been derived
in a perturbative way assuming either that the coupling between the electronic spin and
the magnetic moment of the nanoparticle is small and/or that tunneling between the
leads and the nanoparticle is weak [Katsura et al., 2006; Fransson, 2008; Núñez and
Duine, 2008; López-Mońıs et al., 2012]. In contrast, our microscopic derivation relies
entirely on the NEBO approximation which is valid in the high-current limit as described
above. As a consequence, our non-perturbative approach allows us to compute how the
parameters of the LLG equation depend on the state of the molecular moment as well as
on the applied bias and gate voltages.

We find that the strictly adiabatic approximation causes a mean torque exerted by
the conduction electrons, while retardation effects result in a renormalization of the
precession frequency and Gilbert damping. In addition, equilibrium and non-equilibrium
fluctuations of the current cause a fluctuating (Langevin) torque. We can express these
torques in terms of the electronic Green’s functions and relate them to scattering theory,
in the latter case extending earlier work [Tserkovnyak et al., 2002; Brataas et al., 2008,
2011] to include an applied bias voltage. In general out-of-equilibrium situations the
conduction electrons can transfer energy to the localized moment by the fluctuations
and, in the presence of spin-polarized leads, via a non-conservative (spin-transfer) torque
and/or negative damping.

In contrast to the study of mechanical systems, the molecular spin is described by
linear equations of motion, affecting the way how the current-induced torques enter the
LLG. We note that the dynamics of the molecular spin automatically includes more than
one collective degree of freedom and that the non-equilibrium spin-transfer torque is an
analog of the non-conservative forces encountered in the study of the mechanical systems.
We apply this study of current-induced torques to the description of a molecular switch
consisting of an (uniaxially) anisotropic magnetic molecule. We exploit the Langevin
equation to identify the relevant switching mechanisms and to derive the current-induced
switching rates. The switching between the two spin configurations can be driven either

7



1. Introduction

Figure 1.6. Switching between the ring-closed (three-dimensional) spiropyran and the
ring-open (planar), zwitterionic merocyanine.

by the fluctuations or, in the presence of spin-polarized leads, by the spin-transfer
torque. Again, both the switching and the read-out of the molecular switch can be
accomplished completely electronically via changing the applied voltages and measuring
the current-voltage characteristics, respectively.

1.2.3. Graphene functionalized with molecular switches

In order to incorporate molecular switches as building blocks in technologically relevant
electronic applications it is essential to produce devices which are easily scalable and to
contact them to the outside world, allowing for electronic transport measurements. We
study the latter in order to read out the switching state of certain molecular switches
which functionalize a layer of graphene.

In particular, photo-induced conformational changes of molecules are possible candi-
dates for the usage in functional molecular devices. An interesting example for such
photochromic switches are spiropyrans which can be reversibly switched between two
conformational states, a ring-closed and an open form. The chemical transformation
between these two conformations can be driven thermally or by irradiation with light.
As indicated in Fig. 1.6, in the reaction a bond between a carbon and an oxygen atom
breaks, which is accompanied by a significant change in geometry and electronic configu-
ration between the two isomers, namely the ring-closed spiropyran and the ring-open
merocyanine. In particular, due to its zwitterionic form the latter has a large dipole
moment [Whelan et al., 2010] which may open new design possibilities for applications.

For possible technological applications it is of major importance to study how the
molecular switches interact with a substrate. For instance, the substrate can modify the
switching process, e.g. , by steric hindrance or by quenching of excitations [Piantek et al.,
2009; Bronner et al., 2011]. Conversely, the switch may cause a reversible modification of
the substrate. As an example, the optical absorption of carbon nanotubes functionalized
with spiropyrans has recently been observed to depend on the switching state [Malic
et al., 2011].

In this thesis we discuss a particularly interesting substrate, namely the monolayer of
carbon atoms arranged in a honeycomb lattice known as graphene [Neto et al., 2009].
Here we focus on its electronic properties in order to read out the switching state of
the attached molecules. Due to its conduction properties and the strictly 2d nature of
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1.2. Outline of the thesis

graphene, it appears promising to use this – still novel – material as a detector [Schedin
et al., 2007] for the conformational state of attached molecular switches. In Chapter 7 we
provide a theory of the electronic transport properties of a graphene layer functionalized
with the spiropyran-merocyanine system. The light-induced reversible switching between
these two isomers affects the carriers in graphene through the associated change in the
molecular dipole moment, so that the conductivity may serve as an all-electrical read-out
of the molecular switching state.

We present results for both the quasiclassical (Boltzmann) and the quantum-coherent
regimes of transport and discuss how the conductance is affected by changing the molecular
switching state. In mesoscopic conductors, the universal conductance fluctuations make
the conductance a sensitive function of the precise impurity configuration [Al’tshuler
and Spivak, 1985; Feng et al., 1986]. In our study of graphene decorated with switches
we find that such quantum interference effects also cause a particularly large sensitivity
of the conductance of graphene to the molecular switching state. Quite generally, we
find a linear sensitivity of the conductance on the molecular dipole moment whenever
quantum interference effects play an essential role which contrasts with a quadratic (and
thus typically weaker) dependence when quantum interference is absent.

Before we enter into a more detailed discussion of these projects, we use Chapter 2 to
sketch some essential formalisms which we will need throughout this thesis. This includes
brief introductions to the description of transport phenomena in terms of scattering
matrices and of Green’s functions.
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2. Formalism

In this chapter we provide the tools which are needed throughout this thesis for the
theoretical description of transport phenomena in mesoscopic systems. We give a
brief introduction to scattering theory in Section 2.1. A complementary description
of nanoscopic conductors coupled to leads is given in Section 2.2 in terms of Green’s
functions. Finally, in Section 2.3 we briefly comment on the Wigner representation which
is used in our study of slowly varying potentials.

2.1. Scattering theory

A powerful and popular approach to mesoscopic transport, in which current flow is
viewed as a problem of scattering theory, was introduced by Landauer [1957, 1970].

Figure 2.1. Sketch of a tunneling bar-
rier. An incident electron wave is partly
reflected and partly transmitted.

In this approach the conductance of the de-
vice is related to the probability that elec-
trons are transmitted through it, as sketched
in Fig. 2.1. Generalizations to multi-channel
[Büttiker et al., 1985] and multi-terminal
[Büttiker, 1986] setups led to the well-known
Landauer-Büttiker formula for current and con-
ductance.

We begin this section with a discussion of the
transverse quantization of momenta in a con-
striction connected to electron reservoirs and
the corresponding quantization of conductance.
Then we show how the in- and outcoming waves
are related through the scattering (S-) matrix,
which encapsulates the transmission and reflection amplitudes of the problem. This is
the foundation for calculating transport properties of the device, as we sketch for the
current at the end of this section.

Our discussion is informed by [Büttiker, 1992; Imry and Landauer, 1999] and the
presentation in the books by Nazarov and Blanter [2010] and Datta [1995].

2.1.1. Quantum-point contact and conductance quantization

As an introductory example to the field we consider a quantum-point contact in a two-
dimensional electron gas as studied experimentally by van Wees et al. [1988] and Wharam
et al. [1988]. The idealized setup consists of a waveguide which is connected to electronic
reservoirs as illustrated in Fig. 2.2.
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2. Formalism

Figure 2.2. (left) Illustration of the setup. The waveguide is in contact with reservoirs
at different chemical potentials with µ1 − µ2 = eV . The width of the constriction can
be tuned by an external voltage Vgate. Inside the constriction, transmitted right-moving
electrons are equilibrated with the left reservoir and vice versa. (right) Point-contact
conductance as a function of the gate voltage. Plateaus of 2e2/h are clearly visible.
Figure taken from [van Wees et al., 1988].

We assume that the transverse dimensions of the waveguide vary adiabatically along
the channel so that transverse and longitudinal motions decouple. The wave functions in
such a waveguide factorize into

ψn(x) = ψ(x)φn(x⊥), (2.1)

where x is the coordinate along the transport direction and x⊥ denotes the transverse
direction. Due to the lateral confinement, the wave function φn(x⊥) vanishes at the
transverse boundaries such that the transverse motion of the electron is quantized. Thus
φn(x⊥) corresponds to the wave function of a particle in a box with the channel-dependent
energy εn(x) = (π~n)2/[2mL2

y(x)]. Within this adiabatic approximation, the plane waves
ψ(x) satisfies [

− ~2

2m

∂2

∂x2
+ εn(x)

]
ψ(x) = ε ψ(x). (2.2)

Due to the adiabatically varying constriction, the n channels in the quantum point
contact do not mix and all the channels are either completely closed (probability of
reflection Rn = 1) or fully open (probability of transmission Tn = 1−Rn = 1). Only the
latter channels, which are shown in the central part of the sketch in Fig. 2.2, contribute
to the net transport. Hence, the current for quantized transverse motion reads

I = 2e
∑

n(open)

∫
dk

2π
v(k)fn(k), (2.3)

where the factor 2 accounts for spin-degeneracy and v = ~k/m is the electron velocity.
Right-moving electrons emanate from the left reservoir, and vice versa, hence their
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2.1. Scattering theory

distribution function is given by the Fermi-Dirac distribution of the corresponding
reservoir α, namely

fα(ε) =
1

e(ε−µα)/kBT + 1
. (2.4)

Throughout this thesis we are interested in electronic transport driven by voltage differ-
ences rather than temperature gradients, hence we allow for different chemical potentials
µα but assume all reservoirs to be at the same temperature T . Accordingly, Eq. (2.3)
becomes

I =
2e

h

∑
n(open)

∫
dε [f1(ε)− f2(ε)] =

2e2

h
Nopen V, (2.5)

where we have assumed small temperatures and used ∂kε = ~v and µ1 − µ2 = eV . Note
that the number of open channels depends on the width of the waveguide. From equating
εn(x) with the Fermi energy εF = (~kF)2/(2m) one obtains that Nopen is the largest
integer larger than kFL

min
y /π, with Lmin

y the minimal width of the constriction.
The quantization of the conductance is in striking agreement with the measurements

by van Wees et al. [1988] and Wharam et al. [1988] in a two-dimensional electron gas in
a GaAs-AlGaAs heterostructure at low temperatures. The quantum-point contact under
study has been defined by electrostatic depletion of the 2DEG and the mean free path has
been ensured to be much smaller than the dimensions of the constriction. Fig. 2.2 depicts
how the conductance G = dI/dV changes in quantized steps of 2e2/h as a function of
the gate voltage (and thus the number of open channels), in agreement with Eq. (2.5).
The quantum point contact is a particular example of a transport setup, with the special
property that all channels are either completely open or closed. In fact, we are interested
in the transport through a general mesoscopic structure which is connected via leads to
reservoirs, which we describe next.

2.1.2. Scattering states and the S-matrix

While the example of the quantum point contact is special, it does point the way to a
general theory of coherent transport in electronic nanostructures. This general theory
is based on the idea that one can separate the mesoscopic conductor into leads and a
scattering region, as illustrated in Fig. 2.3. The leads are modeled as ideal waveguides
and support a finite number of propagating transverse channels, much as in the example
of the point contact. On the other hand, we will not make any specific assumptions
about the scattering region other than the simplification of neglecting electron-electron
interactions. By current conservation, it is sufficient to compute the current in the leads.
Consequently, we can map the problem of coherent transport through a mesoscopic device
to scattering theory. The current flowing in a particular lead depends on the current
injected into this lead from the corresponding reservoir, on the part of this injected
current which is reflected back into the same lead, as well as on the currents which are
injected from other leads and scattered into this lead. Thus the required information is
concisely contained in the S matrix of this scattering system.
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2. Formalism

Figure 2.3. Illustration of a two-terminal setup. The scattering region (drawn light blue)
is connected through leads (ideal waveguides) to the reservoirs, which differ in their
chemical potentials µ1 − µ2 = eV . The annihilation operators for carriers in incoming
(âi) and outgoing (b̂i) channels in the two leads i = 1, 2 are related through the S-matrix.

In fact, the scattering states provide a convenient basis for expressing the wave functions
of the problem. Inside lead α the scattering state originating from channel m in reservoir
α reads

ψαm(xα) =
∑
n

1√
2π~vn(ε)

φn(x⊥,α)
[
δmneikαnxα + Sαn,αme−ikαnxα

]
. (2.6)

It is a superposition of the plane wave originating from reservoir α and the outgoing
plane waves from the scattering region. Note that we use a local coordinate system
such that positive xα point from the corresponding reservoir towards the scatterer, and
we write x⊥,α = (yα, zα). In all other leads β 6= α this scattering state consists of the
partially transmitted waves originating from α,

ψαm(xβ) =
∑
n

1√
2π~vn(ε)

Sβn,αmφn(x⊥,β)e−ikβnxβ . (2.7)

Here Sβn,αm are elements of the scattering matrix, φn(x⊥,α) denote the transverse wave
functions with energy εn, and the wave vectors kn =

√
2m(ε− εαn)/~ are fixed by the

energy ε of the scattering state.

The operators â†αm(ε) [âαm(ε)] create (annihilate) an electron with energy ε in the
incoming scattering state originating from reservoir α. These operators obey the usual
fermionic anticommutation relations,{

â†αm(ε), âβn(ε′)
}

= δαβδmnδ(ε− ε′), (2.8){
â†αm(ε), â†βn(ε′)

}
=
{
âαm(ε), âβn(ε′)

}
= 0, (2.9)

where {., .} denotes an anticommutator. Similarly, one can introduce annihilation (cre-

ation) operators b̂αm(ε) [b̂†αm(ε)] for electrons in the outgoing states in probe α, also
obeying the usual anticommutation relations. These two sets of operators are related via
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2.1. Scattering theory

the scattering matrix,

b̂α(ε) =
∑
β

Sαβ(ε) âβ(ε), (2.10)

where the vector âα(ε) [b̂α(ε)] contains the elements âαm(ε) [b̂αm(ε)] of the transport
channels m = 1, ..., Nα. Sαβ are the blocks of the scattering matrix describing the
transmission from reservoir β through the scattering region to α (for α 6= β) while the
diagonal blocks Sαα contain the information about reflection to the same reservoir. In
Fig. 2.3 the situation is illustrated for two channels in a two-terminal setup.

Conservation of the number of particles implies that the S-matrix is unitary,

S S† = 1. (2.11)

Moreover, time-reversal implies the relation

Sαm,βn(B) = Sβn,αm(−B), (2.12)

where B denotes a magnetic field. In particular this implies S = ST for time-reversal
invariant systems with B = 0.

2.1.3. Landauer Büttiker formula

The current through lead α is expressed in terms of the distribution functions for incoming
and outgoing electrons as

Iα =
2e

h

∫
dε
[
f in
α (ε)− fout

α (ε)
]
, (2.13)

where the electron velocity has been canceled against the corresponding factor in the
density of states, as discussed above. The filling factor of incoming particles originating
from the reservoir α is given by the Fermi distribution function of reservoir α,

f in
α (ε) = 〈â†α(ε) · âα(ε)〉 = fα(ε), (2.14)

see also Eq. (2.3). Using Eq. (2.10), we can relate the distribution function for the
outgoing particlesfout

α with the known distribution function of the leads so that we obtain

fout
α = 〈b̂†α(ε) · b̂α(ε)〉 =

∑
β

∑
m,n

fβ(ε) |Sαm,βn|2, (2.15)

where |Sαm,βn|2 gives the fraction of electrons entering the scatterer through lead β in
channel n and leaving it via lead α in channel m.1 Therefore we obtain

Iα =
2e

h

∫
dε
∑
β

∑
mn

fβ(ε)
[
δαβδmn − |Sαm,βn|2

]
=

2e

h

∫
dε
∑
β

fβ(ε) Tr
[
δαβ − S†αβSαβ

]
, (2.16)

1The probability of reflection back to lead α into channel m is given by Rαm =
∑
n |Sαm,αn|

2.
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2. Formalism

where the trace Tr(...) is over the lead-channels. This is the general multi-channel multi-
terminal Landauer-Büttiker expression for the current. Note that by current-conservation∑

α Iα = 0, as encapsulated in the unitarity of the S-matrix.

The situation simplifies for a two-terminal setup as illustrated in Fig. 2.3. Then the
expression above becomes

Iα =
2e

h

∫
dε [f1(ε)− f2(ε)] Tr[t†t], (2.17)

where we have used the unitarity of S and the NR ×NL transmission matrix t = SRL
describes the transmission through the scatterer. Assuming zero temperature, this yields
for the zero-bias conductance

G =
2e2

h
Tr[t†t]. (2.18)

Alternatively one can replace the trace by a sum over all transmission eigenvalues Tm of
the matrix t†t. Note that this expression for the conductance is a generalization of the
result in Eq. (2.5) to situations in which the channels are neither completely open nor
completely closed.

2.2. Green’s functions

Throughout the thesis we will often use Green’s functions in order to describe the
dynamics of electrons. In this section we briefly outline the basic properties which we
will use in the following chapters. We have benefitted from the pedagogical discussion in
the books by Haug and Jauho [2008] and Rammer [2007].

2.2.1. Definitions & contour ordering

We are interested in the quantum amplitude for propagation time t′ to time t. In a general
non-equilibrium situation this time evolution is concisely described by the contour-ordered
Green’s function [Schwinger, 1961; Keldysh, 1965]

G(t, t′) = −i〈Tc[ψ(t)ψ†(t′)]〉. (2.19)

Here Tc orders the fermionic annihilation (creation) operators ψ (ψ†) according to the
position of their time arguments on the Schwinger-Keldysh contour, see Fig. 2.4. It is
convenient to write this propagator in the matrix form

G(t, t′) =

(
G11(t, t′) G12(t, t′)
G21(t, t′) G22(t, t′)

)
. (2.20)

Here the indices of Gab(t, t′) indicate that the time t (t′) belongs to branch a (b),
where a, b = 1, 2 and 1 (2) labels the upper (lower) branch of the Keldysh contour.
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2.2. Green’s functions

Figure 2.4. The Schwinger-Keldysh contour. It evolves from t = −∞ to +∞ and returns
to −∞.

G12(t, t′) = G<(t, t′) and G21(t, t′) = G>(t, t′) are refered to as lesser and greater Green’s
functions and are given by

G<νν′(t, t′) = +i〈ψ†ν′(t′)ψν(t)〉, (2.21)

G>νν′(t, t′) = −i〈ψν′(t)ψ†ν′(t′)〉, (2.22)

respectively. The propagators on the diagonal are the time-ordered and anti-time-ordered
Green’s functions. It is often more convenient to work in the representation introduced
by Larkin and Ovchinnikov [1975],

G =
1

2

(
1 1
1 −1

)(
G11 G12

G21 G22

)(
1 1
−1 1

)
=

(
GR GK

0 GA

)
, (2.23)

where the Keldysh Green’s function is given by GK = G> + G< and we have dropped the
time arguments for convenience. The retarded Green’s function is defined as

GRνν′(t, t′) = −iθ(t− t′)〈{ψν(t), ψ†ν′(t
′)}〉, (2.24)

where {., .} denotes the anticommutator. The advanced Green’s function GA,

GAνν′(t, t′) = iθ(t′ − t)〈{ψν(t), ψ†ν′(t
′)}〉, (2.25)

describes the time-reversed propagation. Here the presence of a particle in state ν at t
depends on the state ν ′ at the future time t′. Accordingly, the retarded and advanced
Green’s functions are related through GRνν′(t, t′) = [GA(t′, t)ν′ν ]∗. We also note the relation

GR − GA = G> − G<. (2.26)

In the following chapters we will use the Green’s functions which appear in Eq. (2.26)
in order to describe the occupation of a given quantum state and its temporal dynamics
in the context of quantum transport. In particular we consider systems, for instance a
quantum dot, which are in contact to leads, and study their transport properties, as
illustrated in Fig. 2.5. To be specific, we consider the Hamiltonian

H = HL +HD +HT , (2.27)

where the first two terms represent the Hamiltonians of the leads and the dot, and the
last term describes the tunneling between leads and dot. These constituents and the
Green’s functions involved will be discussed below.
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Figure 2.5. Illustration of a mesoscopic structure coupled to leads.

2.2.2. Free particles in thermal equilibrium

The leads act as reservoirs for non-interacting electrons kept at fixed chemical potentials
µα. They can be described by a Hamiltonian of free particles,

HL =
∑
η

(εη − µα) c†ηcη , (2.28)

where we represent the electrons in the leads by the creation (annihilation) operators

c†η (cη), and η = (α, n, kαn) is a general ‘lead’ index, η = 1, . . . , N0 with N0 =
∑

αNα

with channels n = 1, . . . , Nα, and longitudinal momenta kαn. The temporal dynamics
is described by the Schrödinger equation, and consequently the Green’s functions are
solutions to

(i∂t −HL)GR(A)
ηη′ (t, t′) = δηη′δ(t− t′). (2.29)

This can be verified using that the time evolution of the operators is given by −i∂tψη(t) =
[HL, ψη](t).

2 It is easy to see that the (Fourier transform of the) corresponding solution
is given by

GR(A)
0ηη′ (ε) =

δηη′

ε− εη ± i0+
, (2.30)

where the subscript 0 indicates the free Green’s function. The occupation of state η
is given by 〈ψ†ηψη〉 = −iG<0ηη(0) =

∫
dε
2πfα(εη)

[
−2ImGR0ηη

]
. In thermal equilibrium, the

lesser Green’s function reads

G<0ηη′(t− t′) = iδηη′fα(εη)e
−i(t−t′)εη , (2.31)

with the Fermi-Dirac distribution fα(ε) defined in Eq.(2.4). We note that for free particles
the spectral function, given by −2ImGR = GA−GR, is proportional to a delta distribution,
see Eq. (2.30).

2.2.3. Coupling to leads: the self-energy

In this section we discuss the equations of motion for propagators of a dot which is
connected to non-interacting electronic reservoirs (possibly at different chemical poten-
tials), see Fig. 2.5. The coupling to leads can cause a shift and a broadening of the

2Note that ~ is set to one for notational simplicity.
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dot’s electronic levels; this hybridization with the leads will be expressed in terms of
self-energies, as will be pointed out in the remainder of this section. For a more detailed
discussion we refer to the book by Haug and Jauho [2008].

The benefit of the Larkin-Ovchinnikov representation, see Eq. (2.23), is that the
self-energy Σ also has a tridiagonal structure so that the Dyson equation takes the form

G =

(
GR0 GK0
0 GA0

)
+

(
GR GK
0 GA

)(
ΣR ΣK

0 ΣA

)(
GR0 GK0
0 GA0

)
, (2.32)

where G0 is the free Green’s function. This provides prescriptions how to connect the
different Green’s functions, as we briefly outline now. Note that we have suppressed all
time arguments and that products of propagators correspond to convolutions in the time
domain. Matrix multiplication yields

GR(A) = GR(A)
0 + GR(A)ΣR(A)GR(A)

0 (2.33)

GK = GK0 + GRΣRGK0 + GRΣKGA0 + GKΣAGA0 . (2.34)

These relations between the Green’s functions are often also refered to as Langreth’s
rules.

These propagators will be studied in more detail next. In particular, we show how
the Green’s functions of the dot are affected by the coupling to the leads. The generic
Hamiltonian for the quantum dot reads

HD =
∑
mm′

d†m [h0]mm′ dm′ , (2.35)

where the hermitian M ×M matrix h0 contains information about the M electronic
levels of the dot. (In the next chapter we will also include an additional coupling to
further local degrees of freedom.) The operator d† (d) creates (annihilates) an electron
in the dot and the indices m, m′ (= 1, . . . ,M) label the electronic levels.

Finally, the Hamiltonian HT represents the tunneling between the leads and the levels
in the dot,

HT =
∑
η,m

(c†ηwηmdm + h.c.) . (2.36)

Due to this coupling with the leads the energy levels will be broadened (and eventually
shifted).

In the next chapter we will express the physical quantities, the current and the forces
exerted by it, in terms of the Green’s function of the dot. First, we define the retarded
Green’s functions

GRn,η(t, t′) = −iθ(t− t′)〈{dn(t), c†η(t
′)}〉, (2.37)

GRn,n′(t, t′) = −iθ(t− t′)〈{dn(t), d†n′(t
′)}〉, (2.38)
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where GRn,η contains operators from both the island and the leads and GRn,n′ is the Green’s
function of the dot. The time evolution of the former is described by the Dyson equation

(−i∂t′ − εη)GRn,η(t, t′) =
∑
n′

GRnn′(t, t′)w†n′η. (2.39)

Here, the time derivative acts on the second time argument. We solve this equation by
multiplying from the right with the free electronic Green’s function of the uncoupled
non-interacting leads GR0η1η, given by Eq. (2.30). Then we obtain

GRn,η(t, t′) =

∫
dt1

∑
n1η1

GRnn1
(t, t1)w†n1η1GR0η1η(t1 − t′). (2.40)

Similarly, the time evolution of the retarded Green’s function of the dot obeys a Dyson
equation containing GRn,η. We decouple these equations by multiplying (2.40) with the
coupling matrix and summing over all states in the leads:∑

η

GRnη(t, t1)wηn′ =

∫
dt1
∑
n1

GRnn1
(t, t1)ΣR

n1n′(t1, t
′), (2.41)

where we have introduced the self-energy

ΣR
nn′(t, t

′) =
∑
ηη′

w†nηGR0ηη′(t− t′)wη′n′ . (2.42)

This allows us to write

−i∂t′GRmm′(t, t′) =δ(t− t′)δmm′ +
∑
m1

∫
dt1GRmm1

(t, t1)ΣR
m1m′(t1, t

′)

+
∑
m1

GRmm1
(t, t′)(h0)m1m′ , (2.43)

which is equivalent to Eq. (2.33).
Thus, indeed all information about the leads is contained in the self-energy ΣR

m1m′
(t1, t

′),
as given by Eq. (2.42). Later we will particularly use its Fourier transform

ΣR(ε) = −i
∑
α

Γα(ε), (2.44)

Γα(ε) = πW †(ε)ΠαW (ε), (2.45)

where Πα is a projection operator onto lead α and we have absorbed square root factors
of the density of states in the leads into the (possibly energy-dependent) coupling matrix
W for notational simplicity. We will return to these expressions in the next chapter when
we derive the current-induced forces in a NEMS in terms of the dot’s Green’s functions.

Combining Eq. (2.33) and Eq. (2.34) we obtain with Eq. (2.26) for the lesser Green’s
function

G< =G<0 + GRΣRG<0 + G<ΣAGA0 + GRΣ<GA0
=
(
1 + GRΣR

)
G<0
(
1 + ΣAGA0

)
+ GRΣ<GA0

(
1 + ΣAGA0

)
+ G<ΣAGA0 ΣAGA0 . (2.46)
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Here we have iterated by re-inserting the expression for G< into the right hand side.
Since the leads are non-interacting, we can use

(
1 + GRΣR

)
G<0 = GR(GR0 )−1G<0 = 0, see

[Haug and Jauho, 2008]. Accordingly, Eq. (2.46), becomes

G<mm′(t, t′) =

∫
dt1

∫
dt2

∑
mm1

GRmm1
(t, t1)Σ<

m1m2
(t1, t2)GAm2m′(t2, t

′), (2.47)

where we have restored all time and state indices. Here we use the lesser self-energy
Σ<
nn′(t, t

′) =
∑

ηη′ w
†
nηG<0ηη′(t − t′)wη′n′ , with the lesser Green’s function of the leads

G<0ηη′(t− t′) given by Eq. (2.31). Note that w and w† do not depend on time and hence
the self energies depend only on time differences. Accordingly, its Fourier transform takes
the form

Σ<(ε) = 2i
∑
α

fα(ε)Γα(ε) . (2.48)

2.2.4. Current

Within this formalism we can now give an expression for the current in terms of the
Green’s functions of the dot and the corresponding self-energies. The electronic current
through lead α is given by

Iα = −e〈Ṅα〉 = ie
∑
n,η∈α

wηn〈c†η(t)dn(t)〉+ h.c., (2.49)

with Nα =
∑

η∈α c
†
ηcη. Consequently, we introduce the lesser Green’s function

G<nη(t, t′) = i〈c†η(t′)dn(t)〉 (2.50)

which is, according to Langreth’s rules (see Section 2.2.3), given by

G<nη(t, t′) =

∫
dt1

∑
n1η1

w†n1η1

[
GRnn1

(t, t1)G<0η1η(t1 − t
′) + G<nn1

(t, t1)GA0η1η(t1 − t′)
]
. (2.51)

Using the expressions for the self-energies the current becomes

Iα(t) = e

∫
dt′ tr

{
GR(t, t′)Σ<

α (t′, t) + G<(t, t′)ΣA
α (t′, t)

}
+ h.c. (2.52)

= e

∫
dt′ tr

{
G>(t, t′)Σ<

α (t′, t)− G<(t, t′)Σ>
α (t′, t)

}
, (2.53)

and is thus completely expressed in terms of the Green’s functions of the dot and its
self-energies.

2.3. Wigner representation

It is often helpful to use the Wigner representation of the Green’s functions. This is
motivated by the fact that the Green’s functions G(t1, t2) oscillate rapidly with the
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relative time τ = t1 − t2. At the same time, they frequently depend only weakly on the
central time t = (t1 + t2)/2. In order to separate these fast and slow time scales easily it
is convenient to use so-called mixed or Wigner coordinates, see for instance [Haug and
Jauho, 2008; Rammer, 2007].

In Wigner coordinates, in this section denoted by a tilde, a general function A(t1, t2)
depending on two time arguments reads

Ã(τ, t) = A(t+ τ/2, t− τ/2). (2.54)

In order to perform an adiabatic expansion of such a function, it is convenient to consider
its Wigner transform,

Ã(ε, t) =

∫
dτ eiετ Ã(τ, t) , (2.55)

in which a Fourier transform is taken with respect to the relative time. In particular we
will deal with a the convolution, C(t1, t2) =

∫
dt3A(t1, t3)B(t3, t2), which is, in mixed

coordinates, given by

C̃(τ, t) =

∫
dt3 Ã(t1 − t3, t+

t3 − t2
2

)B̃(t3 − t2, t+
t3 − t1

2
). (2.56)

In order to obtain its Wigner transform we expand Ã(t1 − t3, t + t3−t2
2 ) in the central

time t,

Ã(t1 − t3, t+
t3 − t2

2
) =

∞∑
n=0

1

n!

(
t3 − t2

2

)n
∂

(n)
t Ã(t1 − t3, t), (2.57)

and perform a similar expansion for B̃. Using that the Fourier transform of a convolution
factorizes, we obtain for the Wigner transform of the convolution

C̃(ε, t) = exp

[
i

2

(
∂Ãε ∂

B̃
t − ∂Ãt ∂B̃ε

)]
Ã(ε, t)B̃(ε, t)

' Ã(ε, t)B̃(ε, t) +
i

2
∂εÃ(ε, t)∂tB̃(ε, t)− i

2
∂tÃ(ε, t)∂εB̃(ε, t), (2.58)

where we have dropped higher order derivatives in the last line, exploiting the slow
variation with t.

2.4. Summary

In this chapter we have sketched the formalisms which we will use throughout this thesis
in order to describe the systems under study. We have briefly outlined how a mesoscopic
conductor can be treated in terms of the scattering matrix, resulting in the famous
Landauer-Büttiker formula for the conductance. Additionally, non-equilibrium Green’s
functions are common in order to cope with electronic transport properties. We have
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2.4. Summary

introduced the basic ingredients, namely the various Green’s functions in the Keldysh
framework. In particular, we have described the coupling of the conductor to electronic
reservoirs in terms of the self-energy. We will utilize these tools in the next chapters for
the description of transport properties and current-induced forces. For the latter we will
encounter a separation of timescales, which will be treated within the so-called Wigner
representation, which we have briefly described at the end of the present chapter.
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3. Current-induced forces in mesoscopic
systems

In this chapter we investigate the interplay between the current flowing through a general
mesoscopic conductor and slow mechanical degrees of freedom. In these nanoelectrome-
chanical systems (NEMS) the conduction electrons exert forces on the mechanical modes,
which we study, as well as the backaction on the electronic transport.

Figure 3.1. Sketch of a NEMS.

We consider the limit in which the vibra-
tional dynamics is much slower than the typical
electronic timescales. Thus the electrons mov-
ing through the device experience an approx-
imately static configuration of the mechanical
degrees of freedom. In this limit it is appropri-
ate to use a non-equilibrium Born-Oppenheimer
(NEBO) approximation, which allows us to de-
scribe the vibrational dynamics in terms of a
Langevin equation containing forces which are
exerted by the current on the mechanical modes.

Subsequent to a short introduction, we describe the theoretical model and derive the
equations of motion of the mechanical degrees of freedom in Section 3.2. We show how
a Langevin equation emerges naturally from a microscopic model when employing the
NEBO approximation and derive the current-induced forces in terms of the microscopic
parameters. In Section 3.3 we employ the scattering matrix approach to quantum
transport to develop a unified theory of NEMS out of equilibrium. In particular, we
show that the current-induced forces can be written in terms of parametric derivatives of
the scattering matrix (S-matrix) of the system, and state general properties that can be
derived from S-matrix symmetry considerations. We complete the discussion of NEMS
in terms of S-matrices by providing a corresponding expression for the charge current in
in Section 3.4.

The results presented here are adopted from [Bode et al., 2011] and [Bode et al., 2012d].

3.1. Introduction

We consider the limit in which the electrons propagate through the nanostructure rapidly,
observing a quasistatic configuration of the vibrational modes, but affecting their dynamics
profoundly at the same time [Naik et al., 2006; Steele et al., 2009; Lassagne et al., 2009;
Stettenheim et al., 2010]. This limit allows us to treat the vibrational degrees of freedom
as classical entities embedded in a quantum coherent electronic environment: pictorially,
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3. Current-induced forces in mesoscopic systems

many electrons pass through the nanostructure during one vibrational period, impinging
randomly on the modes. In this limit, it is natural to assume that the dynamics of the
vibrational modes, represented by collective coordinates Xν , will be governed by a set of
coupled Langevin equations

MνẌν +
∂U

∂Xν
= Fν −

∑
ν′

γνν′Ẋν′ + ξν . (3.1)

Here we have grouped the purely elastic contribution on the left hand side (LHS) of
Eq. (3.1), Mν is the effective mass of mode ν, and U(X) an elastic potential. On the
right hand side (RHS) we have collected the current-induced forces: the main result of
this chapter are expressions for these forces in terms of the scattering matrix and its
parametric derivatives. These current-induced forces include the mean force Fν(X), the
stochastic force ξν , and two kinds of velocity-dependent forces (dissipative friction force
and effective “Lorentz” force) encoded by the matrix γνν′(X).

Theoretically, these forces have been studied previously within different formalisms,
as we have outlined in the introduction, Section 1.2.1. In the preceding chapter we
have introduced the basic ingredients which we need for the description of transport
through mesoscopic structures. Note that our discussion of scattering theory, Section 2.1,
resulting in the famous Landauer-Büttiker formula for the conductance of mesoscopic
conductors [Landauer, 1957, 1970; Büttiker et al., 1985; Büttiker, 1986], did not include
time-dependent scattering; the application to time-dependent scattering is the topic
of this chapter. For time-dependent phenomena, scattering matrix expressions have
been obtained for quantum pumping [Brouwer, 1998; Avron et al., 2001], a process by
which a direct current is generated through temporal variations of relevant parameters
of the system, such as a gate voltage or a magnetic field. The case of pumping in an
out-of-equilibrium, biased system has remained largely unexplored so far [Entin-Wohlman
et al., 2002; Moskalets and Büttiker, 2005].

We fully express the current-induced forces in terms of a scattering matrix formalism,
for arbitrary (albeit adiabatic) out-of-equilibrium situations, thus providing the tools for
a systematic approach to study the interplay between electronic and mechanical degrees
of freedom in NEMS. Our formalism allows us to retain the non-linearities of the problem,
which are essential for even a qualitative description of the dynamics, while turning the
problem of calculating the current-induced forces into a scattering problem for which
standard techniques can be applied.

3.2. Microscopic derivation of the Langevin equation

We start our discussion with a description of the model and a derivation of analytical
expressions for the current-induced forces within the NEBO approximation in terms of
non-equilibrium Green’s functions.
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3.2. Microscopic derivation of the Langevin equation

3.2.1. Model

We model the system as a mesoscopic quantum dot connected to multiple leads and
coupled to vibrational degrees of freedom, as illustrated in Fig. 3.1. Throughout this
discussion we consider non-interacting electrons and we set ~ = 1. The Hamiltonian for
the full system reads

H = HL +HT +HD +HX , (3.2)

where the different terms are introduced in the following.

The dot is coupled to leads which are modeled as non-interacting electronic reservoirs
at fixed chemical potentials. The corresponding Hamiltonian HL is given by Eq. (2.28).
The coupling between the different leads and the dot is described by the tunneling
Hamiltonian HT , see Eq. (2.36). The dot’s levels hybridize with the leads due to this
coupling as discussed to some extent in the preceding chapter (see Section 2.2.3). We
describe the quantum dot itself by M electronic levels coupled to N slow collective
degrees of freedom X̂ = (X̂1, . . . , X̂N ). This is contained in the dot’s Hamiltonian

HD =
∑
mm′

d†m
[
h0(X̂)

]
mm′

dm′ (3.3)

which describes the electronic levels of the dot and their dependence on the collective
modes’ coordinates X̂ν (ν = 1, . . . , N) by the hermitian M ×M matrix h0(X̂).1 The
operator d† (d) creates (annihilates) an electron in the dot and the indices m, m′

(= 1, . . . ,M) label the electronic levels. Note that here we allow h0 to be a general
function of X̂ and that our analysis is valid for any coupling strength. The Hamiltonian

HX =
∑
ν

[
P̂ 2
ν

2Mν
+ U(X̂)

]
(3.4)

describes the free evolution of the mechanical degrees of freedom of the dot.

3.2.2. Non-equilibrium Born-Oppenheimer approximation

We use as a starting point the Heisenberg equations of motion for the mechanical modes
which can be cast as

Mν
¨̂
Xν +

∂U

∂X̂ν

= −
∑
m,m′

d†m
[
Λν(X̂)

]
mm′

dm′ , (3.5)

where we have introduced the X̂-dependent matrices

Λν
(
X̂
)

=
∂h0

∂X̂ν

. (3.6)

1In the present discussion we assume that the tunneling, described by HT , is unaffected by the coupling to
the localized degrees of freedom. In order to describe for instance STM/AFM-setups, straightforward
generalizations have to be incorporated, involving X̂-dependent tunnel amplitudes in Eq. (2.36).
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3. Current-induced forces in mesoscopic systems

The RHS of Eq.(3.5) contains the current-induced forces, expressed through the electronic
operators d of the quantum dot. We now proceed to calculate these forces within a
non-equilibrium Born-Oppenheimer (NEBO) approximation, in which the dynamics of
the collective modes is assumed to be slow. In this limit, we can treat the mechanical
degrees of freedom as classical, acting as a slow classical field on the fast electronic
dynamics.

The NEBO approximation consists of averaging the RHS of Eq. (3.5) over times long
compared to the electronic time scales, but short in terms of the oscillator dynamics. In
this approximation, the force operator is represented by its (average) expectation value
〈d†Λd〉X(t), evaluated for a given trajectory X(t) of the mechanical degrees of freedom,
plus fluctuations containing both Johnson-Nyquist and shot noise. These fluctuations
give rise to a Langevin force ξ. Hence, Eq. (3.5) becomes

MνẌν +
∂U

∂Xν
= tr[iΛνG<(t, t)] + ξν , (3.7)

where the trace “tr” is taken over the dot levels, and we have introduced the lesser
Green’s function

G<mm′(t, t′) = i〈d†m′(t′)dm(t)〉X(t) . (3.8)

The variance of the stochastic force ξν is governed by the symmetrized fluctuations of
the operator d†Λd. Given that the electronic fluctuations happen on short time scales,
ξν is locally correlated in time,

〈ξν(t)ξν′(t
′)〉 = Dνν′(X)δ(t− t′) , (3.9)

as we describe below. (An alternative but equivalent derivation, is based on a saddle point
approximation for the Keldysh action, see e.g. the review by Kamenev and Levchenko
[2009].) Since we are dealing with non-interacting electrons, D(X) can be expressed in
terms of single particle Green’s functions using Wick’s theorem, as we detail below. These
expressions for the current-induced forces show that we need to evaluate the electronic
Green’s function for a given classical trajectory X(t). In doing so, we can exploit that the
mechanical degrees of freedom are assumed to be slow compared to the electrons. Thus,
we can approximate the Green’s function by its solution to first order in the velocities
Ẋ(t).

We now proceed with this derivation, starting with the time evolution of the retarded
Green’s function,

GRmm′(t, t′) = −iθ(t− t′)〈{dm(t), d†m′(t
′)}〉X(t) , (3.10)

where {., .} indicates the anticommutator. We note that since we consider non-interacting
electrons, we can restore the lesser and greater Green’s functions (or the advanced Green’s
function GA) at the end of the calculation by standard manipulations, which we have
outlined in Section 2.2. The Dyson equation for the retarded Green’s function can then
be written, in matrix form, as

− i∂t′GR(t, t′) = δ(t− t′) +

∫
dt1GR(t, t1)ΣR(t1, t

′) + GR(t, t′)h0(X) . (3.11)
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3.2. Microscopic derivation of the Langevin equation

The coupling to the leads is incorporated in the self-energy ΣR(t1, t
′), which we have

discussed in some detail in Section 2.2.3; see Eq. (2.42) in particular.

To perform the adiabatic expansion, it is convenient to work in the Wigner repre-
sentation, in which fast and slow time scales are easily identifiable. We can use this
representation for the Green’s function GR, since the slow mechanical motion implies
that GR(t1, t2) varies slowly with the central time t = (t1 + t2)/2 and oscillates fast with
the relative time τ = t1 − t2. Generally, the Wigner transform of a function A(t1, t2)
depending on two time arguments, is given by Eq. (2.55), which reads

Ã(ε, t) =

∫
dτ eiετA(t+ τ/2, t− τ/2).

The Wigner transform of a convolution C(t1, t2) =
∫

dt3A(t1, t3)B(t3, t2) is given by

C̃ ' ÃB̃ +
i

2
∂εÃ∂tB̃ −

i

2
∂tÃ∂εB̃,

as discussed in Section 2.3. Here we have repeated Eq. (2.58) for the convenience of
the reader and dropped higher order derivatives, exploiting the slow variation with t.
Therefore, using Eq. (2.58) we can rewrite the Dyson equation (3.11) as

1 ' GR
(
ε− ΣR − h0

)
− i

2
∂εGR∂th0 −

i

2
∂tGR

(
1− ∂εΣR

)
, (3.12)

where the Green’s functions are now in the Wigner representation. Unless otherwise
denoted by explicitly stating the variables, here and in the remainder of this chapter all
functions are in the Wigner representation. Dropping all time derivatives in Eq. (3.12),
one obtains the strictly adiabatic Green’s function

GR(ε,X) =
[
ε− h0(X)− ΣR(ε)

]−1
. (3.13)

Our notation is such that G denotes full Green’s functions, while G denotes the strictly
adiabatic (or frozen) Green’s functions that are evaluated for a fixed value of X (so that
all derivatives with respect to central time in Eq. (3.12) can be dropped). From now on,
G(R,A,<,>) denote the Green’s functions in the Wigner representation, with arguments
(ε, t), and GA = (GR)†. The self-energy is given by ΣR(ε) = −iπW †(ε)W (ε) where W
denotes the coupling matrix to the leads, see Eq. (2.44) in the previous chapter. Thus,
from (3.13) it is easy to see that

W †W =
1

2πi
[(GR)−1 − (GA)−1] . (3.14)

The following two other identities will be used repeatedly:

∂XνG
R = GRΛνGR, (3.15)

−∂εGR = GR(1− ∂εΣR)GR. (3.16)
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3. Current-induced forces in mesoscopic systems

These relations are obtained by differentiating GR
[
ε− h0(X)− ΣR(ε)

]
= 1 with respect

to Xν and ε, respectively, multiplying the result with GR and using the definition (3.6).
Finally, with the help of Eqs. (3.15) and (3.16), we obtain to first order in Ẋν

GR ' GR +
i

2

∑
ν

Ẋν

(
∂εG

RΛνGR −GRΛν∂εG
R
)
. (3.17)

G< and GR are related through Langreth’s rule, Eq. (2.47), which states G<(t, t′) =∫
dt1
∫

dt2 GR(t, t1)Σ<(t1, t2)GA(t2, t
′). Note that in the Wigner representation the lesser

self-energy Σ<(ε) depends only on ε and is independent of the central time, cf. Eq. (2.48).
Expanding Eq. (2.47) up to the leading adiabatic correction according to Eq. (2.58), we
obtain G< to first order in Ẋ,

G< =G< +
i

2
Ẋ ·

[
(∂εG

<)ΛGA −GRΛ∂εG
< + (∂εG

R)ΛG< −G<Λ∂εG
A
]
. (3.18)

The frozen lesser Green’s function is

G< = GRΣ<GA = 2πi
∑
α

fαG
RW †ΠαWGA, (3.19)

we use GA = [GR]†, fα is the Fermi distribution, and Πα is a projector on lead α, see also
Eq. (2.45) and Eq. (2.48). We will also encounter the strictly adiabatic greater Green’s
function, which is given by

G> = −2πi
∑
α

(1− fα)GRW †ΠαWGA. (3.20)

In order to obtain this expression we have used the general relation between the various
Green’s functions GR −GA = G> −G<, see Eq. (2.26), as well as Eqs. (3.14) and (3.19).

3.2.3. Current-induced forces in terms of Green’s functions

We can now collect the results from the previous section and identify the current-induced
forces appearing in the Langevin equation (3.1). Except for the stochastic noise force,
the current induced forces are encoded in tr(G<Λν). In the strictly adiabatic limit, i.e.,
retaining only the first term on the RHS of Eq. (3.18), G< ' G<, we obtain the mean
force

Fν(X) = −
∫

dε

2πi
tr
[
ΛνG<

]
. (3.21)

The leading order correction in Eq. (3.18) gives a velocity-dependent contribution to
the current induced forces, which determines the tensor γνν′ . After integration by parts,
we find

γνν′ =

∫
dε

2π
tr
(
G<Λν∂εG

RΛν
′ −G<Λν

′
∂εG

AΛν
)
. (3.22)

This tensor can be split into symmetric and anti-symmetric contributions, γ = γs + γa,
which define a dissipative term γs and an orbital, effective magnetic field γa in the
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3.3. S-matrix theory of current-induced forces

space of the collective modes. The latter interpretation is based on the fact that the
corresponding force takes a Lorentz-like form, as we will discuss below. Using Eq. (2.26),
and noting that 2

∫
dεG<∂εG

< =
∫
dε∂ε(G

<)2 = 0, we obtain the explicit expressions

γsνν′(X) =

∫
dε

2π
tr
{

ΛνG<Λν
′
∂εG

>
}
s
, (3.23)

γaνν′(X) =−
∫

dε

2π
tr
{

ΛνG<Λν
′
∂ε
(
GA +GR

)}
a
. (3.24)

Here we have introduced the notation {Mνν′}s,a = (Mνν′ ±Mν′ν)/2 for symmetric and
anti-symmetric parts of an arbitrary matrix M .

At last, the stochastic force ξν is given by the thermal and non-equilibrium fluctuations
of the force operator −d†Λνd in Eq. (3.5). Thus, the symmetrized noise correlator reads

〈ξν(t)ξν′(t
′)〉 =

1

2

∑
mm′nn′

[
Λνmm′Λ

ν′
nn′〈d†m(t)dm′(t)d

†
n(t′)dn′(t

′)〉

+ Λν
′
nn′Λ

ν
mm′〈d†n(t′)dn′(t

′)d†m(t)dm′(t)〉
]

=tr{ΛνG>(t, t′)Λν
′G<(t′, t)}s , (3.25)

where we have used Wick’s theorem and G>mm′(t, t′) = −i〈dm(t)d†m′(t
′)〉X(t) is the full

greater Green’s function. As indicated by the fluctuation-dissipation theorem, the
fluctuating force is of the same order in the adiabatic expansion as the velocity dependent
force. Thus, we can evaluate the expression for the correlator of the fluctuating force,
Eq. (3.25), to lowest order in the adiabatic expansion, so that we obtain Eq. (3.9), with

Dνν′(X) =

∫
dε

2π
tr
{

ΛνG<Λν
′
G>
}
s
, (3.26)

in terms of the strictly adiabatic lesser and greater Green’s functions.
This formalism gives the tools needed to describe the dynamics of the vibrational

modes in the presence of a bias for an arbitrary number of modes and dot levels. When
expressions (3.21) - (3.24) are inserted back in Eq.(3.1), they define a non-linear Langevin
equation due to their non-trivial dependences on X(t) .

3.3. S-matrix theory of current-induced forces

Scattering matrix approaches to mesoscopic transport generally involve expressions in
terms of the elastic S-matrix, cp. the discussion in Section 2.1. For our problem, the
S-matrix is elastic only in the strictly adiabatic limit, in which it is evaluated for a fixed
value of X.

3.3.1. Adiabatic expansion of the S-matrix

As pointed out by Moskalets and Büttiker [2004, 2005], this is not sufficient for general
out of equilibrium situations, even when X(t) varies adiabatically in time. In their
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3. Current-induced forces in mesoscopic systems

work, they calculated, within a Floquet formalism, the leading correction to the strictly
adiabatic S-matrix. We follow here the same approach, rephrased in terms of the Wigner
representation. The full S-matrix can be written as [Aleiner et al., 2002]

S(ε, t) = 1− 2πi
[
WGRW †

]
(ε, t) . (3.27)

To go beyond the frozen approximation, we expand S to leading order in Ẋ,

S(ε, t) ' S(ε,X(t)) +
∑
ν

Ẋν(t)Aν(ε,X(t)) , (3.28)

where the strictly adiabatic S-matrix is given by

S(ε,X) = 1− 2πiW (ε)GR(ε,X)W †(ε) . (3.29)

Note that, in line with the notation established before for the Green’s functions, the
strictly adiabatic S-matrix is denoted by S while the full S-matrix is denoted by S.
The leading correction defines the matrix A, which, similar to S, has definite symmetry
properties. In particular, if the system is time-reversal invariant, the adiabatic S-matrix
is even under time reversal while A is odd. For a given problem, the A-matrix has to be
obtained along with S.

We can now derive a Green’s function expression for the matrix A [Vavilov et al., 2001;
Arrachea and Moskalets, 2006]. Comparing Eq. (3.28) with the expansion to the same
order of S in terms of adiabatic Green’s functions we obtain

Aν(ε,X) =π∂ε
[
W (ε)GR(ε,X)

]
Λν(X)GR(ε,X)W †(ε) (3.30)

− πW (ε)GR(ε,X)Λν(X)∂ε

[
GR(ε,X)W †(ε)

]
. (3.31)

This follows straightforwardly from performing explicitly the convolution in Eq. (3.27)
and keeping terms up to linear order in the velocity Ẋ. Current conservation constrains
both the frozen and full scattering matrices to be unitary. From the unitarity of the
frozen S-matrix, S†S = 1, we obtain the useful relation

∂S†

∂Xν
S + S†

∂S

∂Xν
= 0 , (3.32)

which we will use repeatedly in the following sections. On the other hand, unitarity
of the full S-matrix, S†S = 1, imposes a relation between the A-matrix and the frozen
S-matrix. To first order in the velocity Ẋ we have

1 = SS† + SA† +AS† +
i

2

(
∂S

∂ε

∂S†

∂t
− ∂S

∂t

∂S†

∂ε

)
, (3.33)

where A(ε,X) =
∑

ν Aν(ε,X)Ẋν . Therefore, S and A are related through

AνS
† + SA†ν =

i

2

(
∂S

∂Xν

∂S†

∂ε
− ∂S

∂ε

∂S†

∂Xν

)
. (3.34)

In the next section we will see that the A-matrix is essential to express the current-
induced dissipation and “Lorentz” forces, Eqs. (3.23) and (3.24).
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3.3. S-matrix theory of current-induced forces

3.3.2. Current-induced forces

After exploiting the slow variation of the scattering matrix with time we can now express
the results for the current-induced forces of the preceding section in terms of the S- and
A-matrices.

Mean Force

The mean force exerted by the electrons on the oscillator is given by Eq. (3.21). Using
Eq. (3.19) we can express G< in terms of GR and GA and obtain

Fν(X) = −
∫

dε
∑
α

fαtr
(

ΠαWGAΛνGRW †
)
, (3.35)

where we have used also the cyclic invariance of the trace. In order to write the expression
inside the trace in terms of the S-matrix, we note that 2πiGAW †WGR = GA − GR,
implied by Eq. (3.14), so that

WGAΛνGRW † = (1 + 2πiWGAW †)WGRΛνGRW † =
i

2π
S†

∂S

∂Xν
. (3.36)

Here we have used Eq. (3.29) and Eq. (3.15) in the last equality. Note that this relation
holds for arbitrary magnitude of X. Hence, the mean force, Eq. (3.35), can be expressed
directly through scattering matrices S(ε,X) as

Fν(X) =
∑
α

∫
dε

2πi
fαTr

(
ΠαS

† ∂S
∂Xν

)
. (3.37)

Note that now the trace (denoted by “Tr”) is over lead-space.
An important issue is whether this force is conservative, i.e., derivable from a potential.

A necessary condition for this is that the “curl” of the force, ∂XνFν′ − ∂Xν′Fν , vanishes.
In equilibrium the sum over the lead indices in Eq. (3.37) can be directly performed, since
fα = f for all α, and

∑
α Πα = 1. Therefore we obtain for the curl

∂Fν′

∂Xν
− ∂Fν
∂Xν′

=

∫
dε

2πi
f Tr

(
∂S†

∂Xν

∂S

∂Xν′
− ∂S†

∂Xν′
SS†

∂S

∂Xν

)
=

∫
dε

2πi
f Tr

(
∂S†

∂Xν

∂S

∂Xν′
− ∂S

∂Xν′

∂S†

∂Xν

)
= 0 , (3.38)

where we have used the unitarity of the S-matrix, the cyclic property of the trace, and
Eq. (3.32) in the last line. Thus, the mean force is conservative in thermal equilibrium. In
general, however, the mean force will be non-conservative in out-of-equilibrium situations,
providing a way to exert work on the mechanical degrees of freedom by controlling
the external bias potential [Dundas et al., 2009; Todorov et al., 2010; Lü et al., 2010].
Examples will be studied in Chapter 4, where we explicitly study the coupling of two
mechanical modes to the conduction electrons, and in Chapter 5 in the context of magnetic
systems and spin-transfer torques.
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3. Current-induced forces in mesoscopic systems

Stochastic Force

Next, we discuss the fluctuating force ξν with variance Dνν′ given by Eq.(3.26). Following
a similar path as described in the previous subsection for the mean force Fν , we can also
express the variance of the fluctuating force in terms of the adiabatic S-matrix. Namely,
we explicitly insert the expressions for the Green’s functions, Eqs. (3.19) and (3.20), into
Eq. (3.26), and obtain with the help of the relation (3.36)

Dνν′(X) =
∑
αα′

∫
dε

2π
Fαα′Tr

{
Πα

[
S†

∂S

∂Xν

]†
Πα′S

† ∂S
∂Xν′

}
s

. (3.39)

Here we have introduced the function Fαα′(ε) = fα(ε) [1− fα′(ε)]. From Eq. (3.39)
it is straightforward to show that Dνν′ is positive definite. By performing a unitary
transformation to a basis in which Dνν′ is diagonal, using Πα = Π2

α and the cyclic
invariance of the trace, we obtain the expression

Dνν(X) =
∑
αα′

∫
dε

2π
Fαα′Tr

{(
Πα′S

† ∂S
∂Xν

Πα

)†
Πα′S

† ∂S
∂Xν

Πα

}
s

, (3.40)

which is evidently positive.

We note that we were able to express both the mean force and the correlator of the
stochastic force in terms of the frozen S-matrix only. This is no longer the case for the
first correction to the strictly adiabatic approximation, given by Eqs. (3.23) and (3.24).
We focus on these contributions next.

Damping Matrix

We start here with the first of the terms, which are proportional to the velocity Ẋ, the
symmetric matrix γs. This term is responsible for dissipation of the mechanical system
into the electronic bath. The result for γs is given below in Eq. (3.49), and we detail its –
somewhat lengthy – derivation now.

With the aid of Eqs. (3.19) and (3.20), the expression for γs given in Eq. (3.23) can be
written explicitly in terms of retarded and advanced Green’s functions as

γsνν′ =2π
∑
αα′

∫
dε fα(−∂εfα′)tr

{
ΛνGRW †ΠαWGAΛν

′
GRW †Πα′WGA

}
s

+ 2π
∑
αα′

∫
dε Fαα′tr

{
ΛνGRW †ΠαWGAΛν

′
∂ε

(
GRW †Πα′WGA

)}
s
. (3.41)

It is instructive to split the factor Fαα′ into a symmetric and an antisymmetric part
under exchange of the lead indices, Fαα′ = F sαα′ + F aαα′ , with

F sαα′ ≡
1

2
(fα + fα′ − 2fαfα′) and F aαα′ ≡

1

2
(fα − fα′) . (3.42)
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3.3. S-matrix theory of current-induced forces

Correspondingly, we split the second line of Eq. (3.41) into symmetric and antisymmetric
parts in the lead indices. Then we can write

γsνν′ =2π
∑
αα′

∫
dε
[
fα(−∂εfα′)−

1

2
∂εF

s
αα′
]
tr
{

ΛνGRW †ΠαWGAΛν
′
GRW †Πα′WGA

}
s

+ 2π
∑
αα′

∫
dεF aαα′tr

{
ΛνGRW †ΠαWGAΛν

′
∂ε

(
GRW †Πα′WGA

)}
s
, (3.43)

where we have used the symmetries of the term proportional to F sαα′ and have integrated
by parts noting that F sαα′ vanishes for ε→ ±∞.

Since in equilibrium F aαα′ = F aαα = 0 and the second line of Eq. (3.43) vanishes, we
can now regroup terms into an “equilibrium” and a purely non-equilibrium contribution
γs = γs,eq + γs,ne. Thus, using the cyclic invariance of the trace and Eq. (3.36), the first
line of Eq. (3.43) can be written as

γs,eqνν′ =
1

4

∑
αα′

∫
dε

2π
∂ε(fα + fα′)Tr

{
ΠαS

† ∂S
∂Xν

Πα′S
† ∂S
∂Xν′

}
s

=
1

2

∑
α

∫
dε

2π
(−∂εfα)Tr

(
Πα

∂S†

∂Xν

∂S

∂Xν′

)
, (3.44)

where we have used that
∑

α′ Πα′ = 1 , S†S = 1, and Eq. (3.32) in the last line. Note that
in general, γs,eq also depends on the applied bias voltage, but gives the only contribution
to the damping matrix when in equilibrium.

To express γs,ne, given by the second line of Eq. (3.43), in terms of S-matrix quantities,
we rewrite this contribution as

γs,neνν′

=

∫
dε

2i

∑
α

fαtr

{
Πα

[
S†

∂S

∂Xν
WGAΛν

′
∂ε(G

RW †)− ∂ε(WGA)Λν
′
GRW †

]}
s

, (3.45)

where we have exploited
∑

α Πα = 1 and the identity (3.36). The evaluation of the
commutator, denoted by [. , .], is lengthy but can be done straightforwardly with the
help of Eq. (3.14). Finally, we obtain

γs,neνν′ =

∫
dε

2πi

∑
α

fαTr

{
Πα

(
∂S†

∂Xν
Aν′ −A†ν′

∂S

∂Xν

)}
s

, (3.46)

in terms of the A-matrix defined in Eq. (3.31). Here we have used the identity

1

π

∂S†

∂Xν
Aν′ =2πiWGAΛνGAW †

∂(WGR)

∂ε
Λν
′
GRW †

−WGAΛν(GA −GR)Λν
′ ∂(GRW †)

∂ε
. (3.47)
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3. Current-induced forces in mesoscopic systems

Note that γs,neνν′ vanishes in equilibrium, as can be shown using the properties of the
S and A matrices: Since the sum over leads can be directly performed in equilibrium,
expression (3.46) involves

Tr

{
∂S†

∂Xν
Aν′ −A†ν′

∂S

∂Xν

}
s

= −Tr

{
∂S

∂Xν
S†
(
Aν′S

† + SA†ν′
)}

s

=− i

2
Tr

{
∂S

∂Xν
S†
(
∂S

∂Xν′

∂S†

∂ε
− S∂S

†

∂ε

∂S

∂Xν′
S†
)}

s

= 0, (3.48)

where we have used the unitarity of S and the cyclic invariance of the trace multiple
times. In the first equality, we inserted S†S = 1 and used Eq. (3.32), the second equality
follows by inserting the identity (3.34) and using again (3.32).

Finally, combining all terms we obtain an S-matrix expression for the full damping
matrix γs,

γsνν′(X) =−
∑
α

∫
dε

4π
∂εfαTr

{
Πα

∂S†

∂Xν

∂S

∂Xν′

}
s

+
∑
α

∫
dε

2πi
fαTr

{
Πα

(
∂S†

∂Xν
Aν′ −A†ν′

∂S

∂Xν

)}
s

. (3.49)

Note that in equilibrium, by the relation −∂εf = f(1− f)/T and using Eq. (3.32), the
fluctuating force D and damping γs are related via

Dνν′ = 2Tγs,eqνν′ = 2Tγsνν′ (3.50)

as required by the fluctuation-dissipation theorem. Our result for γs,eqνν′ is analogous to
the S-matrix expression obtained for dissipation in ferromagnets in thermal equilibrium,
dubbed Gilbert damping [Brataas et al., 2008]. We will encounter magnetic systems,
both in and out-of equilibrium, in more detail in Chapter 5.

Following a similar set of steps as shown above for the variance Dνν′ in Eq. (3.40), one
sees that γs,eqνν′ has positive eigenvalues. On the other hand, the sign of γs,neνν′ is not fixed,
allowing the possibility of negative eigenvalues of γs. The possibility of negative damping
is, therefore, a pure non-equilibrium effect. Several recent papers found negative damping
in specific out of equilibrium models [Clerk and Bennett, 2005; Hussein et al., 2010; Lü
et al., 2011], further examples will be discussed in the next chapter.

Lorentz force

The contribution to the Langevin equation −∑ν′ γ
a
νν′Ẋν′ acts like a Lorentz force and

we want to express the corresponding effective magnetic field2 in terms of the S- and
A-matrices in the following.

2Consider for example a two-dimensional problem,X = (X1, X2), in which the antisymmetric part of

the velocity dependent force accordingly reads

(
0 −γa12
γa12 0

)(
Ẋ1

Ẋ2

)
. This corresponds to the Lorentz

force −eẊ ×B when B = (γa12/e)ê3 is identified as an effective magnetic field.
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3.4. Current

Using Eq. (3.19) for the lesser Green’s function, this effective magnetic field can be
written as

γaνν′ = i

∫
dε
∑
α

fαTr
{

ΠαWGAΛν
(
∂εG

R + ∂εG
A
)

Λν
′
GRW †

}
a
. (3.51)

In order to relate this to the scattering matrix, we note that taking the derivative of the
A-matrix with respect to Xν′ yields [∂Xν′Aν ]a = 2π[WGRΛν′(∂εG

R)ΛνGRW †]a, using
Eqs. (3.15) and (3.31). Therefore we obtain[

S†
∂Aν
∂Xν′

]
a

= −2π
[
WGAΛν(∂εG

R)Λν
′
GRW †

]
a
, (3.52)

which allows us to write γa in terms of the S-matrix as

γaνν′(X) =
∑
α

∫
dε

2πi
fαTr

{
Πα

(
S†

∂Aν
∂Xν′

− ∂A†ν
∂Xν′

S

)}
a

. (3.53)

If the system is time-reversal invariant, γa vanishes in thermal equilibrium. The latter
implies

∑
α Παfα = f , so that Eq. (3.53) involves only

Tr

{
S†

∂Aν
∂Xν′

− ∂A†ν
∂Xν′

S

}
= Tr

{
∂ATν
∂Xν′

S∗ − ST ∂A
∗
ν

∂Xν′

}
= Tr

{
− ∂Aν
∂Xν′

S† + S
∂A†ν
∂Xν′

}
,

yielding γa = 0 due to the cyclic invariance of the trace. In the last equality, we have
used S = ST and A = −AT as implied by time-reversal invariance.

Out of equilibrium, γa generally does not vanish even for time reversal symmetric
conductors, since the current effectively breaks time reversal symmetry.

3.4. Current

So far we have focused on the effect of the electrons on the mechanical degrees of freedom.
For a complete picture, we also need to consider the reverse effect of the mechanical
vibrations on the electronic current. In the strictly adiabatic limit, this obviously has
to reduce to the Landauer-Büttiker formula for the transport current. Considering
the leading adiabatic correction to the current in equilibrium is closely related to the
phenomenon of quantum pumping, and we will see that our results in this limit essentially
reduce to Brouwer’s S-matrix formula for the pumping current [Brouwer, 1998]. Our
full result is, however, more general since it gives the leading adiabatic correction to the
current in arbitrary non-equilibrium situations [Moskalets and Büttiker, 2005].

The current through lead α is given by Eq. (2.53),

Iα(t) = e

∫
dt′ tr

{
GR(t, t′)Σ<

α (t′, t) + G<(t, t′)ΣA
α (t′, t)

}
+ h.c. ,
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3. Current-induced forces in mesoscopic systems

as we have discussed in Section 2.2.4. Again we use the separation of time scales and go
to the Wigner representation, yielding

Iα = e

∫
dε

2π
tr
{
GRΣ<

α + G<ΣA
α − i

2

(
∂tGR∂εΣ<

α + ∂tG<∂εΣA
α

)}
+ h.c. . (3.54)

We split the current into an adiabatic contribution I0
α and a term proportional to the

velocity Ẋµ: Iα = I0
α+I1

α. Next we will express these quantities in terms of the scattering
matrix.

3.4.1. Landauer-Büttiker current

The strictly adiabatic contribution to the current is given by

I0
α(X) = e

∫
dε

2π
tr
{(
GR −GA

)
Σ<
α +G<

(
ΣA
α − ΣR

α

)}
, (3.55)

where we have collected the purely adiabatic terms from Eqs. (3.17) and (3.18). Inserting
the expressions for the self-energies Eqs. (2.44) and (2.48), we can express this as

I0
α(X) = e

∫
dε
∑
β

fβi Tr
{
W
[
δαβ(GR −GA) + 2πiGRW †ΠβWGA

]
W †Πα

}
, (3.56)

where we used Eq. (3.19). Inserting the adiabatic S-matrix, Eq. (3.29) yields

I0
α(X) = e

∫
dε

2π

∑
β

fβTr
{[
δαβ − SΠβS

†
]

Πα

}
(3.57)

= e

∫
dε

2π

∑
β

(fα − fβ) Tr
{
SΠβS

†Πα

}
, (3.58)

where we used
∑

β SΠβS
† = 1 in the last line. We hence recover the usual expression for

the Landauer-Büttiker current [Büttiker et al., 1985], Eq. (2.16), which we discussed in
Section 2.1. Note that the total adiabatic current depends implicitly on time through
X(t), and is conserved at every instant of time,

∑
α I

0
α(X) = 0. In the next chapter we

will demonstrate how the X-dependence of the current can be used for monitoring the
dynamics of the oscillator.

To obtain the dc current, we need to average Iα over the Langevin dynamics of the
mechanical degrees of freedom. Alternatively, we can average the current expression
with the probability distribution of X, which can be obtained from the corresponding
Fokker-Planck equation, as done, e.g. , in [Mozyrsky et al., 2006; Brüggemann et al.,
2012]. Similar remarks would apply to calculations of the current noise. We will deal with
the Fokker-Planck equation to some extent in Chapter 5 when we study the switching
dynamics of anisotropic magnetic molecules.
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3.5. Summary

3.4.2. First order correction

Now we turn to the first order correction to the adiabatic approximation [Moskalets and
Büttiker, 2005], restricting our considerations to the wide-band limit. The contribution
to the current (3.54) which is linear in the velocity reads

I1
α(X)

=− e
∫

dε

2πi

∑
µ

Ẋµ tr
{

(∂εG
R)ΛµGRΣ<

α +
[(
∂εG

<
)

ΛµGA −GRΛµ(∂εG
<)
]

ΣA
α

}
+ h.c.

=− e
∫

dε
∑
ν

Ẋν

∑
β

fβ

{δαβ
iπ

tr
[
(∂εG

R)ΛνGRW †ΠαW
]

+ tr
[
GRW †ΠβWGA

(
W †ΠαW (∂εG

R)Λν − Λν∂ε(G
AW †ΠαW )

)]}
+h.c., (3.59)

after integration by parts and using the cyclic invariance of the trace. Again, we have
inserted Eq. (3.19) for the lesser Green’s function, and expressions (2.44) and (2.48) for
the self-energies. In the wide band limit, the identity

(i/2)∂ε∂XνS +Aν = W (∂εG
R)ΛνGRW † (3.60)

holds, so that we can write

I1
α(X) = −e

∫
dε

2π
Ẋ ·

∑
β

fβTr

[(
i

2

∂2S

∂ε∂X
+A

)
ΠβS

†Πα

]
+ h.c. . (3.61)

After straightforward manipulations we integrate by parts, so that we can split this
expression as

I1
α(X) =− e

2π

∫
dεẊ ·

∑
β

∂εfβImTr

{
Πα

∂S

∂X
ΠβS

†
}

+
e

2π

∫
dεẊ ·

∑
β

fβ ReTr

{
iΠα

∂S

∂X
Πβ

∂S†

∂ε
− 2ΠαAΠβS

†
}
.

(3.62)

In equilibrium, the second term vanishes due to the identity Eq. (3.34) and the first
term agrees with Brouwer’s formula for the pumping current [Brouwer, 1998]. As for
the strictly adiabatic contribution, the dc current is obtained by averaging over the
probability distribution of X.

3.5. Summary

In this chapter we have described slowly varying mechanical modes coupled to electrons
flowing through a nanostructure. These mechanical modes are described by a Langevin
equation containing current-induced forces. Under general non-equilibrium conditions
they include
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3. Current-induced forces in mesoscopic systems

• an average force (which can be non-conservative out of equilibrium),

• the damping (with possibly negative eigenvalues, corresponding to energy-transfer
from the current to the oscillator),

• a non-dissipative velocity dependent (“Lorentz”-) force which is present even for
time reversal invariant systems, and

• a fluctuating force originating from noise of the current flow.

We have also calculated how the backaction of these forces affects the current through
the device. The dependence of the current on the vibrational dynamics allows one to
study the current-induced forces by monitoring the electronic transport; this holds already
for the strictly adiabatic current. In equilibrium the first order correction reduces to
the well-known expression for the pumping current. When more than one mechanical
mode couples to the conduction electrons this yields the possibility of transferring charge
through the devices even in the absence of an applied bias voltage.

We have calculated the current-induced forces and the current in a non-equilibrium
Born-Oppenheimer approximation. Starting from a Green’s functions approach we have
related the resulting expressions to scattering theory. Going beyond the strictly adiabatic
limit, we have realized that in general non-equilibrium situations the forces cannot be
expressed solely by the frozen S-matrix but an additional fundamental quantity, the
A-matrix, is needed for the description.

A number of examples which illustrate the description of the various current-induced
forces, which we have derived here, will be considered in the following chapter.
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4. Current-induced forces: Examples

In this chapter we are going to apply our general formalism of current-induced forces to
several simple models which illustrate the peculiar nature of the NEMS. We consider
models which are inspired e.g. by quantum dots, which are coupled to two electrodes,
or molecules in a break junction. The vibrational modes can be excited by the current
flowing through the system which in turn is affected by the mechanical motion.

Figure 4.1. Exemplary vibrational
modes considered in the main text.

We consider three model systems of increas-
ing complexity. In Section 4.1 we study a single
electronic level coupled to a single vibrational
mode, like the one illustrated in Fig. 4.1 (a). In
Section 4.2 we exploit the situation which is
illustrated in Fig.4.1 (b): a structure consisting
of two electronic levels which couple to another
vibrational mode. We find that the A-matrix,
derived in Chapter 3, is needed for the descrip-
tion of this setup and we find the possibility of
negative damping which can be controlled elec-
tronically. As a last example for a NEMS, we
consider the coupling of the electrons with two
vibrational modes in Section 4.3. Specifically,
we find that in out-of-equilibrium situations
the current-induced forces can destabilize the
mechanical vibrations and cause limit-cycle dynamics. We also study how signatures of
the dynamics can be extracted from the current.

The results presented in this chapter have been published in [Bode et al., 2011] and
[Bode et al., 2012d].

4.1. Resonant Level

To connect with the existing literature, we treat as a first example the simplest case
within our formalism: a resonant electronic level coupled to a single vibrational mode
and attached to two leads on the left (L) and right (R). This model has been discussed
in detail for zero temperature by Mozyrsky et al. [2006] and Pistolesi et al. [2008]. It
provides a simple description on how current-induced forces can be used to manipulate a
molecular switch. Here we derive finite-temperature expressions for the current-induced
forces for a generic coupling between electronic and mechanical degrees of freedom,
starting from the scattering matrix of the system, and show how they reduce to the
known results for zero temperature and linear coupling.
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4. Current-induced forces: Examples

We consider a single electronic level which is coupled to one mechanical mode, N =
M = 1, denoting the mode coordinate by X, the energy of the dot level by ε̃(X), and
the number of channels in the left and right leads by NL and NR, respectively. The
Hamiltonian of the dot can then be written as

HD = ε̃(X)d†d (4.1)

and the hybridization matrix as W † =
(
W L,WR

)†
, with W α = (Wα

1 , . . .W
α
Nα

) and
α = L, R. Hence the frozen S-matrix, Eq. (3.29), is given by

S = 1− 2πi

L

(
W L

(
W L

)†
W L

(
WR

)†
WR

(
W L

)†
WR

(
WR

)†
)
, (4.2)

where L(ε,X) = ε− ε̃(X) + iΓ, Γ = ΓL + ΓR, and Γα = π (W α)† ·W α. Rotating to an
eigenbasis of the lead channels, this S-matrix does not mix channels within the same
lead, and hence we can project the S-matrix into a single non-trivial channel in each lead,
to obtain

S = 1− 2i

L

(
ΓL

√
ΓLΓR√

ΓLΓR ΓR

)
. (4.3)

To calculate the mean force from Eq.(3.37), we need an explicit expression for the relation
(3.36). This can be easily calculated to be

S†
∂S

∂X
= − ∂ε̃

∂X

2i

|L|2
(

ΓL
√

ΓLΓR√
ΓLΓR ΓR

)
(4.4)

and hence

F (X) = −
∫

dε

π

[
fLΓL + fRΓR

|L|2
]
∂ε̃

∂X
. (4.5)

Analogously, the variance of the stochastic force, Eq. (3.39), becomes

D(X) = 2

∫
dε

π

∑
αα′

ΓαΓα′Fαα′

|L|4
[
∂ε̃

∂X

]2

. (4.6)

It only remains to calculate the dissipation coefficient γ. Since there is only one collective
mode, ν = 1, γ is a scalar and hence γa = 0. Moreover, for energy-independent
hybridization we have that ∂εG

R = −(GR)2, and the A-matrix (3.31) can be written as

Aν = −πWGR[GR,Λν ]GRW † . (4.7)

Being the commutator of scalars, in this case A1 = 0 and from Eq. (3.49), γs must be
positive and is given by Eq. (3.44). (For an alternative derivation of the positiveness
of the friction coefficient in a resonant-level system, see Hyldgaard [2003]). After some
algebra, we obtain(

∂S

∂X

)† ∂S
∂X

= 4

[
∂ε̃

∂X

]2 Γ

|L|2
(

ΓL
√

ΓLΓR√
ΓLΓR ΓR

)
. (4.8)
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Figure 4.2. Resonant level. The shape of the effective potential Ũ(X) can be tuned
by the bias voltage. We consider the level to be in the middle of the current window
(eVgate = 0) and the parameters ~ω0 = 0.01 and Γ = 0.1. The dimensionless coordinate
is x = (Mω2

0/λ)X and energies are measured in units of λ2/(Mω2
0).

and hence the damping coefficient becomes

γ(X) = −dε

π
Γ

ΓL∂εfL + ΓR∂εfR

|L|4
[
∂ε̃

∂X

]2

. (4.9)

We can evaluate the remaining integrals analytically in the zero-temperature limit
[Mozyrsky et al., 2006; Pistolesi et al., 2008]. In the following we assume µL ≥ µR. The
average force is given by

F (X) = − 1

π

∂ε̃

∂X

∑
α

Γα
Γ

[
arctan

(
µα − ε̃

Γ

)
+
π

2

]
. (4.10)

Similarly we obtain the dissipation coefficient

γs(X) =
Γ

π

[
∂ε̃

∂X

]2∑
α

Γα[
(µα − ε̃)2 + Γ2

]2 , (4.11)

together with the fluctuation kernel

D(X) =
ΓLΓR
πΓ3

[
∂ε̃

∂X

]2 [
arctan

(
µ− ε̃

Γ

)
+

Γ(µ− ε̃)
(µ− ε̃)2 + Γ2

]∣∣∣∣µ=µL

µ=µR

. (4.12)

The position of the dot electronic level can be adjusted by an external gate voltage

eVgate =
µL + µR

2
− ε0 , (4.13)

where the factor (µL + µR)/2 is included for convenience, to measure energies from the
center of the conduction window. The difference in chemical potential between the leads
is adjusted via a bias voltage

eVbias = µL − µR . (4.14)
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Figure 4.3. Sketch of the two-level model. Electrons tunnel through two degenerate
energy levels between left and right leads. Both the hopping between the two levels and
the position of the levels are affected the coupling to the vibrational modes.

For a single vibrational mode, the average current-induced force is necessarily conser-
vative and we can define a corresponding potential. Restricting now our results to linear
coupling, we write the local level as ε̃(X) = ε0 +λX. This situation is illustrated in Fig.4.1
(a). We show the corresponding effective potential Ũ(X) = (Mω2

0/2)X2 −
∫

dXF (X)
which describes both the elastic and the current-induced forces at zero temperature and
various bias voltages in Fig. 4.2. Already this simple example shows that the current-
induced forces can affect the mechanical motion qualitatively. Indeed, the effective
potential Ũ(X) can become multistable even for a purely harmonic elastic force and
depends sensitively on the applied bias voltage.

4.2. Two-level model

For the resonant level model discussed so far, the A-matrix vanishes and the damping is
necessarily positive. We now consider a model which allows for negative damping, see
also [Metelmann and Brandes, 2011]. Our toy model could be inspired by a double dot
on a suspended carbon nanotube or an H2 molecule in a break junction, which we have
mentioned in the introduction. The model is depicted schematically in Fig. 4.3.

The bare dot Hamiltonian corresponds to degenerate electronic states ε0, localized on
the left and right atoms or quantum dots, with tunnel coupling t in between,

H0 = ε0 σ
0 + t σ1, (4.15)

where we denote by σµ (with µ = 0, . . . , 3) the usual Pauli matrices acting in the two-site
basis.1 We consider a single oscillator mode with coordinate X that couples linearly
to the difference in the occupation of the levels. In our previous notation, this means
Λ1 = λ1σ

3. The shift of the electronic levels is given by ε̃±(X) = ε0 ± λ1X. This is
shown schematically in Fig. 4.1 (b) and further illustrated in Fig. 4.4. The hybridization

1The Pauli matrices are given by

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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4.2. Two-level model

Figure 4.4. Cartoon of the positions of the electronic levels in the dot with respect to the
Fermi levels of the leads, depending on the sign of x and the existence of a gate voltage
at zero temperature. The levels are broadened due to the hybridization with the leads Γ.
When x > 0, “left” and “right” levels approach the Fermi levels of left and right leads
respectively. (a) For eVgate = 0 the levels align simultaneously for left and right. (b) The
alignment of the levels is inverted. (c) and (d) A finite eVgate produces an asymmetry
between left and right.

matrices are given by Γα = 1
2Γα(σ0 ± σ3), where the +(−) refers to α = L(R). We can

deduce the tunneling matrix W in terms of the hybridization matrices,

W =
√

ΓL/π
σ0 + σ3

2
+
√

ΓR/π
σ0 − σ3

2
. (4.16)

In the wide-band limit, we approximate W and Γα to be independent of energy. The
retarded adiabatic Green’s function takes the form

GR(ε,X) =
1

∆

(
ε− ε̃+ + iΓR t

t ε− ε̃− + iΓL

)
, (4.17)

with the abbreviation ∆(X) = (ε− ε̃− + iΓL)(ε− ε̃+ + iΓR)− t2.

For simplicity, we restrict our attention to symmetric couplings to the leads, ΓL =
ΓR = Γ/2. Hence the frozen S-matrix and the A-matrix become

S(ε,X) = 1− iΓ

∆

(
ε− ε̃+ + iΓ/2 t

t ε− ε̃− + iΓ/2

)
, (4.18)

A(ε,X) = iλ1
Γ t

∆2
σ2 . (4.19)

We can now give explicit expressions for the current-induced forces. The explicit
expressions are lengthy and are given in Appendix A.1, namely in Eqs. (A.1) and (A.2)
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Figure 4.5. Effective potential for the mechanical motion in the two-level model. The
shape of the potential can be tuned by changing the bias and gate voltages: (a) eVgate = 0,
(b) eVgate = 0.2 and (c) eVgate = 0.4. We consider the parameters ~ω0 = 0.01, t = 0.1 and
Γ = 0.1. The dimensionless coordinate is x = (Mω2

0/λ1)X and energies are measured in
units of λ2

1/(Mω2
0).
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4.2. Two-level model

for the mean force and damping matrix, respectively. The variance of the fluctuating
force can be calculated accordingly. The average force given in Eq. (A.1) combines with
the elastic force to give rise to the effective potential Ũ(X) depicted, for zero temperature,
in Fig. 4.5. As in the case studied in the previous section, the system can exhibit various
levels of multistability when changing the bias.

The results for the friction coefficient, given in Eq. (A.2), are shown in Fig. 4.6
as a function of the dimensionless oscillator coordinate x for zero temperature. The
contribution γs,eq to the friction coefficient is peaked at

eVgate ± eVbias/2 = ±
√

(λ1X)2 + t2, (4.20)

as depicted in Figs. 4.6 (a) and (c). Neglecting the coupling to the leads, our toy model
can be considered as a two-level system with level-spacing 2

√
(λ1X)2 + t2. Thus, the

peaks occur when one of the electronic levels of the dot enters the conduction window.
When this happens, small changes in the oscillator coordinate X can have a large impact
on the occupation of the levels. This effect is more pronounced when the dot’s levels pass
the Fermi levels that they are directly attached to [corresponding to X > 0 for current
flowing from left to right, see Fig. 4.6 (a) and Fig. 4.4 (a), (b)]. The broadening of the
peaks is due to the hybridization with the leads, Γ/2. When eVgate = 0, two peaks are
expected symmetrically about X = 0, as shown in Fig. 4.6 (a) [see also Figs. 4.4 (a) and
(b)]. The effect of a finite gate voltage eVgate is two-fold: it shifts the non-interacting
electronic levels of the dot away from the middle of the conduction window, and hence the
shifted levels ε̃± pass the Fermi levels of right and left leads at different values of X, Figs.
4.4 (c) and (d). Therefore in this case four peaks are expected, with two larger peaks
located at X > 0, and two smaller peaks located at X < 0. This is shown in Fig. 4.6 (c).
The height of the peaks in this case is reduced with respect to the case eVgate = 0, since for
a given peak, only one of the dot’s levels is in resonance with one of the leads. Note that
four real values of X can be obtained only if (eVgate ± eVbias/2)2 > t2, cp. Eq. (4.20). A
situation with (eVgate − eVbias/2)2 < t2 while (eVgate + eVbias/2)2 > t2 is shown in 4.6 (c)

(red-dotted line), where two peaks are present for X± = ±1/λ1

√
(eVgate + eVbias/2)2 − t2

[the small peak at X− is not displayed in Fig. 4.6 (c)], plus a peak at X = 0.
For this model, the A-matrix is generally non-vanishing, which can result in negative

damping for out-of-equilibrium situations. This is due to a negative contribution of γs,ne

to the total damping. This is visualized in Figs. 4.6 (b) and (d). Negative damping is
possible when both dot levels are inside the conduction window, restricting the region
in X over which negative damping can occur. Indeed, when only one level is within
the conduction window, the system effectively reduces to the resonant level model for
which, as we showed in the previous section, the friction coefficient γs is always positive.
When current flows from left to right, negative damping occurs only for positive values
of the oscillator coordinate X, as shown in Figs. 4.6 (b) and (d). This is consistent
with a level-inversion picture, as discussed recently by Lü et al. [2011]. Pictorially, the
electron-vibron coupling causes a splitting in energy of the left and right levels. When
X > 0, electrons can go “down the ladder” formed by the energy levels by passing
energy to the oscillator and hence amplifying the vibrations. For X < 0, electrons
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Figure 4.6. Damping vs. mechanical displacement in the two-level model. (a) Contribution
γs,eq to the friction coefficient for various bias voltages at fixed gate voltage eVgate = 0.
(b) At the same gate voltage, the total damping, γs = γs,eq + γs,ne, exhibits a region of
negative damping due to the contribution of γs,ne. (c) γs,eq for various gate voltages with
the bias voltage eVbias = 0.8. Note that for both eVgate = 0.2 and eVgate = 0.4, one small
peak for negative x falls outside of the shown range of x. (d) Again, the full damping
γs exhibits regions of negative damping. We choose ~ω0 = 0.01, Γ = 0.1 and t = 0.1.
The dimensionless coordinate is x = (Mω2

0/λ1)X and energies are measured in units of
λ2

1/(Mω2
0).
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can pass between the two dots only by absorbing energy from the vibrations, causing
additional non-equilibrium damping. For small broadening of the dot levels due to the
coupling to the leads, this effect is expected to be strongest when the vibration-induced
splitting λ1X becomes of the same order as the strength of the hopping t. When X
grows further, the increasing detuning of the dot levels reduces the current and hence
the non-equilibrium damping [see Figs. 4.6 (b) and (d) and Figs. 4.7 (a), (b)]. The
coexistence of a multistable potential together with regions of negative damping can lead
to interesting non-linear behavior for the dynamics of the oscillator. In particular, and
as we show in the next example, limit-cycle solutions are possible, in the spirit of a Van
der Pol oscillator [Hanggi and Riseborough, 1983].

In order to complete the discussion we also calculate the current. The pumping
contribution is proportional to the velocity Ẋ and thus small. Therefore we show here
results only for the dominant adiabatic part of the current, which is given by

I0 =
e

h

∫
dε

2t2Γ2(fL − fR)

|∆|2
. (4.21)

For zero temperature, the behavior of the current is shown in Fig. 4.7 as a function
of various parameters. Figs. 4.7 (a) and (b) show the current as a function of the
(dimensionless) oscillator coordinate x for two different values of gate potential for which
the system exhibits multistability by developing several metastable equilibrium positions.
For Vgate = 0 and independently of bias, the current shows a maximum at the local
minimum of the effective potential x = 0, while I0 ≈ 0 for another possible local minimum
at x ≈ 0.5 [compare with Fig. 4.5 (a)]. The true equilibrium value of x can be tuned via
the bias potential, showing the possibility of perfect switching. For finite gate potential
however, the current is depleted from x = 0 with diminishing bias. Figs. 4.7 (c) and (d)
show the current as a function of gate or bias voltage for fixed representative values of
the oscillator coordinate x. The current changes stepwise as the number of levels inside
the conduction window changes, coinciding with the peaks in the friction coefficient
illustrated in Fig. 4.6. In an experimental setting, the measured dc current would involve
an average over the probability distribution of the coordinate x, given by the solution of
the Fokker-Planck equation associated to the Langevin equation (3.1).

4.3. Two vibrational modes

As a final example, we present a simple model which allows for both a non-conservative
force and an effective “Lorentz” force, in addition to negative damping. For this it is
necessary to couple the two electronic orbitals of the previous example, see Eq. (4.15), to
at least two oscillatory modes which we assume to be degenerate. The relevant vibrations
in this case can be thought of as a center-of-mass vibration X1 between the leads, and a
stretching mode X2. (It should be noted that this is for visualization purposes only. In
reality, for an H2 molecule, the stretching mode is a high energy mode when compared to
a transverse and a rotational mode, see Djukic et al. [2005]. Nevertheless, the H2 molecule
does indeed have two near-degenerate low energy vibrational modes, corresponding to
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Figure 4.7. Dependence of the current in the two-level model on various parameters.
Current as function of mechanical displacement for (a) Vgate = 0 and (b) Vgate = 0.4; as
function of bias for (c) Vgate = 0, (d) Vgate = 0.4, (e) x = 0 and (f) x = 0.5. We choose
~ω0 = 0.01, Γ = 0.1 and t = 0.1. The dimensionless coordinate is x = (Mω2
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Figure 4.8. Curl of the average force and damping coefficient for the model with two
vibrational modes: (a) The curl of the current-induced mean force F is, in a non-
equilibrium situation, generally non-zero, indicating that the force is non-conservative.
(b) One of the two eigenvalues of γs. Remarkably, it undergoes sign changes. A dissipation
matrix γs which is non-positive definite implies destabilization of the static equilibrium
solution found at lower bias potentials, in this case driving the system into a limit-cycle,
see main text and Fig. 4.9. The parameters used are such that λ1/λ2 = 3/2. The elastic
modes are degenerate with ~ω0 = 0.014, ΓL,R = 1±0.8

2 (σ0±σz), and the hopping between
the orbitals is t = 0.9. The dimensionless coordinates are xi = (Mω2

0/λ)Xi and energies
are given in units of λ2/(Mω2

0), where λ = (λ1 + λ2)/2.
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rigid vibrations between the leads and a rigid rotation relative to the axis defined by the
two leads.) The stretch mode modulates the hopping parameter,

t→ t̃(X2) = t+ λ2X2 , (4.22)

while the center of mass mode X1 is modeled as coupling linearly to the density,

ε0 → ε̃(X1) = ε0 + λ1X1 , (4.23)

hence Λ1 = λ1σ
0 and Λ2 = λ2σ

1. We work in the wide-band limit, but allow for
asymmetric coupling to the leads. The retarded Green’s function becomes

GR(ε,X1, X2) =
1

∆

(
ε− ε̃+ iΓR t̃

t̃ ε− ε̃+ iΓL

)
, (4.24)

where now ∆(X1, X2) = (ε− ε̃+ iΓL)(ε− ε̃+ iΓR)− t̃2. The frozen S-matrix can be easily
calculated to be

S(ε,X1, X2) = 1− 2i

∆

(
(ε− ε̃+ iΓR) ΓL t̃

√
ΓLΓR

t̃
√

ΓLΓR (ε− ε̃+ iΓL) ΓR

)
. (4.25)

The A-matrices also take a simple form for this model. Since Λ1 is proportional to the
identity operator,

A1(ε,X1, X2) = −πλ1WGR [GR, σ
0]GRW

† = 0 . (4.26)

On the other hand, the A-matrix associated with X2 is non-zero and given by

A2(ε,X1, X2) = −iλ2

√
Γ1Γ2

∆2
σ2 . (4.27)

From this we can compute the average force, damping, pseudo-Lorentz force, and noise
terms. These are listed in Appendix A.2. At zero temperature, it is possible to obtain
analytical expressions for these current-induced forces. Studying the dynamics of the
modes X1,2(t) implies solving the two coupled Langevin equations given by Eq.(3.1), after
inserting the expressions for the forces given in Appendix A.2. Within our formalism we
are able to study the full non-linear dynamics of the problem, which brings out a plethora
of new qualitative behavior. In particular, analyses which linearize the current-induced
force about a static equilibrium point would predict run-away modes due to negative
damping and non-conservative forces [Lü et al., 2010]. Taking into account non-linearities
allows one to find the new stable attractor of the motion. Indeed, we find that these
linear instabilities typically result in dynamical equilibrium, namely limit-cycle dynamics.
We note in passing that limit-cycle dynamics in a nanoelectromechanical system was also
discussed recently by Metelmann and Brandes [2011].

We have studied the zero-temperature dynamics of our two-level, two-mode system for
different ranges of parameters. In Fig. 4.8 we map out the values of the curl of the mean
force, (∇× F )⊥, indicating that the force is non-conservative throughout parameter
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4.3. Two vibrational modes

Figure 4.9. Limit-cycle dynamics for the model with two vibrational modes. (a) Limit
cycle (blue solid line) and its approach (blue dotted line) at large bias vs. stable
oscillations at low bias (red asterisk) in the Langevin dynamics without fluctuating force.
(b) At large bias voltages, Poincaré sections of the four dimensional phase space show
the presence of a limit-cycle in the Langevin dynamics without fluctuating force. (c)
Several periods of typical trajectories (for different initial conditions after a transient) in
the presence of the fluctuating forces ξ are shown. The same general parameters as in
Fig. 4.8 are used here.
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Figure 4.10. Current-current correlation function in the presence of noise for the system
with two vibrational modes. The limit-cycle is signaled by a single peak (Vbias = 10,
see Fig. 4.9), as opposed to two peaks in the absence of a limit-cycle (Vbias = 2.5, 5).
Increasing the bias potential increases the noise levels but the peaks are still easily
recognizable. The results are obtained by averaging over times long enough compared
with the characteristic oscillation times. The same general parameters as in Fig. 4.8 are
used here.

space. We also plot one of the two eigenvalues of the dissipation matrix γs, showing that
it can take negative values in some regions of the parameter space.

We find that it is possible to drive the system into a limit-cycle by varying the bias
potential. The existence of this limit-cycle is shown in Fig. 4.9 (a) and (b), where we
show how a limit-cycle is approached and the corresponding various Poincaré sections of
the non-linear system without fluctuations. Fig. 4.9 (b) shows the trajectory in phase
space of the (dimensionless) oscillator coordinate x1 after the dynamical equilibrium is
reached, for several cuts of the (dimensionless) coordinate x2. Each cut shows two points
in x1 phase space, indicating the entry and exit of the trajectory. Each point in the plot
actually consists of several points that fall on top of each other, corresponding to every
time the coordinate x2 has the value indicated in the legend of Fig. 4.9 (b). This shows
the periodicity of the solution of the non-linear equations of motion for x1, x2 for the
particular bias chosen. Surveying over the various values of x2 reveals a closed trajectory
in the parametric coordinate space x1, x2. Remarkably, signatures of the limit-cycle
survive the inclusion of the Langevin force. Fig. 4.9 (c) depicts typical trajectories in
the oscillator’s coordinate space x1, x2 in the presence of the stochastic force, showing
fluctuating trajectories around the stable limit-cycle.

Experimentally, the signature of the limit-cycle would be most directly reflected in
the current-current correlation function, as depicted in Fig. 4.10. We find that in the
absence of a limit-cycle the system is dominated by two characteristic frequencies, shown
by the peaks in Fig. 4.10. These frequencies correspond to the shift in energy of the
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two degenerate vibrational modes due to the average current-induced forces F1 and F2.
When the bias voltage is such that the system enters a limit-cycle, the current-current
correlation shows instead only one peak as a function of frequency. This result, as shown
in Fig. 4.10, is fairly robust to noise, making the onset of limit-cycle dynamics in principle
observable in experiments.

4.4. Summary

The theory outlined in Chapter 3 allows us to study the non-linear dynamics generated
by the interplay between current and vibrational degrees of freedom within a controlled
approximation. This opens up the path for a systematic study of current-induced forces
in nanoelectromechanical systems. We have discussed a number of illustrative toy models
in this chapter.

As an introductory example we have studied a single electronic level, which is coupled
to a single vibrational mode, and through which electrons can flow. We have shown how
the current-induced forces can be controlled by gate and bias voltages. For instance,
it is possible to create bistabilities in the potential, which is interesting in the context
of all-electrical control over molecular switches. In a slightly more advanced model
system, inspired e.g. by a double-dot or an H2 molecule, we have shown that the damping
coefficient can be negative, expressing an unconventional way of energy transfer from the
conduction electrons to the mechanical mode. Depending on the kind of coupling, in a
system with more than one mechanical mode a Lorentz-like force may arise in addition
to the possibly non-conservative mean force resulting in interesting dynamics such as the
existence of a limit-cycle.

Due to the backaction on the current, in principle the dynamics of the oscillator can be
studied by measuring the transport properties of the device. These examples highlight
that it is essential to include the non-linearities of the coupling to the vibrational modes
as well as the full dependencies on the externally controllable voltages.
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5. Current-induced switching in anisotropic
magnetic molecules

In this chapter we describe the interaction between a localized magnetic molecule and
conduction electrons passing through it, in analogy to the discussion of current-induced
forces in the preceding chapters. In particular, we consider current-induced switching in
single-molecule junctions containing an anisotropic magnetic molecule, providing possible
applications to molecular spintronics. Within our model the conduction electrons couple
to the magnetic molecule through the exchange interaction and we consider the regime
of high currents in which the molecular spin dynamics is slow compared to the typical
timescales of the conduction electrons.

Figure 5.1. Sketch of the single-molecule
junction. The electronic spins interact
with the localized magnetic moment.

This chapter is organized as follows. We
introduce our model of the single-molecule
junction containing an anisotropic magnetic
molecule in Section 5.2. In the limit of interest,
the molecular spin obeys a non-equilibrium
Langevin equation which takes the form of
a generalized Landau-Lifshitz-Gilbert (LLG)
equation and which we derive microscopi-
cally by means of the non-equilibrium Born-
Oppenheimer approximation. In Section 5.3
we derive S-matrix expressions for the various
torques entering into the LLG equation, which
generalize previous expressions in the literature
to non-equilibrium situations. This Langevin equation is further explored in Section 5.4,
considering molecular switches with axial symmetry. Switching of the molecular moment
is discussed in Section 5.5, focusing on the effect of fluctuations. There it is convenient
to convert the LLG-equation into a Fokker-Planck equation in order to discuss typical
switching dynamics. In Section 5.6 we consider spin-torque caused by spin-polarized
leads on the magnetic moment, which can also be utilized for molecular switching.

Our discussion closely follows the presentation in [Bode et al., 2012a].

5.1. Introduction

The goal of this chapter is to explore the limit in which the electronic processes are fast
compared to the collective degrees of freedom, in the context of magnetic molecules. We
consider a generic model for an anisotropic magnetic moleculesandwiched between two

57



5. Current-induced switching in anisotropic magnetic molecules

metallic (possibly spin-polarized) electrodes at which a bias voltage is applied [Friedman
and Sarachik, 2010].

Work on molecular spintronics has focused on single molecule magnets such as Mn12 and
transition metal complexes. Transport experiments with Mn12 concentrated on signatures
of the magnetic excitations, as revealed by peaks in the differential conductance [Jo
et al., 2006], and a spin-blockade mechanism [Friedman et al., 1996; Heersche et al., 2006].
Research on transition metal complexes, based e.g. on Co, also addresses the Kondo effect
[Park et al., 2002; Liang et al., 2002; Yu et al., 2005; Romeike et al., 2006; Florens et al.,
2011; Parks et al., 2010; Franke et al., 2011]. Related phenomena have been discussed in
molecular spin valves, which have been realized in setups with C60 [Rocha et al., 2005;
Pasupathy et al., 2004], and more recently in TbPc2 setups coupled to nanotubes through
supramolecular interactions [Urdampilleta et al., 2011].

We consider the regime where the typical time for dynamics of the molecular magnetic
moment is much larger than the dwell time of the electrons flowing through the structure,
so that a single electron is subject to a quasistatic configuration of the molecule. Within
this adiabatic regime it is possible to study the coupled electronic transport and spin
dynamics within a non-equilibrium Born-Oppenheimer (NEBO) approximation analogous
to the one adopted in NEMS in the equivalent regime, as we have discussed in the
preceding chapters. The resulting Landau-Lifshitz-Gilbert equations have been the
basis for several previous works in spintronics and nanomagnetism [Katsura et al., 2006;
Kupferschmidt et al., 2006; Fransson, 2008; Núñez and Duine, 2008; Basko and Vavilov,
2009; Dunn and Kamenev, 2011; López-Mońıs et al., 2012; Tserkovnyak et al., 2002;
Brataas et al., 2008, 2011; Hals et al., 2010]. In particular the spin-transfer torque exerted
by the transport current is well known in the context of layered magnetic structures
[Slonczewski, 1996; Berger, 1996; Ralph and Stiles, 2008]. However, in the setup we
consider, the different coefficients that govern the dynamics of the molecular magnetic
moment show a strong dependence on the bias voltage determined by the electronic
structure of the molecule, also determining the behavior of the electronic current.

Note that we consider a generic and standard model for the molecule which applies to
a wide type of molecular systems, provided that a sufficiently large current flows through
the molecule and that the magnetic moment is sufficiently large to fulfill the adiabatic
condition assumed in the NEBO treatment. In particular, good candidates can be the
Mn12- or Fe8-based devices. These systems are described by microscopic Hamiltonians of
the type we consider in this chapter, and have rigid magnetic cores with magnetization
M = 10 and an anisotropy barrier DM2 of the order of a few meV [Friedman and
Sarachik, 2010; Misiorny and Barnas, 2009; Sanvito, 2011]. Classical descriptions of spin
dynamics have been presented for these molecules in contact to phononic environments
[Zueco and Garćıa-Palacios, 2006]. We estimate for the Mn12- or Fe8 systems with a
rather large magnetic anisotropy that the Born-Oppenheimer approximation can be
applied when the current through the device exceeds ∼ 10nA.
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5.2. Description of the spin dynamics

5.2. Description of the spin dynamics

We consider a minimal model of an anisotropic magnetic molecule embedded into a
single-molecule junction.

5.2.1. Model

We assume that transport through the molecule is dominated by a single molecular
orbital which is coupled to left (L) and right (R) leads at different chemical potentials.
The spin ŝ of the current-carrying electrons couples to a localized molecular spin M̂
through exchange. Then, the full Hamiltonian consists of three terms

H = HL +HT +Hd. (5.1)

The Hamiltonian HL =
∑

η εηc
†
ηcη models the leads α = L,R as free-electron systems

(creation operators c†η with η = [α, kα, σ]). We will consider the possibility of spin-
polarized leads, assuming a spin-dependent dispersion εη. The tunneling Hamiltonian

HT =
∑

η wησc
†
ηdσ + h.c. describes the hybridization between the molecular orbital

(with creation operator d†σ) and the leads. This coupling to the leads through these
two Hamiltonians has been discussed in Section 2.2.3 to some extent. The molecular
Hamiltonian is given by

Hd =
∑
σ

ε0d
†
σdσ + geŝ ·B + J ŝ · M̂ + U(M̂). (5.2)

The potential experienced by the molecular spin in the absence of coupling to the external
leads is U(M̂) = gdM̂ ·B−DM̂2

z . The uniaxial anisotropy of the molecule is parametrized
through the anisotropy parameter D, with easy-axis anisotropy corresponding to D > 0
and easy-plane anisotropy to D < 0. The coupling constant J denotes the strength of
the exchange interaction between the molecular spin M̂ and the electronic spins,

ŝj =
~
2

∑
σ,σ′

d†σσ
j
σσ′dσ′ , (5.3)

where σj (with j = x, y, z) are the usual Pauli matrices.1 For simplicity, we assume
this exchange interaction to be isotropic. The energy of the molecular orbital ε0 can be
tuned by a gate voltage and B represents a Zeeman field acting on the electronic and
the localized spins with g-factors ge and gd, respectively.

We now discuss this model within the non-equilibrium Born-Oppenheimer (NEBO)
approximation in the limit of slow precession of the magnetic moment. Our derivation
starts from the Heisenberg equation of motion for the molecular spin,

˙̂
Mj =

∑
l,k

εjlk[Jŝl + gdBl]M̂k +D
∑
k

εzjk[M̂zM̂k + M̂kM̂z], (5.4)

1See the footnote on page 44 for the definition of the Pauli matrices.
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5. Current-induced switching in anisotropic magnetic molecules

where εjlk is the antisymmetric Levy-Civita tensor. Within the NEBO approximation,

we can turn this into an equation of motion for the expectation value M(t) = 〈M̂(t)〉 of
the localized spin,

Ṁ = M × [−∂MU(M)− Js+ δB] , (5.5)

with −∂MU(M) = −gdB + 2DMzêz. Here, M = M(t) denotes the molecular spin
averaged over a time interval large compared to the electronic time scales, but small
compared to the precessional dynamics of the molecular spin itself. The corresponding
time-averaged electronic spin s = s(t) can be expressed as

sj(t) = 〈ŝj〉M(t) = − i~
2

tr[G<(t, t)σj ]. (5.6)

Here G<σσ′(t, t′) = i〈d†σ′(t′)dσ(t)〉M(t) is the electronic lesser Green’s function of the
molecular orbital. It is important to note that due to the NEBO approximation, the
lesser Green’s function must be evaluated for a given time dependence of the molecular
spin M(t). As a result, the average electronic spin s(t) depends on the molecular spin
at earlier times. This will be considered in more detail in the next subsection. The
instantaneous contribution gives rise to a force acting on the molecular spin. Retardation
effects produce terms proportional to Ṁ , appearing in the equation of motion as Gilbert
damping and a change in the gyromagnetic ratio. Additionally, fluctuations of the
electron spin give rise to a fluctuating Zeeman field δB acting on the molecular spin.

5.2.2. Electronic Green’s function in the adiabatic limit

From now on, we again set ~ = 1. We evaluate the electronic lesser Green’s function,
accounting for the slowly varying molecular spin M(t). The non-equilibrium Born-
Oppenheimer approximation was discussed in detail in Chapter 3 which we now apply
to the magnetic molecule and give explicitly the expressions for the electronic Green’s
functions for this model. We consider the corresponding retarded Green’s function and
– since the electrons are non-interacting– we can obtain G< from GR at the end of the
calculation. Again, we rewrite the Dyson equation in the mixed (Wigner) representation
in order to implement the Born-Oppenheimer approximation. Along these lines we
obtain the Dyson equation for the retarded Green’s function GR = GR(ε, t) in the Wigner
representation, see Eq. (3.12).

In the strictly adiabatic limit we drop the terms proportional to derivatives with respect
to the central time. To this order we obtain the frozen Green’s function

GR(ε,M) =
[
ε− ε0 − ΣR(ε)− σ · b

]−1
. (5.7)

As discussed in Section 2.2.3, the self-energy ΣR
α,σ(ε) accounts for the coupling to the

(possibly spin-polarized) leads, see Eq. (2.44). In the above equation and in what follows,
the Green’s functions, as well as the self-energies, are matrices in spin space with elements
GRσ,σ′(ε, t) and ΣR

σ,σ′(ε), respectively. It is convenient to introduce an effective magnetic

60



5.2. Description of the spin dynamics

Figure 5.2. Illustration of the setup. The electronic level splits due to the effective
magnetic field, given by b = b(ϑ). The number of levels in the current window depends
on b, the applied bias voltage eV = µL−µR and the gate voltage eVg = (µL +µR)/2− ε.

field experienced by the electrons given by

b(t) =
1

2
(JM(t) + geB), (5.8)

see also Fig. 5.2. Notice that even if we consider a constant external magnetic field, the
effective magnetic field is time dependent due to the explicit time dependence of the
molecular spin M = M(t).

In next-to-leading order in the Born-Oppenheimer approximation, we keep the time
derivatives with respect to central time to linear order. As discussed in Section 3.2, the
retarded Green’s function becomes to first order in Ṁ

GR ' GR +
i

2

[
∂εG

Rσ · ḃGR −GRσ · ḃ∂εGR
]
. (5.9)

The lesser Green’s function can now be deduced from the relation Eq. (2.47),2 which
yields

G< 'G< +
i

2

(
∂εG

<σ · ḃGA −GRσ · ḃ∂εG< + ∂εG
Rσ · ḃG< −G<σ · ḃ∂εGA

)
, (5.10)

in accordance with the corresponding expression Eq.(3.18). Here we used G< = GRΣ<GA

where the lesser self-energy is given explicitly in the Appendix B.1. Note that we
suppressed the arguments of the frozen Green’s functions, GR,A,< = GR,A,<(ε,M).

5.2.3. Electron spin

We can now employ this result for the electronic Green’s function and evaluate the
electron spin. Substituting Eq. (5.10) into Eq. (5.6), we find

Js(M) ' Js0(M) + γ(M)Ṁ . (5.11)

2This states G<(t, t′) =
∫

dt1
∫

dt2 GR(t, t1)Σ<(t1, t2)GA(t2, t
′). Here we use GA = [GR]†.
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5. Current-induced switching in anisotropic magnetic molecules

The first term in Eq. (5.11) contains the average electron spin

s0
l (M) = − i

2

∫
dε

2π
tr[G<σl] (5.12)

in the strictly adiabatic limit. The correction due to retardation effects associated with
the slow dynamics of the molecular spin are captured by the matrix γ(M), which follows
from Eq. (5.10) along the lines of the derivation in Section 3.2 using integration by parts
and the relation between the Green’s functions G> −G< = GR −GA. It is appropriate
to split the resulting matrix into γlk = γslk + γalk with the shorthand γs,alk = (γlk ± γkl)/2.
As we will see, the symmetric part of this matrix,

γslk(M) =
J2

4

∫
dε

2π
tr[σl∂εG

>σkG<]s, (5.13)

describes Gilbert damping of the molecular spin, induced by the coupling to the electrons.
The antisymmetric part of the matrix γ,

γalk(M) =
J2

4

∫
dε

2π
tr[σl∂ε

(
GR +GA

)
σkG<]a, (5.14)

will induce a coupling renormalization.
Due to the stochastic nature of the current flow through the magnetic molecule (as

reflected in thermal as well as shot noise of the current), the electronic spin will also
fluctuate, giving rise to a fluctuating torque δB(t) acting on the molecular spin. Note
that in the Born-Oppenheimer limit, we can neglect any frequency dependence of this
correlation function on the time scales of the molecular spin, so that the fluctuating
Zeeman field can be taken as locally correlated in time. Therefore, as discussed in
Chapter 3, in the Born-Oppenheimer approximation, the fluctuating Zeeman field δB
has the symmetrized correlator 〈δBk(t)δBl(t′)〉 = D̃kl(M)δ(t− t′) with

D̃kl(M) =
J2

4

∫
dε

2π
tr[σkG>σlG<]s. (5.15)

Note that accordingly the fluctuations of the spin can be evaluated using the Green’s
function G<,> to lowest order in ḃ.

5.2.4. Landau-Lifshitz-Gilbert equation

Substituting the expression for the electronic spin, Eq. (5.11), into the equation of motion
(5.5) we obtain a Langevin equation of the Landau-Lifshitz-Gilbert type,

Ṁ = M ×
[
−∂MU − Js0 − γsṀ − γaṀ + δB

]
. (5.16)

Note that, unlike in simple versions of a Landau-Lifshitz-Gilbert equation, the effective
exchange field s0 as well as the coefficient matrices γs and γa still depend on the molecular
spin M itself. We can simplify this equation by introducing the vector

Ck(M) =
1

2

∑
lm

εklmγ
a
lm(M). (5.17)
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Using that the length of M is conserved, it follows that the antisymmetric part of γ
merely renormalizes the precession frequency by an overall prefactor

α(M) =
1

1 +C ·M . (5.18)

This yields the simplified Landau-Lifshitz-Gilbert equation

Ṁ = αM ×
[
−∂MU − Js0 − γsṀ + δB

]
, (5.19)

which we will analyze further in the subsequent sections.
When coupled to spin-polarized leads and when a finite bias voltage is applied, the

torque can be non-conservative, yielding the so-called spin-transfer torque [Ralph and
Stiles, 2008]. Also the eigenvalues of γs can become overall negative, providing another
mechanism of energy transfer from the electrons to the localized spin.

Since the stochastic spin dynamics is effectively two-dimensional, it generically exhibits
similar phenomena as NEMS with more than one vibrational mode, which we have
discussed in the previous chapters. Specifically, this includes the non-conservative nature
of the average force in general non-equilibrium situations as well as the presence of the
antisymmetric contribution to the velocity-dependent force. The latter acts, however, in
different ways in the two cases, owing to the different orders of the Langevin equation. In
the vibrational context, this term gives rise to an effective Lorentz force, while it merely
renormalizes the precession frequency in the context of the magnetic molecule.

5.3. Relation to scattering matrix theory

It has already been noted in a series of works by Tserkovnyak et al. [2002], Brataas et al.
[2008, 2011] and Hals et al. [2010] that the coefficients in the Landau-Lifshitz-Gilbert
equation in lead-ferromagnet-lead structures can be expressed in terms of the scattering
matrix of the structure, resulting in expressions for Gilbert damping and the fluctuating
torque in thermal equilibrium and for current-induced spin-transfer torques within linear
response theory. Here we will provide S-matrix expressions which remain valid in general
out-of-equilibrium situations and which include the exchange field and the precession
renormalization in addition to the Gilbert damping with the only assumption that the
precessional frequency of the localized magnetic moment is slow compared to the electronic
time scales. In this section we apply the general discussion from Chapter 3 in order
to provide S-matrix expressions for the various entries in the Landau-Lifshitz-Gilbert
equation.

For adiabatic parameter variations, the full S-matrix of mesoscopic conductors can
be expressed in the Wigner representation as Büttiker [Moskalets and Büttiker, 2004;
Arrachea and Moskalets, 2006] introduced an A-matrix through

S(ε, t) ' S(M(t), ε) + Ṁ(t) ·A(ε,M(t)),

repeating Eq. (3.28) from Chapter 3. Note that we expanded the full S-matrix S to linear
order in the velocities Ṁ of the adiabatic variables, see [Moskalets and Büttiker, 2004;
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5. Current-induced switching in anisotropic magnetic molecules

Arrachea and Moskalets, 2006]. For the model considered here, the frozen S-matrix and
the A-matrix are related to the frozen retarded Green’s function GR(ε,M) through

S(ε,M) = 1− 2πiWGR(ε,M)W †, (5.20)

Ak(M , ε) = π
J

2

[
∂ε
(
WGR

)
σkGRW † −WGRσk∂ε

(
GRW †

)]
. (5.21)

The average electronic spin s0
l (M) can be written in terms of the frozen S-matrix

(5.20) by expressing the lesser Green’s function G< = GRΣ<GA in terms of the self-
energy Σ<(ε) = iπ

∑
α fαW

†ΠαW with Πα a projector on lead α, cp. the discussion in
Section 2.2.3. Using the identity 2πiW †W = (GR)−1 − (GA)−1, we find

Js0
k(M) = −

∑
α

∫
dε

2πi
fα Tr

(
ΠαS

† ∂S
∂Mk

)
(5.22)

for the average electronic spin. Here the trace “Tr” acts in lead-channel space.
The S-matrix expression (5.22) allows us to make some general statements about the

average torque acting on the molecular spin. In particular, we can evaluate the curl of
the average torque, ∂Ml

s0
k−∂Mk

s0
l . In Section 3.3.2 we have discussed in some detail that

this curl, and hence the spin-transfer torque, vanishes in thermal equilibrium. However,
in general out-of-equilibrium situations, the curl will be nonzero, giving rise to finite
spin-transfer torque. We will return to this issue when we discuss switching in Section 5.6.

To express the velocity-dependent forces in terms of the scattering matrix in general
non-equilibrium situations, we need to go beyond the frozen scattering matrix S and
include the A matrix introduced above. The Gilbert-damping coefficients appearing in
the Langevin equation (5.19) can then be written as

γskl(M) =
∑
α

∫
dε

4π
(−∂εfα)Tr

{
Πα

∂S†

∂Mk

∂S

∂Ml

}
s

+
∑
α

∫
dε

2πi
fαTr

{
Πα

(
∂S†

∂Mk
Al −A†l

∂S

∂Mk

)}
s

. (5.23)

The eigenvalues of the first line are strictly positive while the sign of the second line is
not fixed, giving rise to the possibility of overall negative Gilbert damping. Note that the
second line is a pure non-equilibrium contribution, as discussed in Section 3.3.2. Similarly,
we express the antisymmetric part of γkl as

γakl(M) =
∑
α

∫
dε

2πi
fαTr

{
Πα

(
S†
∂Ak
∂Ml

− ∂A†k
∂Ml

S

)}
a

, (5.24)

which causes a renormalization of the precession frequency, as discussed above.
Similar to the average spin, we can also express the variance of the fluctuating Zeeman

field (5.15) in terms of the frozen S-matrix,

D̃kl(M) =
∑
αα′

∫
dε

2π
fα(1− fα′)Tr

{
Πα

(
S†

∂S

∂Mk

)†
Πα′S

† ∂S
∂Ml

}
s

. (5.25)
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By going to a basis in which D̃ is diagonal and using Πα = Π2
α, we find that D̃ is a positive

definite matrix, see Section 3.3.2. With this preparation, it is now easy to ascertain
that in equilibrium damping and fluctuations are related by the fluctuation-dissipation
theorem, D̃kl = 2Tγskl.

5.4. Molecular switches with axial symmetry

From now on we specify to the case of axial symmetry, where both the magnetic field
and the polarization of the leads point along the anisotropy axis êz. In this section, we
will derive explicit expressions for the current-induced forces, including their dependence
on the molecular spin M .

We first consider the average torque which is determined by the average electronic
spin. Given that there are two basic vectors in the problem, namely êz and M̂ = M/M ,
the spin can be decomposed as

s0(M) = sM (M)M̂ + sz(M)êz + st(M)(êz × M̂). (5.26)

Hence, the average torque exerted on the molecular spin by the conduction electrons is

−αM × Js0 = −αM ×
[
sz êz + st (êz × M̂)

]
, (5.27)

which is obtained by inserting Eq. (5.26) into the Landau-Lifshitz-Gilbert equation
(5.19). The first term inside the bracket can be derived from a potential, since its curl
vanishes. This becomes more evident from the explicit expressions below using that the
M -dependence of the coefficients stems from the effective magnetic field b experienced
by the electrons and that the length of M is conserved. This contribution modifies
the precession frequency around the z-axis. In contrast, the second term on the right

hand side of Eq. (5.27) has a non-vanishing curl, ∇M ×
[
st (êz × M̂)

]
6= 0, so that

st introduces a non-conservative torque, providing the possibility of energy exchange
between the conduction electrons and the molecule.

Concrete expressions for these contributions to the current-induced torque can be
obtained from

sz(M) =− i

∫
dε

2π
[G<z (ε,M) +G<b (ε,M)

(geB
2

+ Re[ΣR
s ]
)

], (5.28)

st(M) =− iJ

M

∫
dε

2π
G<t (ε,M), (5.29)

as derived by substituting G<, see Eq. (B.4) in Appendix B, into Eq. (5.12) and taking
into account possibly spin-polarized leads with the notation ΣR

α,c(s) = [ΣR
α,↑ ± ΣR

α,↓]/2 for
the self-energies.

These general expressions simplify significantly for unpolarized leads.3 In particular, the
component st of the average torque vanishes, and the remaining conservative contribution

3 Unpolarized leads correspond to ΣR
α,s = 0 and one finds that consequently G<t and G<z vanish, see

Eqs. (B.4) and (B.5).
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Figure 5.3. Component of the average current-induced torque in a uniaxial situation
for unpolarized leads. Jsz(M) is plotted as a function of the applied bias voltage for
different gate voltages eVg. As discussed in the text, Jsz changes when the number of
levels in the current window varies at Vg ± eV/2 = ±b (see also Fig. 5.2). The plots are
obtained at zero temperature at the potential minimum ϑ = 0 for the values JM/2 = 0.2,
Γ = 0.1, geB/2 = 0.002 and ge = gd. The precession frequency in the absence of coupling
to electron spin and magnetic field is ε0 = 2DM = 0.01. All energies are measured in
units of the barrier height without magnetic field DM2.

sz is then found to be sz = s−z − s+
z with

s±z (M) =
∑
α

Γα
πΓ

(
arctan

[
µα − ε̃± b

Γ/2

]
+
π

2

)geB
2b

. (5.30)

Here we assume the limit of zero temperature and introduce the shorthand ε̃ = ε0 +Re[Σc].

It is instructive to study the dependence of the average torque on bias and gate
voltage. Notice that, due to the effective magnetic field b acting on the electron spin,
the electronic level splits, like we sketched in Fig. 5.2. Consequently, b, the applied
bias voltage eV = µL − µR, and the gate voltage eVg = (µL + µR)/2 − ε̃ control the
number of levels in the current window. This changes from zero (eV/2 > eVg ± b) to
one (eVg + b > eV/2 > eVg − b) to two (eVg ± b > eV/2).4 The average torque is finite
when just one level, corresponding to e.g. spin-up electrons, is occupied. In contrast, for
sufficiently high bias voltages both spin-up and spin-down electrons participate in the
transport so that no net electron spin acts on the molecule. This is illustrated in Fig. 5.3,
where the average electronic spin on the molecule is plotted as a function of the applied
bias voltage eV for three different values of the molecular level ε0 (as tunable by the gate
voltage eVg).

For Gilbert damping and the fluctuating torque, we restrict ourselves to unpolarized
leads. This choice is motivated by the fact that switching of the molecular spin (as
discussed in the next two sections) is dominated by the average torque for polarized
leads (and thus weakly affected by higher orders in the adiabatic expansion) and by

4He we assume eV, eVg > 0 for simplicity.
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5.5. Fluctuation-induced switching for unpolarized leads.

the fluctuating force for unpolarized leads. (We mention in passing that expressions for
Gilbert damping and fluctuating force for polarized leads can be readily derived but are
rather cumbersome.)

For unpolarized leads, we can split the Gilbert damping tensor into one part proportional
to the unit matrix and another proportional to a projector onto the z-axis,

M × γsṀ = γs,1M × Ṁ + γs,2(Ṁ · êz)M × êz, (5.31)

where γs,1 and γs,2 are scalars. The first term in Eq. (5.31) tends to (anti)align the
molecular spin with the anisotropy axis while the second modifies the precession frequency.
The coefficients γs,1 and γs,2 are calculated by inserting G< and G> from Eq. (B.5) into
Eq. (B.8), resulting in

γs,1(M) =

∫
dε

8π

∑
αβ

J2 ΓαΓβ(−∂εfβ)

[(ε− ε̃+ b)2 + (Γ/2)2] [(ε− ε̃− b)2 + (Γ/2)2]
, (5.32)

and

γs,2(M) =

∫
dε

16π

∑
αβ

(geBJ)2 ΓαΓβ(−∂εfβ)(ε− ε̃)2

[(ε− ε̃+ b)2 + (Γ/2)2]2 [(ε− ε̃− b)2 + (Γ/2)2]2
. (5.33)

The damping coefficient is peaked when the number of levels between µL and µR changes
and thus vanishes at large voltages when both levels are in the transport window. We
illustrate this dependence of γs,1 on gate and bias voltage in Fig. 5.4.

As stated above, the prefactor α in Eq. (5.19) is given by α(M) = 1/ (1 +C ·M), with
C defined in Eq. (5.17). This is calculated in the same way as the damping coefficients,
yielding

C(M) =

∫
dε

2π

∑
α

J2Γ2 Γαfα (ε− ε̃)
[(ε− ε̃+ b)2 + (Γ/2)2]2 [(ε− ε̃− b)2 + (Γ/2)2]2

b, (5.34)

where we have inserted G< and G> into Eq. (5.14).

We close this section with the corresponding expression for the variance of the fluc-
tuating Zeeman field, Eq. (5.15), which becomes D̃kl(M) = D̃1(M)δkl + D̃2(M)bkbl,
where

D̃1(M) =
J2

2

∫
dε

2π

∑
αβ

ΓαΓβfα(1− fβ)

[(ε− ε̃+ b)2 + (Γ/2)2] [(ε− ε̃− b)2 + (Γ/2)2]
, (5.35)

D̃2(M) = J2

∫
dε

2π

∑
αβ

ΓαΓβfα(1− fβ) (ε− ε̃)2

[(ε− ε̃+ b)2 + (Γ/2)2]2 [(ε− ε̃− b)2 + (Γ/2)2]2
, (5.36)

for unpolarized leads. As illustrated in Fig. 5.4, the strength of the fluctuations changes
with the number of electronic levels in the transport window and saturates at high bias
voltages when both levels lie within.
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Figure 5.4. Damping and fluctuations as a function of the applied bias voltage. (a) The
damping coefficient γs,1 is plotted for three different gate voltages. It is peaked when the
number of levels in the current region changes from zero to one to two at Vg± eV/2 = ±b
(see also Fig. 5.2). (b) At these points the fluctuation kernel D̃1 increases steplike. The
level broadening results from the interaction with the leads encapsulated in Γ. (c) The
effective temperature Teff = D̃1/(2γs,1) is shown as a function of the bias voltage. The
plots are obtained at the potential minimum ϑ = 0 with the same parameters as in Fig.
5.3. All energies are measured in units of the barrier height without magnetic field DM2.
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Figure 5.5. Potential experienced by the molecular spin in the absence of coupling to the
electrons. U(ϑ) is shown with and without an external magnetic fields. All energies are
measured in units of the barrier height without magnetic field DM2.

5.5. Fluctuation-induced switching for unpolarized leads.

We now apply our results to discuss the switching dynamics for unpolarized leads. In
the absence of coupling to the electrons the molecular spin moves in the potential
U = gdBMz − DM2

z . For sufficiently small magnetic fields, two minima are present,
corresponding to parallel and antiparallel alignment of the spin to the magnetic field.
This is shown in Fig. 5.5, where U(ϑ) is plotted for different magnetic fields and ϑ
denotes the angle between M and the anisotropy-axis. Assume that the molecular
spin is initially aligned parallel to the magnetic field. Due to the interaction with the
electrons the molecular spin fluctuates about this initial state, causing spin flips at a
certain rate which we calculate in this section. Clearly, these fluctuations depend on
temperature and applied bias voltage. If the system is in thermal equilibrium, this is
a standard problem [Brown, 1963]. Our approach allows us to extend these standard
results to out-of-equilibrium situations in the presence of a bias voltage in addition to
finite temperature. We also demonstrate that the orientation of the molecular spin can
be read out by tracking the current through the molecule.

5.5.1. Fokker-Planck equation

Our approach is based on an equivalent Fokker-Planck formulation of the Langevin
dynamics of the molecular spin. We first rewrite the Langevin equation (5.19) for
unpolarized leads. Describing the orientation of the molecular spin in terms of a polar
angle ϑ (measured relative to the applied magnetic field) and an azimuthal angle ϕ, and
noting that Ṁ/M = ϑ̇êϑ + ϕ̇ sinϑêϕ, we find the Langevin equation

ϑ̇ = α
[
Mγs,1 sinϑ ϕ̇− δBϕ

]
sinϑ ϕ̇ = α

[
−∂ϑU/M − Jsz sinϑ+ δBϑ −M

(
γs,1 + γs,2 sin2 ϑ

)
ϑ̇
]
. (5.37)

Here the noise correlator is given in polar coordinates by D̃ϕϕ = D̃ϑϕ = D̃1 and
D̃ϑϑ = D̃1 + [(geB/2) cosϑ sinϑ]2 D̃2, with D̃i defined in Eq. (5.35).
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Figure 5.6. Switching dynamics for unpolarized leads. (a) Ṽ is plotted for different bias
and gate voltages. (b) The switching rate 1/τ12 is plotted as a function of the applied
bias voltage for different gate voltages. (c) The ratio between the switching rates 1/τ21

and 1/τ12 is shown. The plots are obtained with the same parameters as in Fig. 5.3. All
energies are measured in units of the barrier height without magnetic field DM2.
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5.5. Fluctuation-induced switching for unpolarized leads.

Following standard procedures [Zwanzig, 2001], we now derive the corresponding
Fokker-Planck equation for the probability distribution P (M , t) of the magnetization
vector M at time t. We note that the probability distribution for the molecular spin is
conserved for all t,

∫
dM f(M , t) = 1. Hence, we can write a continuity equation for the

probability distribution,

∂tf(M , t) + ∂M ·
(
Ṁ f(M , t)

)
= 0. (5.38)

Inserting Eq. (5.19) for Ṁ we get

∂tf(M , t) = −Lf(M , t)− ∂M · (αξ(t)f(M , t)) , (5.39)

where ξ(t) = M × δB and the differential operator L is defined via its action on the
function f(M , t) as

Lf = ∂M ·
(
αM ×

[
−∂MU − Js0 − γsṀ

]
f
)
. (5.40)

From this follows the implicit solution

f(M , t) =e−tLf(M , 0)−
∫ t

0
dt′ e−(t−t′)L∂M ·

(
ξ(t′) f(M , t′)

)
. (5.41)

Inserting this again in Eq. (5.39) and averaging over noise, denoted by P (M , t) =
〈f(M , t)〉, yields the Fokker-Planck equation

∂tP (M , t) = −LP (M , t) +
1

2
∂M · (α2D̃) · ∂MP (M , t) = F P (M , t). (5.42)

Here we use that the noise is Gaussian and delta-function correlated, 〈ξk(t)ξl(t′)〉 =
D̃klδ(t− t′) and introduce the Fokker-Planck operator F .

In the uniaxial situation under consideration, the probability distribution is independent
of ϕ and depends on the angle ϑ only. Therefore, the Fokker-Planck equation (5.42)
takes the particularly simple form

∂tP (ϑ, t) =
1

sinϑ
∂ϑ sinϑe−Ṽ (ϑ)∂ϑeṼ (ϑ)β̃(ϑ)P (ϑ, t). (5.43)

This equation has the stationary solution P (ϑ)stat ∝ exp[−Ṽ (ϑ)]/β̃. Here we have
introduced

β̃(ϑ) =
α2D̃1/2

1 + α2M2γs,1
(
γs,1 + γs,2 sin2 ϑ

) , (5.44)

and

Ṽ (ϑ) =

∫ ϑ

dϑ′
∂ϑ′U +MszJ sinϑ′

D̃1/(2γs,1)
. (5.45)
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5. Current-induced switching in anisotropic magnetic molecules

As long as the anisotropy is sufficiently large, U(ϑ) has a minimum U1 at ϑ = ϑ1 = 0,
another minimum U2 at ϑ = ϑ2 = π, and a maximum Um at ϑ = ϑm with 0 < ϑm < π.
We assume that this holds also for Ṽ (ϑ) and visualize the dependence of Ṽ (ϑ) on gate
and bias voltage in Fig. 5.6. One clearly sees that the difference between the values of Ṽ
at the minima and the maximum decreases with increasing bias voltage, as one expects
from the behavior of fluctuations and damping, cp. Fig. 5.4.

Note that in equilibrium the ratio D̃1/(2γs,1) = T , as dictated by the fluctuation-
dissipation theorem. For zero temperature but finite bias voltages V it is sometimes
instructive to interpret this ratio as an effective temperature in each potential well,
Teff ' D̃1/(2γs,1) (as done for instance in the works by Mozyrsky et al. [2006], Pistolesi
et al. [2008] and Núñez and Duine [2008]), see Fig. 5.4. Generally however, both
coefficients, D̃1 and γs,1 are angle dependent and non trivial functions of voltage, as we
have seen explicitly above.

5.5.2. Switching rates

We calculate how long the molecular spin remains on one half of the Bloch sphere. The
mean time τij between passing the energy barrier (from the minimum Ui to Uj) due to
the interaction with the electrons is then found by a standard procedure [Zwanzig, 2001].
We consider the distribution P (M , t) of M which have been at M0 at time t = 0 and
are inside a given volume at time t. The mean first passage time is then given by

τ(M0) =

∫
dt t

∫
dM
−dP (M , t)

dt
, (5.46)

where −
∫

dMdP (M , t)/dt is the distribution of first passage times and
∫

dMP (M , t)
gives the number of M which are still in the volume of consideration at time t. The
distribution of M is P (M , t) = etF δ(M −M0) with P (M , t) = 0 when M is at the
boundary of the volume. Inserting this into Eq. (5.46) yields

τ(M0) =

∫
dt

∫
dMetF δ(M −M0) =

∫
dtetF

†
1, (5.47)

where we have integrated by parts and F † denotes the adjoint Fokker Planck operator.
Hence we obtain the differential equation

F †τ(M) = −1 (5.48)

for the mean first passage time with an absorbing boundary condition. Accordingly, we
consider an adjoint equation to Eq. (5.43),

β̃(ϑ)

sinϑ
eṼ (ϑ)∂ϑe−Ṽ (ϑ) sinϑ∂ϑ τij(ϑ) = −1/2, (5.49)

with an absorbing boundary condition τij(ϑm) = 0. The factor 1/2 takes into account
that it is equally likely to go to ϑ ≷ ϑm at ϑ = ϑm. Solving the equation yields

τ12(ϑ) = 2

∫ ϑm

ϑ
dϑ′

eṼ (ϑ′)

sinϑ′

∫ ϑ′

ϑ1

dϑ′′
sinϑ′′

β̃(ϑ′′)
e−Ṽ (ϑ′′) (5.50)
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5.6. Spin-torque-induced switching with polarized leads

for passing from ϑ < ϑm to ϑ > ϑm and an analogous expression for the opposite process.

When the potential minima are well separated and the fluctuations are small, we can
give an analytical expression for the switching rate. In this limit, the integrals in (5.50)
can be evaluated by saddle-point integration (see Brown [1963] for the situation in which
the coefficients do not depend on ϑ), yielding

1

τij
' 1√

2π
sinϑm

√
|Ṽ ′′(ϑm)|β̃(ϑi)Ṽ

′′(ϑi)e−[Ṽ (ϑm)−Ṽ (ϑi)]. (5.51)

Hence, the rate depends exponentially on the difference between Ṽ evaluated at its
maximum and minimum, respectively, so that it can be tuned by varying bias voltage
and gate potential. The general behavior of 1/τij , as given by Eq. (5.50), is shown in
Fig. 5.6 for typical values as a function of gate and bias voltages. We have discussed
above that the fluctuations increase with the number of levels in the current window.
This is also reflected in the fluctuation induced transition rates which increase with the
bias voltage accordingly.

5.5.3. Current

The current through lead α is given by the change of the number of particles in the lead

times the electronic charge, Iα = −ie〈
[
H,
∑

kα,σ
c†kα,σckα,σ

]
〉. In the adiabatic limit this

is given by Eq. (3.55), as discussed in Section 3.4. We note that IL = −IR = I/2 and
assume symmetric coupling to the leads, ΓL = ΓR = Γ/2. Then we obtain, by inserting
the expressions for the Green’s functions and the self-energies, see Appendix B.1, after
straightforward algebra

I =
e

4π
Γ
∑
±

[
arctan

(
µL − ε̃∓ b

Γ/2

)
− arctan

(
µR − ε̃∓ b

Γ/2

)]
, (5.52)

which is valid at zero temperature. As discussed above, the electronic level splits due to
the interaction with the effective magnetic field b, defined in Eq. (5.8). When this level
splitting is larger than the level broadening Γ, the current increases as the number of
levels in the transport window increases, see Fig. 5.2. This is reflected in peaks of the
differential conductance dI/dV as a function of gate and bias voltage. Note that the
splitting of the electronic levels and thus the number of levels in the transport window
depends on the molecular spin orientation since b = b(ϑ). As a consequence, the current
is also a function of ϑ and the corresponding current-voltage characteristics are shown
in Fig. 5.7. In principle, this allows one to read out the molecular switch via current
measurements.

5.6. Spin-torque-induced switching with polarized leads

The switching mechanism discussed in the previous section originates in fluctuations of
the molecular magnetic moment, introduced by the coupling to the itinerant electrons.
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Figure 5.7. Current-voltage characteristics. (a) The differential conductance dI/dV is
peaked when the number of levels in the current window changes at Vg ± eV/2 = ±b.
(b) Obviously, the current changes when the number of level with energy between the
chemical potentials of the two leads changes. (c) The level splitting 2b(ϑ) depends on
the orientation of the molecular spin. The relative difference of the current evaluated at
the two potential minima is plotted as a function of the bias voltage. [(a) and (b) are
evaluated at ϑ = 0. The plots are obtained with the same parameters as in Fig. 5.3 and
all energies are measured in units of the barrier height without magnetic field DM2.]
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Figure 5.8. Sketch of the effect of polarized leads inducing spin-torque-transfer (indicated
by the magenta arrow) on the molecular moment. Depending on the polarization and
the current, the spin-torque tends to align the molecular moment either (a) along or (b)
against the magnetic field.

In Section 5.3 we have seen that the presence of polarized leads opens the possibility
of negative Gilbert damping which could favor the switching of the molecular spin.
This mechanism strongly depends on the details of the system, like the value of the
mean chemical potential µ and the applied bias voltage. However, for spin-polarized
leads, switching of the molecular moment under general non-equilibrium conditions will
typically be dominated by a different mechanism which is driven by the non-conservative
(or spin-transfer) torque exerted by the coupling to the current carrying electrons. This
term appears already in leading order of the Born-Oppenheimer approximation in which
Gilbert damping and fluctuations can be neglected.

In this section we focus on this spin-torque −Jst(êz × M̂), see Eq. (5.27), in the
Landau-Lifshitz-Gilbert equation (5.19), where st is given by Eq. (5.29). We analyze
under which microscopic conditions it is expected to drive switching in our molecular
setup. In the present case it is clear that it moves the vector M along the azimuthal
direction, tending to align it along the magnetic field. Thus, given a tilted molecular
magnetic moment M precessing around the magnetic field, for st < 0 the spin torque
induces a spiral trajectory moving M toward orbits of smaller radius around the magnetic
field. Instead, for st > 0 it induces orbits of larger radius enabling the switching to the
opposite hemisphere, with M tending to align opposite to the external magnetic field.

In our model, the behavior of st can be rather easily analyzed in the limit of completely
polarized leads, e.g. , Γ↑L = Γ↓R = Γ/2. In this limit Eq. (5.29) simplifies to

st = − JΓ2

4πM

∫
dε

fL − fR∏
± [(ε− ε̃± b)2 + (Γ/2)2]

. (5.53)
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5. Current-induced switching in anisotropic magnetic molecules

Figure 5.9. Motion of the molecular moment in the presence of spin-polarized leads. For
negative bias voltage eV = −0.4, the magnetic moment is driven toward the positive
z-axis (red curve) while inverting the voltage eV → −eV causes a flip of the magnetic

moment (blue curve). (We consider Γ↑L = Γ↓R = 0.1, Γ↓L = Γ↑R = 0 and eVg = 0; the other
parameters are the same as in Fig. 5.3.)

More generally, the sign of st is determined by the condition

sgn[st] = sgn
[(

Γ↓LΓ↑R − Γ↑LΓ↓R

)
(fL − fR)

]
. (5.54)

This is sketched in Fig. 5.8. When we consider a left lead with spin-up polarized electrons
and Γ↑LΓ↓R > Γ↓LΓ↑R, a current flowing from left to right (µL > µR) results in st < 0
and thus antialignment of magnetic moment and magnetic field. For the opposite spin-
polarization, the spin-torque tends to align the magnetic moment with the magnetic
field.

For a given spin-polarization, inverting the direction of the current can switch the
orientation of the magnetic moment in the same way. This is studied by solving numerically
the equation of motion for the molecular spin in the strictly adiabatic limit, hence
neglecting Gilbert damping and fluctuations, in the presence of strongly polarized leads.
In Fig. 5.9 we show the time evolution of the molecular spin initially slightly deviating
from the magnetic field axis for two different voltages. Clearly, the motion of the molecular
spin is determined by the direction of the current through the molecule, showing that
inverting the bias voltage causes spin-flips in this setup.

5.7. Summary

We have applied the formalism of current-induced forces, discussed in Chapter 3, to an
anisotropic magnetic molecule in a single-molecule junction in which conduction electrons
couple via exchange to the localized magnetic moment.
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5.7. Summary

The features of the current-induced torques allow us to use the anisotropic magnetic
molecule in an external magnetic field as a molecular switch. The read-out of the latter can
be accomplished via the backaction of the molecular spin on the transport current. When
the molecule is attached to metallic leads in a uniaxial setup, we have transformed the
Langevin equation into a Fokker-Planck equation allowing us to calculate the switching
rates between the two stable spin orientations. Transitions between these states are driven
by the fluctuations which we have analyzed – in addition to the mean torque, damping,
and the current – as a function of the applied gate and bias voltages and the orientation
of the molecular spin. In the presence of spin-polarized leads, the switching dynamics is
dominated by the non-conservative (spin-transfer) part of the current-induced torque,
which enables switching between the spin orientations by reversing the direction of the
electronic current.
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6. Cooling NEMS by current

In this chapter we investigate how the coupling of coherent electrons to vibrational modes
can provide the functionality of a refrigerator. To this purpose, we analyze the phonon
population in a nanomechanical resonator under the influence of an electronic current.

In the preceding chapters we have seen that when more than one electronic level is
coupled to reservoirs, the interplay between collective degrees of freedom and conduc-
tion electrons can lead to an interesting exchange of energy between the subsystems.

Figure 6.1. Alignment of electronic lev-
els favoring the absorption of phonons.

Here we focus on the situation sketched in
Fig.6.1, in which the electronic levels are tuned
such that electron transport is preferentially
accompanied by the absorption of phonons,
yielding the possibility of refrigerating a NEMS
by transport currents. We consider a generic
model of a double quantum dot connected to
electronic reservoirs and make several simplify-
ing assumptions to allow for detailed analytical
results. First, we assume that the hopping
amplitude between the dots depends on the
oscillator coordinate and that this is the only
process in which phonons are involved. This
situation might be realized in experiments on
suspended carbon nanotubes, in which the suspended section remains far from the
contacts to the leads. Second, we assume weak tunneling between the two dots.

With these simplifications, analytical expressions for the rates of emission and absorp-
tion of phonons can be obtained by perturbation theory. Specifically, this allows one to
obtain the non-equilibrium phonon distribution from a simple rate equation. Our goal is
to analyze the limitations on refrigeration imposed by the temperature of the electronic
reservoirs as well as the heat bath to which the oscillator is coupled. We study how the
phonon population can be tuned by external gate and bias voltages. We consider both
the limit of weak and strong electron-phonon interaction. In the latter case, multi-phonon
processes have to be considered which strongly affect the cooling dynamics. Here we
focus on the regime in which the vibrational frequency is large compared to the coupling
between quantum dots and leads. The opposite regime of a slow oscillator remains an
interesting problem for future work. In fact, it is an interesting aspect of our model
that it allows one to access the regimes of both fast and slow vibrations within the same
analytical approach.

Utilizing electron-phonon coupling for the construction of a nanoscale refrigerator has
already been studied in a number of works. In particular, cooling nanomechanical system
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6. Cooling NEMS by current

into the quantum ground state has attracted much attention, see [Clerk, 2012] for an
overview of recent works. Micrometer-scale refrigerators have been reviewed by Muhonen
et al. [2012]. It has been demonstrated experimentally that a 2DEG which is connected
to two quantum dots can be cooled by a current when bias and gate voltages are tuned
properly [Prance et al., 2009]. Cooling nanomechanical systems which are coupled to
superconducting single-electron transistors has been studied in [Naik et al., 2006]. For
the theoretical description of refrigerators rate equations have been used. For instance
an adatom on a wire [McEniry et al., 2009] or the generic model of a single electronic
level coupled to an oscillator mode [Pistolesi, 2009] have been studied. More general
situations have been considered in a number of model systems by Galperin et al. [2009],
relying on non-trivial structures of the density of states to which the mechanical system
is coupled. Cooling of a carbon nanotube, which hosts two quantum dots, has been
studied by Zippilli et al. [2009, 2010].

The remainder of this chapter is organized as follows. The Hamiltonian and the
description of cooling in terms of a rate equation is considered in Section 6.1. In
Section 6.2 we calculate the transition rates for emission and absorption of phonons.
Equipped with this knowledge we solve the rate equations in limiting cases and discuss
the conditions for cooling in Section 6.3.

This chapter is based on unpublished results [Bode et al., 2012b].

6.1. Model

We consider two quantum dots which are coupled to electronic reservoirs as depicted in
Fig. 6.1. We describe this setup by the Hamiltonian

H =
∑
α=L,R

(Hα +Hc,α + Eαd
†
αdα) +HT , (6.1)

which consists of two dots with energies EL and ER in contact to reservoirs modeled by
free-electron Hamiltonians

Hα =
∑
kα

εkαc
†
kα
ckα . (6.2)

Tunneling between leads and quantum dots is described by

Hc,α =
∑
kα

wkαc
†
kα
dα + h.c. , (6.3)

as we have discussed in Section 2.2.3. The two dots are connected through the tunnel
Hamiltonian

HT = t(x̂)d†LdR + h.c. , (6.4)

with a tunneling matrix element t(x̂). We assume that this tunneling amplitude depends
on the vibrational coordinate, providing the electron-vibron coupling to phonons with
energy ω. This electron-phonon coupling is represented by t(x̂) = te−λx̂. Here the
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(dimensionless) oscillator coordinate is expressed in terms of phononic creation and
annihilation operators, x̂ = â+ â†, and λ denotes the strength of the coupling between
electrons and phonons.

Neglecting the coupling between the two dots, the levels of dot α are hybridized with
the corresponding lead. This hybridization can be described along the same lines as we
have outlined in Section 2.2.3, and the (retarded) Green’s function of the dot becomes

G0R
α (ε) =

1

ε− Eα − Σ0R
α (ε)

, (6.5)

with the self-energy Σ0R
α (ε) =

∑
kα
|wkα |2gRkα(ε). Here the free Green’s function of lead α

is given by gRkα(ε) = 1/(ε−εkα +iη), cp. Eq.(2.42). In the wide-band limit, the self-energy

reads Σ0R
α (ε) ' Re[Σ0

α]−iΓα/2, so that the local density of states, ρα(ε) = −Im[G0R
α (ε)]/π,

becomes

ρα(ε) =
Γα

2π[(ε− εα)2 + (Γα/2)2]
, (6.6)

with the shorthand εα = Eα + Re[Σ0R
α ].

Now we can include the coupling between the dots. In the basis of the (hybridized)

dots, the occupation of dot α changes as 〈Ṅα〉 = −i〈t(x̂) d†α(t)dβ(t)〉 + h.c.|α 6=β, with

Nα = d†αdα. To lowest order in t we obtain, analogous to Eq. (2.53),

〈Ṅα〉 =
∑
nn′

Pn

(
Wn→n′
βα −Wn→n′

αβ

)
, (6.7)

where Pn is the probability for the oscillator to be in its nth excited state. Here we have
identified the rates for transitions between dots α and β accompanied by a change of the
phonon population from n to n′ as

Wn→n′
αβ = |Mn→n′ |2|t|2In→n

′
αβ , (6.8)

with the matrix elements Mn→n′ = 〈n′|e−λx̂|n〉 and the abbreviations

In→nαβ = 2π

∫
dεfα(ε) [1− fβ(ε)] ρα(ε)ρβ(ε), (6.9)

In→n±mαβ = 2π

∫
dεfα(ε) [1− fβ(ε∓mω)] ρα(ε)ρβ(ε∓mω). (6.10)

Here the local density of states ρ is given by Eq. (6.6), and fα(ε) = 1/
(
e(ε−µα)/Te + 1

)
is

the Fermi distribution of lead α.
Our aim is the analysis of the phonon population. The temporal dynamics of the

phonon population can be deduced from the rates which enter the expression for the
current in Eq. (6.7). This results in the rate equation

dPn
dt

=− Pn
∑
n′

Wn→n′ +
∑
n′

Pn′W
n′→n − 1

τ
[Pn − P eq

n ], (6.11)
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where Wn→n′ =
∑

α6=βW
n→n′
αβ are the rates for a transition from n phonons to n′ phonons

in the system. Note that to lowest order in the hopping amplitude t, within our model
transitions always proceed between the two dots, β 6= α. The last term in Eq. (6.11)
is added on phenomenological grounds, describing the relaxation to the equilibrium
distribution P eq

n = e−nω/T (1 − e−ω/T ) [Koch et al., 2006], with T the temperature of
an additional heat bath that the oscillator is coupled to. In the limit of fast relaxation,
1/τ → ∞, the distribution is fixed to its equilibrium value while in the opposite limit
1/τ → 0 the phonon dynamics is driven entirely by the electron-induced processes.1

In particular we are interested in the stationary state of the system so that we will
have to solve the equation Ṗn = 0.

6.2. Transition rates

In this section we analyze the rates Wn→n′
αβ in more detail.

6.2.1. Franck-Condon matrix elements

The transition rates given in Eq. (6.8) contain the vibrational Franck-Condon matrix
elements for a phonon transition

Mn→n′ = [sgn(n′ − n)]n−n
′
λQ−q e−λ

2/2

√
q!

Q!
LQ−qq (λ2), (6.12)

with the abbreviations q = min(n, n′) and Q = max(n, n′), and Lnm(x) are generalized
Laguerre polynomials. These matrix elements are calculated as the overlap of eigenfunc-
tions belonging to two harmonic oscillators displaced relative to each other by a distance√

2λlosc (with losc =
√
~Mω the oscillator length), see e.g. [Koch et al., 2006].

In the limit of weak electron-phonon coupling, λ� 1, the matrix element is proportional
to λQ−q, and accordingly single-phonon processes become dominant in changing the
phonon population. Then the (square of the) corresponding matrix elements become

|Mn→n±1|2 ' max(n, n± 1)λ2, (6.13)

which we use particularly in the later discussion.

6.2.2. Zero temperature

At zero temperature we can easily evaluate the integrals in Eqs. (6.9) and (6.10) analyti-
cally, provided that both electronic levels lie within the current window, µL > εL, εR > µR.
We assume that the level broadening Γ is small compared to the applied bias voltage so
that the electronic levels are not too smeared out.

1We note that in principle this description allows us to treat the electronic reservoirs to be at a different
temperature Te than the temperature T of the additional bath coupled to the oscillator. Since we are
interested in cooling through a charge current rather than due to coupling to a colder environment,
we focus on T = Te.
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Figure 6.2. Contributions In→n,n±1 to the rates as as function of difference between
the electronic levels. Both electronic levels are in the transport window and the level
broadening is small. When the levels are aligned one electrons tunnel through the junction
without phonon emission or absorption (blue curve). Focusing on single-phonon processes,
we see that phonons are preferentially emitted (absorbed) when the left level is ω above
(below) the right level. We plot In→n,n±1 in units of ω for eV = 10, εL is varied while
εR = V/2, and Γ = 0.1.

For processes that do not change the phonon state, we obtain

Wn→n ' 2Γ |t|2
(εL − εR)2 + Γ2

, (6.14)

assuming symmetric coupling to the two leads, ΓL = ΓR = Γ. We also note that
Wn→n
RL = 0. This has been calculated by means of the relation∫ ∞

−∞

dε

2π

Γ

[(ε− ε1)2 + (Γ/2)2][(ε− ε2)2 + (Γ/2)2]
=

2Γ

(ε1 − ε2)2 + Γ2
. (6.15)

Next we consider rates for which mω < eV . We start with the process involving a
transition from left to right dot while exciting m vibrational quanta. Eq. (6.10) yields

Wn→n+m
LR = |t|2|Mn→n+m|2

∫
dε

2π

fL(ε) [1− fR(ε−mω)] Γ2

[(ε− εL)2 + (Γ/2)2] [(ε− εR −mω)2 + (Γ/2)2]

' 2Γ |t|2|Mn→n+m|2
(εL − εR −mω)2 + Γ2

, (6.16)

while Wn→n+m
RL = 0. Similarly we find for the processes with phonon absorption

Wn→n−m
LR ' 2Γ |t|2|Mn→n−m|2

(εL − εR +mω)2 + Γ2
, (6.17)

and Wn→n−m
RL = 0. Typical plots are shown in Fig. 6.2, indicating that the electronic
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6. Cooling NEMS by current

levels can be tuned such that either emission or absorption of phonons dominates. Thus
for mω < eV we obtain the transition rates

Wn→n±m ' 2Γ |Mn→n±m|2|t|2
(εL − εR ∓mω)2 + Γ2

. (6.18)

For our purpose of cooling it is optimal to tune the electronic levels such that εR =
εL +m0ω. Then the expressions above simplify to

Wn→n±m ' 2Γ |Mn→n±m|2|t|2
[(m0 ∓m)ω]2 + Γ2

, for m 6= m0 , (6.19)

Wn→n−m0 ' 2 |Mn→n−m0 |2|t|2
Γ

, (6.20)

for eV > mω. Cooling requires faster absorption than emission of phonons, Wn→n−m >
Wn→n+m. Hence, for the resonant process m = m0 at small level broadening, Γ� 2m0ω,
the rate for absorption is much higher than the one for emission of phonons. Additionally,
we note that the emission of phonons, described by the rate Wn→n+m, is only possible for
m < eV/ω, see Eq. (6.10). In contrast, the number of phonons absorbed in a tunneling
event is unlimited. The influence of all these phonon processes crucially depends on
the coupling strength between electrons and phonons, encoded in the matrix element
|Mn→n±m|2. This has to be studied by solving the rate equation, which is what we turn
to do in the next section.

6.2.3. Finite temperature

The zero temperature results for the transition rates are the main ingredients for our
investigation of refrigeration by means of a current. Nevertheless, for small voltages,
V < ω, in the limit of weak electron-phonon coupling, the dominant rate Wn→n−1 is
finite while Wn→n+1 = 0. Corrections to this are imposed by a finite temperature in the
reservoirs which we consider now.

In order to calculate the corrections of the rates above due to a finite temperature in
the electronic reservoirs, we introduce the shorthand

∆In→n±mαβ (Te) = In→n±mαβ (Te)− In→n±mαβ (0). (6.21)

For the calculation of this correction we make use of the Sommerfeld expansion,∫ +∞

∞
dεfα(ε)F(ε) '

∫ µα

∞
dεF(ε) +

π2

6
T 2

e ∂εF(ε)|ε=µα , (6.22)

in the limit µα � Te for a function F(ε) which vanishes sufficiently fast for ε → ±∞.
Applying this prescription to Eq. (6.10) yields

∆In→n±mαβ (Te)

'+ 2π
π2

6
T 2

e

{
∂ε[ρα(ε)ρβ(ε∓mω)]|µα − fα(µβ ±mω)∂ε[ρα(ε)ρβ(ε∓mω)]|µβ±mω

− ∂εfα(ε)|µβ±mωρα(µβ ±mω)ρβ(µβ)
}
, (6.23)
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using the relation fα(ε)[1− fα(ε)] = −Te∂εfα(ε).

As stated above, for weak electron-phonon coupling we obtain for small voltages,
V < mω, that the rates for absorption of single phonons are finite while heating is
completely absent, In→n+1(0) = 0, see Eqs. (6.10) and (6.20). Accordingly, here the
influence of temperature corrections should be most important. We restrict the following
discussion of finite temperatures to single-phonon processes. In particular, we assume
the two levels εL < µL and εR > µR are at resonance, εR = εL + ω. Thus it is sufficient
to focus on the two resonant processes In→n+1

RL and In→n−1
LR . We obtain in the limit

|µα − εα| � Γ/2

∆In→n+1
RL (Te) '

πΓ2T 2
e

12

{ 4

(εR − µR)5
+

4fR(µL + ω)

(µL − εL)5
+
fR(1− fR)|µL+ω

Te(µL − εL)4

}
. (6.24)

Assuming small temperatures, Te < eV + ω, this simplifies to

∆In→n+1
RL (Te) ' +

π

3

Γ2T 2
e

(εR − µR)5
. (6.25)

In the same limit, the correction to the cooling rates becomes similarly

∆In→n−1
LR (Te) ' −

π

3

(
Γ2T 2

e

(µL − εL)5
+

Γ2T 2
e

(εR − µR)5

)
, (6.26)

which is also quadratic in the temperature. We discuss these results below, after solving
the rate equation.

6.3. Solving the rate equation

In the limit of small electron-phonon coupling, λ � 1, we can focus on single phonon
processes, Wn→n±1, and the rate equation can be easily solved analytically. In this
limit electrons and phonons couple linearly and the rates for emission and absorption of
phonons, see Eqs. (6.8) and (6.13), are given by

Wn→n±1 ' max(n, n± 1)λ2|t|2I±, (6.27)

using the abbreviation I± = In→n±1. With this restriction the rate equation (6.11)
simplifies considerably and becomes

dPn
dt

=−
(
Wn→n+1 +Wn→n−1

)
Pn +Wn+1→nPn+1

+Wn−1→nPn−1 −
1

τ
(Pn − P eq

n ) . (6.28)

Here we note that only the rates involving phonon processes, Wn→(n′ 6=n), enter.
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Figure 6.3. Population of the states P stat
n in comparison with P eq

n . For large τ the
population of the ground state P0 increases. We consider different temperatures (of
the uncoupled oscillator) T and equilibration rates 1/τ (in units of ω), for I+/I− = 0.1
and λ = 0.1 (justifying that only transitions n → n ± 1 are considered). The states
P0, P1, ..., P10 are included in the simulation. We approximate that only the rates Wn→n±1

are non-vanishing.

6.3.1. Analytical solution

From this rate equation we obtain for the average phonon number, n =
∑

n nPn, that

ṅ = −
[
λ2|t|2(I− − I+) + 1/τ

]
n+ λ2|t|2I+ + neq/τ, (6.29)

where neq =
(
eβω − 1

)−1
. Far from equilibrium, 1/τ → 0, the stationary solution of this

equation is given by

n0 =
I+

I− − I+
, (6.30)

provided that I− > I+. Generally, for a positive cooling rate (meaning that λ2|t|2[I− −
I+] + 1/τ > 0), the stationary solution is given by

nstat =
λ2|t|2I+ + neq/τ

λ2|t|2(I− − I+) + 1/τ
' n0 +

neq − n0

τλ2|t|2 (I− − I+)
, (6.31)

cp. for instance [Zippilli et al., 2009]. Here the last approximation holds when the electron-
induced cooling dominates over the relaxation to equilibrium, λ2|t|2 (I− − I+) � 1/τ .
In order to cool the system, i.e. nstat < neq, it is necessary that n0 < neq. From this
condition one can conclude at what temperatures (of the electrons in the leads and the
oscillator) cooling is possible. A system with general λ can be studied by searching
numerically for the stationary solution of the rate equation Eq. (6.11). Results are shown
in Fig. 6.3: depending on the initial temperature of the oscillator and the relaxation
rate it is possible to remove phonons from the system, so that the occupation of the
vibrational ground state becomes more likely.
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Figure 6.4. Effective temperature as a function of the ratio between the rates for
absorption and emission of a phonon, see Eq. (6.8). We consider different temperatures
(of the uncoupled oscillator) T and equilibration rates 1/τ and In→n−1 = 1 (in units
of ω), and λ = 0.1 (note that only transitions n → n ± 1 are considered). The states
P0, P1, ..., P10 are included in the simulation.

In order quantify this cooling it is useful to define an effective temperature of the
electromechanical refrigerator. We note that the average phonon energy is always, also
out-of equilibrium, a well-defined quantity, given by Eav = ω

∑
n nPn. In equilibrium

one has Eav = ω/(eβω − 1) with 1/β = T . Accordingly, the effective temperature of a
non-equilibrium system can be defined as

Teff = ω/ ln(1 + 1/nstat), (6.32)

see, e.g. , [Pistolesi, 2009]. In Fig. 6.4 we show at which cooling rates it is possible to
obtain temperature Teff < T , depending on the relaxation towards equilibrium.

6.3.2. Small voltages

At small voltages, eV < ω, heating processes are strongly suppressed2 which is optimal
for a refrigerator. We consider λ� 1, so that only the rates Wn→n±1 have to be included
and we focus on the resonant situation, εL = εR − ω. For eV < ω, we have seen above
that Wn→n−1 is finite while the heating rate is absent, Wn→n+1 = 0, for zero electronic
temperature in the reservoirs. Then the average phonon population becomes

nstat ' Γ

2τλ2|t|2n
eq, (6.33)

as given by Eq. (6.31), with n0 = 0. Note that, since we consider the limit of small λ, this
equation indicates that the level broadenig Γ and the equilibrium towards equilbrium,
given by 1/τ , have to be small compared to the hopping amplitude in order to achieve a
phonon population which is smaller than neq. Note that our approach requires a current

2Electronic heating rates are suppressed in powers of Γ/ω so that we assume that they are slow compared
to the phonon absorption processes.
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Figure 6.5. Effective temperature as a function of the difference between the electronic
levels for different temperatures and relaxation rates. When the levels are tuned such
that the absorption of phonons is favored, εR = εL + ω, the effective temperature of
the oscillator decreases, provided that ω < T . We consider that both levels are in the
transport window and the level broadening is small. εL is varied while εR = V/2, eV = 10
(in units of ω), λ = 0.1, t = 0.1, and Γ = 0.1.

through the device in order to achieve cooling, hence implying that the operational
principle terminates for V → 0.

Including the effect of a finite temperatures Te in the reservoirs, where the corrections
to the zero temperature result are given by Eq. (6.25) and Eq. (6.26), we find that cooling
is possible as long as ξ2

√
2ξ/(πΓ) > ΓTe, abbreviating ξ ≈ |µα − εα|. Then we obtain

n0 '
π

6

Γ3 T 2
e

ξ5

1

1− (π/3)Γ3 T 2
e /ξ

5
, (6.34)

within the approximation Γ� ξ. This is the stationary solution for the phonon population
in the limit of vanishing relaxation to the equilibrium, 1/τ → 0, see Eqs. (6.30) and
(6.31), and can clearly be smaller than neq. Cooling by current in the presence of a larger
applied voltage is considered next.

6.3.3. Large voltages

At high voltages, eV > ω, when both levels are in the conduction window, there are
always processes which contribute to heating. The competition between the latter and
the absorption of phonons sets the temperature to which the system can be cooled. We
still consider the limit of small electron-phonon coupling when the levels are tuned to
be at resonance, εL = εR − ω. With the results obtained above, Eqs. (6.19) and (6.20),
we obtain I− = 2/Γ and I+ = 2Γ/[(2ω)2 + Γ2], here neglecting the corrections due to
temperature. Thus we obtain

n0 =
Γ2

(2ω)2
, (6.35)
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which, as outlined above, is the stationary solution in the limit far away from equilibrium,
1/τ → 0, see Eq. (6.30). We note that n0 can be well below the equilibrium value neq,
when temperatures are comparable or larger than ω allowing one to cool the oscillator.
For temperatures small compared to ω one effectively heats the phonon system. This is
illustrated in Fig. 6.5. There we also show that due to the finite width of the electronic
levels cooling (or heating) is also possible slightly away from resonance.

6.4. Summary

In this chapter we have studied how one can use a charge current in order to cool a
nanomechanical system. We have considered a double quantum dot in which the two
dots are coupled to leads and weak tunneling between the dots can be accompanied
by emission and absorption of phonons. It is a general feature of our model that the
electronic levels can be tuned such that emission of phonons happens more often than
absorption, allowing one to remove energy from the mechanical system.

We have studied the phonon population by means of a rate equation and have written
down the general expressions for the rates. These have been evaluated analytically in
some limiting cases, mainly focusing on the regime of weak electron-phonon coupling.
Here the resonance situation εR = εL + ω is favorable, as well as small temperatures and
small Γ, in order to achieve efficient cooling. When only a few phonons are left in the
system, even a small probability of emitting phonons might prevent to cool down the
system further. We have commented on the effect of a finite (electronic) temperature in
the reservoirs and the temperature of the heat bath coupled to the oscillator which limit
the operational principle of the refrigerator. At the end of this chapter we have focused
on weak electron-phonon coupling; the analysis of strong interactions is a promising topic
for further research. Furthermore it will be interesting to understand cooling mechanisms
in the opposite limit of slow vibrational dynamics, connecting with our results obtained
in Chapter 3.
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7. Molecular switches on graphene

In the preceding chapters we have considered single molecule switches which can be
both switched and read out through the electronic current through the junction. In this
chapter we consider a different scenario in which many switches affect the conductance
of a layer of graphene. This substrate is particularly appealing for this functionalization
due to its two-dimensionality and its good transport properties.

Figure 7.1. Sketch of graphene function-
alized with dipolar molecules.

Here the switching is triggered externally
and we focus on the read-out of the switch-
ing state by current measurements, providing
a theory of the electronic transport properties
of a graphene layer decorated with molecular
switches (as sketched in Fig. 7.1). In particu-
lar, our considerations are motivated by pho-
tochromic molecular switches, in which the re-
versible switching between two conformations
affects the carriers in graphene through the
associated change in the molecular dipole mo-
ment. We provide model calculations of how
this modifies the conductance of graphene both
in the quasiclassical (Boltzmann) and in the quantum-coherent regimes of transport. In
the former the scattering on the single impurities are independent of each other while in
the latter interference between multiple scattering trajectories can increase the sensitivity
to the precise impurity configuration.

This chapter is organized as follows. We give a brief introduction to the electronic
properties of graphene in Section 7.2 and comment on its quasiclassical transport prop-
erties in Section 7.3. The influence of the dipoles on the conductivity is studied in
Section 7.4. Coherent processes are considered in Section 7.5. Some technical details of
the calculations are relegated to an appendix.

The results presented here have been published in [Bode et al., 2012c].

7.1. Introduction

The very first measurements in graphene on a substrate gave rise to to a linear dependence
of the conductivity on the carrier concentration and thus a – remarkably high – density-
independent mobility [Novoselov et al., 2004, 2005]. This indicates that charged impurities
are the main source for scattering and thus limit the conductivity predominantly while
short range scatterers cause only smaller corrections which become more important for
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Figure 7.2. Illustration of the two transport regimes considered in this chapter. Consecu-
tive scattering events are considered to be independent in the Boltzmann limit (left) while
interference effects (right) change the transport properties in the mesoscopic regime.

larger carrier concentrations [Ando, 2006; Nomura and MacDonald, 2006; Hwang et al.,
2007].

Graphene provides a particularly attractive substrate for decoration with molecular
switches due to its unique conduction properties, such as the absence of backscattering
and an easily tunable carrier concentration [Novoselov et al., 2004, 2005], as well as its
strictly two-dimensional nature. Especially this last fact suggests that the conduction
properties of graphene could serve as a sensitive detector for the conformational state of
the molecular switches, cp. also the work by Schedin et al. [2007].

In this chapter, we consider the electronic transport properties of graphene layers
functionalized by spiropyran which we briefly described in the introduction, Section 1.2.3.
Specifically, we consider how the conductance of the graphene layer differs between
the switching states which are characterized by very different electric dipole moments.
For isolated molecules, it is estimated [Malic et al., 2011] that the dipole moment is of
order of 6.2D in the ring-closed spiropyran form, while it is 13.9D in the zwitterionic
merocyanine.1

Our calculations of the conductance of the graphene layer consider both the Boltzmann
regime and the mesoscopic regime of coherent quantum transport, see Fig. 7.2. When
the electronic mean free path is much larger than the Fermi wavelength and the system
is sufficiently large, electronic transport is characterized by the quasiclassical Boltzmann
conductivity. In contrast, in the mesoscopic regime, the sample size is no longer large
compared to the phase coherence length, so that quantum interference effects become
important and the conductance becomes sensitive to the particular impurity configuration.
The average magnitude of these fluctuations around their mean value is universal and
of order of the conductance quantum e2/h [Lee and Stone, 1985; Al’tshuler, 1985; Lee
et al., 1987; Kane et al., 1988], and rather small changes in the precise configuration
of the impurities cause significant changes in the conductance due to interference of
multiple scattering trajectories [Al’tshuler and Spivak, 1985; Feng et al., 1986]. Besides
the dependence on the conformational state of the decorating molecules, we also consider
the influence of the densities of charge carriers and impurities, as well as the density and
orientation of the dipolar switches.

1One Debye corresponds to: 1D ≈ 0.2082eÅ ≈ 3.336× 10−30Cm.
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Figure 7.3. Honeycomb lattice of graphene.

7.2. Electronic properties of graphene

From the theoretical point of view, the electronic properties of single 2d graphene sheets
had been studied several decades ago, in connection to the investigation of 3d graphite
[Wallace, 1947]. Due to the honeycomb symmetry of the lattice, electrons in graphene
behave as massless charged Dirac particles with a constant group velocity approximately
300 times smaller than the velocity of light. Although the linear dispersion stems from
an expansion of the electronic spectrum in the vicinity of two points where valence and
conductance band touch, due to the peculiar bandstructure it holds true over a wide
bandwidth of several electron-Volts. This yields the important consequence that the
low energy massless Dirac description of electrons in graphene remains relevant up to
very large temperatures (much larger than room temperature) and doping levels. Indeed,
similarly to conventional semiconductor structures, both electron and hole doping can be
induced in the sheet through adatoms and/or by applying an external gate voltage.

Starting from a tight-binding description we derive the low-energy Hamiltonian and
the dispersion relation for the charge carriers in graphene. Then we introduce the
(impurity-averaged) Green’s functions, which we need for the description of the transport
properties in the remainder of this chapter. We refer to the reviews by Neto et al. [2009]
and Das Sarma et al. [2011] for a detailed discussion of the electronic properties of
graphene.

7.2.1. Tight-binding description

Graphene has been studied in terms of the tight-binding model, stating that electrons
hop between nearest-neighbor lattice sites, by Wallace [1947] more than half a century
ago. Further details on the underlying atomic structure of graphene can be found, for
example, in [Saito et al., 1998].

The honeycomb lattice of graphene is formed by two inequivalent sublattices on which
the electrons are described by the Hamiltonian

H = −
∑
<i,j>

t
(
c†icj + c†jci

)
, (7.1)
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Figure 7.4. Sketch of the dispersion relation εk over the kx, ky plane. We focus on the
low-energy physics close to the points where the conduction and the valence band touch.

where t ≈ 2.8eV is the hopping energy between nearest neighbors, c†i (ci) creates
(annihilates) an electron on lattice site i and the sum is restricted to nearest neighbors.
As depicted in Fig. 7.3, the honeycomb lattice of graphene consists of two triangular
sublattices A and B. Each lattice site has three neighboring ions from the other sublattice
separated by a ≈ 1.42Å. Thus we can write the tight-binding Hamiltonian as

H = −t
∑
RB

∑
i

∣∣RB

〉〈
RB + êi

∣∣+h.c. , (7.2)

where we have choose a coordinate system in which a B-site is connected with its neighbors
via the three vectors ê1 = (−a, 0), ê2 = (a/2,

√
3a/2) and ê3 = (a/2,−

√
3a/2). Electrons

in the lattice can be described by Bloch states involving a superposition of the wave
functions of the two sublattices,∣∣ψk

〉
=
∑
RA

uA(k)eik·RA
∣∣RA

〉
+
∑
RB

uB(k)eik·RB
∣∣RB

〉
, (7.3)

where uA(k) [uB(k)] give the amplitudes for the occupation of lattice site A (B), and
the sums are over all sites of the particular sublattice. Projecting onto the Schrödinger
equation, H

∣∣ψk

〉
= εk

∣∣ψk

〉
, with

〈
RA

∣∣ and
〈
RB

∣∣, respectively, one obtains(
0 −t∑i e−ik·êi

−t∑i eik·êi 0

)(
uA
uB

)
= εk

(
uA
uB

)
.

Inserting the vectors êi in this expression yields straightforwardly the spectrum

εk = ±t
√

1 + 4 cos(3akx
2 ) cos(

√
3aky
2 ) + 4 cos2(

√
3aky
2 ) , (7.4)

which is schematically depicted in Fig. 7.4. Neutral graphene has just one electron per
lattice site and one concludes that the Fermi energy is at εk = 0 around which the
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spectrum is symmetric. Solving for k one sees that in graphene there is no Fermi line
as in usual 2d systems but rather isolated Fermi points. In order to identify the first
Brillouin zone we introduce a minimal set of lattice vectors a1 = ê3− ê2 and a2 = ê2− ê3

as depicted in Fig. 7.3, generating the two inequivalent sublattices. The basis vectors in
the reciprocal lattice are thus b1 = 2π/(3a)(2, 0) and b2 = 2π/(3a)(1,

√
3). Only the two

Fermi points at position

±kD = ± 3π

3
√

3a

(√
3

1

)
(7.5)

lie inside the first Brillouin zone of the reciprocal lattice. These are the so-called Dirac
points.

7.2.2. Low-energy physics close to the Dirac points

In order to describe the low-energy physics of electrons close to the Dirac points we
expand the Hamiltonian (7.2) around the Dirac points kD as a function of the deviation
(which we denote from now on with k) from these points. After some calculations this
yields ∑

j

ei(kD+k)·êj =
∑
j

e±ikD·êjeik·êj ' −i3a
2 e∓i

2π
3 (kx ± iky), (7.6)

where the ± refers to the two distinct Dirac points. In order to simplify the notation we
introduce an additional phase factor in the amplitudes of the Bloch waves.2 Accordingly,
the relevant low-energy bandstructure is captured by the Dirac Hamiltonian

H = Πz ⊗H0 , (7.7)

describing the two inequivalent Dirac cones inside the first Brillouin zone. This Hamilto-
nian acts on the 4-component spinor (u+

A, u
+
B, u

−
B, u

−
A) with Bloch amplitudes u where

(+,−) labels the Dirac cone and (A,B) the sublattice. Here Πz denotes a Pauli matrix3

in the space of Dirac points and H0 is the Hamiltonian of a single Dirac cone,

H0 = ~vσ · k, (7.8)

where v = 3at/(2~) and σµ (µ = x, y) are Pauli matrices acting in the space of the two
sublattices. One finds the effective dispersion

εs,k = s~vk, (7.9)

which is linear in k = |k|, and s = ±1 labels the conduction and valence bands, respectively.
Obviously, this dispersion can be also obtained from Eq.(7.4) by expanding in the vicinity

2The redefinition of the Bloch amplitudes is explicitly uB → e∓iϕuB , where e∓iϕ = −ie
2π
3 , while uA

remain unchanged, uA → uA
3See the footnote on page 44 for the definition of the Pauli matrices.
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of kD. Note that the Fermi velocity v is roughly 300 times smaller than the velocity
of light and does not depend on the energy [in contrast to the usual case of massive
electrons with εk = (~k)2/(2m)]. The corresponding eigenfunctions of H0 are

ψs,k(r) =
〈
r|k
〉

=
1√
2Ω

exp(ik · r)

(
s

eiϕ(k)

)
, (7.10)

where cosϕ(k) = kx/k and Ω is the sample area.
In summary, we obtained that, due to the honeycomb lattice structure, low energy

electronic quasiparticles in graphene are described by a Dirac Hamiltonian resembling
the behavior of relativistic massless particles as in quantum electrodynamics. In the
following we consider the two Dirac cones (valleys) to be completely decoupled as is
the case in the absence of short-range scatterers. Consequently, we account for the two
valleys simply through the appropriate degeneracy factor.

The concentration of charge carriers in graphene can be tuned via external gate voltages
which allows one to vary the Fermi wavenumber kF. The density n of conduction electrons
is related to kF through

n = g

∫ εF

0
dε ν(ε) =

k2
F

π
, (7.11)

where ν(ε) = ε/2π(~v)2 is the density of states per spin and valley, εF is the Fermi energy,
and g = 4 accounts for the spin and valley degeneracy. We refer to the article by Neto
et al. [2009] for a detailed review of the electronic properties of graphene.

7.2.3. Green’s functions

Our discussion of the transport properties is based on a Green’s function approach. The
free retarded (advanced) Green’s function for electrons (focusing on one Dirac cone) is

G
R(A)
0 (ε,k) =

1

2

∑
s=±1

1 + sσ · k/k
ε− εs,k ± i0+

. (7.12)

The numerators in these expressions act as projectors onto states in the conduction
(s = +1) and valence (s = −1) band, respectively. In the following we consider only
electron-doped systems with a sufficiently high Fermi energy, such that all relevant
processes occur in the conduction band. This allows us to restrict attention to s = +1
only. In fact, both our quasiclassical and our diagrammatic approaches are valid only
when the system is sufficiently far from the Dirac point (characterized by electron and
hole puddles in real samples [Das Sarma et al., 2011]).

Scattering on impurities broadens the electronic spectral function, so that the impurity
averaged (indicated by the overbar) matrix elements of the retarded (advanced) electronic
Green’s function become〈

k′
∣∣GR(A)

ε

∣∣k〉 =
δk,k′

ε− εk ± i~/2τ(εk)
≡ δk,k′G

R/A
ε (k). (7.13)
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Here, the elastic scattering time, evaluated in the Born approximation, is

1

τ(εk)
=

2π

~
∑
k′

|
〈
k
∣∣Vi

∣∣k′〉|2 δ(εk − εk′), (7.14)

in accordance with Fermi’s golden rule. The electronic mean free path is related to the
scattering time through l = vτ . The impurity potential Vi(r) =

∑Ni
j=1 V (r − rj) is a

sum over the individual potentials V of the Ni impurities which we take to be randomly
distributed. Because the precise impurity configuration is unknown only quantities which
are averaged over all possible impurity configurations are accessible. This impurity
averaging is denoted by

(...) =

∫
ΠNi
j=1d(rj/Ω) (...). (7.15)

Note that we restrict our discussion to potentials which do neither flip the spin nor
transfer momenta large enough to couple the two Dirac cones. Averaging over the
impurity configurations yields

|
〈
k
∣∣Vi

∣∣k′〉|2 =
ni

Ω
|Vk−k′ |2

1 + cosϑ

2
, (7.16)

with ϑ the angle between k and k′, Vk−k′ the Fourier transform of V (r), and ni = Ni/Ω
the impurity density. The factor (1 + cosϑ) reflects the absence of backscattering in
graphene, even for isotropic scattering potentials.

7.3. Quasiclassical transport properties

Before discussing the influence of molecular switches on the conductivity, we briefly
review the conductivity of doped graphene within a Boltzmann approach [Novoselov
et al., 2004, 2005; Ando, 2006; Nomura and MacDonald, 2006; McCann et al., 2006;
Adam et al., 2007; Auslender and Katsnelson, 2007].

For zero temperature, the longitudinal conductivity is given by the Kubo formula

σ = g
~
πΩ

Tr
[
ĵxImGRεF ĵxImGRεF

]
, (7.17)

where the Green’s functions are evaluated at the Fermi energy. The current operator is
ĵx = (−e) i

~ [H0, x] = (−e)vσx, with matrix elements

(jx)k,k′ = (−e)v
〈
k′
∣∣σx∣∣k〉 = (−e)v cosϑ. (7.18)

To lowest order, the diagram for the impurity-averaged conductivity is depicted in
Fig.7.5. It involves the diffuson, describing diffusive motion of the electrons in the sample,
which we will encounter and discuss in some detail in Section 7.5. Following standard
procedures [Akkermans and Montambaux, 2007] we obtain

σ = ge2 ν0D, (7.19)
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Figure 7.5. (left) Diagram for the conductivity. The conductivity loop consists of a
retarded (blue) and an advanced (red) impurity averaged Green’s function meeting at
two current vertices. (right) Vertex corrections. The star denotes impurity scattering.
Note that one only has to include diagrams with a retarded and an advanced Green’s
function meeting at a current vertex [Al’tshuler and Shklovskii, 1986; Kane et al., 1988;
Baranger and Stone, 1989].

with D = v2τtr/2 the diffusion constant. The movement of an electron through a
conductor is hindered by the scattering on the impurities. Hence in the regime under
consideration, the typical time between these collisions limits the conductivity. In fact,
in Eq. (7.19) enters the rate at which the memory of the k-direction of the incoming
electron is lost. This transport scattering rate is given by

1

τtr(εk)
=

2π

~
∑
k′

|
〈
k
∣∣Vi

∣∣k′〉|2(1− cosϑ) δ(εk − εk′)

=
π

~
niν(εk)

〈
|Vk−k′ |2 sin2 ϑ

〉
ϑ
. (7.20)

Here,
〈
...
〉
ϑ

=
∫ 2π

0 dϑ (...)/(2π) denotes an angular average over the Fermi circle. From
now on, τ and τtr without explicit momentum labels are calculated at the Fermi energy.
We also use the notation ν0 ≡ ν(εF). We close this section with a brief discussion of the
transport scattering time for two common sources of scattering, namely short-range and
Coulomb scatterers.

Short-range scatterers

Scatterers with a short-range potential, e.g. , point defects or neutral impurities, have
a Fourier transform which is (approximately) independent of momentum, Vk−k′ = V .
Thus, due to the density-of-states factor, Eq. (7.20) yields a transport scattering rate
which is proportional to k and the conductivity becomes independent of the electron
density. (We assume that the potential still varies smoothly enough that the two Dirac
cones remain uncoupled.) Note that in a conventional 2d system (with the quadratic
dispersion εk = (~k)2/(2m) and thus a constant density of states) the scattering rate for
pointlike scatterers is independent of the electron concentration yielding a conductivity
σ2d ∝ n/ni, in contrast to the situation in graphene.

98



7.3. Quasiclassical transport properties

= +

Figure 7.6. The Dyson equation connects the full Coulomb interaction (double line) with
the unscreened interaction (single line). The screening of the other conduction electrons
is contained in the full polarization bubble.

Coulomb scatterers

Another frequent source of scattering in graphene samples are charged impurities, located
at a distance z above the graphene sheet. The Fourier transform of the corresponding
single-impurity potential is

V c
q =

2πα~v
q

e−zq, (7.21)

where q = |k − k′| = 2k sin(ϑ/2) for elastic scattering processes. Here, α = e2/(~vκ)
denotes the effective fine structure constant which involves the average dielectric constants
of the neighboring media, κ = (κ1 + κ2)/2 [Adam et al., 2007; Das Sarma et al., 2011].

In a solid the conduction electrons screen the Coulomb interaction. The exact screened
Coulomb interaction can be obtained via the Dyson equation depicted in Fig. 7.6. The
dominant long wavelength screened interaction has been shown [Gell-Mann and Brueckner,
1957; Schrieffer, 1964] to be given by approximating the exact polarization bubble with
the free one. This procedure is called random phase approximation (RPA). It yields

Ṽ c
q = V c

q + V c
q Π0V c

q + V c
q Π0V c

q Π0V c
q + ... = V c

q + V c
q Π0Ṽ c

q , (7.22)

which can be easily solved for Ṽ c
q . The bare polarization bubble, Π0 = Π0(q, ε), is given

by

i Π0(q, ε) = g

∫
dε′

2π
Tr
[
GR0 (k, ε′)GA0 (k + q, ε′ + ε)

]
, (7.23)

where we restrict ourselves to the upper half of one Dirac cone. This is justified as long as
the doping is sufficiently large and the wavenumber small, preventing scattering between
the two different Dirac cones. We are interested in the long wavelength limit q � kF so
that one finds

Π0(q � kF, ε→ 0) ' −gν0. (7.24)

Thus the polarizability is given by the density of states evaluated at the Fermi energy
ν0. To summarize, in this Thomas-Fermi approximation one obtains the effective po-
tential Ṽ c

q = V c
q /ε(q). The dielectric function, in the limit of zero temperature, can be

approximated by

ε(q) = 1− V c
q Π0 ' 1 + qTF/q, (7.25)
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involving the characteristic wave vector qTF = 2πα~vgν0 [Ando, 2006; Nomura and
MacDonald, 2006]. Note that accordingly also the screened Coulomb interaction scales
as ∝ 1/q.

In graphene, the average conductivity is found to be

σc =
ge2

h

1

πα2I0

n

nc
i

, (7.26)

which is valid at zero temperature, showing that the conductivity increases linearly with
the density of charge carriers n participating in the transport. This result follows from
inserting the transport scattering time τ c

tr into Eq. (7.19). The scattering rates evaluated
at the Fermi level, see Eqs. (7.20) and (7.14), are

1/τ c
tr

1/τ c

}
=

nc
i π

2α2v

2kF

{
I0

J0
, (7.27)

with nc
i the density of charged impurities and the abbreviations

Im
Jm

}
=

∫ 2π

0

dϑ

2π

sinm(ϑ/2)e−4zkF sin(ϑ/2)

[sin(ϑ/2) + gα/2]2

{
sin2 ϑ
1 + cosϑ

. (7.28)

For qTF/(2kF) = gα/2 ≈ 2 (corresponding to graphene on a SiO2 substrate [Adam et al.,
2007]) and 4zkF � 1 we have I0 ≈ 0.071, I1 ≈ 0.046, I2 ≈ 0.033, J0 ≈ 0.18, J1 ≈ 0.065,
and J2 ≈ 0.035.

In summary, the conductivity of graphene is independent of the electron density n
for short-range scatterers and linear in the density for Coulomb scatterers [Ando, 2006;
Nomura and MacDonald, 2006; Adam et al., 2007]. Combining both contributions, one
obtains a linear rise of the conductivity which saturates at higher n. At low temperatures
this behavior is in agreement with many experiments [Novoselov et al., 2004, 2005; Chen
et al., 2008].

7.4. Effect of switches on the conductivity – Boltzmann theory

After these preparations we can now focus on the effect of switches decorating a graphene
monolayer. We consider graphene samples with a dilute and random covering by molecular
switches whose switching states are characterized by different electric dipole moments.4 In
this section, we will assume that the electronic scattering is adequately described within
a Boltzmann approach which treats consecutive scattering events as independent. We
will also assume that the switching is only effected externally, e.g. , by irradiation of the
sample, and that all molecules are switched so that we need only discuss the conductivity
for the static dipole moments associated with the two different conformations.

4In the spiropyran-merocyanine system, the switching states differ most significantly in their correspond-
ing dipole moments and thus higher order terms in a multipole expansion of the charge distribution
can presumably be neglected.
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Consider a molecule with a nonzero electric dipole moment d attached to graphene.
We assume that the electric dipole is located at a distance z above the graphene sheet
with the dipolar potential

V d(r, z) = (−e)d‖ · r + d⊥z

(r2 + z2)3/2
. (7.29)

Here, d‖ and d⊥ are the components of the dipole moment parallel and perpendicular to
the substrate, respectively, and r is a two-dimensional vector in the surface. The two
dimensional Fourier transform of the dipolar potential follows readily from Gauss’s law
∇2V d = 4πeρ, where ρ is the charge density of the dipoles. (Note that V d is defined
as the potential energy of an electron in the field of the dipole.) Fourier transforming
Gauss’s law and integrating over the out-of-plane component of the wave vector, one
obtains

V d
q = 4πie

∫
dq⊥
2π

d‖ · q + d⊥q⊥
q2 + q2

⊥
eiq⊥z, (7.30)

and therefore

V d
q = V

d‖
q + V d⊥

q , (7.31)

V
d‖
q = 2πiα~v(d‖/e) cosφ e−qz, (7.32)

V d⊥
q = −2πα~v(d⊥/e)e

−qz, (7.33)

where φ denotes the angle between the wave vector q and d‖. Note that V d⊥
q is real,

while V
d‖
q is imaginary, reflecting their symmetry properties. The resulting screened

potential is given by Ṽ d
q = V d

q /ε(q), with the dielectric function in Eq. (7.25).

We first consider a clean graphene sample where the scattering is entirely due to
the decorating molecular switches with dipolar impurity potential. In such a system,
the electrons are scattered at impurities with a dipole moment (but without monopole
potential), and the averaged matrix elements of the impurity potential read

|
〈
k
∣∣V d

i

∣∣k′〉|2 =
nd

i

Ω

(α~vd̃/e)2

1 + qTF/q

1 + cosϑ

2
, (7.34)

with nd
i the density of dipoles. We use d̃2 = d2

(
1 + cos2 ξ

)
/2, where the angle ξ measures

the orientation of the dipole moment with respect to the plane such that d⊥ = d cos ξ.
To be specific, we assume that d‖ is oriented along an arbitrary direction within the
graphene layer while the perpendicular component is (approximately) the same for all
dipolar switches. Inserting Eq. (7.34) into Eqs. (7.20) and (7.14) yields the scattering
rates

1/τd
tr

1/τd

}
= 2(πα)2nd

i vkF (d̃/e)2

{
I2

J2
, (7.35)

101



7. Molecular switches on graphene

where I2 and J2 are given by Eq. (7.28). In the absence of other types of scatterers, Eq.
(7.19) yields the conductivity

σd =
ge2

h

1

(2πα)2I2

1

nd
i (d̃/e)2

. (7.36)

Note that this result for the conductivity is independent of the electron concentration.
If the graphene sample is disordered even in the absence of the molecular switches,

it is natural to consider a situation in which the dominant source of scattering is due
to N c

i charged impurities, supplemented by Nd
i additional dipolar scatterers. For the

moment, we assume that these latter scatterers are not associated with a monopolar
potential. If the distributions of these two different types of scatterers are statistically
independent, the total transport scattering rate is obtained by Matthiessen’s rule through
adding the two individual scattering rates, 1/τ c,d

tr = 1/τ c
tr + 1/τd

tr. Hence, switching the
dipole moments causes a relative change of the conductivity

δσ

σc ' −2(πα)2J0I2

I0
δni kFlc (d̃/e)2, (7.37)

reflecting the fact that the conductivity decreases when scatterers are added to the
system. We have used σd � σc which holds for kFd/e � 1. This limit is relevant
for typical electron densities in graphene, n ≈ 1012cm−2, and even rather large dipole
moments d ≈ 10D (yielding kFd/e ≈ 0.03). The prefactor in Eq. (7.37) is given by
2(πα)2J0I2/I0 ≈ 1.7 for impurities close to the graphene sheet, zkF � 1, see Eq. (7.28).
Note that the mean free path lc = vτc is proportional to kF, see Eq. (7.27). Thus, the
influence of the dipoles on the conductivity is quadratic in (kFd/e), which increases
linearly with the electron density n.

Frequently, an attached molecular switch will affect electronic transport not only
through its dipole moment, but may also be associated with a monopolar scattering
potential, e.g. , due to some degree of charge transfer between graphene and the molecular
switch. For this reason, we generalize our results to situations with Ni charged impurities
(with screened potential Ṽ c

q ) and δNi impurities with an additional dipole moment, where
the latter also transfer an amount δe = ζe of charge to the graphene. Then, the scattering
potential for the latter takes the form Ṽ c+d

q = Ṽ c
q + Ṽ d

q . The corresponding transport
scattering rate, Eq. (7.20), is

1

τ c+d
tr

=
1

τ c
tr

+
1

τd
tr

+
1

τ c,d⊥
tr

, (7.38)

where τ c
tr and τd

tr are given by Eqs. (7.27) and (7.35), and we introduce the shorthand

1/τ c,d⊥
tr

1/τ c,d⊥

}
= −2δniπ

2ζαv
d⊥
e

{
I1

J1
, (7.39)

with δni the density of switched molecules. This latter contribution involves interference
between monopole and dipole scattering. Interestingly, d⊥ enters linearly into this
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contribution while the in-plane component of the individual dipoles cancels out. This

cancellation follows from the fact that V
d‖
q in Eq. (7.32) is purely imaginary, while

the Coulomb potential is real. I1 and J1 follow from Eq. (7.28) and we have used the
(impurity averaged) matrix element of the total impurity potential

|
〈
k
∣∣V c+d

i

∣∣k′〉|2 =
1 + cosϑ

2Ω

[
(ni + δniζ

2)|Ṽ c
q |2

+2δniζṼ
c
q Ṽ

d⊥
q + δni|Ṽ d⊥

q |2 +
1

2
δni|Ṽ

d‖
q |2

]
. (7.40)

The relative change of the conductivity due to switching of the dipole moments is then

δσ

σc ' δni
2J0(πα)2

I0

[
I1ζ lcd⊥/e− I2 kFlc (d̃/e)2

]
, (7.41)

with δσ =
(
σc+d − σc

)
and again assuming that the switching induced change in the

conductivity is small. The prefactors can be approximated by 2(πα)2J0I1/I0 ≈ 2.3 and
2(πα)2J0I2/I0 ≈ 1.7 for qTF/(2kF) = gα/2 ≈ 2 and 4zkF � 1, see Eq. (7.28).

In the Boltzmann limit scattering events are independent and thus interference can only
appear for scattering channels (such as monopole and dipole contributions) associated
with the same scatterer. Nevertheless, our result (7.41) indicates that such interference
contributions can significantly increase the sensitivity of the conductivity to changes of
the molecular switching state. Indeed, while the change in conductivity due to switching
is quadratic in the molecular dipole moment in the absence of interference, see Eqs.
(7.36) and (7.37), interference gives rise to a contribution which is linear in d⊥, and thus
dominant in the relevant limit kFd/e� 1.

Assuming a perpendicular dipole moment and charge transfer to the graphene, we
estimate that a density of switches δni ≈ 5 × 1010cm−2 is required for changing the
conductivity by 1%, see Eq. (7.41). (Here we assume n ≈ 1012cm−2, l ≈ 50nm and
d ≈ 10D.)

7.5. Effect of switches on the conductance – quantum
coherent transport

In the previous section we have seen that interference between charge and dipole scattering
originating from the same scatterer can be favorable for the read-out of the switching
state. Now we consider quantum coherent transport, implying that interference between
partial waves scattered at different impurities becomes relevant such that one might again
expect an enhanced sensitivity to the switching state of the molecules.

7.5.1. Mesoscopic fluctuations

Because a macroscopic sample can be viewed as built of a number of mesoscopic phase
coherent subsystems, which are quantum mechanically independent of each other, the
macroscopic measurement effectively averages over these subsystems. The system becomes
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Figure 7.7. Diagrams involved in the UCF. The building blocks of these diagrams are
shown in Figs. 7.8 and 7.9.

self-averaging and is characterized by intensive quantities, such as the impurity-averaged
electric conductivity σ. At this level, the conductivity can be obtained from the Boltzmann
equation, as we did in the previous section.

In contrast, in the mesoscopic regime (i.e. , at sufficiently low temperatures and
small system sizes where the phase coherence length becomes larger than the sample
dimensions), interference between multiple scattering trajectories is important and a
change in the microscopic impurity configuration or a continuous system parameter, such
as the Fermi energy or an applied magnetic field, yields reproducible variations of the
conductance. It is well known that the typical magnitude of these fluctuations around
the mean value of the conductance is universal in the sense that it depends only on the
sample geometry but is independent of the microscopic details of disorder [Lee and Stone,
1985; Al’tshuler, 1985; Lee et al., 1987; Kane et al., 1988]. Importantly, such changes in
the conductance are already effected by rather small changes in the impurity potential
[Al’tshuler and Spivak, 1985; Feng et al., 1986]. This suggests that indeed, interference
terms involving different scatterers may make a graphene sheet, in the regime of quantum
coherent transport, a particularly accurate sensor of the switching state of the attached
molecules. The general concepts of mesoscopic fluctuations have been introduced by Lee
and Stone [1985], Al’tshuler [1985], Lee et al. [1987], and Kane et al. [1988] (see the book
by Akkermans and Montambaux [2007] for a pedagogical account). For the peculiarities
of universal conductance fluctuations in graphene, we refer to [Kechedzhi et al., 2009;
Kharitonov and Efetov, 2008; Rycerz et al., 2007; Berezovsky et al., 2010].

7.5.2. Diagrammatic calculation

We consider charged impurities as the dominant source of scattering and an impurity
potential Vi, which is formed by Ni of these Coulomb scatterers. We are interested in
the change of the conductance when the impurity potential changes, Vi → V ′i . To be
specific, we assume that δNi charged impurities acquire an additional dipole moment
causing the change in the impurity potential. (We note that the derivation would follow
the same lines, and leave our results unaffected, when dipolar impurities were added to a
background of charged impurities.) For generality, we consider the correlation function of
the conductance evaluated not only for different impurity potentials, but also at different
Fermi energies εF and ε′F.
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A measure for the effect of the microscopic modifications is the conductivity-conductivity
correlation function,

∆σ(ξ)∆σ(ξ′) = [σ(ξ)− σ(ξ)] [σ(ξ′)− σ(ξ′)], (7.42)

where ξ is the quantity which is modified (e.g. ξ = {εF, Vi}), and the conductivity σ is
given by Eq. (7.17). The diagrams representing ∆σ∆σ consist of two conductivity loops
(one evaluated for Fermi energy εF and impurity potential Vi, the other for ε′F = εF + ω
and impurity potential V ′i ) which are connected by impurity lines. There are two distinct

possibilities to connect the two loops, ∆σ∆σ = ∆σ∆σ
(a)

+ ∆σ∆σ
(b)

, as shown in Figs.
7.7 (a) and (b), respectively. Note that unconnected loops correspond to σ2 and hence
do not enter into the variance.

Based on the standard Feynman rules for disordered systems [Akkermans and Mon-
tambaux, 2007], Fig. 7.7 (a) and (b) translate into the analytical expressions

∆σ(ξ)∆σ(ξ′)
(a)

=
( g~

4πΩ

)2
4β
∑
q

(H1)2
∣∣D̃ω(q)

∣∣2, (7.43)

and

∆σ(ξ)∆σ(ξ′)
(b)

=
( g~

4πΩ

)2
8β
∑
q

(H2)2 Re
[(
D̃ω(q)

)2]
, (7.44)

which are valid in the diffusive limit, kFl � 1 and ωτ � 1. The building blocks of the
diagrams, the short ranged Hikami boxes H1(2) and the long ranged diffuson D̃ω(q),
are depicted in Figs. 7.8 and 7.9. The corresponding analytical expressions are given

below in Eqs. (7.50) and (7.54). The expressions for ∆σ∆σ
(a)

and ∆σ∆σ
(b)

also involve
a combinatorial factor of 4, which reflects that the diagrams in Fig. 7.7 (a) and (b) are
invariant under interchange of retarded and advanced Green’s functions as well as of
momentum labels. In a time reversal invariant system, additional contributions stem
from replacing the diffusons by Cooperons [Akkermans and Montambaux, 2007]. This is
taken care of by the symmetry factor β = 2 (1) for a system with (without) time reversal
invariance.

We now turn to a brief discussion of the constituents of these fluctuation diagrams,
namely the diffusons D̃ω and the Hikami boxes H1(2). We follow standard procedures
[Akkermans and Montambaux, 2007], which have been also applied to the study of
graphene [Kechedzhi et al., 2008, 2009; Kharitonov and Efetov, 2008; Rycerz et al., 2007;
Berezovsky et al., 2010].

Diffusons

The diffusons D̃ω describe the diffusive motion of electrons across the sample. As depicted
in Fig. 7.8, they are represented diagrammatically by ladder diagrams in which the two
Green’s functions are connected by any number of parallel impurity lines. Analytically,
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Figure 7.8. Ladder series for the diffuson. The retarded (advanced) Green’s function,

shown in blue (red), is given by G
R
εF

(k) [G
A
εF−ω(k − q)].

this series of ladder diagrams satisfies the integral equation

D̃ω(k̂, k̂′, q) =U2(k̂ − k̂′)

+
1

Ω

∑
k̂′′

D̃ω(k̂, k̂′′, q)G
R
εF

(k)G
A
εF−ω(k − q)U2(k̂′′ − k̂′), (7.45)

where we leave implicit that the two Green’s functions are evaluated for the impurity
potentials Vi and V ′i , respectively, while impurity lines connecting them represent the
correlators ViV ′i . For convenience, we use the shorthand notation

U1(k̂ − k̂′) =
Ω

2

(
|
〈
k
∣∣Vi

∣∣k′〉|2 + |
〈
k
∣∣V ′i ∣∣k′〉|2), (7.46)

U2(k̂ − k̂′) = Ω
〈
k
∣∣Vi

∣∣k′〉〈k′∣∣V ′i ∣∣k〉. (7.47)

In particular, we will need the quantities〈
U1

〉
=

~
2πν0

(
1

τ c
+

1

2τd
+

1

2τ c,d⊥

)
, (7.48)

〈
U2

〉
=

~
2πν0

(
1

τ c
+

1

2τ c,d⊥

)
, (7.49)

where we have used the notation
〈
Ui
〉
≡
〈
Ui(k̂ − k̂′)

〉
k̂′ for the angular average, evaluated

at k = kF. Solving the integral equation (7.45) results in

D̃ω(q) ' ~/(2πν0τ
2)

Dq2 − iω +
(〈
U1

〉
/
〈
U2

〉
− 1
)
/τ
, (7.50)

which is valid for small changes
〈
U1

〉
−
〈
U2

〉
in the impurity configuration, see App.

C for a more detailed description. Here, we also introduced the scattering rate 1/τ =
(2π/~)ν0

〈
U1

〉
.

Hikami boxes

In the fluctuation diagrams, see Fig. 7.7, the diffusons are connected by Hikami boxes,
labeled H1 and H2, respectively, which are depicted in Fig. 7.9. Approximating kFl� 1
and ωτ � 1, three diagrams contribute to leading order to the Hikami boxes Hi =

H
(a)
i +H

(b)
i +H

(c)
i , with i = 1, 2.
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7.5. Effect of switches on the conductance – quantum coherent transport

Figure 7.9. Hikami boxes H1 (top) and H2 (bottom).

The diagram H
(a)
2 consists of two retarded and two advanced Green’s functions with

momentum k. In contrast to the evaluation of the diffuson, the Hikami boxes are rather
short-ranged and we can neglect the q-dependences. Because of the vertex corrections a
factor τtr/τ comes with each of the current vertices so that we obtain

H
(a)
2 =

(
ev
τtr

τ

)2∑
k

cos2 ϑ
(
G
R
εF

(k)G
A
εF

(k)
)2

= 2π
(
ev
τtr

τ

)2
ν0τ

3, (7.51)

assuming (U1−U2) to be small. The diagram H
(b)
2 consists of twice two retarded and one

advanced Green’s function with the same wave vector, respectively, and an additional
impurity cross, so that

H
(b)
2 =

(
ev
τtr

τ

)2∑
k

cos2 ϑ
(
G
R
εF

(k)
)2
G
A
εF

(k)
∑
k′

ni|Vq|2
1 + cosϑ′

2

(
G
R
εF

(k′)
)2
G
A
εF

(k′)

= −1

2
H

(a)
2 . (7.52)

Here we have replaced the sum by an integral and used that the integration over two
retarded and one advanced Green’s function yields a factor (τ)2/i while the extra factor

|Vq|2 contributes a factor 1/τ . The calculation of H
(c)
2 follows similar lines, but here the

two current vertices are evaluated at different wave vectors with the consequence that
the extra |Vq|2 yields a factor (1/τ − 1/τtr), resulting in

H
(c)
2 =

(τtr

τ
− 1
)
H

(a)
2 . (7.53)

In a similar manner the other type of Hikami boxes, H1, is evaluated. One finds

H
(a)
1 = H

(a)
2 and H

(b)
1 = H

(c)
1 = H

(c)
2 . Combining these contributions yields

H1 = 2H2 =
4π

~3
Dν0τ

2. (7.54)
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Conductance-Conductance correlation

We can now combine these building blocks and obtain the correlation function of the
conductance. Relating conductivity and conductance through Ohm’s law, G = (Ly/Lx)σ,
we obtain from inserting the expressions for diffusons and the Hikami boxes, Eqs. (7.50)
and (7.54), into Eqs. (7.43) and (7.44) that

∆G(ξ) ∆G(ξ′) =
2βg2

π4

(e2

h

)2∑
m

{
Re

(
1

λm + ∆λ

)2

+ 2

∣∣∣∣ 1

λm + ∆λ

∣∣∣∣2
}
. (7.55)

Here, we use the abbreviations m = {mx,my}, and

λm =(mx)2 + (my Lx/Ly)
2 , (7.56)

∆λ =− L2
x

Dπ2

[
iω +

1

τ

(
1−

〈
U1

〉
/
〈
U2

〉)]
. (7.57)

The boundary conditions of the system, namely perfect leads and hard walls at the
transverse boundaries, imply the quantization qα = mαπ/Lα (α = x, y) with mx =
{1, ...,∞} and my = {0, 1, ...,∞}. We note that both the Hikami boxes and the diffusons
depend separately on the microscopic details of the sample, as encapsulated in the
scattering rates and the density of states. Nevertheless, in the conductance-conductance
correlation function, Eq. (7.55), these quantities cancel against each other such that all
microscopic details enter only through ∆λ.

7.5.3. Results

In order to see the influence of the quantum coherent processes, we first review [Akkermans
and Montambaux, 2007; Kechedzhi et al., 2008, 2009; Kharitonov and Efetov, 2008; Rycerz

et al., 2007; Berezovsky et al., 2010] the variance of the conductance, (∆G)2 =
[
G−G

]2
,

describing the average magnitude of the universal conductance fluctuations. From Eq.
(7.55) (with ∆λ = 0) we obtain

(∆G)2 =
6β

π4

(
ge2

h

)2∑
m

1

(λm)2
= βη

(
ge2

h

)2

, (7.58)

where η ' 1/15 for Lx � Ly, and η ≈ 0.1 for a square device. Hence the amplitude of
the fluctuations depends on the sample geometry but is universal in the sense, that it
is independent of the electron concentration and the microscopic type or configuration
of disorder. Comparing the amplitude of the fluctuations with the average conductance
yields √

(∆G)2

G
=

2
√
βη

I0J0π2α4

Lx
Ly

1

kFlc
, (7.59)

again assuming that charged scatterers, cp. Eq. (7.26), predominantly limit the con-

ductance. For a square device this yields

√
(∆G)2/G ≈ 7.1/(kFlc). This indicates that

108



7.5. Effect of switches on the conductance – quantum coherent transport
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Figure 7.10. The normalized correlation function C(Vi, V
′

i ) = ∆G(Vi)∆G(V ′i )/(∆G)2,
plotted as a function of ∆λ.

for charged impurities, the quantum coherent processes are more important at large
Fermi wavelengths and high impurity concentrations (albeit such that our underlying
assumption of kFlc � 1 still holds).

Switching the decorating molecules affects the correlation function ∆G(Vi) ∆G(V ′i ),
see Eq. (7.55), via a change of the diffuson pole,

∆λ =
L2
x

Dπ2

〈
U1

〉
−
〈
U2

〉〈
U2

〉 1

τ
' L2

x

Dπ2

1

2τd

' (2α2I0J2/J0) (Lx/Ly)δNi (kF/lc) (d̃/e)2, (7.60)

see Eq. (7.57). Note that this depends linearly on the number of switches δNi and
is independent of the electron concentration. Again, we assume that the monopole
contribution of the charged impurities predominantly limits the conductivity, and
thus

(〈
U1

〉
−
〈
U2

〉)
/
〈
U2

〉
is a small quantity. The prefactor can be approximated

by (2α2I0J2/J0) ≈ 0.028, see Eq. (7.28). The dependence of ∆G(Vi) ∆G(V ′i ) on ∆λ
can be easily evaluated numerically and is depicted in Fig. 7.10. One finds that the
correlation function varies linearly with ∆λ for small modifications of the microscopic
impurity configuration. We thus conclude that the typical variation of the conductance
with switching state is given by√[

G(Vi)−G(V ′i )
]2√

(∆G)2
' χ

√
δNi√
kFlc

(kFd̃/e), (7.61)

where we lumped the numerical prefactors into χ = 2α
√

(I0J2/J0)Lx/Ly which is
χ ≈ 0.23 for a square device. Note that Eq. (7.61) depends linearly on the dipole moment
d. In contrast to the Boltzmann interference result, this also holds for dipoles which are
oriented parallel to the graphene sheet, d = d‖, as well as for molecular switches which
are pure dipole scatterers. We also note that in the Boltzmann limit, the changes of the
conductance scale with δni and are larger for clean devices and large electron densities,
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7. Molecular switches on graphene

see Eq. (7.41). In contrast, in the mesoscopic regime the changes are proportional to√
δNi, cf. Eq. (7.61), and larger impurity concentrations ni and large Fermi wavelengths

are favorable for the effect of interference.
Our result Eq. (7.61) indicates that the conductance of mesoscopic samples (here

assuming Lx = Ly ≈ 5µm) would be modified by 10% of the UCF even for moderately
low densities of switches δni ≈ 109cm−2. (Again we assume n ≈ 1012cm−2, l ≈ 50nm
and d ≈ 10D.)

7.6. Summary

Due to its two-dimensional nature, graphene layers are attractive substrates for function-
alization by molecular switches. In this chapter, we have analyzed how the conductance
of a graphene layer may serve as an all-electrical read-out of the molecular switching
state. Specifically, we have investigated theoretically the spiropyran-merocyanine system
where the two switching states affect the charge carriers via large changes in the electric
dipole moment.

Within a quasiclassical approach, quantum interference has to emerge from scattering
on a single impurity. In this case, we find a strong sensitivity to the switching state
when the molecular switches cause scattering of carriers both through a monopolar
contribution (e.g. , due to charge transfer between graphene and the molecular switches)
as well as a dipolar contribution. Specifically, the interference contribution involving the
corresponding scattering amplitudes is nonzero whenever the molecular dipole moment
has a component perpendicular to the graphene layer. In this quasiclassical regime, high
densities of electrons and switches, but otherwise clean samples, are favorable for the use
in molecular electronics.

In the regime of quantum coherent transport, the quantum interference contributions
result in a switching-induced change of the conductance which is linear in the change of
the molecular dipole moment, albeit with a random sign. This mesoscopic contribution
becomes particularly important in samples with low carrier density for the read-out
of the switching-state. In the regime of quantum coherent transport, larger impurity
concentrations and smaller electron densities are favorable for the effect of interference.
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8. Conclusions and Outlook

In this thesis we have discussed how the transport properties of coherent conductors are
affected by collective modes. We have paid particular attention to the regime in which
the latter, e.g. , vibrations or localized spin degrees of freedom, are moving slowly so that
the conduction electrons are subject to a quasistatic configuration. In this limit, we can
work within a non-equilibrium Born-Oppenheimer (NEBO) approximation, in which the
collective modes obey a Langevin dynamics subject to forces exerted by the conduction
electrons. Within the NEBO approximation, we can derive the full dependences of these
forces and of the current on the bias voltage and the collective mode coordinates. In
a central part of this thesis we have expressed these forces in terms of the scattering
matrix of the system, extending the celebrated Landauer-Büttiker approach to the study
of current-induced forces in general out-of-equilibrium situations, and providing a general
theory of the interplay of coherent electronic transport and local collective modes.

In the simplest case of one collective degree of freedom, the Langevin equation contains
an average force, a friction force, as well as a fluctuating Langevin force. The average
force depends only on the mode coordinate and is thus necessarily conservative. The
friction force is linear in the mode velocity, although the friction coefficient will in general
still depend on the mode coordinate. In thermal equilibrium situations, thermodynamic
stability requires that the friction coefficient is positive. This is no longer the case in
general non-equilibrium situations where energy can be transferred from the electronic
degrees of freedom to the collective degree of freedom. As a result, the friction coefficient
can become negative in the presence of a bias voltage. Finally, in thermal equilibrium,
the variance of the fluctuating force is related to the friction coefficient by the fluctuation-
dissipation theorem. Again, this relation no longer holds in out-of-equilibrium situations
but the NEBO approximation allows one to obtain the fluctuating force beyond the
fluctuation-dissipation theorem.

When more than one collective degrees of freedom couples to the current flowing
through the device, several new effects appear. First, the average force can become
non-conservative. Second, the contribution to the force that is linear in the velocity
not only contains a frictional contribution but also an effective Lorentz force. We can
again write these contributions in terms of the scattering matrix of the phase coherent
conductor. This allows one to make general statements about the current-induced forces
from symmetry considerations. For instance, in thermal equilibrium the Lorentz-like
force can appear only in the absence of time-reversal invariance. In out-of-equilibrium
situations, on the other hand, it can be present even in time-reversal invariant systems.
In this thesis, we have carried out this general program both for nanoelectromechanical
systems where the collective modes correspond to localized mechanical degrees of freedom
and for single-molecule junctions containing magnetic molecules.
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Applying our formalism to the study of NEMS, we have considered the influence of the
applied voltages on the current-induced forces. Here a non-conservative force or a negative
damping coefficient in the Langevin equation might be important in order to overcome
or compensate for other damping mechanisms, generating dynamical instabilities of the
collective mode. We have shown that that this can drive a nanoelectromechanical system
into interesting dynamically stable regimes. Specifically, in a limit-cycle the vibrational
modes vary periodically in time, providing an operating principle for devices such as
sensors or molecular motors. Under certain conditions the average force exerted by the
current can be described by a bistable potential giving rise to electronically controlled
switches.

We have explored this option of switching also in the context of transport through
molecular magnets. Here the resulting current-induced torques have also been analyzed
by means of the NEBO approximation, giving rise to Langevin dynamics of the magnetic
moment. This has been described by a generalized Landau-Lifshitz-Gilbert (LLG)
equation, involving necessarily more than one collective mode degree of freedom. Unlike
previous works, our approach does not follow a perturbative route either in the tunneling
between leads and the molecule or in the coupling between the electronic spin and
the molecular magnetic moment. Accordingly, we obtain the full dependence of the
parameters of the LLG equation on the state of the molecular moment as well as on the
applied bias and gate voltages. In the presence of spin-polarized leads, due to the analog
of a non-conservative force, the orientation of the localized magnetic moment can be
controlled by the direction of the current through the device – a notably useful effect for
switches. We also express the various torques entering into the LLG equation in terms of
the scattering matrix, generalizing previous results in the literature to non-equilibrium
situations.

It is also interesting to consider the backaction of the collective modes on the electronic
transport. For the slow mechanical modes under study, the current can be obtained from
the Landauer-Büttiker formula in the strictly adiabatic limit. When including the first
adiabatic correction in thermal equilibrium situations, the problem becomes equivalent to
adiabatic quantum pumping, which has been studied extensively in the literature. Within
the NEBO approximation, we can generalize these results to out-of-equilibrium situations.
Generally, transport measurements encode information about the collective modes which
can serve, e.g. , as a detector of the collective mode dynamics or the read-out of the
switching dynamics.

Starting from a microscopic model we have calculated the current-induced forces in
terms of non-equilibrium Green’s functions and have expressed the results in the language
of scattering theory. In order to express all current-induced forces in terms of the scattering
matrix, we have realized that it is necessary to expand the latter beyond the strictly
adiabatic approximation. This introduces a new fundamental quantity into the problem,
the A-matrix, which needs to be calculated together with the frozen S-matrix for a given
system. The average as well as the fluctuating force can be expressed solely in terms of
the adiabatic S-matrix. In equilibrium, the frictional force reduces to an expression in
terms of the adiabatic S-matrix, in accordance with the fluctuation-dissipation theorem.
Out of equilibrium, however, an important new contribution involving the A-matrix
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appears. In order to express the Lorentz-like force, the A-matrix is always required, even
in thermal equilibrium.

One of the fascinating possibilities opened by systems which couple nanoscale electronic
transport to localized collective modes is the realization of new functional devices. We
have explored this possibility in two specific systems. In one of these, the idea is to
modify the conductance of graphene sheets through attached molecular switches. Due
to its two dimensional nature, graphene is a particularly attractive substrate for this
purpose. Indeed, this two dimensionality suggests that the conduction properties of
graphene will be strongly affected when switching the attached molecules. Specifically,
we have considered the spiropyran-merocyanine system which is characterized by a large
difference in the electric dipole moment between the two switching states. Our theory
suggests that the sensitivity to the switching state is particularly pronounced in the
regime of coherent electronic transport where quantum interference causes universal
conductance fluctuations.

In another device application, we have discussed a setup which allows one to cool a
NEMS. We have investigated the interaction between a vibrational mode and electrons
tunneling through a double quantum dot for general coupling strengths. When the
electronic levels are tuned in an appropriate way, we have shown that the transport
through the device is accompanied more frequently by absorption than by emission of
phonons, providing the functionality of a refrigerator. This may be helpful in achieving
the ultimate goal of reaching the quantum mechanical ground state of the vibrational
mode.

A fascinating topic of recent research is the construction of machines at the nanoscale.
Indeed, several recent experiments suggest that the coupling between electronic transport
and collective degrees of freedom can generate directed (rotational or translational) motion,
such as propelling molecules [Tierney et al., 2011] or so-called nano-cars [Kudernac et al.,
2011]. We believe that our general theory of current-induced forces will have interesting
applications in this context and will thus contribute to the understanding and the
fabrication of these intriguing devices.
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A. Current-induced forces

In this appendix we provide some concrete expressions for the various current-induced
forces of the model systems which we study in Chapter 4.

A.1. Current-induced forces for the two-level model

The mean force is given by

F (X) = −λ1Γ

∫
dε

2π

[
(fL + fR)

2λ1X(ε− ε0)

|∆|2

+(fL − fR)
(ε− ε0)2 + (λ1X)2 − t2 + (Γ/2)2

|∆|2
]
, (A.1)

with ∆(X) = (ε− ε̃− + iΓL)(ε− ε̃+ + iΓR)− t2 as stated in the main text. The friction
coefficient reads γs = γs,eq + γs,ne, with

γs,eq =
λ2

1Γ2

4π

∫
dε

{
−∂εfL + ∂εfR

|∆|4
[(

(ε− ε0)2 + (Γ/2)2 + (λ1X)2 + t2
)2

+ (2(ε− ε0)λ1X)2 − (2(ε− ε0)t)2
]

+ +
∂εfR − ∂εfL
|∆|4

[
4(ε− ε0)λ1X

(
(ε− ε0)2 + (Γ/2)2 + (λ1X)2 − t2

)]}
, (A.2)

γs,ne =
2λ2

1Γ2t2λ1X

π

∫
dε
fR − fL
|∆|6

[ (
(ε− ε0)2 − (λ1X)2 − t2

)2
+ 2(Γ/2)2

(
(ε− ε0)2 + (λ1X)2 + t2

)
+ (Γ/2)4

]
. (A.3)

A.2. Current-induced forces for the two vibrational modes
model

Here we list the current-induced forces quantities, calculated from Eqs. (3.37), (3.39),
(3.49), and (3.53) for the two-modes example discussed in the main text. For convenience,
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we define the following quantities:

gα0(ε) =
(ε− ε̃)2 + t̃2 + Γ2

1−α
|∆|2

, (A.4)

gα1(ε) =
2t̃ (ε− ε̃)
|∆|2

, (A.5)

gα2(ε) =± −2t̃Γ1−α
|∆|2

, (A.6)

gα3(ε) =± (ε− ε̃)2 + Γ2
1−α − t̃2

|∆|2
, (A.7)

where the +(−) refers to α = L(R) and with 1 − α = R(L) for α = L(R), and
∆(X1, X2) = (ε− ε̃+ iΓL)(ε− ε̃+ iΓR)− t̃2.

A.2.1. Mean force

F1 = −2

∫
dε

2π
λ1

∑
α

fα(ε)Γα
(
(ε− ε̃)2 + t̃2 + Γ2

1−α
)[

(ε− ε̃)2 − t̃2 − ΓLΓR
]2

+ [(ΓL + ΓR)(ε− ε̃)]2
(A.8)

F2 = −4

∫
dε

2π
λ2

t̃ (ε− ε̃) (fL(ε)ΓL + fR(ε)ΓR)[
(ε− ε̃)2 − t̃2 − ΓLΓR

]2
+ [(ΓL + ΓR)(ε− ε̃)]2

(A.9)

A.2.2. Fluctuating force

D11 =2 (λ1)2
∫

dε

2π

∑
αβ

fα(ε)Γα (1− fβ(ε)) Γβ
∑
µ

gαµgβµ (A.10)

D12 =2λ1λ2

∫
dε

2π

∑
αβ

fα(ε)Γα (1− fβ(ε)) Γβ (gα0gβ1 + gα1gβ0) (A.11)

D22 =2 (λ2)2
∫

dε

2π

∑
αβ

fα(ε)Γα (1− fβ(ε)) Γβ×

× (gα0gβ0 + gα1gβ1 − gα2gβ2 − gα3gβ3) (A.12)
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A.2.3. Damping coefficients

γs11 =
(λ1)2

2π

∫
dε
∑
αβ

(−∂εfα(ε)) ΓαΓβ
∑
µ

gαµgβµ (A.13)

γs12 =2λ1λ2

∫
dε

2π

∑
αβ

fα(ε)Γα (−∂εfβ(ε)) Γβ (gα0gβ1 + gα1gβ0) (A.14)

γs22 =2 (λ2)2
∫

dε

2π

∑
αβ

fα(ε)Γα (−∂εfβ(ε)) Γβ (gα0gβ0 + gα1gβ1 − gα2gβ2 − gα3gβ3)

(A.15)

A.2.4. “Lorentz” term

γa12 = −2t̃
λ1λ2

π
ΓLΓR(Γ2

L − Γ2
R)

∫
dε

[
∂ε
ε− ε̃
|∆|2

] [
fL − fR
|∆|2

]
(A.16)
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B. Magnetic molecules

In this appendix we provide explicit expressions for the self-energies, the Green’s functions,
the expressions s0

l (M) and γslk(M), and the noise correlator, which are considered in
Chapter 5.

B.1. Green’s functions

The coupling of molecular electronic leveles with leads has been discussed in Section 2.2.3.
In the wide band limit for the retarded self-energy we obtain

ΣR
α,σ(ε) ' Re

(
ΣR
α,σ

)
− πi να,σ |wα|2 , (B.1)

with the approximately constant density of states να,σ(ε) ' νσ and |w|2 = (|wL|2 +
|wR|2)/2. We take into account possibly spin-polarized leads through ΣR

c,s = [ΣR
↑ ±ΣR

↓ ]/2
as well as Γc,s =

∑
α Γα,c(s), where Γα,c(s) = (Γα,↑ ± Γα,↓)/2. We also introduce the

abbreviation Γσ/2 = −Im
[
ΣR
L,σ(ε) + ΣR

R,σ(ε)
]
' π νσ |w|2.

From Eq. (5.7) we find for the frozen retarded Green’s function

GR(ε,M) =
1

ε̃2 − b̃2
[
ε̃ 1 + b̃ · σ

]
=

1

2

1 + σ · b̃/b̃
ε̃− b̃

+
1

2

1− σ · b̃/b̃
ε̃+ b̃

, (B.2)

with ε̃ =
(
ε− ε0 − ΣR

c

)
' ε− ε̃+ iΓc/2. Here, we include the antisymmetric part of the

self-energy in the effective magnetic field,

b̃(t) =
1

2
(JM(t) + geB) + ΣR

s êz. (B.3)

After some algebra we find the following expression for the lesser Green’s function, see
Eq. (5.10),

G<(ε,M) =G<I (ε,M) +G<b (ε,M)b · σ +G<z (ε,M)σz +G<t (ε,M)σ · (êz × b), (B.4)

where the coefficients are given by

G<I (ε,M) =
1

|∆(ε,M)|2 {Σ
<
c (ε)[|ε̃|2 + |b̃|2] + Σ<

s (ε) 2[Re[ε̃]bz −
ΓcΓs

4
]},

G<b (ε,M) =
2

|∆(ε,M)|2 {Σ
<
c (ε)Re[ε̃] + Σ<

s (ε)bz},

G<z (ε,M) =
1

|∆(ε,M)|2 {−Σ<
c (ε)

ΓcΓs
2

+ Σ<
s (ε)[|ε̃|2 − |b̃|2 +

Γ2
s

2
]},

G<t (ε,M) =
1

|∆(ε,M)|2 {Σ
<
c (ε)Γs − Σ<

s (ε)Γc}. (B.5)
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B. Magnetic molecules

Here we use ∆(ε,M) = ε̃2− b̃2 and b̃ ' b− i(Γs/2)êz. Substituting the above expressions
for Γc,s, it can be seen that G<t (M , ε) = 0, for ΓL,σ = ΓR,σ, implying that this component
of the Green’s function contributes only for polarized leads. The corresponding expressions
for the larger Green’s functionG>0 (ε,M) are obtained by replacing Σ<

c,s = i
∑

α fα(ε)Γα,c(s)
by Σ>

c,s = −i
∑

α (1− fα(ε)) Γα,c(s) in the expressions above.

B.2. Electronic spin and damping coefficient

Using the Green’s functions expressions, we find for the mean value of the electronic spin
at the molecule

s0(M) =

∫
dε

2πi
{G<b b+G<z êz +G<t (êz × b)}, (B.6)

resulting in Eq. (5.26) in the case of axial symmetry. The explicit expression for the
component parallel to M reads

sM (M) = − iJ

M

∫
dε

2π
G<b (ε,M). (B.7)

Considering a setup with unpolarized leads and the external magnetic field pointing
along the anisotropy axis, hence b = (JM + geBêz) /2, Eq. (5.13) becomes

γskl(M) =
J2

4

∫
dε

2π

∑
αβ

ΓαΓβ(−∂εfβ)

[(ε− ε̃+ b)2 + (Γ/2)2] [(ε− ε̃− b)2 + (Γ/2)2]
δkl

+
J2

2

∫
dε

2π

∑
αβ

ΓαΓβ(−∂εfβ) (ε− ε̃)2

[(ε− ε̃+ b)2 + (Γ/2)2]2 [(ε− ε̃− b)2 + (Γ/2)2]2
bkbl. (B.8)

This can be decomposed into a term proportional to the unit matrix and a projector
onto the z-axis, as described in Sec. 5.4. Note that the sign of the eigenvalues of γskl is
fixed, corresponding to damping both in and out-of equilibrium.
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C. Molecular switches on graphene

In this appendix we sketch the derivations of the diffuson, which is used in Sec. 7.5. We
follow standard procedures [Akkermans and Montambaux, 2007], which have been also
applied to the study of graphene [Kechedzhi et al., 2008, 2009; Kharitonov and Efetov,
2008; Rycerz et al., 2007; Berezovsky et al., 2010].

The ladder series for the diffuson, Eq. (7.45), is depicted in Fig. 7.8. For low tempera-
tures we consider only processes at the Fermi energy, yielding∫

dεkν(εk)G
R
εF

(k)G
A
εF−ω(k − q) ' fω(k̂, q)〈

U1

〉 . (C.1)

Here we use the abbreviation

fω(k̂, q) = 1 + iωτ − (vτ)2(q · k̂)2 − ivτq · k̂, (C.2)

where the approximation holds in the limit of small ω and q. Hence, the ladder series for
the diffuson, Eq. (7.45), becomes

D̃ω(k̂, k̂′, q) = U2(k̂ − k̂′) +
1〈
U1

〉〈D̃ω(k̂, k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)
〉
k̂′′ , (C.3)

cf. for example the derivation in [Akkermans and Montambaux, 2007]. First we average
over k̂ in order to obtain D̃ω(k̂′, q) ≡

〈
D̃ω(k̂, k̂′, q)

〉
k̂

which satisfies the integral equation

D̃ω(k̂′, q) =
〈
U2

〉
+

1〈
U1

〉〈D̃ω(k̂′′, q)fω(k̂′′, q)U2(k̂′′ − k̂′)
〉
k̂′′ . (C.4)

We approximate

D̃ω(k̂′, q) ' D̃ω(q) + 2k̂′ ·
〈
k̂′D̃ω(k̂′, q)

〉
k̂′ , (C.5)

and introduce the shorthand D̃ω(q) ≡
〈
D̃ω(k̂′, q)

〉
k̂′ . Then, averaging over k̂′ results in

D̃ω(q) =
〈
U2

〉
+ D̃ω(q)

〈
U2

〉〈
U1

〉(1 + iωτ − (vτq)2

2

)
− ivτq ·

〈
k̂′D̃ω(k̂′, q)

〉
k̂′ . (C.6)

Multiplying Eq. (C.5) with k̂′ and then averaging over k̂′ yields〈
k̂′D̃ω(k̂′, q)

〉
k̂′ = γ

(〈
k̂′D̃ω(k̂′, q)

〉
k̂′ − iq(vτ/2)D̃ω(q)

)
, (C.7)

with γ =
〈
k̂ · k̂′U2(k̂ − k̂′)

〉
k̂′/
〈
U1

〉
. Multiplication of the last line with q yields

q ·
〈
k̂′D̃ω(k̂′, q)

〉
k̂′ = −i

vτq2

2

γ

1− γ D̃ω(q). (C.8)

Plugging this result into Eq. (C.6) brings after straightforward algebra Eq. (7.50) for the
diffuson D̃ω(q), as stated in the main text.
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