INHALTSVERZEICHNIS

Al	obild	ungsve	rzeichnis	4
T٤	abell	enverze	cichnis	7
Li	ste h	äufig v	erwendeter Akronyme und Variablen	8
1	Ein	leitung	g1	1
2	The	eoretisc	che Grundlagen 1	3
	2.1	Photo	emission und inverse Photoemission	3
	2.2	Röntg	enemissionsspektroskopie 1	7
		2.2.1	Locherzeugung durch Elektronenstoß 1	.9
		2.2.2	Spektroskopische Trennung von Oberflächen- und Volumenemission 2	21
		2.2.3	Nebeneffekte bei Röntgenemissionsspektroskopie 2	23
	2.3	Endzus	standsregel und Vergleich experimenteller Methoden	25
		2.3.1	Endzustandsregel	25
		2.3.2	Vergleich der Methoden 2	26
3	Exp	perime	ntelle Grundlagen 2	29
	3.1	IPE-S	pektrometer	29
		3.1.1	Probenhalter	30
		3.1.2	Elektronenkanone	31
		3.1.3	Gitterspektrometer	33
			3.1.3.1 Energieeichung des Gitterspektrometers 3	34
			3.1.3.2 Spektrometer-Auflösung 3	35
			3.1.3.3 Normierung auf Detektorempfindlichkeit	\$7
	3.2	Photoe	emissionsmessungen 4	1
	3.3	Bestim	mung der Austrittsarbeiten 4	1
	3.4	Proben	präparation	13

4.	Val Lut	enzban tetium	ndzustandsdichte im Volumen und an der Oberfläche von Lanthan, und Samarium	45
	4.1	Valenz	zbandzustandsdichte von Lanthanmetall	45
		4.1.1	Analyse der Lanthan O ₃ -XE-Spektren	46
		4.1.2	Bestimmung der partiellen Zustandsdichten in Lanthanmetall an der Oberfläche und im Volumen	49
		4.1.3	Abwesenheit des Oberflächenzustands in den O ₃ -Röntgenemissions- spektren von Lanthanmetall	51
		4.1.4	Vergleich mit theoretischer (partieller) Zustandsdichte	52
	4.2	Valenz	zbandzustandsdichte von Lutetiummetall	54
	4.3	Valenz	zbandzustandsdichte von Samariummetall	58
		4.3.1	Photoemission an den 5p-Niveaus von Samariummetall	59
		4.3.2	Probleme bei der Normierung der O_3 -XE-Spektren von Samariummetall	61
		4.3.3	Satellitenstrukturen in O ₃ -XE	62
		4.3.4	Strukturierter Untergrund in O ₃ -XE in Samariummetall	64
			4.3.4.1 Einfluß von Auger-Prozessen auf Röntgenemissionsspektren	64
			4.3.4.2 Auger-IPE in Lanthan, Lutetium und Samarium	65
			4.3.4.3 Spezieller Untergrund in der O_3 -XE an Samariummetall	67
		4.3.5	Analyse der O ₃ -Röntgenemission in Samariummetall	69
	4.4	Überbl	lick über Valenzbandzustandsdichten an Lanthanidmetallen	72
		4.4.1	Überblick über Valenzbandzustandsdichten an Lanthanidmetallen	72
		4.4.2	Verschwinden der O ₂ -Röntgenemission	74
5	Ele	ktronis	che Struktur der Lanthan-Chalkogenide LaS, LaSe und LaTe	77
	5.1	Eigens	chaften und Bandstruktur von LaS, LaSe und LaTe	78
	5.2	Prober	präparation bei LaS, LaSe und LaTe	80
	5.3	Valenz	zband- und Rumpfniveauzustände in LaS, LaSe und LaTe	83
		5.3.1	Direkte und inverse Photoemission an Valenzzuständen	83
		5.3.2	Der 4f ¹ -Zustand in LaS, LaSe und LaTe	88
		5.3.3	Modell der Rumpfniveau-Bindungsenergien in LaX-Verbindungen	99

	5.4	Vergle	ich von MOKE- und IPE-Messungen am 4f ¹ -Zustand	103
	5.5	Valenz	bandzustandsdichte am Lanthanatom in LaS, LaSe und LaTe	106
		5.5.1	Photoemission am 5p ⁻¹ -Zustand in LaS und LaSe	106
		5.5.2	Partielle Valenzbandzustandsdichte am Lanthanatom in LaS, LaSe und LaTe	107
6	Zus	sammer	nfassung und Ausblick	111
A	nhar	ıg		114
	А	Oberflä	ächen-Rumpfniveau-Verschiebung und Oberflächenzustände	114
	В	Forme	In zum Detektorsystem	115
	С	Normi	erung von XE-Spektren für verschiedene Primärelektronenenergien	116
	D	O ₃ -XE	-Übergangswahrscheinlichkeit am Beispiel von Lanthan	118
	Е	Berech	nung der Übergangswahrscheinlichkeit für den Oberflächenzustand in La .	120
	F	Model	l der Streuung von Valenzelektronen an Rumpfniveaulöchern in Metallen	121
	G	Faltung	g der theoretischen Zustandsdichte am Beispiel von Lanthanmetall	122
	Н	Satellit	enemission in O_3 -XE an Oberflächenatomen in Samariummetall	123
	J	Kurze	Beschreibung des Auger-Prozesses	124
	K	Qualita	ative Bestimmung der Auger-IPE-Intensität in La, Lu und Sm	125
	L	Berech	nung der Fehler des Wellenvektors in winkelaufgelöster Photoemission	126
	Μ	Gewic	htetes Mittel eines 4f ¹ -Spin-Bahn-Dublettes	131
	Ν	Therm Bindur	ochemisches Modell von <i>Johansson et al.</i> zur Berechnung von 4f- ngsenergien in Lanthanidmetallen und ihren metallischen Verbindungen	132
	0	Madel	ungkonstante für spezielle Atome in der LaX-Struktur	135
	Р	Absorp	ptionsenergien in MOKE	136
	Q	Brems durch	strahlungsisochromatspektroskopie am 4f ¹ -Zustand in Lanthanmetall Ulmer	137
Li	tera	turverz	eichnis	139
Danksagungen				
Le	Lebenslauf			

Abbildungsverzeichnis

2.1	Schematische Darstellung von PE und IPE 1	14
2.2	XE-Prozeß und XE-Spektrum 1	8
2.3	Ionisierungswahrscheinlichkeit durch Elektronenstoß 1	19
2.4	Veranschaulichung der Trennung von Oberflächen - und Volumenemissionen 2	22
2.5	Vergleich von PE, IPE, XE und XA 2	26
3.1	Schematische Darstellung des IPE-Spektrometers 2	29
3.2	Probenhalter für XE- und IPE-Messungen an Lanthanidmetallfilmen	30
3.3	Probenhalter für die Messungen an den Lanthan-Chalkogeniden	31
3.4	Typisches Strahlprofil der Elektronenkanone 3	32
3.5	Breite des Elektronenstrahls für verschiedene Elektronenenergien	32
3.6	Elektronenstrahlprofil in Meßposition bei 17 eV	32
3.7	Elektronenstrom mit wachsender Elektronenenergie	33
3.8	Strahlengang im Detektorsystem 3	34
3.9	Energieeichung des IPE-Spektrometers mit He(1α)-Linie	35
3.10	Aufweitung der Elektronenlawinen zwischen den MCP im Detektorsystem	36
3.11	Experimentelle Auflösung des IPE-Spektrometers	37
3.12	Schematische Darstellung eines Toroidgitters	38
3.13	Theoretische Spektrometerfunktion und Vergleich mit gemessener Normfunktion 3	39
3.14	PE- und IPE-Messungen der Fermikante 4	12
4.1	5p ⁻¹ -Zustand in Lanthanmetall 4	15
4.2	O ₃ -XE-Spektren von Lanthanmetall 4	17
4.3	Entwicklung der Oberflächenintensität bei O ₃ -XE in Lanthanmetall in Abhängigkeit von der Primärelektronenenergie 4	18
4.4	Experimentelle s-d-artige Zustandsdichte von Lanthanmetall an Volumen- und Oberflächenatomen	19
4.5	Besetzte und unbesetzte Valenzbandzustände in Lanthanmetall	50
4.6	Winkelaufgelöste PE-Spektren von Lanthanmetall im Bereich des Valenzbands 5	50
4.7	Kombinierte IPE-XE-Messung an Lanthanmetall 5	51
4.8	Relative O ₃ -Übergangswahrscheinlichkeiten	52
4.9	Partielle theoretische Zustandsdichten für Lanthanmetall	53

4.10	Vergleich von experimenteller und theoretischer s-d-artiger Zustandsdichte für Volumenatome in Lanthanmetall	54
4.11	PE-Übersichtsspektrum von Lutetiummetall	54
4.12	O ₃ -XE-Spektren von Lutetiummetall	55
4.13	Experimentelle s-d-artige Zustandsdichte von Lutetiummetall an Volumen- und Oberflächenatomen	56
4.14	Partielle theoretische Zustandsdichten für Lutetiummetall	57
4.15	Vergleich von experimenteller und theoretischer s-d-artiger Zustandsdichte für Volumenatome in Lutetiummetall	57
4.16	4f-Zustände in der PE an Samariummetall	. 59
4.17	PE-Spektrum im Bereich der 5p ⁻¹ -Zustände von Samariummetall	60
4.18	Satellitenemission in den O3-XE-Spektren von Samariummetall	61
4.19	Normierte XE-Spektren von Samariummetall	62
4.20	Auger-IPE-Intensitäten in Samarium, Lanthan und Lutetium	67
4.21	O ₃ -XE-Spektrum von Samariummetall vor und nach Abzug des strukturierten Untergrunds für die Primärelektronenenergie 202 eV	68
4.22	Normierte O ₃ -XE-Spektren von Samariummetall nach Eliminierung des Untergrunds	69
4.23	Experimentelle s-d-artige Zustandsdichte von Samariummetall an Volumen- und Oberflächenatomen	70
4.24	Partielle theoretische Zustandsdichten für Samariummetall	. 71
4.25	Vergleich von experimenteller und theoretischer s-d-artiger Zustandsdichte für Volumenatome in Samariummetall	71
4.26	Experimentelle s-d-artige Zustandsdichten von Lanthan, Samarium und Lutetium, getrennt für Volumen- und Oberflächenatome	73
4.27	Oberflächen-zu-Volumen-Verhältnis bei O ₃ -XE in Abhängigkeit von der reduzierten Energie	74
5.1	Komplexe Nebendiagonalelemente des optischen Leitfähigkeitstensors σ in LaSe	77
5.2	LaX-Gitterstruktur	78
5.3	Theoretische Bandstruktur von Las, LaSe und LaTe	78
5.4	Lokale und partielle theoretische Zustandsdichte von Las, LaSe und LaTe	79
5.5	IPE-Spektrum einer unbehandelten LaS-Oberfläche	80
5.6	IPE-Spektrum von 'gut' und 'schlecht' gefeilten LaS-Proben	81
5.7	IPE-Spektren von LaSe mit gespaltener und mit 'gut' gefeilter Oberfläche	82
5.8	PE-Spektren von gefeiltem LaS und LaSe	84
5.9	Energiepositionen der PE- und IPE-Peaks der Valenzzustände in der theoretischen Bandstruktur von LaS, LaSe und LaTe	85
5.10	PE-Spektrum für zwei verschiedene Elektronen-Emissionswinkel von LaS	85

5.11	IPE-Übersichtsspektren an LaS, LaSe und LaTe
5.12	IPE-Spektrum des 4f ¹ -Zustands von einkristallinem Lanthanmetallfilm
5.13	4f ¹ -Zustand von gespaltenem LaSe (a) sowie mit gefeilter Oberfläche und nach Adsorption von verschiedenen Mengen Sauerstoff
5.14	Möglichkeiten der Oberflächenstruktur in den LaX
5.15	Oberflächen-Topographie der LaX-Proben nach dem Feilen bzw. Spalten
5.16	$4f^{1}$ -Zustand von LaS, gefeilt und mit verschiedenen Sauerstoffadsorptionen
5.17	Übersicht über die 4f ¹ -Zustände in La, LaS, LaSe und LaTe
5.18	Theoretische radiale Aufenthaltswahrscheinlichkeit für 4f-Elektronen
5.19	Modell zur Erklärung der Bindungsenergie-Verschiebung in den LnX 101
5.20	Vergleich von MOKE und IPE 104
5.21	Vergleich von MOKE- und IPE-Daten zur Bestimmung des 4f 1 -Zustands in LaX 105
5.22	5p ⁻¹ -Zustände in La, LaS und LaSe 106
5.23	O ₃ -Röntgenemissionsspektren für La, LaS, LaSe und LaTe
5.24	Vergleich der s-d-artigen (experimentellen) Zustandsdichten von Lanthanmetall mit der d-artigen Zustandsdichte am Lanthanatom in LaS und LaSe
A.1	Modell der Oberflächen-Rumpfniveau-Verschiebung 114
B .1	Experimentelle Auflösung des Detektorsystems 116
C.1	Normierung zweier XE-Spektren auf gleiche Volumenintensität 117
C.2	XE-Spektren (unnormiert) mit Untergrund 118
G.1	Veranschaulichung der Faltung der theoretischen Zustandsdichte mit der experimentellen Auflösung 122
K.1	Schematische Darstellung von Zuständen, Zustandsdichten und Auger- sowie IPE- Intensitäten in Lanthanmetall
K.2	Schematische Darstellung von Zuständen, Zustandsdichten und Auger- sowie IPE- Intensitäten in Lutetiummetall
K.3	Schematische Darstellung von Zuständen, Zustandsdichten und Auger-Intensitäten an Volumenatomen in Samariummetall
K.4	Schematische Darstellung von Zuständen, Zustandsdichten und Auger-Intensitäten an Oberflächenatomen in Samariummetall
K.5	IPE-Intensitäten durch Auger-Elektronen in Samariummetall 130
L.1	Wellenvektor-Komponenten bei verschiedenen Emissionswinkeln
N.1	4f-Bindungsenergie-Modell für reines Lanthanmetall
N.2	4f-Bindungsenergie-Modell für metallische Lanthan-Verbindungen 133
O .1	Berechnung der Madelungkonstante für ein Atom an einer (10)-Stufe 136
Q.1	BIS-Prozeß nach Ulmer [Ulm81] 137

Tabellenverzeichnis

3.1	Parameter zur Erzeugung einkristalliner Lanthanidmetall-Filme
4.1	Theoretische und experimentelle Bindungsenergie und Spin-Bahn-Aufspaltung, sowie experimentelle Linienbreite des 5p ⁻¹ -Zustands in Samariummetall
4.2	Energie-Positionen der experimentellen partiellen Zustandsdichte von La, Sm und Lu getrennt für Volumen und Oberfläche
5.1	Theoretische d-artige Zustandsdichte an E_F von LaS, LaSe und LaTe
5.2	Madelungkonstanten für Volumen-, Terassen- und Kantenatome in der LaX- Struktur (NaCl-Struktur)
5.3	Theoretische und experimentelle Bindungenergie und Oberflächen-Rumpfniveau- Verschiebung des 4f ¹ -Zustands von La, LaS, LaSe und LaTe
5.4	PE-Bindungsenergien des 4f ¹¹ -Zustands in Tm,TmS, TmSe und TmTe 100
5.5	PE-Bindungsenergien und Oberflächen-Rumpfniveau-Verschiebung des 5p ⁻¹ -Zustands in La, LaS und LaSe
5.6	Experimentelle Breite der O ₃ -XE in La, LaS, LaSe und LaTe 108
N.1	Bildungsenthalpien und theoretische 4f ¹ -Bindungsenergie in LaS, LaSe und LaTe 134

Liste häufig verwendeter Akronyme und Variablen

Akronyme

doppelt hexagonal dichtgepackt (double hexagonal closed packed)
kubisch flächenzentriert (face centered cubic)
hexagonal dichtgepackt (hexagonal closed packed)
inverse Photoemission
Lanthan
Lanthan-Chalkogen-Verbindungen (LaS, LaSe, LaTe)
Beugung niederenergetischer Elektronen (low energy electron diffraction)
Lanthanid-Chalkogenverbindungen (Lanthanide: chem. Elemente La Yb)
Lutetium
Platte mit vielen kleinen Sekundärelektronenvervielfachern (multi channel plate)
Magneto-optischer Kerr Effekt
Oberflächenzustand
Photoemission
Resonante XE (resonant inelastic x-ray scattering)
Schwefel
Oberflächen-Rumpfniveau-Verschiebung
Selen
Samarium
Raster-Tunnel-Mikroskopie (scanning tunneling microscopy)
Tellur
Valenzband
Chalkogenatom mit $X = S$, Se, Te
Röntgenabsorption (x-ray absorption)
Röntgenemission (x-ray emission)
Röntgenemissionsspektroskopie (x-ray emission spectroscopy)

Variablen

λ_{e}	Mittlere freie Weglänge von Elektronen im Festkörper
λ_{Ph}	Mittlere freie Weglänge von Photonen im Festkörper
χ^2	Summe der Fehlerquadrate bei der Fitanalyse
E ₀	Primärelektronenenergie in IPE und XE
EB	Bindungsenergie (positiv, relativ zu E_F)
$\mathbf{E}_{\mathbf{F}}$	Fermienergie
E _{Kin}	Kinetische Energie von Elektronen
$\mathbf{E}_{\mathbf{V}}$	Vakuumenergie (positiv, oberhalb von E_F)
$\mathbf{\Phi}_{\mathrm{A}}$	Austrittsarbeit der Elektronenanalysators (PE)
$\mathbf{\Phi}_{\mathrm{K}}$	Austrittsarbeit der Elektronenkanone (IPE)
k	Wellenvektor eines Elektrons im Festkörper
l	Drehimpulscharakter bzw. Drehimpulsquantenzahl
hν	Photonenenergie
ħω	Photon oder Photonenenergie
Т	Temperatur
Uacc	Beschleunigungsspannung
Uret	Bremsspannung
W	Breite eines Bandes im Festkörpers
Z	Koordinationszahl