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Introduction

In geometric topology, the algebraic K-theory of the integral group ring, Z[m(X)], of
the fundamental group of a CW-complex X has information about obstructions. For
example, X is a finitely dominated C'W-complex if there is a finite CW-complex Y and
maps f: X = Y and ¢g: Y — X such that there is a homotopy g o f ~ 1x. Recall that
a finite CW-complex consists of finitely many cells. Wall’s finiteness obstruction of a
finitely dominated C'W-complex X is an invariant 7(X) € Ko(Z[r(X)]) in the reduced
Ko-group. The obstruction 7(X) is trivial if and only if X is homotopy equivalent to a
finite CW-complex. A survey on applications of K-theory to geometric topology is [38].

The K-theory groups are hard to compute, but the Farrell-Jones conjecture is a
powerful tool to get information about them. Let G be a torsion free group and R be
a regular ring, i.e., a Noetherian ring such that any R-module has a finite-dimensional
projective resolution. The Farrell-Jones conjecture predicts, an isomorphism

H,(BG;K%(R)) — K,(R[G]), neZ

where BG is the classifying space of G, K% (R) is the non—connective algebraic K-theory
spectrum of R, as defined in [33], and H,(—; K“9(R)) is the homology theory associated
with the spectrum K% (R). For G = C, the infinite cyclic group, we get for all n € Z,
H,(BC;K(R)) = K,(R)®K,_1(R) and the conjecture above predicts an isomorphism

Kn(R) & Kno1(R) = K, (RIC)).

However, the K-theory groups of R[C] are given by the Fundamental Theorem of
Algebraic K-theory in terms of the algebraic K-groups and Nil-groups of R

K, (R) ® Ky 1(R) ® NK, (R) ® NK,(R) — Ku(RIC)).

For regular rings NK,(R) = 0 for all n € Z [37], but for arbitrary rings, due to Nil-
phenomena, one expects that the homomorphism above fails to be an isomorphism.
Before we describe the Nil-phenomena, the central problem of this thesis, we state the
Farrell-Jones conjecture.

Let G be a group and VCYC be the family of virtually cyclic subgroups of G, the
space Eyeye(G) is a G-CW-complex, unique up to G-homotopy, such that Eyeye(G)H
is contactible if H € VCYC and empty if H ¢ VCYC [29]. The Farrell-Jones conjecture
predicts that the assembly map, Aycyc, induced by the projection Eycye(G) — pt

Avcyc1 HS(EVC)JC(G)§ KR) — Hf(pt;KR) = Kn(R[GD

is an isomorphism for all n € Z, all groups G and all rings R. Here HE(—;Ky) is a
G-homology theory associated with the non-connective K-theory spectrum of the ring
R. We refer the reader to [30] for a survey on the Farrell-Jones conjecture.
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In some sense, one transport the problem with cyclic (and finite) groups to the left
hand side; it is a more complicated object, but accessible through spectral sequence type
methods. The Farrell-Jones conjecture is known to hold for a large number of groups
and at the moment of writing there is no counterexample to this conjecture.

Let us go back to Nil-phenomena. A well-known fact about the groups N K, (R), for
all rings, is that they are either trivial or infinitely generated abelian groups. W. van
der Kallen [42] proved this fact for all dimensions while T. Farrell [15] did it only for
dimension 1. Nevertheless, the techniques of Farrell’s work are interesting to us.

Let us fix m € N and let C"™ < C' be the subgroup of C' of index m. The canonical
ring inclusion R[C™] < R[C] induces, in all dimensions, the restriction homomorphism
res, : Kn(R[C]) = K,(R[C™]) and the induction homomorphism ind, : K,(R[C™]) —
Kn(R[C]).

These homomorphisms restricts to Nil-groups, therefore it is possible to define an
action, via restriction and induction, on NK,(R). This will extend to a W (Z)-module
structure on N K, (R) (see [45]), where W (Z) is the Witt vector ring of Z. An interesting
question is if the Bass Nil-groups are finitely generated as W(Z)-modules. There are
only a few results about finite generation as W (Z)-modules, for example for G = Cy, the
finite cyclic group of order 2, we have

- NKy(Z[Co x C3]) is non trivial and finitely generated as W (Z)-module [9];
- NK(Z[Cq x C3]) is not finitely generated as W (Z)-module [19];
- NK3(Z[C4]) is a cyclic W(Z)-module [46].

Therefore, the W (Z)-module structure relevant in the study of Nil-groups.

Statement of results

We organized our results into 4 chapters. The classical approach to Witt—vector mod-
ule structures on Nil-groups is in chapters 1 and 2 while chapters 3 and 4 offer a novel
approach generalizing the classical methods. We also include two appendices for com-
pleteness, in particular, Appendix B offers a Nil-group oriented introduction to the ring
of Witt vectors.

Chapter 1: Mackey functors, Burnside rings and K-theory

In this chapter, we introduce B(G), the Burnside ring of a group G. We use the finite G-
set version of the Burnside ring [28], which is valid for all groups, instead of the classical
definition [5], which is valid only for finite groups, because we have a particular interest
in the infinite cyclic group G = C.

Of course, a vast amount of results for Burnside rings of finite groups does not hold
for arbitrary groups. Hence, we state and prove facts about Burnside rings necessary for
this thesis in Section 1.1.

We also define (cofinite) Mackey functors. From then on, Mackey functors become
fundamental objects in our study. Whenever possible, we look for Mackey functor struc-
tures on the objects presented here. Among the Mackey functors, the Burnside ring is
special because of its following universal property.

Proposition. 1.2.9 If M is a Mackey functor with values in MOD(R), then M is in a
canonical way a module over the Green functor given by the Burnside ring with respect
to the canonical ring homomorphism ¢: Z — R.
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We end the chapter with Section 1.3. This section includes the proof that K,(R—)
is a Mackey functor on the subgroups of G following [31]. For finite groups, the proper
formulation and proof of this fact are in [12]. For arbitrary groups, we have to consider
group homomorphisms a: H < G that are injective, and whose image has a finite index.
This is a necessary condition to have the contravariant (restriction) structure on K-theory
of group rings. Notice that for the infinite cyclic group C' and all m > 0, the canonical
inclusion of C™ < ( satisfies the above condition.

Hence, K,,(R[C]) is, in a canonical way, a B(C)-module. This is a mere consequence
of the universal property of the Burnside ring. In Chapter 2, we give a detailed description
of this action.

Chapter 2: The Fundamental theorem and compatible actions

In the first section, we indicate, through the study of polynomial rings, the existence of
N K-groups NK,(R). Then, we provide the formal definition of NK-groups and define
the Nil-groups Nil,,(R). These groups are, up to dimension shifting, isomorphic. The Nil-
group interpretation is better suited for computations than the N K—group interpretation
and we take advantage of this fact to study the N K—groups.

In Section 2.2, we state the Fundamental Theorem of Algebraic K-theory 2.2.1 and
summarize its proof, following [40]. We emphasize the localization sequences appearing
there and provide an explicit description of the isomorphism

NEK,(R) 2 Nil,_1(R). (0.0.1)

In Section 2.3, we describe two actions on Nil-groups. The Frobenius and Ver-
schiebung endomorphisms define an action via by operations on nilpotent endomor-
phisms. We recover the following result from [45]

Proposition. 2.3.2 The operations F,, and V,,, for m € N, defined in the category
NIL(R), describe the Endg(Z)-module structure on Nil,_1(R) for all n € Z.

We refer to the module structure given in the Proposition above as the W (Z)-module
structure, since Endy(Z) is a dense subring of W(Z). We extend the Endy(Z)-module
structure of Nil-groups to a W(Z)-module structure in Chapter 4.

The restriction and induction homomorphisms, arising from R[C™] — R[C], give
the second action, now described on N K-groups. This is the B(C)-module structure
mentioned at the end of Chapter 1, and we describe it in detail.

In order to have a well-defined action, we check that localization commutes with
restriction and induction. This is a technical issue, since Farrell’s original work [15]
only considers the canonical inclusion R[t"™]| < R]t] while we require the restriction and
induction coming from R[C™] < R[C]. We prove

Theorem. 2.3.6 For all m € N, the restriction and induction homomorphism in K-
theory are compatible with the Bass—Heller—Swan decomposition.

The last result of the chapter links the Witt ring module structure with the Burnside
ring module structure.

Theorem. 2.3.7 The Endy(Z)-module structure on Nil,_1(R) and the B(C)-module
structure of NK,(R) coincide, under the isomorphism 0.0.1.



4 Introduction

Chapter 3: Witt—Burnside ring

Chapter 3 generalizes Chapter 1. Dress and Siebeneicher introduced the concept of
Witt-Burnside ring [13]. We follow the more recent work of J. Elliott [14] which is also
more general. The Witt—Burnside ring is defined for profinite groups, in particular those
presented in Appendix A.

In Section 3.1, we introduce, for a profinite group I" and a commutative monoid M,
the concept of I'-strings over M. Then, we define B, (I"), the completed Burnside ring
of I', as the Grothendieck ring of isomorphism classes of I'-strings over M under disjoint
union with product given by Cartesian product. We show that B,,(-) is a Mackey functor
on the open subgroups of I'. The following theorem is important to establish our main
result in the last chapter.

Theorem. 3.1.13 For any profinite group I', there exists a ring isomorphism
By ((l)— @BM(F/N)
N
X — (Bprojy (X)) y
where N runs over all open normal subgroups of I

We use the existence of the Witt—Burnside ring over I' of Theorem 3.2.1 and refer the
reader to [13] and [14] for the proof of this fact. The following has important applications
for K-theory.

Theorem. 3.2.3 For any profinite group I' and any commutative monoid M, there exists
a ring isomorphism W (Z[M]) = B,,(T).

Finally, we show that Wr(_) can be described as an inverse limit. This is based on a
similar result for the completed Burnside rings.

Theorem. 3.2.9 For all commutative rings R and all profinite groups I, there exists a
ring isomorphism
Wi (R) = lim Wy (R)
N

where N runs over all open normal subgroups.

Chapter 4: An equivariant homology theory with restriction

This chapter contains our main result, namely, we want to determine for, the trivial
monoid M = 1 when a B, (_)-module structure on an equivariant homology theory exists.
Sections 4.1, 4.2 and 4.3 are a short digression about the assembly map in algebraic K-
theory, the K-theory spectrum and G-homology theories.

We introduce the concept of an equivariant homology theory H’: it consists of a
G-homology theory for each group G with an induction structure, linking the various
G-homology theories. We require further that an equivariant homology theory has a
restriction structure in the sense of [27].

The idea is that an equivariant homology theory with a restriction structure has a
Mackey functor structure on it, thereby applying the universal property of Burnside ring
we have a B(_)-module. We prove

Theorem. 4.5.2 Let H.(—) be an equivariant homology theory with restriction structure.
Then for all group G, all G-CW -complezes X and all n € 7, M’ (res. X) is a B(G)-
module.
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Finally, we look for conditions to extend the B(_)-module to a B, (-)-module structure,
where M = 1 denotes the trivial monoid. Our main result provides the criteria for such
an extension to exist.

Theorem. 4.6.4 Let (I,<) be a direct set satisfying the condition that for every j € I
the set {i € I|i < j} is finite, {G;i,pij} be a surjective inverse system of finite groups
indexed by I and H be an abelian group. Assume that H is a By /(G;)-module for alli € I
and satisfies

(a) for each i < j, the By (Gi)-module structure of H is Bres,, -compatible with the
B, (Gj)-module structure of H, i.e., the diagram

BresgpinIdT Id

commutes;

(b) for every x € H there exists i = i(x) € I, such that for all j with i < j, then
Ker(Bproj;) C Anng,,(g,) (%) = {T € Bu(Gj) | T.xz = 0}.

Then H has a module structure over the ring ILHZ B (Gi).

We conclude with an application of this result to algebraic K-theory using the for-
mulation of the Farrell-Jones conjecture, to generalize the W (R)-module structure of
NK,.(R).

Theorem. 4.6.7 Let R be a commutative ring with unit. For all n € 7 there exists a
B« (C)-module structure on NK,(R). Moreover, this structure is compatible with the
W (R)-module structure of NKy(R).

Conventions

We assume readers to be familiar with basic notions about K-theory, and a good intro-
ductory book to the topic is [37]. We also assume basic knowledge in Category Theory.
Here the text [32] is sufficient. We also assume familiarity with concepts like homology,
spectra arising in algebraic topology, see for example [22].

In this work, we consider associative rings with unit, usually denoted by R. In special
cases, we require R to be commutative, and in such cases, we state it explicitly. The
K-theory groups of a ring R are given by the homotopy groups of the non—connective
algebraic K-theory spectrum of R, as defined in [33].

Since there is no consensus about 0 being a natural number, we denote by N the set
of natural numbers {1,2,3,...,} and by Ny the set NU {0}.
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Chapter 1

Mackey functors, Burnside rings
and K-theory

In Section 1.1, we define B(G), the Burnside ring of a (not necessarily finite) group G and
define the restriction and the induction maps between Burnside rings. In section 1.2, we
study cofinite Mackey functors and show that B(_), the Burnside ring, is a cofinite Mackey
functor with the universal property given by Proposition 1.2.9. In the last section, we
sketch the proof that for any ring with unit R the algebraic K-theory groups K, (R[—])
of group rings with coefficients in R is a Mackey functor following [31]. Last, we give
an abstract description of the B(C)-module structure of K, (R[C]), with C the infinite
cyclic group.

1.1 The Burnside ring

Let G be a group. If GG is finite, the Burnside ring of G has been extensively studied, see
for instance [5]. If G is a (discrete) infinite group there still exists the notion of Burnside
ring of G. There are several generalizations of Burnside rings of groups and the choice of
one version depends on the background problem. In our case, we chose the finite G-set
version because it is related to Green functors and induction theory (see [28]).

We will consider (discrete) groups, not necessarily finite. As we will see, the induction
map exists for all group homomorphism while the restriction map exists only for injective
group homomorphisms whose image has finite index.

Definition 1.1.1 (G-sets). A G-set T is a discrete set with a continuous left G-action. A

G-map, T i) S, between two G-sets, is a G-equivariant map. Let G-SET be the category
whose objects are G-sets and morphisms are G-maps. A finite G-set is a G-set whose
underlying set is finite.

Let T and S be G-sets. The disjoint union of T and S is the set T'[[ S endowed with
the obvious G-action

G x (THS) —>THS.

(9,2) = gz
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The product of T and S is the set T x S endowed with diagonal G-action
GxTxS—TxS.
(9 (£,5)) = (gt, 95)

Remark 1.1.2. Let T, S and Z be G-sets, then T'x S = S x T and T x (S][Z) =
T x S]]T x Z are isomorphic as G-sets.

Definition 1.1.3 (Restriction of G-sets). Let H % G be a group homomorphism and T
be G-set. The restriction of T' is the H-set with underlying set res,T' = T and H-action
given by restriction of the G-action to H via «, i.e.,

H xres, T — res T.
(h,t) — a(h)t

Notice that for a G-map T EREY , the restricted morphism res, 7" — res, T" is auto-
matically an H-map. Hence, there is a functor

res,: G-SET — H-SET. (1.1.1)

Remark 1.1.4. Let H <> G be the inclusion of H < G subgroup of G. Then we denote
res, := resg.

Definition 1.1.5 (Induction of an H-set). Let H % G be a group and S be an H-set.
The induction of S is the G-set ind S whose underlying set is the space of orbits G x, S
of the right H-set G x S with H-action given by (g,s).h := (ga(h),h™!s), for g € G,
s € S and h € H. The G-action is given by

Gx(Gx,8) — Gx,8.
(4 19,5]) = [d'9, 5]

For § L5 &' an H-map we define
ind_(f): ind,S — ind_ S’
9, 5] = [g, F(s)]
which is a G-map. Hence, there is a functor
ind_ : H-SET — G-SET. (1.1.2)

Remark 1.1.6. Let H < @ be the inclusion of H < G subgroup of G. Then we denote
ind, := ind§

Example 1.1.7 (Transitive homogeneous G-sets). Let H < G be a subgroup and G/H
be the set of (left) cosets of H in G. The group G acts on G/H by multiplication

G xG/H — G/H.
(9 9H) — g'gH

This action makes G/H into a transitive homogeneous G-set. A G-map between
transitive homogeneous G-sets is easy to describe. Let H, K < G and assume that

f:G/H — G/K
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is a G-map. The image of the identity class eH determines f because G/H is transi-
tive, thus assume that f(eH) = gK for some g € G. Then, for any h € H, we have
gK = f(eH) = f(hH) = hf(eH) = hgK. Hence, g~'hg € K that is g 'Hg C K or
equivalently H C gKg™ .

We conclude that a G-map G/H ENYe! /K exists if and only if there exists g € G such
H C 9K, where YK = gKg~!. Moreover, f is an isomorphism, f: G/H =N G/K, if an
only if H and K are conjugate.

Characterisation of G-sets

The homogeneous transitive G-sets are easy to visualize and they are the building blocks
of GG-sets because they generate any G-set in the following sense.

Lemma 1.1.8. (a) Any G-set is a disjoint union of transitive homogeneous G-sets. If
T is a transitive G-set and Gy denotes the stabilizer subgroup of t € T, then there
is an isomorphism of G-sets

o G/Gt — T
gGi — gt.

(b) Let H K < G be subgroups of G. Then there ezists a one—to—one correspondence

morg(G/H,G/K) — {¢K € G/K | H CIK}
[ fleH)

where morg(G/H,G/K) is the set of G-maps from G/H to G/K.

Proof. (a) The proof that the map p is an isomorphism follows from the fact that
T = {gt| g € G} since T is transitive.

Let T be a G-set, the orbits of T' form a partition 7" = [ [ 7; where T; is a transitive
G-set. The result follows from the isomorphism pu.

(b) We discussed this in Example 1.1.7 above.
O

Remark 1.1.9. In particular, Lemma 1.1.8 states for any finite G-set T" that there exists
a G-isomorphism

TgHMH(T)-G/H, (1.1.3)
(H)

where (H) denotes the conjugacy class of H <; G, subgroup of finite index in G, the
disjoint union runs over all conjugacy classes; ug (1) € Ny is the number of G-orbits of
T isomorphic to G/H and pug(T) - G/H is short for the disjoint union of g (7") copies
of the finite transitive G-set G/H.

The ring structure

Definition 1.1.10 (Burnside ring of G). Let G be a (discrete) group, not necessarily fi-
nite. Define B(G), the finite G-set version of the Burnside ring of G, as the Grothendieck
ring of isomorphism classes of finite G-sets under disjoint union with product given by
Cartesian product.
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We think of B(G) as the free Z-module with basis the set of isomorphism classes of G-
sets. Further, we can consider B(G) as the free Z-module with basis {G/H | H <y G} (g
where (H) runs over conjugacy classes. Hence, the class of a G-set T in B(G) is

T=> pu(T) G/H. (1.1.4)
(H)

Remark 1.1.11. We write T for both, the G-set T" and its isomorphism class 7" in B(G).

The multiplication in B(G) is determined by the multiplication of the basis elements.
Proposition 1.1.12. Let H, K <; G be finite index subgroups of G.

(a) Double coset formula. If S is an H-set, then there is an isomorphism of K -sets

K: 3G Q ~ K HNKY
res,indy S = H indyvresy S,

KyHEe|K\G/H]|
where K7 =y 1 K~.

(b) Frobenius identity. If T is a G-set and S is an H-set, then there is an isomor-
phism of G-sets
T x ind$S = ind$ ((restT) x S).

In particular, for any G-set T', there is an isomorphism of G sets

T x G/H = indresiT.

Remark 1.1.13. We write ind} .~ in the double coset formula above for the induction
coming from the inner automorphism ¢(y): H N K7 — K, sending h + yhy~!. The
notation KyH € |K\G/H| means a set of representatives of double cosets.

Proof. (a) The required K-isomorphism

K: G : K HNKY
res,ind; S — | | ind}; goresy S,
KvHE|K\G/H|

sends [g,s] — [k,hs] if ¢ = kvyh for some k € K and h € H, ie., [k, hs] lies in
ind%_  restNET S,

Surjectivity follows from the fact that [k,s] € ind% . res™ 7S can be written as
[k’, hs], hence it comes from [k'yh, s| € res&ind$S.

To verify injectivity, let [¢’,s'] and [g,s] such that [k’ h's'| = [k, hs]. Then there
exists h' =~ 'k"y = z € HN K7 such that (k',h's') = (ke(v)(2), 2 hs). The element
h=h='h" I verifies [¢', '] = [g, s].

(b) The required G-isomorphism is

T x ind$S — ind$ ((resZT) x S)

(t,1g,s]) — [g, (g7 't, )]

Surjectivity follows from the fact that [g, (¢, s)] comes from the element (gt, [g, s]).

To verify injectivity, let (, [¢, §']) and (¢, [g, s]) such that [¢/, (¢ 't', s)] = [g, (g7, 5)].
Then there exists h € H such that (¢, (¢’ 't', s')) = (gh, (h"Lg~'t, h~1s)) this is ¢’ = gh,
s'=h7lsand ¢ =t. Hence, (t,[¢,s']) = (,]g, 5]).

The other statement is obtained with S = H/H. O
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Proposition 1.1.14. Let H, K <y G. The product of G/H and G/K in B(G) is given
by
G/H-G/K= >  G/HNK"). (1.1.5)

K~yHe|K\G/H|

Proof. Frobenius identity and the double coset formula give the isomorphisms
G/H x G/K = ind$rest (ind5 (H/H))

>~ ind¢ ( [T indi (HNK/HN K’Y))

KyHe|K\G/H]|

=~ ind< ( IT x/HEN KV)

K~yHe|K\G/H|

I

[T ¢/HNK

KvHE|K\G/H|

Ring homomorphisms

The next argument holds for any injective group homomorphism H <% @ whose image
has finite index, but we only consider H <y G. The functors

resh: G-SET — H-SET

and
ind%: H-SET — G-SET

preserve disjoint union of G-sets and H-sets respectively. Using this property, we define
maps between Burnside rings

Bresi: B(G) — B(H)

and
Bind¥: B(H) — B(G).

Indeed, Bres is a ring homomorphism while Bind§, is just an additive homomor-
phism. This is not the standard notation, but it keeps our exposition simpler. See
Remark 1.1.16 below.

Proposition 1.1.15. Let H, K <; G.
(a) Double coset formula. If S € B(H), then in B(K)

Bresf o Bind$(S) = Z Bind% .~ o Bres"7(9).

KyHE|K\G/H]|
(b) Frobenius identity. If T € B(G) and S € B(H), then in B(G)
T.Bind$(S) = Bind¢ (Bress (T).95)
In particular, for T € B(G)

T.G/H = Bind{ (Bresy (T)).
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Proof. Both are direct consequence of Proposition 1.1.12. ]

Remark 1.1.16. We reserve the notation res? and ind¢, for functors over the corresponding
categories and denote by Bres? and Bind$, the corresponding Burnside ring homomor-
phisms. This will assist in the next chapters where we define BresZ and Bind¢, and
Wres? and Wind¢, for different homomorphisms arising from res? and ind.

1.2 Mackey functors

The principal examples of Mackey functors for us are the Burnside rings and the algebraic
K-theory of group rings. Moreover, we prove that the Burnside ring functor is a Green
functor acting over any Mackey functor. Let R be a ring with unit and MOD(R) the
category of left R-modules with homomorphism of R-modules as morphisms.

Definition 1.2.1 (Cofinite Mackey functor). Let GR be the category of groups with
group homomorphisms. Let GRIFI be the subcategory with morphisms the injective
group homomorphisms whose image has finite index in the target. A cofinite Mackey
functor with values in R-modules is a pair of functors

M,: GR — MOD(R)

M*: GRIFI — MOD(R)

such that:
a) M, is covariant, M™ is contravariant and agree on objects:;
b g -] )

(b) for an inner automorphism ¢(v): G — G, with v € G, we have

M.(c(y)) = id: M(G) — M(G);

(c) let a: G — H be a morphism in GRIFI and denote M*(a)) = res, and M,(«a) =

ind,. For an isomorphism of groups a: G =, H the composition res, oind,_ and
ind_ ores, are the identity.

(d) Double coset formula. For H, K < G subgroups

K _: G _ : K HNKY
resg o ind} = E indp v oresy .

KyHe|K\G/H]|

Remark 1.2.2. The reason to denote M*(«a) = res, and M, (a) = ind, for a morphism
H % G in GRIFI is because our main example of Mackey functors are the Burnside
rings and in the theory of Burnside rings it is common to use this notation.

Theorem 1.2.3. The Burnside ring B(-) is a cofinite Mackey functor with values in
MOD(Z).
Proof. (a) Let G be a group. Define M, (G) = M*(G) = B(G). If H % G is a morphism

in GR define M, (a) = Bind,. If H < G is a morphism in GRIFI define M*(a) = Bres,.
(b) Let v € G and ¢(y): G — G be conjugation by ~. For a G-set T' the G-map

GxepnT —T

l9,t] = gt
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is an isomorphism. Surjectivity follows immediately. For injectivity, notice that if g'yt' =

g7t, then ' = y71g"" 'gyt and g = y~Lg'"" gy verifies (g,t) = (¢'c(7)(9), g~ 't").

(c) Let a: H =, G be an isomorphism and T be a G-set. The G-map
G xqresyT — T
[9,t] = gt
is an isomorphism. Surjectivity follows immediately. For injectivity, if [¢/,t'] and [g, 1]
have the same image in T, then ¢/ = ¢’ gt and h = a~(g~1¢') verify [¢,t'] = g, 1].

Hence, Bind,, o Bres,, is the identity.
Let S be an H-set then, the H-map

resy (G xo S) — S
[9.8] = a”(g)t

is an isomorphism. The proof of this assertion is similar to the previous case. Hence,
Bres, o Bind,, is the identity.
(d) We proved this in Proposition 1.1.15. O

Definition 1.2.4 (Pairing of Mackey functors). Let M, N and P be Mackey functors
with values in MOD(R). A pairing of Mackey functors is a family of bilinear maps
M(G) x N(G) = P(G),
(z,y) = z.y

where G runs over the category GRIFI such that for any morphism H <% @ in GRIFI
the following relations hold

(i
(ii

) (@1 + x2).y = 1.y + x2.y, for 21,29 € M(G), and y € N(G);
) @
(ili) (rz).y =r(z.y) =x.(ry), for r € R, z € M(G), and y € N(Q);
)
)
i)

(1 +y2) = z.y1 + 2.y2, for € M(G), and y1,y2 € N(G);

(iv) res,(z.y) =res, (x).res, (y), for x € M(G) and y € N(G);

@

(
(v) z.ind_(y) =ind,(res (z).y), for x € M(G) and y € N(H);
(v (

Remark 1.2.5. The notion of pairing is more general. If ¢: R — S is a homomorphism
of associative (commutative) rings with unit, then we can define a pairing for M with
values in MOD(R) and, N and P having values in MOD(S). One need to check that, in
this case for (iii) above, (rz).y = ¢(r)(z.y) and z.sy = s(z.y), where s € S.

ind_(z).y = ind_(x.res (y)), for z € M(H) and y € N(G).

Definition 1.2.6 (Green ring). A Green functor with values in MOD(R) is a Mackey
functor M with a pairing M x M — M and elements 1, € M(G) for each group G in
GRIFI such that for each group G the pairing

M(G) x M(G) — M(G)

induces the structure of an R-algebra on M (G) with unit 1, and for any morphism
H < G the map M*(a) = res,: M(G) — M(H) is a homomorphism of R-algebras with
unit.
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Example 1.2.7. The natural example of a Green ring is the Burnside ring of a group
viewed as a functor B: GRIFI — MOD(Z). For any G in GRIFI the multiplicative
structure of the ring B(G)

me: B(G) x B(G) — B(G)
gives the Green ring structure.

Definition 1.2.8 (Green module). Let ¢ be a ring homomorphism, M a Green functor
with values in MOD(R) and P be a Mackey functor with values in MOD(S). A left
M-module structure on P is a pairing with respect to ¢ such that any of the maps

M(G) x P(G) — P(G)
induces the structure of a left module over the R-algebra M (G) on the R-module ¢*(P(G))
obtained from the S-module P(G) by restriction along ¢.

Proposition 1.2.9 (Universal Property of the Burnside ring). If M is a Mackey functor
with values in MOD(R), then M is in a canonical way a module over the Green functor
given by the Burnside ring with respect to the canonical ring homomorphism ¢: 7Z — R.

Proof. Let GG be a group and consider the pairing
B(G) x M(G) — M(G)
(Z n;-G/H;,x) — Z n;indy o resg’ (z).

The module structure follows since resgt and indgi are, indeed, R-module homomor-
phisms.
O

1.3 Algebraic K-theory as Mackey functor

We include this section for completeness. In [12], Dress and Kuku showed that for finite
groups G the functor K,,(R[—]) is a Mackey functor on the subgroups of G. Along similar
lines, one can extend this result to infinite (discrete) groups (see [4]). We present here a
proof of this fact following the more general approach of [31]. For the rest of the section,
C will denote a small category and R will be an associative ring with unit.

Definition 1.3.1 (RC-modules). A covariant RC-module is a covariant functor

M: C — MOD(R) (1.3.1)

from the category C to the category MOD(R). A morphism, M — N, of RC-modules
is a natural transformation of functors. Let MOD(RC) be the category of covariant
RC-modules with natural transformation as morphisms. We define a contravariant RC-
module in a similar way.

Example 1.3.2. The typical free RC-module is the following covariant RC-module
RC(c,?7): C — MOD(R),
d — Rmore(c, d)

where Rmorc(c,d) denotes the free R-module with basis more(c, d) the set of morphisms
from c to d in C.
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Let M be a contravariant RC-module and N be a covariant RC-module. The R-
module M ®gzc N is the quotient

M @pe N = (@ M(z) @ N(%)) /Q;

zeC
where @ is the R submodule generated by {M (f)(m)®@n—m&N(f)(n) | m e M(y), n €
N(z), f € more(z,y), z,y € C}.

An RC-RD-bimodule is a covariant functor
M: C x D —s MOD(R).
Example 1.3.3. (a) Let C = D. There exists an RC-RC-bimodule

RC(77,7): C x C? — MOD(R)
(¢,c") = Rmore(c, c).

(b) Let F': C — D be a covariant functor. There exists an RD-RC-bimodule

RD(F(?),7?): D x C —» MOD(R) (1.3.2)
(d,c) — Rmorp(F(c),d)

and there exists an RC-RD-bimodule

RD(7?,F(?)): C x D —s MOD(R). (1.3.3)
(¢,d) — Rmorp(d, F(c))

Definition 1.3.4 (Restriction and induction). Let F': C — D be a covariant functor.
Define the covariant functors restriction and induction along F' by

resp: MOD(RD) — MOD(RC) (1.3.4)
M v M @pp RD(F(?),77)

and

indp: MOD(RC) —s MOD(RD) (1.3.5)
N N @pe RD(27,F(?)).

Definition 1.3.5. A finitely generated free RC-module is a finite sum of typical free

RC-modules, i.e.,
@ @ Rmore(c,?),
c€ob(C) X (c)

where X(c) determines the multiplicity of Rmorc(c,?) and Ueeopc) X (c) is finite. We
denote by Fr(C) the full subcategory of MOD(RC) whose objects are finitely generated
free RC-modules.

We define
K, (RC) := K,(Fr(C)) (1.3.6)

for all n € Z. We specialize the above definitions in order to show that for all n € Z,
K, (R—) is cofinite Mackey functor.



16 1. Mackey functors, Burnside rings and K-theory

Definition 1.3.6 (Groupoid). A groupoid is a small category whose morphisms are
isomorphisms. Let GROUPOID be the category of groupoids with functors of groupoids
as morphisms.

Example 1.3.7. Let T be a left G-set. Define the groupoid ¥ (T) with objects the
elements of T" and for ¢, € T the set of morphisms moryc . (t,t') = {g € G | gt = t'}.
The group multiplication gives the composition of morphisms.

Every G-map S Iy T defines a covariant functor @G(S) —=% 4%(T) given on
objects by 9%(f)(s) = f(s) and on morphisms by 4¢(f)(s & &) = f(s) & f(5).
Hence, there is a covariant functor

%% G-SET — GROUPOID (1.3.7)
S — 99(S)

called the transport groupoid.

Let us consider av: H — G any group homomorphism. For any H-set S there is a
functor

a: 91(S) — @%(ind_S) (1.3.8)

defined on objects by s + [1, s] and on morphisms by h +— a(h). Indeed, @ is a natural
transformation

H-SET -, GROUPOID .

ind,,

G-SET

Similarly, for any G-set T there is a functor
a: 9 (res, T) — 9(T) (1.3.9)

which is the identity on objects and on morphisms h +— a(h). Indeed, « is a natural
transformation

G-SET —2%, GROUPOID .

res,,
gH

H-SET

Induction

Let a: H — G be any group homomorphism. For all H-set S the functor @ induces a

functor
Ind,: Fr(4(S)) — Fr(¥4%(ind_S)) (1.3.10)

@ @ Rmorym g(s,?)

s€ob(9H (S)) X (s)

sending an object

to the object

@ EB @ Rmorgc inq, s) (lg,t],7).

lg,t]€0b(¥9C (ind,, S)) s€a 1 ([g,t]) X (s)

It is not hard to see that the target is finite if the sum in the source is finite.
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Restriction

Let us consider a: H — G injective such that G/a(H) is finite. For all G-set T the
functor « induces, by precomposition, a functor

Resq: Fr(9C(T)) — Fr(9H (ves,T)). (1.3.11)
F— Foq

Let us briefly comment why the assumptions on « are necessary. It suffices to show
that the image of a typical free R (T)-module under Res,,

Rmorga ) (t, a(?)),
is a typical free R4 (res,T)-module. Let s € res, T = T, then

morge ) (ta(s)) = {g € G | gt = als) = s}.

Since G/a(H), assume that G = «(H)g1 U- - -Ua(H)g,. Now we claim that there is a
bijection between {g € G | gt = s} Na(H)g; and the set moryn (,e5r)(git, s) for 1 <i < n.
This is true because « is injective an therefore there is a bijection

{9€G|gt=stna(H)g = {he€ H|a(h)gt=s}
g=a(h)gi— h

Hence

n
moryac 7 (t, a(s)) ~ [ [ morg e 1y (git. 9),
-1

and since it is natural in s € 0b(4! (res, T')) we obtain

Rmorgac 7)(t, a(s)) = @ Rmory u (re5, ) (9it, 5)

=1

showing that Res, is well defined.
Finally, let G be a group. Define the functor

M(G) := En(Fr(%“ (pt))),

where pt denotes the G-set consisting of one single point. Let H = G be any group
homomorphism, consider the composition of functors

Fr@ (pt)) 222 Fr(@C(ind, (pt)) s Fr(@C (pt)),

where pr is induced by the projection G X, (pt) — pt. Define M, («) as the induced map
by pr o Ind, in K-theory. This yields

M, : GR — MOD(Z).

Let o be a morphism in GRIFI, then the functor Res, induces a map M*(«) in
K-theory. This yields
M*: GRIFI — MOD(Z).
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Theorem 1.3.8. For all n € Z the functor

K,(R-): GR — MOD(Z) (1.3.12)
G — K, (R9% (pt))

is a Mackey functor in the sense of Definition 1.2.1.

Proof. We have defined M, and M* above and coincide on objects. Parts (b) and (c) are
easy to verify. The double coset formula requires a little work and we refer the reader
to [31, Lemma 14.12] for details.

O

Remark 1.3.9. This section summarizes a particular case of the general setting considered
in Chapters 13 and 14 on [31].

B(C)-module structure on K-theory

We are interested in C' be the infinite cyclic group. The subgroups C™ < C are indexed
by m € N with C™ the subgroup of index m. For all n € N, Theorem 1.3.8 gives a
Mackey functor, this time on the subgroups of C

Kn(R-): GR<¢c — MOD(Z),

where GR<( is the subcategory of GR of subgroups of C. Identifying K,,(R¥“" (pt)) =
K,(R[C™]) and K,,(RZ“ (pt)) = K,(R|C]), for the inclusion map o,,: C™ — C we have

res, : Ky(R[C]) — K,(R[C™])
and
ind, : K,(R[C™]) — K,(R[C)).

om

Last, consider the Burnside ring B(C) with basis {C/C™ | m € N}. According to
Proposition 1.2.9 we have

B(C R[C]) — Kn(R[C])
(Z am - C/C™, ) — Z amind, ores, (z).
In Chapter 2, we will study this B(C)-module structure in detail. In particular, using

the Bass—Heller-Swan decomposition theorem for K, (R[C]) we will restrict this action
to the copies of Bass Nil-groups.



Chapter 2

The Fundamental Theorem and
Compatible actions

In the first section, we will define the N K—groups and the Nil-groups in K-theory and
state an explicit isomorphism between them in lower dimensions. This isomorphism
also illustrates exactly what occurs in higher dimensions. Section 2.2 contains the proof
of the Fundamental Theorem of Algebraic K-theory following Swan’s exposition [40]
summarizing the results in [34] and [17]. We highlight the K-theory of the projective
line and the localization sequences appearing in there.

The final section consists of the definition of the Endg(Z)-module structure of Nil,,(R),
using Frobenius and Verschiebung endomorphisms. It also comprises a review of the
B(C)-module structure of K,(R[C]), briefly mentioned in Chapter 1. We show the
compatibility of the B(C)-module structure on K, (R[C]) with the Bass—Heller-Swan
decomposition to define a B(C)-module structure of NK,(R). We complete the ideas
in [39] asserting that both module structures are the same in Corollary 2.3.7

2.1 K-theory of rings and polynomial rings

Let us illustrate a desirable relation. A Noetherian ring R is a ring all whose ideals are
finitely generated. The Hilbert Basis Theorem states that for a Noetherian ring R the
polynomial ring, R[t], and the Laurent polynomial ring, R[t,¢~'], are Noetherian.

A finite type projective resolution of an R-module M is a finite length resolution by
projective modules not necessarily finitely generated projective R-modules. A Noetherian
ring R is regular if every R-module M having a finite type projective resolution is finitely
generated R-module. The Hilbert Syzygies theorem states that for a regular ring R the
polynomial ring, R[t], and the Laurent polynomial ring, R[t,t '], are regular.

A naive statement is that K, (R[t]) and K, (R[t,t7']) depend only on K, (R). This is
false for general rings even for Noetherian rings, but it is partially true for regular rings.
We make this statement clear. For the rest of the paragraph we only work with K-groups
and G-groups in dimensions n = 0, 1.

Let R be a Noetherian ring and MOD(R) ¢, denote the category of finitely generated
R-modules. Define the groups G,, by

Go(R) = K, (MOD(R) ).



20 2. The Fundamental Theorem and Compatible actions

In general, a ring homomorphism R %, S does not induce a map Gp(R) = Gn(9), it
depends on — ®p S being exact where S is considered as an R-module via ¢. Neverthe-
less, the canonical ring injections R — RJ[t] and R — R[t,t™'] induce homomorphisms
Gn(R) — Gp(R[t]) and G,,(R) — G, (R][t,t"']), because R[t] and R[t,t~!] are projectives
over R.

The splitting maps Rt 29 R and R[t,t71] LintN R, despite the fact that the corre-
sponding tensors are not exact, also induce homomorphisms on corresponding G,, groups

Gn(R[t]) — Gn(R),
[M] = [R gy M] — [Tor" (R, A1)
respectively for R[t,t!] (see [37, p. 137]).
Proposition 2.1.1. [37] Let R be a Noetherian ring. The natural homomorphisms

Gn(R) — Gu(R[H]), n=0,1
Go(R) — Go(R[t,t™1).

are isomorphisms with inverse the induce by corresponding splittings. There exists a
well-defined homomorphism G1(R[t,t™']) — G1(R) (see [37, p. 145]).

The augmentation map R]t] 29 R induces homomorphisms in K -theory K, (R]t]) —
K, (R). If R is regular, there are isomorphisms K, (R) = G,(R) and K, (R[t]) = G, (R][t]
and the diagram

Kn(R[t]) —— Gn(RI[t])

commutes [37, Corollary 3.1.16].
The Laurent polynomial ring R[t,t7'] of a Noetherian ring R requires more effort,
nonetheless, there exists a homomorphism [37, Proposition 3.2.18]

G1(R[t,t7']) — Go(R) (2.1.1)
such that the following holds.

Theorem 2.1.2. Let R be a Noetherian ring. There exists an isomorphism
G1(R) ® Go(R) — G1(R[t,t7'])

with left inverse given by the homomorphism in Proposition 2.1.1 direct sum with the
homomorphism above.

Corollary 2.1.3. If R is reqular the following are isomorphisms.
(a) Ko(R[t]) = Ko(R),

(b) Ko(R[t,17]) = Ko(R),

(¢) Ki(R[t]) = Ki(R),

(d) Ki(R[t,t"]) = K1(R) @ Ko(R).
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2.1.1 NK-groups and Nil-groups

The augmentation map R[] 2% R induces homomorphisms in K-theory for all dimen-

sions. The N K—groups are the kernel of the induced maps.

Definition 2.1.4 (N K-groups). For all n € Z the NK -groups of R are
NEK,(R) := Ker{K,(R[t]) =% K,(R)}. (2.1.2)

The natural ring injection i: R < RJ[t] also induces homomorphisms in K-theory,
hence for all n € Z we can also define the N K—groups of R by

NEK,(R) := Coker{ K,,(R) % K,(R[t])}. (2.1.3)

Example 2.1.5. The following example shows that the Bass Nil-groups are not trivial.

Let k£ be a field and ¢ be an indeterminate over k. The dual numbers over k is the
local ring R = k[t]/(t?), hence Ko(R) = Z and K;(R) = R*, with R* the units of R.
Let s be an indeterminate over R and consider the split exact sequence

NKl(R) — Kl(R[S]) = Kl(R)

There is an inclusion of units R* < R[s]* and since (1 +ts)(1 —ts) =1 +t2s? =1
we have that R[s]*/R* # 0. Furthermore, R[s]* — K;(R]s]) since R][s| is commutative
and the determinant splits this summand. Hence K (R]s])/K1(R) is not trivial and it is
isomorphic to NK(R).

Now, we introduce the concept of Nil-groups.

Definition 2.1.6 (Nilpotent category). Let R be a ring. We define the category NIL(R)
of pairs (@, v) where @ is in the category P(R) of finitely generated projective R-modules

and v: @ — @ is a nilpotent endomorphism. A morphism (Q, ) i (Q',7) in NIL(R)
is an R-module homomorphism @ ER Q' such that Fov=1'oF.

A sequence 0 — (Q',v") — (Q,v) — (Q",v") — 0 in NIL(R) is exact if its
underlying sequence in P(R) is exact.

There exist exact functors

NIL(R) — P(R) (2.1.4)
(Qv) —Q
and
P(R) — NIL(R) (2.1.5)
Q— (Q,0),

where 0 denotes the trivial endomorphism of Q.

Definition 2.1.7 (Nil-groups). For all n € Z define Nil, (R), the Nil-groups of R, by
the splitting induced by (2.1.5) in K-theory, i.e.,

K,(NIL(R)) = K,(R) @ Nil,(R). (2.1.6)
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Remark 2.1.8. There is a subtle distinction in the literature between the groups N K, (R)
and Nil,(R). One should formally call NK,(R), Bass Nil-groups and call the groups
Nil,,(R), Nil-groups. We avoid making an explicit differentation between them because
they are isomorphic, up to a degree shifting, as Theorem 2.2.1 shows.

The isomorphism N K7 = Nilg below gives an insight for all degrees.

Lemma 2.1.9. [37] Let R be a ring. Then any matriz B € GL(R][t]) can be reduced,
modulo GL(R) and E(R][t]), to a matriz of the form 1+ At, where A is a nilpotent matriz
with entries in R.

Proof. Write B as B = By + Byt + - - - + Bgt? with B; € M(R). We reduce the degree d
up to d < 1. Let us assume that d > 1, then the following reduction holds in GL(R]t])

go(B O\ _(B t4-1B, N B —t'B; t* 1By
0 1 0 1 —t 1 ’

where ~ stands for equal modulo multiplication by matrices in E(R[t]) and GL(R).
Then B is equivalent to a matrix of degree d — 1. This reduction can be continued
to get B =1+ At for A € M(R) since B € GL(R[t]) and By must be a unit. Let
B! =Cy+tCy + ---+t"C, be the inverse of B then

1= (1 —I-At)(Co +tCy+ - —|—75TC7«) = (Co +tCy+ - +tTCT)(1 —|—At).

This yields the equations Cp = 1 and C; = (—A)7. Since A" = 0 we conclude that
A is nilpotent. O

Proposition 2.1.10. [37] Let R be a ring. Then NKi(R) is naturally isomorphic to
Nilo(R).

Proof. Each B € GL(R][t]) can be reduced to 1+ At, with A nilpotent matrix by Lemma
2.1.9, then the image of NK;(R) in K;(R) consists of matrices of this form. Define

NK1(R) — Nily(R)
[1+ At] — [R", A].

This is a well-defined homomorphism since 1+ At conjugated to 1+ A’t in GL,(R|[t])
implies, after sending ¢t — 1, that 1 + A is conjugated to 1 + A" in GL,(R), hence A is
conjugated to A" in GL,(R).

A substitution of 1 4+ At by (1 + At) & (1), where 1 is the identity in My (R),
corresponds replacing A by A @ 0j, and [R", A] by [R", A] + [RF, 0] that are the same in
f(o the reduced Ky group.

Notice that [1+ At]+[1+ A't] = [(1+ At) & (1 + A't)] = [1 + (A @ A')t] and the last
one is sent to [R", A] + [R™, A']. The inverse is

Nilg(R) — NK;1(R)
[R", A] — [1 + Af]

and this concludes the proof. O
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2.2 Fundamental Theorem of Algebraic K-theory

In this section, we outline the proof of the Fundamental Theorem of Algebraic K-theory.
We focus on the K-theory of the projective line and the pair of localization sequences
described in [40].

Theorem 2.2.1 (Fundamental Theorem of Algebraic K-theory). Let R be a ring. Then,
for all n € Z there exist natural isomorphisms

(a) Kn(R) ® NK,(R) = K,(R[t]);
(b) Kn(R)® Kn_1(R) ® NEK,(R)® NEn(R) = K, (R[t,t));
(¢) NK,(R) 2 Nil,_1(R).

We need the following results.

The K-theory of the projective line

Let MOD(P}) be the Abelian category of triples # = (M™*, M~;6), where M is an
R[t]-module, M~ is an R[t"']-module, and 0: R[t,t™'] @py M* = Rt t] @pp-1) M~
is an R[t,t"']-module isomorphism.

A morphism .2 L 4 in MOD(P},) is a pair (f*, f~) such that f*: M* — N* is an
R[t]-module homomorphism, f~: M~ — N~ is an R[t ']-module homomorphism, and
the diagram of RJ[t,t¢ ']-module homomorphisms

R[t, t_l] ®R[t] M+ %) R[t, t_l] ®R[t] M-

1®f+J, k@f

R[t,t™"] ®pyy N* —2— R[t,t'] @ pyy N™

commutes.

Let .# be an object in MOD(PP},), for j € Z the j-th Serre twist of .# is the object
M(j) = (M*,M~;t770). In particular, the j-th Serre twist of & = (R|[t], R[t']; 1) defines
a functor

MOD(R) — MOD(PY,)
M > 6() ©p M = (M[t], M{t~"]; ),

where M[t] (resp. M[t7']) denotes R[t] ®r M (resp. R[t™'| ®r M).

Definition 2.2.2 (K-theory of projective line). Let P(P}) be the full subcategory of
MOD(PL,) of objects &2 = (P, P~;0) such that P* (resp. P~) is finitely generated
projective R[t]-module (resp. finitely generated R[t™']-module). The K-theory of the
projective line P}, is

Kn(Py) = Kn(P(Pg))-
The j-th Serre twist defines a functor
u; : P(R) — P(Py) (2.2.1)
P~ O(—j)®grP

for all j € Z that induces the homomorphism w;,_ in K-theory. We only need ug, and
u14 to calculate K, (P}).
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Theorem 2.2.3. [40, Theorem 9.11] Let R be a ring. Then
(wos, u14): Kn(R) & Kp(R) = K,(Py) (2.2.2)
sending (x,y) — ups(z) + u14(y) is an isomorphism.

For computational reasons, it is convenient to write the K-theory of the projective line
in other basis, precomposing the map (ugy, 1) of Theorem 2.2.3 with the isomorphism

< - ) F Kn(R) @ Kn(R) — Kn(R) @ Kn(R)

(z,y) = (z,2 —y)

The localization sequences

We will consider exact sequences of categories that give rise to long exact sequences in
K-theory [40, Section 6].

Definition 2.2.4. Let R be a ring, R[t] its polynomial ring in variable ¢,
T = {t'|i € N} the closed multiplicative set of powers of ¢ and consider the localiza-
tion of R[t] by T, R[t]r = R[t,t™'].

Define Pr(R) to be the full subcategory of MOD(R]t]) of objects M such that

(a) My := R[t,t™"] ®@pyy M is in P(R[t,t7"]) and
(b) there exists a short exact sequence
0-Q—P—M-—0
with @, P in P(R[t]).
Define Hr(R) to be the full subcategory of Pr(R) of those M such that M, = 0.

The natural sequence of functors
Hr(R) — Pr(R) 25 P(R[t, 7)), (2.2.3)

with Ly localization of R[t]-modules by T, gives rise to a long exact sequence [40, Corol-
lary 6.4] in K-theory

87171

% Ko(Hr(R) = Kn(Pr(R)) — Kn(R[t,t7']) 275 Kn1(Hr(R)) — - -

The inclusion of categories P(R][t]) — Pr(R) satisfies the resolution theorem hypoth-
esis [40, Lemma 3.7], which implies that K, (R[t]) = K,(Pr(R)) and hence we have a
long exact sequence

2 KL (M (R)) — Kn(R[t) — Kn(R[t,t]) 275 Koy (Hr(R)) — - (2.2.4)

Definition 2.2.5. Define P~ (PP},) the full subcategory of MOD(P},) of objects .# =
(M*,M~;0) such that

(a) M~ is in P(R[t"!]) and
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(b) there exists a short exact sequence
02—+ = H—0
with 2, Z in P(P}).
Define H™ (P},) the full subcategory of P~ (P},) of those .# such that M~ = 0.
The natural sequence of functors
H™(Py) = P~ (PL) = P(R[t™), (2.2.5)

with « the obvious projection functor, gives rise to a long exact sequence [40, Theorem
9.14] in K-theory

B Ky (M (PY)) = Ko (P (PY) = Ku(RIE]) S Kyt (H(PY)) — -

Since the inclusion of categories P(P},) < P~ (IP}) satisfies the resolution theorem, there

~Y

is an isomorphism K, (P},) = K, (P~ (P},)) and hence we have a long exact sequence
0 _ 0 —
o= Ky (H(PL)) = Kn(PL) — Kn(R[ETY]) = K1 (H™(P)) — -+ (2.2.6)

2.2.1 Proof of the Fundamental Theorem

We sketch now the proof of the fundamental theorem.

Lemma 2.2.6. The following categories are equivalent Hp(R) ~ NIL(R) and H~ (P},) ~
NIL(R).

Proof of Lemma 2.2.6. The functor

Hr(R) — NIL(R) (2.2.7)
M — (M,t)

is an equivalence with inverse (Q,v) — @, where @, is @ considered as R[t]-module with
v acting via t. The functor 2.2.7 is well defined since for any H € Hp(R) there exists
n € N such that "M = 0. Multiplying the terms of the resolution

0—Q—P—M-—0
by t™ an application of the snake lemma yields
0— M — Q/t"Q — P/t"P,
since t"M = 0, then t"P C ). Therefore, there is an exact sequence
00— M — Q/t"Q — Q/t"P — 0.

The module @/t" P has projective dimension < 1 and @Q/t"(Q is a projective R-module.
This implies that M is a projective R-module.
For the second equivalence consider the functor

H~(P.) —> NIL(R)
(P,0;0) — (P,t)
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which is well-defined since P is an object in P(R[t]) and R[t,t~'|@pp P = 0 [40, Lemma
10.6]. The inverse of this functor is given by

H: NIL(R) — H~(P.) (2.2.8)
(@, v) = (Qv,0;0).

This is well defined since the required resolution is given by

0 — (Q[t], Q] t) = (Q[t], Q'] 1) — (Q,050) — 0, (2.2.9)
where v = (t —v,1 —t~1v). O
Outline of the proof of Theorem 2.2.1: The functor
3: MOD(P%) —s MOD(RJ[t]) (2.2.10)
(M*, M~;0) — M~

links (2.2.5) and (2.2.3). It restricts to the subcategories P~ (P},) — P(R[t]) and H~ (P},) —
Hr(R[t]), and induces K, (BY) 5 K, (R[f]) linking (2.2.6) with (2.2.4) by

o Kn(NIL(R)) — Kn(PY) — Ko(R[t]) =2 K1 (NIL(R)) -~ (2.2.11)

o~ B =

-« Kp(NIL(R)) — K, (R[t]) — K, (R[t,t7"]) O, K,_1(NIL(R)) - --

Part (a). The compositions fu; : P(R) — P(R[t]) are fuj(P) = P[t] (i = 0,1),
hence induce, in K-theory, the same homomorphism as the canonical functor P(R) —
P(R][t]) splitting after sending t — 0.

The compositions au;j: P(R) — P(R[t™Y]) are au;(P) = P[t™'] (i = 0,1), hence
induce, in K-theory, the same homomorphism as the canonical functor P(R) — P(R[t™])
splitting after sending ¢ + 1.

Hence the top row of diagram (2.2.11) splits as:

0 — Ky(R) = Kn(R[t™]) On, K, 1(NIL(R)) = (uox — u14)Kpn—1(R) — 0.
The last map coincides with the canonical split surjection and hence
0— K,(R) S K,(R[t™"]) LLN Nil,,—1(R) — 0. (2.2.12)

This last assertion is true because of the following. Extend the functors u; of (2.2.1) to
NIL(R) using the split surjection (2.1.4), this is
u;: NIL(R) — P(Py)
(Qa V) = uj(Qu)'
In particular, for j = 1,0 and by the resolution (2.2.9) there is an exact sequence of

functors
0—u —uy—H—70

from NIL(R) to P(P},). This shows that H. = u,, — ui, coincides, in K-theory, with the
canonical splitting (2.1.4) and hence it fits into the exact sequence (2.2.12).
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This shows that Nil,,_; (R) coincides with the cokernel of the canonical split injection
(2.1.3), then there is an isomorphism N K,,(R) = Nil,_1(R). This proves part (c).

Part (b). Follows from diagram chasing to get from 2.2.11 a Mayer—Vietoris se-
quence:

On On
oo K1 (R EY]) =25 K (PL) — Ko (R[t]) ® Ka(R[EY]) — K (R[E, t71]) On,
By the observation made on au; and Su; above, the map
Kn(Py) = Kn(R[l]) ® Kn(R[t™'])

factors by the same copy of K, (R) in the decompostion of K, (PL), thus the Mayer—
Vietoris sequence splits as

0 — Kn(R) = Kn(B[t]) & Kn(RI]) S50 K (RIE ) 25 Ky 1 (R) — 0,

where i+ come from the respective inclusions and 0, is a split surjection. ]

2.3 Two actions on Nil-groups

2.3.1 Action in terms of Frobenius and Verschiebung endomorphisms

We describe how Endg(Z) acts on Nil,,_1 (R) using Frobenius and Verschiebung endomor-
phisms. Consider the categories END(Z) (see Definition B.4.1) and NIL(R). The tensor
product of R-modules defines a pairing

END(Z) x NIL(R) — NIL(R) (2.3.1)

((Paf)a(Qvl/)) = (P®ZQvf®l/)
that induces a product in K-theory [43, Section 9]

K;(END(Z)) x Kn_1(NIL(R)) — Kiyn_1(NIL(R))

valid for all i,n € Z. We consider only the case i = 0. The copy of P(R) inside
NIL(R), reflects under pairing (2.3.1) to itself, then we have a well defined Endy(Z)-
module structure.

Endg(Z) x Nil,_1(R) — Nil,_(R). (2.3.2)

The reverse characteristic polynomial x; (Section B.4) embeds the ring Endy(Z) as
dense subring of the ring of Witt vectors W (Z). We describe the Endy(Z)-module struc-
ture using the Frobenius and Verschiebung endomorphism. This is the same module
structure but described in an equivalent way.

Definition 2.3.1 (Frobenius and Verschiebung action). Let m € N. The m-th Frobenius
F,, and the m-th Verschiebung V;,, act on NIL(R) by

Fm((Q7 V)) = (Qa Vm)
Vi ((Q,v)) = (@™, Vin(v))

where V;,,(v) is represented by the matrix
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Proposition 2.3.2. The operations Fp, and Vy,, for m € N, defined in the category
NIL(R) describe the Endy(Z)-module structure on Nil,_1(R) given by (2.3.2) for all
n € Z.

Proof. Since the elements 1 —at™ suffices to describe W (Z), it is enough to describe how
1 —at™ acts in Nil,,_1(R). Let A™: Z™ — Z™ be the endomorphism given by the matrix

0 0 a
1 0

S
0 1 0

whose reverse characteristic polynomial is x;(A™) = 1 — at™. Let (Q,v) be an element
of NIL(R), under the pairing (2.3.1) we have

(2™, A™) x (Q,v) = (Q™, A" @ v)
and A™ @ v = V,(av). Hence, in Nil,,_;(R) we have

(1 —at™).[Q,v] = [Q™, Vin(av)] = Vin([Q, av]).

2.3.2 Action in terms of restriction and induction

Fix m € N, C the infinite cyclic group with generator ¢, and C"™ < C the only subgroup
of index m. Identify R[C] = R|[t,t"']. There exists ring homomorphisms
om: R[C™] — R|[C]
" ™

and
ol R[t™] — RJ[t]
tm ot

Remark 2.3.3. There exists also a ring homomorphism o,,: R[t™™] — R[t™'], but for
simplicity we only consider o;,. All the results we give for o, hold for o,,.

The ring homomorphisms ¢, and o, induce restriction and induction homomor-
phisms in K-theory. These homomorphisms arise from the functors

res, : MOD(R[C]) — MOD(R[C™])

o

res . : MOD(R][t]) — MOD(R[t™])

m

coming from the restriction of scalars along o, and o)}, and, from the functors
ind, : MOD(R[C™]) — MOD(RI[C])

ind_, : MOD(R[t™]) — MOD(R[t])
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coming from the tensor product along o, and o\,.
Recall the localization functor

Lp: MOD(R[t]) — MOD(RI[C])
M — M.

Theorem 2.3.4. There exists a natural transformation of functors between
Lroind_, ores , and ind, ores, o Ly, from MOD(R[t]) to MOD(R[CT).

Proof. The localization of M comes equipped with a unique R[t]-module homomorphism
pr: M — My such that for an R[t]-module homomorphism M % N, with N an R[C]-
module, there exists a unique R[C]-module homomorphism M; — N such that the
diagram

M- M,

|
| 3!
\¢

N

commutes.
The homomorphism pr yields an R[t™]-module homomorphism 7: res , (M) —

m
res . (My).

Lemma 2.3.5. There exists an R[t"]-module homomorphism
f
res_, (Mr) = res, (Mry)

Proof of lemma 2.5.5: As sets, res_, (My) = My = res, (My), define f as the identity
and extend it by linearity to R[t™]. O

Now, the R[t]-module ind ;res (M) comes with a unique homomorphism

ind_;ves , (M) LI (ind_,res_, (M))r.

Since ind .res . (M) := R[t] ®,+ res , (M), the unique homomorphism R[t] — R[C]
together with f from Lemma 2.3.5 yields

1®r pr®f

R[t] ®,1 res (M) — R[] ®, res_, (My) — R[C] ®,,, res, (Mr).

om (

It follows that any R[t]-module homomorphism R[t]® + res | (M) — N, with N an
R[C]-module, factors through R[C] ®,, res, (Mz). In particular, it implies that

R[C] ®q,, res, (My) = (R[t] ®,+ resoﬁl(M))T
that is ind, res, (My)=ind i res , (M)r as R[C]-modules. O

The next theorem gives the B(C)-module structure on NK,(R) by restriciting the
action on the algebraic K-theory groups of R[C] to the summands appearing in the
Fundamental Theorem of Algebraic K-theory.

Theorem 2.3.6. For all m € N the restriction and induction homomorphism in
K -theory are compatible with the Bass—Heller—Swan decomposition.
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Proof. Fix m € N and consider res , (resp. res, ) and ind . (resp. ind, ). First,
consider the localization sequence of categories (2.2.3)

Hr(R) — Pr(R) 25 P(R[C)).

Let M be in Pr(R), then Lyind . res , (M) = ind, res, (Lr(M)) is a projective
R[C]-module; it is the trivial module if M was in Hp(R).
Theorem 2.3.4 yields the diagram

Hr(R) — Pr(R) —% P(R[C))

ind | res ind _ res ind
+ + in res
l Im ‘7% Im ‘7;; om om

Hr(R) —— Pr(R) —— P(R[C])

that induces a map of exact sequences in K-theory

oo — K1 (R[C]) — Kp(Hr(R)) — Ky (R[t]) — Kn(R[C]) — - -

o]

- Kn1 (R[C)) — Kn(Hr(R)) — Kn(R[t]) — Kn(R[C]) — -

where the vertical arrows correspond to the composition of restriction and induction in
K-theory groups. Now consider the second localization sequence (2.2.5)

H™(PR) — P~ (PR) = P(R[t]),

where « is given on objects by a(.#) = M~ and is obvious on morphisms.
Now, consider the sequence 2.2.5. We have a functor J: P~ (P},) — P~ (P},) given
in objects by

(M*,M~;6) — (ind_,res , M~ ,ind _res _M ;ind, res, ).

The functor J is well defined and restricts to the category H~(PL). Therefore, The-
orem 2.3.4 yields the commutative diagram

H™(PR) — P~ (PR) —— P(R[t™"])

ind
J{J J(J lln o resar_n

H™(PR) —— P~ (PR) —~ P(R[)
that induces a map of exact sequences in K-theory

w1 (RIE) —— Kn(H (PR)) —— Kn(PR) —— Kn(R[E) -

| | J |

Kt (REET) —— K (Ph) —— K (Ph) — K (R -

where the vertical arrows correspond to the composition of restriction and induction in
K-theory groups. Last, the functors 5 and « respect res , and ind . This proves the
theorem. O
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2.3.3 Compatibility of the actions

Let us define
res, : NK,(R) — NK,(R)

and
ind, : NK,(R) — NK,(R)

as the restriction of res, ~and ind, , defined on K,(R[C]), to the summand NK,(R)
coming from K, (R[t]) giving by the Bass-Heller-Swan decomposition of K, (R[C]). We
could equally define the above maps on the other copy of NK,(R). The reason we use
the one from K, (R][t]) is for simplicity on our exposition.

Theorem 2.3.7. The Endy(Z)-module structure on Nil,_1(R) and the B(C)-module
structure on NKy(R) coincide.

Proof. Fix m € N. Then the following diagram

NEK,(R) — Nil,_1(R)

resa‘jﬁl J(Fm

NEK,(R) — Nil,_1(R)

mdaxll J(Vm

NEK,(R) — Nil,_1(R)

commutes. The horizontal arrows are the isomorphisms (c) of Theorem 2.2.1. We re-
placed res, ~and ind, with res . and ind , because of the compatibility with the

Im

Bass—Heller-Swan decomposition stated in Theorem 2.3.6 for N K, (R). O



32

2. The Fundamental Theorem and Compatible actions




Chapter 3

Witt—Burnside ring

We start with the definition of B,,(_), the completed Burnside ring of a profinite group
I'. The notation corresponds to Elliott’s definition [14]. It includes, as part of the data, a
commutative monoid M. If M is the trivial monoid, then we recover Dress—Siebeneicher’s
definition [13].

We show that B, (-) is a Mackey functor, indeed, for H <, I', open subgroup of
I, we define maps Bres?” and Bind!, of the completed Burnside ring giving the Mackey
functor structure. Moreover, for N <, I', open normal subgroup of I', we define a ring
homomorphism Bproj’, and use it to prove the existence of a ring isomorphism

B,,() = lim B, (T/N). (3.0.1)
N
In Section 3.2, we define Wp(_), the Witt—Burnside ring over I'. This ring is a generaliza-
tion of the Witt vector ring (see Appendix B). The main result of the chapter is Theorem
3.2.3 giving a ring isomorphism B, (T") = W (Z[M]) valid for all profinite groups.
In ordert to understand how Wr(Z) acts on N K, (R), we relate W(Z) to the ring
Endg(Z) for T' the profinite completion of the infinite cyclic group. Finally, Theorem
3.2.9 gives an interpretation of Wr(_) in terms of inverse limits

o~

Wi(R) = 1im W) (R) (3.0.2)
N

valid for all commutative rings.

3.1 The completed Burnside Ring

The theory of profinite groups is vast, we only need the results about profinite groups
summarized in Appendix A. We follow the setting of Elliott [14] to define the completed
Burnside ring of a profinite group I'.

The basic objects to define the Burnside ring B(T") of a group I' were finite I'-sets.
We replace finite I'-sets by almost finite I'-sets as basic objects. We use the notation
of Appendix A for open subgroups, closed subgroups etc.; and we fix, once and for all, a
commutative monoid M written multiplicatively and a profinite group I'.

Definition 3.1.1 (Almost finite I'-set). A I'-set X is a discrete topological space with
a continuous I'-action. A I'-set X is almost finite if each transitive I'-set appears, up