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Introduction

In geometric topology, the algebraic K-theory of the integral group ring, Z[π1(X)], of
the fundamental group of a CW -complex X has information about obstructions. For
example, X is a finitely dominated CW -complex if there is a finite CW -complex Y and
maps f : X → Y and g : Y → X such that there is a homotopy g ◦ f ' 1X . Recall that
a finite CW -complex consists of finitely many cells. Wall’s finiteness obstruction of a
finitely dominated CW -complex X is an invariant τ(X) ∈ K̃0(Z[π1(X)]) in the reduced
K0-group. The obstruction τ(X) is trivial if and only if X is homotopy equivalent to a
finite CW -complex. A survey on applications of K-theory to geometric topology is [38].

The K-theory groups are hard to compute, but the Farrell–Jones conjecture is a
powerful tool to get information about them. Let G be a torsion free group and R be
a regular ring, i.e., a Noetherian ring such that any R-module has a finite-dimensional
projective resolution. The Farrell–Jones conjecture predicts, an isomorphism

Hn(BG;Kalg(R)) −→ Kn(R[G]), n ∈ Z

where BG is the classifying space of G, Kalg(R) is the non–connective algebraic K-theory
spectrum of R, as defined in [33], and H∗(−;Kalg(R)) is the homology theory associated
with the spectrum Kalg(R). For G = C, the infinite cyclic group, we get for all n ∈ Z,
Hn(BC;Kalg(R)) ∼= Kn(R)⊕Kn−1(R) and the conjecture above predicts an isomorphism

Kn(R)⊕Kn−1(R) ∼= Kn(R[C]).

However, the K-theory groups of R[C] are given by the Fundamental Theorem of
Algebraic K-theory in terms of the algebraic K-groups and Nil-groups of R

Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R) −→ Kn(R[C]).

For regular rings NKn(R) = 0 for all n ∈ Z [37], but for arbitrary rings, due to Nil–
phenomena, one expects that the homomorphism above fails to be an isomorphism.
Before we describe the Nil–phenomena, the central problem of this thesis, we state the
Farrell–Jones conjecture.

Let G be a group and VCYC be the family of virtually cyclic subgroups of G, the
space EVCYC(G) is a G-CW -complex, unique up to G-homotopy, such that EVCYC(G)H

is contactible if H ∈ VCYC and empty if H /∈ VCYC [29]. The Farrell–Jones conjecture
predicts that the assembly map, AVCYC, induced by the projection EVCYC(G)→ pt

AVCYC : HG
n (EVCYC(G);KR) −→ HG

n (pt;KR) = Kn(R[G])

is an isomorphism for all n ∈ Z, all groups G and all rings R. Here HG
∗ (−;KR) is a

G-homology theory associated with the non-connective K-theory spectrum of the ring
R. We refer the reader to [30] for a survey on the Farrell–Jones conjecture.
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In some sense, one transport the problem with cyclic (and finite) groups to the left
hand side; it is a more complicated object, but accessible through spectral sequence type
methods. The Farrell–Jones conjecture is known to hold for a large number of groups
and at the moment of writing there is no counterexample to this conjecture.

Let us go back to Nil–phenomena. A well–known fact about the groups NKn(R), for
all rings, is that they are either trivial or infinitely generated abelian groups. W. van
der Kallen [42] proved this fact for all dimensions while T. Farrell [15] did it only for
dimension 1. Nevertheless, the techniques of Farrell’s work are interesting to us.

Let us fix m ∈ N and let Cm ≤ C be the subgroup of C of index m. The canonical
ring inclusion R[Cm] ↪→ R[C] induces, in all dimensions, the restriction homomorphism
resσm : Kn(R[C])→ Kn(R[Cm]) and the induction homomorphism indσm : Kn(R[Cm])→
Kn(R[C]).

These homomorphisms restricts to Nil–groups, therefore it is possible to define an
action, via restriction and induction, on NKn(R). This will extend to a W (Z)-module
structure on NKn(R) (see [45]), where W (Z) is the Witt vector ring of Z. An interesting
question is if the Bass Nil–groups are finitely generated as W (Z)-modules. There are
only a few results about finite generation as W (Z)-modules, for example for G = C2, the
finite cyclic group of order 2, we have

- NK0(Z[C2 × C2]) is non trivial and finitely generated as W (Z)-module [9];

- NK1(Z[C2 × C2]) is not finitely generated as W (Z)-module [19];

- NK2(Z[C2]) is a cyclic W (Z)-module [46].

Therefore, the W (Z)-module structure relevant in the study of Nil–groups.

Statement of results

We organized our results into 4 chapters. The classical approach to Witt–vector mod-
ule structures on Nil–groups is in chapters 1 and 2 while chapters 3 and 4 offer a novel
approach generalizing the classical methods. We also include two appendices for com-
pleteness, in particular, Appendix B offers a Nil–group oriented introduction to the ring
of Witt vectors.

Chapter 1: Mackey functors, Burnside rings and K-theory

In this chapter, we introduce B(G), the Burnside ring of a group G. We use the finite G-
set version of the Burnside ring [28], which is valid for all groups, instead of the classical
definition [5], which is valid only for finite groups, because we have a particular interest
in the infinite cyclic group G = C.

Of course, a vast amount of results for Burnside rings of finite groups does not hold
for arbitrary groups. Hence, we state and prove facts about Burnside rings necessary for
this thesis in Section 1.1.

We also define (cofinite) Mackey functors. From then on, Mackey functors become
fundamental objects in our study. Whenever possible, we look for Mackey functor struc-
tures on the objects presented here. Among the Mackey functors, the Burnside ring is
special because of its following universal property.

Proposition. 1.2.9 If M is a Mackey functor with values in MOD(R), then M is in a
canonical way a module over the Green functor given by the Burnside ring with respect
to the canonical ring homomorphism φ : Z→ R.
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We end the chapter with Section 1.3. This section includes the proof that K∗(R−)
is a Mackey functor on the subgroups of G following [31]. For finite groups, the proper
formulation and proof of this fact are in [12]. For arbitrary groups, we have to consider
group homomorphisms α : H ↪→ G that are injective, and whose image has a finite index.
This is a necessary condition to have the contravariant (restriction) structure on K-theory
of group rings. Notice that for the infinite cyclic group C and all m > 0, the canonical
inclusion of Cm ≤ C satisfies the above condition.

Hence, Kn(R[C]) is, in a canonical way, a B(C)-module. This is a mere consequence
of the universal property of the Burnside ring. In Chapter 2, we give a detailed description
of this action.

Chapter 2: The Fundamental theorem and compatible actions

In the first section, we indicate, through the study of polynomial rings, the existence of
NK-groups NKn(R). Then, we provide the formal definition of NK-groups and define
the Nil–groups Niln(R). These groups are, up to dimension shifting, isomorphic. The Nil–
group interpretation is better suited for computations than the NK–group interpretation
and we take advantage of this fact to study the NK–groups.

In Section 2.2, we state the Fundamental Theorem of Algebraic K-theory 2.2.1 and
summarize its proof, following [40]. We emphasize the localization sequences appearing
there and provide an explicit description of the isomorphism

NKn(R) ∼= Niln−1(R). (0.0.1)

In Section 2.3, we describe two actions on Nil–groups. The Frobenius and Ver-
schiebung endomorphisms define an action via by operations on nilpotent endomor-
phisms. We recover the following result from [45]

Proposition. 2.3.2 The operations Fm and Vm, for m ∈ N, defined in the category
NIL(R), describe the End0(Z)-module structure on Niln−1(R) for all n ∈ Z.

We refer to the module structure given in the Proposition above as the W (Z)-module
structure, since End0(Z) is a dense subring of W (Z). We extend the End0(Z)-module
structure of Nil–groups to a W (Z)-module structure in Chapter 4.

The restriction and induction homomorphisms, arising from R[Cm] ↪→ R[C], give
the second action, now described on NK–groups. This is the B(C)-module structure
mentioned at the end of Chapter 1, and we describe it in detail.

In order to have a well–defined action, we check that localization commutes with
restriction and induction. This is a technical issue, since Farrell’s original work [15]
only considers the canonical inclusion R[tm] ↪→ R[t] while we require the restriction and
induction coming from R[Cm] ↪→ R[C]. We prove

Theorem. 2.3.6 For all m ∈ N, the restriction and induction homomorphism in K-
theory are compatible with the Bass–Heller–Swan decomposition.

The last result of the chapter links the Witt ring module structure with the Burnside
ring module structure.

Theorem. 2.3.7 The End0(Z)-module structure on Niln−1(R) and the B(C)-module
structure of NKn(R) coincide, under the isomorphism 0.0.1.
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Chapter 3: Witt–Burnside ring

Chapter 3 generalizes Chapter 1. Dress and Siebeneicher introduced the concept of
Witt–Burnside ring [13]. We follow the more recent work of J. Elliott [14] which is also
more general. The Witt–Burnside ring is defined for profinite groups, in particular those
presented in Appendix A.

In Section 3.1, we introduce, for a profinite group Γ and a commutative monoid M ,
the concept of Γ-strings over M . Then, we define BM(Γ), the completed Burnside ring
of Γ, as the Grothendieck ring of isomorphism classes of Γ-strings over M under disjoint
union with product given by Cartesian product. We show that BM( ) is a Mackey functor
on the open subgroups of Γ. The following theorem is important to establish our main
result in the last chapter.

Theorem. 3.1.13 For any profinite group Γ, there exists a ring isomorphism

BM(Γ)−→ lim←−
N

BM(Γ/N)

X 7→ (BprojΓN(X))N

where N runs over all open normal subgroups of Γ.

We use the existence of the Witt–Burnside ring over Γ of Theorem 3.2.1 and refer the
reader to [13] and [14] for the proof of this fact. The following has important applications
for K-theory.

Theorem. 3.2.3 For any profinite group Γ and any commutative monoid M , there exists

a ring isomorphism WΓ(Z[M ])
∼=−→ BM(Γ).

Finally, we show that WΓ( ) can be described as an inverse limit. This is based on a
similar result for the completed Burnside rings.

Theorem. 3.2.9 For all commutative rings R and all profinite groups Γ, there exists a
ring isomorphism

WΓ(R) ∼= lim←−
N

WΓ/N(R)

where N runs over all open normal subgroups.

Chapter 4: An equivariant homology theory with restriction

This chapter contains our main result, namely, we want to determine for, the trivial
monoid M = 1 when a B1( )-module structure on an equivariant homology theory exists.
Sections 4.1, 4.2 and 4.3 are a short digression about the assembly map in algebraic K-
theory, the K-theory spectrum and G-homology theories.

We introduce the concept of an equivariant homology theory H?
∗: it consists of a

G-homology theory for each group G with an induction structure, linking the various
G-homology theories. We require further that an equivariant homology theory has a
restriction structure in the sense of [27].

The idea is that an equivariant homology theory with a restriction structure has a
Mackey functor structure on it, thereby applying the universal property of Burnside ring
we have a B( )-module. We prove

Theorem. 4.5.2 Let H?
∗(−) be an equivariant homology theory with restriction structure.

Then for all group G, all G-CW -complexes X and all n ∈ Z, H?
n(res?

GX) is a B(G)-
module.
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Finally, we look for conditions to extend the B( )-module to a B1( )-module structure,
where M = 1 denotes the trivial monoid. Our main result provides the criteria for such
an extension to exist.

Theorem. 4.6.4 Let (I,≤) be a direct set satisfying the condition that for every j ∈ I
the set {i ∈ I|i ≤ j} is finite, {Gi, ϕij} be a surjective inverse system of finite groups
indexed by I and H be an abelian group. Assume that H is a BM(Gi)-module for all i ∈ I
and satisfies

(a) for each i ≤ j, the BM(Gi)-module structure of H is Bresϕij-compatible with the
BM(Gj)-module structure of H, i.e., the diagram

BM(Gj)×H // H

BM(Gi)×H

Bresϕij×Id
OO

// H

Id

OO

commutes;

(b) for every x ∈ H there exists i = i(x) ∈ I, such that for all j with i ≤ j, then
Ker(Bprojji) ⊆ AnnBM (Gj)(x) = {T ∈ BM(Gj) | T.x = 0}.

Then H has a module structure over the ring lim←−i BM(Gi).

We conclude with an application of this result to algebraic K-theory using the for-
mulation of the Farrell–Jones conjecture, to generalize the W (R)-module structure of
NK∗(R).

Theorem. 4.6.7 Let R be a commutative ring with unit. For all n ∈ Z there exists a
BR×(C)-module structure on NKn(R). Moreover, this structure is compatible with the
W (R)-module structure of NKn(R).

Conventions

We assume readers to be familiar with basic notions about K-theory, and a good intro-
ductory book to the topic is [37]. We also assume basic knowledge in Category Theory.
Here the text [32] is sufficient. We also assume familiarity with concepts like homology,
spectra arising in algebraic topology, see for example [22].

In this work, we consider associative rings with unit, usually denoted by R. In special
cases, we require R to be commutative, and in such cases, we state it explicitly. The
K-theory groups of a ring R are given by the homotopy groups of the non–connective
algebraic K-theory spectrum of R, as defined in [33].

Since there is no consensus about 0 being a natural number, we denote by N the set
of natural numbers {1, 2, 3, . . . , } and by N0 the set N ∪ {0}.
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Chapter 1

Mackey functors, Burnside rings
and K-theory

In Section 1.1, we define B(G), the Burnside ring of a (not necessarily finite) group G and
define the restriction and the induction maps between Burnside rings. In section 1.2, we
study cofinite Mackey functors and show that B( ), the Burnside ring, is a cofinite Mackey
functor with the universal property given by Proposition 1.2.9. In the last section, we
sketch the proof that for any ring with unit R the algebraic K-theory groups Kn(R[−])
of group rings with coefficients in R is a Mackey functor following [31]. Last, we give
an abstract description of the B(C)-module structure of Kn(R[C]), with C the infinite
cyclic group.

1.1 The Burnside ring

Let G be a group. If G is finite, the Burnside ring of G has been extensively studied, see
for instance [5]. If G is a (discrete) infinite group there still exists the notion of Burnside
ring of G. There are several generalizations of Burnside rings of groups and the choice of
one version depends on the background problem. In our case, we chose the finite G-set
version because it is related to Green functors and induction theory (see [28]).

We will consider (discrete) groups, not necessarily finite. As we will see, the induction
map exists for all group homomorphism while the restriction map exists only for injective
group homomorphisms whose image has finite index.

Definition 1.1.1 (G-sets). A G-set T is a discrete set with a continuous left G-action. A

G-map, T
f−→ S, between two G-sets, is a G-equivariant map. Let G-SET be the category

whose objects are G-sets and morphisms are G-maps. A finite G-set is a G-set whose
underlying set is finite.

Let T and S be G-sets. The disjoint union of T and S is the set T
∐
S endowed with

the obvious G-action

G×
(
T
∐

S
)
−→ T

∐
S.

(g, z) 7→ gz
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The product of T and S is the set T × S endowed with diagonal G-action

G× T × S −→ T × S.
(g, (t, s)) 7→ (gt, gs)

Remark 1.1.2. Let T , S and Z be G-sets, then T × S ∼= S × T and T × (S
∐
Z) ∼=

T × S
∐
T × Z are isomorphic as G-sets.

Definition 1.1.3 (Restriction of G-sets). Let H
α−→ G be a group homomorphism and T

be G-set. The restriction of T is the H-set with underlying set resαT = T and H-action
given by restriction of the G-action to H via α, i.e.,

H × resαT −→ resαT.

(h, t) 7→ α(h)t

Notice that for a G-map T
f−→ T ′, the restricted morphism resαT −→ resαT

′ is auto-
matically an H-map. Hence, there is a functor

resα : G-SET −→ H-SET. (1.1.1)

Remark 1.1.4. Let H
α
↪−→ G be the inclusion of H ≤ G subgroup of G. Then we denote

resα := resHG .

Definition 1.1.5 (Induction of an H-set). Let H
α−→ G be a group and S be an H-set.

The induction of S is the G-set indαS whose underlying set is the space of orbits G×α S
of the right H-set G × S with H-action given by (g, s).h := (gα(h), h−1s), for g ∈ G,
s ∈ S and h ∈ H. The G-action is given by

G× (G×α S) −→ G×α S.
(g′, [g, s]) 7→ [g′g, s]

For S
f−→ S′ an H-map we define

indα(f) : indαS → indαS
′

[g, s] 7→ [g, f(s)]

which is a G-map. Hence, there is a functor

indα : H-SET −→ G-SET. (1.1.2)

Remark 1.1.6. Let H
α
↪−→ G be the inclusion of H ≤ G subgroup of G. Then we denote

indα := indGH

Example 1.1.7 (Transitive homogeneous G-sets). Let H ≤ G be a subgroup and G/H
be the set of (left) cosets of H in G. The group G acts on G/H by multiplication

G×G/H −→ G/H.

(g′, gH) 7→ g′gH

This action makes G/H into a transitive homogeneous G-set. A G-map between
transitive homogeneous G-sets is easy to describe. Let H,K ≤ G and assume that

f : G/H −→ G/K
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is a G-map. The image of the identity class eH determines f because G/H is transi-
tive, thus assume that f(eH) = gK for some g ∈ G. Then, for any h ∈ H, we have
gK = f(eH) = f(hH) = hf(eH) = hgK. Hence, g−1hg ∈ K that is g−1Hg ⊆ K or
equivalently H ⊆ gKg−1.

We conclude that a G-map G/H
f−→ G/K exists if and only if there exists g ∈ G such

H ⊆ gK, where gK = gKg−1. Moreover, f is an isomorphism, f : G/H
∼=−→ G/K, if an

only if H and K are conjugate.

Characterisation of G-sets

The homogeneous transitive G-sets are easy to visualize and they are the building blocks
of G-sets because they generate any G-set in the following sense.

Lemma 1.1.8. (a) Any G-set is a disjoint union of transitive homogeneous G-sets. If
T is a transitive G-set and Gt denotes the stabilizer subgroup of t ∈ T , then there
is an isomorphism of G-sets

µ : G/Gt −→ T

gGt 7→ gt.

(b) Let H,K ≤ G be subgroups of G. Then there exists a one–to–one correspondence

morG(G/H,G/K) −→ {gK ∈ G/K | H ⊆ gK}
f 7→ f(eH)

where morG(G/H,G/K) is the set of G-maps from G/H to G/K.

Proof. (a) The proof that the map µ is an isomorphism follows from the fact that
T = {gt | g ∈ G} since T is transitive.

Let T be a G-set, the orbits of T form a partition T =
∐
Ti where Ti is a transitive

G-set. The result follows from the isomorphism µ.

(b) We discussed this in Example 1.1.7 above.

Remark 1.1.9. In particular, Lemma 1.1.8 states for any finite G-set T that there exists
a G-isomorphism

T ∼=
∐
(H)

µH(T ) ·G/H, (1.1.3)

where (H) denotes the conjugacy class of H ≤f G, subgroup of finite index in G, the
disjoint union runs over all conjugacy classes; µH(T ) ∈ N0 is the number of G-orbits of
T isomorphic to G/H and µH(T ) · G/H is short for the disjoint union of µH(T ) copies
of the finite transitive G-set G/H.

The ring structure

Definition 1.1.10 (Burnside ring of G). Let G be a (discrete) group, not necessarily fi-
nite. Define B(G), the finite G-set version of the Burnside ring of G, as the Grothendieck
ring of isomorphism classes of finite G-sets under disjoint union with product given by
Cartesian product.
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We think of B(G) as the free Z-module with basis the set of isomorphism classes of G-
sets. Further, we can consider B(G) as the free Z-module with basis {G/H | H ≤f G}(H)

where (H) runs over conjugacy classes. Hence, the class of a G-set T in B(G) is

T =
∑
(H)

µH(T ) ·G/H. (1.1.4)

Remark 1.1.11. We write T for both, the G-set T and its isomorphism class T in B(G).

The multiplication in B(G) is determined by the multiplication of the basis elements.

Proposition 1.1.12. Let H,K ≤f G be finite index subgroups of G.

(a) Double coset formula. If S is an H-set, then there is an isomorphism of K-sets

resKG indGHS
∼=

∐
KγH∈|K\G/H|

indKH∩Kγ resH∩K
γ

H S,

where Kγ = γ−1Kγ.

(b) Frobenius identity. If T is a G-set and S is an H-set, then there is an isomor-
phism of G-sets

T × indGHS
∼= indGH((resHGT )× S).

In particular, for any G-set T , there is an isomorphism of G sets

T ×G/H ∼= indGHresHGT .

Remark 1.1.13. We write indKH∩Kγ in the double coset formula above for the induction
coming from the inner automorphism c(γ) : H ∩ Kγ −→ K, sending h 7→ γhγ−1. The
notation KγH ∈ |K\G/H| means a set of representatives of double cosets.

Proof. (a) The required K-isomorphism

resKG indGHS −→
∐

KγH∈|K\G/H|

indKH∩Kγ resH∩K
γ

H S.

sends [g, s] 7→ [k, hs] if g = kγh for some k ∈ K and h ∈ H, i.e., [k, hs] lies in
indKH∩Kγ resH∩K

γ

H S.
Surjectivity follows from the fact that [k, s] ∈ indKH∩Kγ resH∩K

γ

H S can be written as
[k′, hs], hence it comes from [k′γh, s] ∈ resKG indGHS.

To verify injectivity, let [g′, s′] and [g, s] such that [k′, h′s′] = [k, hs]. Then there
exists h

′′
= γ−1k

′′
γ = z ∈ H ∩Kγ such that (k′, h′s′) = (kc(γ)(z), z−1hs). The element

h̄ = h−1h
′′
h′ verifies [g′, s′] = [g, s].

(b) The required G-isomorphism is

T × indGHS −→ indGH((resHGT )× S)

(t, [g, s]) 7→ [g, (g−1t, s)].

Surjectivity follows from the fact that [g, (t, s)] comes from the element (gt, [g, s]).
To verify injectivity, let (t′, [g′, s′]) and (t, [g, s]) such that [g′, (g′−1t′, s′)] = [g, (g−1t, s)].

Then there exists h ∈ H such that (g′, (g′−1t′, s′)) = (gh, (h−1g−1t, h−1s)) this is g′ = gh,
s′ = h−1s and t′ = t. Hence, (t′, [g′, s′]) = (t, [g, s]).

The other statement is obtained with S = H/H.
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Proposition 1.1.14. Let H,K ≤f G. The product of G/H and G/K in B(G) is given
by

G/H ·G/K =
∑

KγH∈|K\G/H|

G/(H ∩Kγ). (1.1.5)

Proof. Frobenius identity and the double coset formula give the isomorphisms

G/H ×G/K ∼= indGKresKG (indGH(H/H))

∼= indGK

( ∐
KγH∈|K\G/H|

indKH∩Kγ (H ∩Kγ/H ∩Kγ)

)

∼= indGK

( ∐
KγH∈|K\G/H|

K/H ∩Kγ

)
∼=

∐
KγH∈|K\G/H|

G/H ∩Kγ

Ring homomorphisms

The next argument holds for any injective group homomorphism H
α
↪−→ G whose image

has finite index, but we only consider H ≤f G. The functors

resHG : G-SET −→ H-SET

and
indGH : H-SET −→ G-SET

preserve disjoint union of G-sets and H-sets respectively. Using this property, we define
maps between Burnside rings

BresHG : B(G) −→ B(H)

and
BindGH : B(H) −→ B(G).

Indeed, BresHG is a ring homomorphism while BindGH is just an additive homomor-
phism. This is not the standard notation, but it keeps our exposition simpler. See
Remark 1.1.16 below.

Proposition 1.1.15. Let H,K ≤f G.

(a) Double coset formula. If S ∈ B(H), then in B(K)

BresKG ◦ BindGH(S) =
∑

KγH∈|K\G/H|

BindKH∩Kγ ◦ BresH∩K
γ

H (S).

(b) Frobenius identity. If T ∈ B(G) and S ∈ B(H), then in B(G)

T.BindGH(S) = BindGH(BresHG(T ).S)

In particular, for T ∈ B(G)

T.G/H = BindGH(BresHG(T )).
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Proof. Both are direct consequence of Proposition 1.1.12.

Remark 1.1.16. We reserve the notation resHG and indGH for functors over the corresponding
categories and denote by BresHG and BindGH the corresponding Burnside ring homomor-
phisms. This will assist in the next chapters where we define BresHG and BindGH and
WresHG and WindGH for different homomorphisms arising from resHG and indGH .

1.2 Mackey functors

The principal examples of Mackey functors for us are the Burnside rings and the algebraic
K-theory of group rings. Moreover, we prove that the Burnside ring functor is a Green
functor acting over any Mackey functor. Let R be a ring with unit and MOD(R) the
category of left R-modules with homomorphism of R-modules as morphisms.

Definition 1.2.1 (Cofinite Mackey functor). Let GR be the category of groups with
group homomorphisms. Let GRIFI be the subcategory with morphisms the injective
group homomorphisms whose image has finite index in the target. A cofinite Mackey
functor with values in R-modules is a pair of functors

M∗ : GR −→ MOD(R)

M∗ : GRIFI −→ MOD(R)

such that:

(a) M∗ is covariant, M∗ is contravariant and agree on objects;

(b) for an inner automorphism c(γ) : G −→ G, with γ ∈ G, we have

M∗(c(γ)) = id : M(G) −→M(G);

(c) let α : G → H be a morphism in GRIFI and denote M∗(α) = resα and M∗(α) =

indα. For an isomorphism of groups α : G
∼=−→ H the composition resα ◦ indα and

indα ◦ resα are the identity.

(d) Double coset formula. For H,K ≤f G subgroups

resKG ◦ indGH =
∑

KγH∈|K\G/H|

indKH∩Kγ ◦ resH∩K
γ

H .

Remark 1.2.2. The reason to denote M∗(α) = resα and M∗(α) = indα for a morphism
H

α−→ G in GRIFI is because our main example of Mackey functors are the Burnside
rings and in the theory of Burnside rings it is common to use this notation.

Theorem 1.2.3. The Burnside ring B( ) is a cofinite Mackey functor with values in
MOD(Z).

Proof. (a) Let G be a group. Define M∗(G) = M∗(G) = B(G). If H
α−→ G is a morphism

in GR define M∗(α) = Bindα. If H
α
↪−→ G is a morphism in GRIFI define M∗(α) = Bresα.

(b) Let γ ∈ G and c(γ) : G→ G be conjugation by γ. For a G-set T the G-map

G×c(γ) T −→ T

[g, t] 7→ gγt



1.2 Mackey functors 13

is an isomorphism. Surjectivity follows immediately. For injectivity, notice that if g′γt′ =
gγt, then t′ = γ−1g′−1gγt and ḡ = γ−1g′−1gγ verifies (g, t) = (g′c(γ)(ḡ), ḡ−1t′).

(c) Let α : H
∼=−→ G be an isomorphism and T be a G-set. The G-map

G×α resαT −→ T

[g, t] 7→ gt

is an isomorphism. Surjectivity follows immediately. For injectivity, if [g′, t′] and [g, t]
have the same image in T , then t′ = g′−1gt and h = α−1(g−1g′) verify [g′, t′] = [g, t].
Hence, Bindα ◦ Bresα is the identity.

Let S be an H-set then, the H-map

resα(G×α S) −→ S

[g, t] 7→ α−1(g)t

is an isomorphism. The proof of this assertion is similar to the previous case. Hence,
Bresα ◦ Bindα is the identity.

(d) We proved this in Proposition 1.1.15.

Definition 1.2.4 (Pairing of Mackey functors). Let M , N and P be Mackey functors
with values in MOD(R). A pairing of Mackey functors is a family of bilinear maps

M(G)×N(G)→ P (G),

(x, y) 7→ x.y

where G runs over the category GRIFI such that for any morphism H
α
↪−→ G in GRIFI

the following relations hold

(i) (x1 + x2).y = x1.y + x2.y, for x1, x2 ∈M(G), and y ∈ N(G);

(ii) x.(y1 + y2) = x.y1 + x.y2, for x ∈M(G), and y1, y2 ∈ N(G);

(iii) (rx).y = r(x.y) = x.(ry), for r ∈ R, x ∈M(G), and y ∈ N(G);

(iv) resα(x.y) = resα(x).resα(y), for x ∈M(G) and y ∈ N(G);

(v) x.indα(y) = indα(resα(x).y), for x ∈M(G) and y ∈ N(H);

(vi) indα(x).y = indα(x.resα(y)), for x ∈M(H) and y ∈ N(G).

Remark 1.2.5. The notion of pairing is more general. If φ : R → S is a homomorphism
of associative (commutative) rings with unit, then we can define a pairing for M with
values in MOD(R) and, N and P having values in MOD(S). One need to check that, in
this case for (iii) above, (rx).y = φ(r)(x.y) and x.sy = s(x.y), where s ∈ S.

Definition 1.2.6 (Green ring). A Green functor with values in MOD(R) is a Mackey
functor M with a pairing M ×M −→ M and elements 1G ∈ M(G) for each group G in
GRIFI such that for each group G the pairing

M(G)×M(G) −→M(G)

induces the structure of an R-algebra on M(G) with unit 1G and for any morphism

H
α
↪−→ G the map M∗(α) = resα : M(G)→M(H) is a homomorphism of R-algebras with

unit.
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Example 1.2.7. The natural example of a Green ring is the Burnside ring of a group
viewed as a functor B: GRIFI → MOD(Z). For any G in GRIFI the multiplicative
structure of the ring B(G)

mG : B(G)× B(G) −→ B(G)

gives the Green ring structure.

Definition 1.2.8 (Green module). Let φ be a ring homomorphism, M a Green functor
with values in MOD(R) and P be a Mackey functor with values in MOD(S). A left
M -module structure on P is a pairing with respect to φ such that any of the maps

M(G)× P (G) −→ P (G)

induces the structure of a left module over theR-algebraM(G) on theR-module φ∗(P (G))
obtained from the S-module P (G) by restriction along φ.

Proposition 1.2.9 (Universal Property of the Burnside ring). If M is a Mackey functor
with values in MOD(R), then M is in a canonical way a module over the Green functor
given by the Burnside ring with respect to the canonical ring homomorphism φ : Z→ R.

Proof. Let G be a group and consider the pairing

B(G)×M(G) −→M(G)

(
∑
i

ni ·G/Hi, x) 7→
∑
i

niindGHi ◦ res
Hi
G (x).

The module structure follows since res
Hi
G and indGHi are, indeed, R-module homomor-

phisms.

1.3 Algebraic K-theory as Mackey functor

We include this section for completeness. In [12], Dress and Kuku showed that for finite
groups G the functor Kn(R[−]) is a Mackey functor on the subgroups of G. Along similar
lines, one can extend this result to infinite (discrete) groups (see [4]). We present here a
proof of this fact following the more general approach of [31]. For the rest of the section,
C will denote a small category and R will be an associative ring with unit.

Definition 1.3.1 (RC-modules). A covariant RC-module is a covariant functor

M : C −→ MOD(R) (1.3.1)

from the category C to the category MOD(R). A morphism, M −→ N , of RC-modules
is a natural transformation of functors. Let MOD(RC) be the category of covariant
RC-modules with natural transformation as morphisms. We define a contravariant RC-
module in a similar way.

Example 1.3.2. The typical free RC-module is the following covariant RC-module

RC(c, ?) : C −→ MOD(R),

d 7→ RmorC(c, d)

where RmorC(c, d) denotes the free R-module with basis morC(c, d) the set of morphisms
from c to d in C.
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Let M be a contravariant RC-module and N be a covariant RC-module. The R-
module M ⊗RC N is the quotient

M ⊗RC N :=

(⊕
x∈C

M(x)⊗R N(x)

)
/Q,

where Q is the R submodule generated by {M(f)(m)⊗n−m⊗N(f)(n) | m ∈M(y), n ∈
N(x), f ∈ morC(x, y), x, y ∈ C}.

An RC–RD–bimodule is a covariant functor

M : C × Dop −→ MOD(R).

Example 1.3.3. (a) Let C = D. There exists an RC-RC-bimodule

RC(??, ?) : C × Cop −→ MOD(R)

(c, c′) 7→ RmorC(c
′, c).

(b) Let F : C → D be a covariant functor. There exists an RD-RC-bimodule

RD(F (?), ??) : D × Cop −→ MOD(R) (1.3.2)

(d, c) 7→ RmorD(F (c), d)

and there exists an RC-RD-bimodule

RD(??, F (?)) : C × Dop −→ MOD(R). (1.3.3)

(c, d) 7→ RmorD(d, F (c))

Definition 1.3.4 (Restriction and induction). Let F : C → D be a covariant functor.
Define the covariant functors restriction and induction along F by

resF : MOD(RD) −→ MOD(RC) (1.3.4)

M 7→M ⊗RD RD(F (?), ??)

and

indF : MOD(RC) −→ MOD(RD) (1.3.5)

N 7→ N ⊗RC RD(??, F (?)).

Definition 1.3.5. A finitely generated free RC-module is a finite sum of typical free
RC-modules, i.e., ⊕

c∈ob(C)

⊕
X(c)

RmorC(c, ?),

where X(c) determines the multiplicity of RmorC(c, ?) and tc∈ob(C)X(c) is finite. We
denote by FR(C) the full subcategory of MOD(RC) whose objects are finitely generated
free RC-modules.

We define
Kn(RC) := Kn(FR(C)) (1.3.6)

for all n ∈ Z. We specialize the above definitions in order to show that for all n ∈ Z,
Kn(R−) is cofinite Mackey functor.
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Definition 1.3.6 (Groupoid). A groupoid is a small category whose morphisms are
isomorphisms. Let GROUPOID be the category of groupoids with functors of groupoids
as morphisms.

Example 1.3.7. Let T be a left G-set. Define the groupoid GG(T ) with objects the
elements of T and for t, t′ ∈ T the set of morphisms morGG(T )(t, t

′) = {g ∈ G | gt = t′}.
The group multiplication gives the composition of morphisms.

Every G-map S
f−→ T defines a covariant functor GG(S)

GG(f)−−−−→ GG(T ) given on

objects by GG(f)(s) = f(s) and on morphisms by GG(f)(s
g−→ s′) = f(s)

g−→ f(s′).
Hence, there is a covariant functor

GG : G-SET −→ GROUPOID (1.3.7)

S 7→ GG(S)

called the transport groupoid.

Let us consider α : H → G any group homomorphism. For any H-set S there is a
functor

α : GH(S) −→ GG(indαS) (1.3.8)

defined on objects by s 7→ [1, s] and on morphisms by h 7→ α(h). Indeed, α is a natural
transformation

H-SET
GH //

indα
��

GROUPOID

G-SET
GG

77 .

Similarly, for any G-set T there is a functor

α : GH(resαT ) −→ GG(T ) (1.3.9)

which is the identity on objects and on morphisms h 7→ α(h). Indeed, α is a natural
transformation

G-SET
GG //

resα
��

GROUPOID

H-SET
GH

77 .

Induction

Let α : H → G be any group homomorphism. For all H-set S the functor α induces a
functor

Indα : FR(GH(S)) −→ FR(GG(indαS)) (1.3.10)

sending an object ⊕
s∈ob(GH(S))

⊕
X(s)

RmorGH(S)(s, ?)

to the object ⊕
[g,t]∈ob(GG(indαS))

⊕
s∈α−1([g,t])

⊕
X(s)

RmorGG(indαS)([g, t], ?).

It is not hard to see that the target is finite if the sum in the source is finite.
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Restriction

Let us consider α : H → G injective such that G/α(H) is finite. For all G-set T the
functor α induces, by precomposition, a functor

Resα : FR(GG(T )) −→ FR(GH(resαT )). (1.3.11)

F 7→ F ◦ α

Let us briefly comment why the assumptions on α are necessary. It suffices to show
that the image of a typical free RGG(T )-module under Resα,

RmorGG(T )(t, α(?)),

is a typical free RGH(resαT )-module. Let s ∈ resαT = T , then

morGG(T )(t, α(s)) = {g ∈ G | gt = α(s) = s}.

Since G/α(H), assume that G = α(H)g1t· · ·tα(H)gn. Now we claim that there is a
bijection between {g ∈ G | gt = s}∩α(H)gi and the set morGH(resTα )(git, s) for 1 ≤ i ≤ n.
This is true because α is injective an therefore there is a bijection

{g ∈ G | gt = s} ∩ α(H)gi
'−→ {h ∈ H | α(h)git = s}.

g = α(h)gi 7→ h

Hence

morGG(T )(t, α(s)) '
n∐
i=1

morGH(resαT )(git, s),

and since it is natural in s ∈ ob(GH(resαT )) we obtain

RmorGG(T )(t, α(s)) ∼=
n⊕
i=1

RmorGH(resαT )(git, s)

showing that Resα is well defined.

Finally, let G be a group. Define the functor

M(G) := Kn(FR(GG(pt))),

where pt denotes the G-set consisting of one single point. Let H
α−→ G be any group

homomorphism, consider the composition of functors

FR(GH(pt))
Indα−−−→ FR(GG(indα(pt)))

pr−→ FR(GG(pt)),

where pr is induced by the projection G×α (pt)→ pt. Define M∗(α) as the induced map
by pr ◦ Indα in K-theory. This yields

M∗ : GR −→ MOD(Z).

Let α be a morphism in GRIFI, then the functor Resα induces a map M∗(α) in
K-theory. This yields

M∗ : GRIFI −→ MOD(Z).
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Theorem 1.3.8. For all n ∈ Z the functor

Kn(R−) : GR −→ MOD(Z) (1.3.12)

G 7→ Kn(RGG(pt))

is a Mackey functor in the sense of Definition 1.2.1.

Proof. We have defined M∗ and M∗ above and coincide on objects. Parts (b) and (c) are
easy to verify. The double coset formula requires a little work and we refer the reader
to [31, Lemma 14.12] for details.

Remark 1.3.9. This section summarizes a particular case of the general setting considered
in Chapters 13 and 14 on [31].

B(C)-module structure on K-theory

We are interested in C be the infinite cyclic group. The subgroups Cm ≤ C are indexed
by m ∈ N with Cm the subgroup of index m. For all n ∈ N, Theorem 1.3.8 gives a
Mackey functor, this time on the subgroups of C

Kn(R−) : GR≤C −→ MOD(Z),

where GR≤C is the subcategory of GR of subgroups of C. Identifying Kn(RG Cm(pt)) =
Kn(R[Cm]) and Kn(RG C(pt)) = Kn(R[C]), for the inclusion map σm : Cm → C we have

resσm : Kn(R[C]) −→ Kn(R[Cm])

and
indσm : Kn(R[Cm]) −→ Kn(R[C]).

Last, consider the Burnside ring B(C) with basis {C/Cm | m ∈ N}. According to
Proposition 1.2.9 we have

B(C)×Kn(R[C]) −→ Kn(R[C])(∑
m

am · C/Cm, x

)
7→
∑
m

amindσm ◦ resσm(x).

In Chapter 2, we will study this B(C)-module structure in detail. In particular, using
the Bass–Heller–Swan decomposition theorem for Kn(R[C]) we will restrict this action
to the copies of Bass Nil–groups.



Chapter 2

The Fundamental Theorem and
Compatible actions

In the first section, we will define the NK–groups and the Nil–groups in K-theory and
state an explicit isomorphism between them in lower dimensions. This isomorphism
also illustrates exactly what occurs in higher dimensions. Section 2.2 contains the proof
of the Fundamental Theorem of Algebraic K-theory following Swan’s exposition [40]
summarizing the results in [34] and [17]. We highlight the K-theory of the projective
line and the localization sequences appearing in there.

The final section consists of the definition of the End0(Z)-module structure of Niln(R),
using Frobenius and Verschiebung endomorphisms. It also comprises a review of the
B(C)-module structure of Kn(R[C]), briefly mentioned in Chapter 1. We show the
compatibility of the B(C)-module structure on Kn(R[C]) with the Bass–Heller–Swan
decomposition to define a B(C)-module structure of NKn(R). We complete the ideas
in [39] asserting that both module structures are the same in Corollary 2.3.7

2.1 K-theory of rings and polynomial rings

Let us illustrate a desirable relation. A Noetherian ring R is a ring all whose ideals are
finitely generated. The Hilbert Basis Theorem states that for a Noetherian ring R the
polynomial ring, R[t], and the Laurent polynomial ring, R[t, t−1], are Noetherian.

A finite type projective resolution of an R-module M is a finite length resolution by
projective modules not necessarily finitely generated projective R-modules. A Noetherian
ring R is regular if every R-module M having a finite type projective resolution is finitely
generated R-module. The Hilbert Syzygies theorem states that for a regular ring R the
polynomial ring, R[t], and the Laurent polynomial ring, R[t, t−1], are regular.

A naive statement is that Kn(R[t]) and Kn(R[t, t−1]) depend only on Kn(R). This is
false for general rings even for Noetherian rings, but it is partially true for regular rings.
We make this statement clear. For the rest of the paragraph we only work with K-groups
and G-groups in dimensions n = 0, 1.

Let R be a Noetherian ring and MOD(R)fg denote the category of finitely generated
R-modules. Define the groups Gn by

Gn(R) := Kn(MOD(R)fg).
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In general, a ring homomorphism R
φ−→ S does not induce a map Gn(R)→ Gn(S), it

depends on −⊗R S being exact where S is considered as an R-module via φ. Neverthe-
less, the canonical ring injections R → R[t] and R → R[t, t−1] induce homomorphisms
Gn(R)→ Gn(R[t]) and Gn(R)→ Gn(R[t, t−1]), because R[t] and R[t, t−1] are projectives
over R.

The splitting maps R[t]
t7→0−−→ R and R[t, t−1]

t7→1−−→ R, despite the fact that the corre-
sponding tensors are not exact, also induce homomorphisms on corresponding Gn groups

Gn(R[t]) −→ Gn(R),

[M ] 7→ [R⊗R[t] M ]− [Tor
R[t]
1 (R,M)]

respectively for R[t, t−1] (see [37, p. 137]).

Proposition 2.1.1. [37] Let R be a Noetherian ring. The natural homomorphisms

Gn(R) −→ Gn(R[t]), n = 0, 1

G0(R) −→ G0(R[t, t−1]).

are isomorphisms with inverse the induce by corresponding splittings. There exists a
well–defined homomorphism G1(R[t, t−1]) −→ G1(R) (see [37, p. 145]).

The augmentation map R[t]
t7→0−−→ R induces homomorphisms in K-theory Kn(R[t])→

Kn(R). If R is regular, there are isomorphisms Kn(R) ∼= Gn(R) and Kn(R[t]) ∼= Gn(R[t])
and the diagram

Kn(R[t])
∼= //

��

Gn(R[t])

��

Kn(R)
∼= // Gn(R)

commutes [37, Corollary 3.1.16].
The Laurent polynomial ring R[t, t−1] of a Noetherian ring R requires more effort,

nonetheless, there exists a homomorphism [37, Proposition 3.2.18]

G1(R[t, t−1]) −→ G0(R) (2.1.1)

such that the following holds.

Theorem 2.1.2. Let R be a Noetherian ring. There exists an isomorphism

G1(R)⊕G0(R) −→ G1(R[t, t−1])

with left inverse given by the homomorphism in Proposition 2.1.1 direct sum with the
homomorphism above.

Corollary 2.1.3. If R is regular the following are isomorphisms.

(a) K0(R[t]) ∼= K0(R),

(b) K0(R[t, t−1]) ∼= K0(R),

(c) K1(R[t]) ∼= K1(R),

(d) K1(R[t, t−1]) ∼= K1(R)⊕K0(R).
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2.1.1 NK–groups and Nil–groups

The augmentation map R[t]
t7→0−−→ R induces homomorphisms in K-theory for all dimen-

sions. The NK–groups are the kernel of the induced maps.

Definition 2.1.4 (NK–groups). For all n ∈ Z the NK–groups of R are

NKn(R) := Ker{Kn(R[t])
t7→0−−→ Kn(R)}. (2.1.2)

The natural ring injection i : R ↪→ R[t] also induces homomorphisms in K-theory,
hence for all n ∈ Z we can also define the NK–groups of R by

NKn(R) := Coker{Kn(R)
i−→ Kn(R[t])}. (2.1.3)

Example 2.1.5. The following example shows that the Bass Nil–groups are not trivial.

Let k be a field and t be an indeterminate over k. The dual numbers over k is the
local ring R = k[t]/(t2), hence K0(R) = Z and K1(R) = R×, with R× the units of R.
Let s be an indeterminate over R and consider the split exact sequence

NK1(R) −→ K1(R[s])� K1(R).

There is an inclusion of units R× ↪→ R[s]× and since (1 + ts)(1− ts) = 1 + t2s2 = 1
we have that R[s]×/R× 6= 0. Furthermore, R[s]× ↪→ K1(R[s]) since R[s] is commutative
and the determinant splits this summand. Hence K1(R[s])/K1(R) is not trivial and it is
isomorphic to NK1(R).

Now, we introduce the concept of Nil–groups.

Definition 2.1.6 (Nilpotent category). Let R be a ring. We define the category NIL(R)
of pairs (Q, ν) where Q is in the category P(R) of finitely generated projective R-modules

and ν : Q → Q is a nilpotent endomorphism. A morphism (Q, ν)
F−→ (Q′, ν ′) in NIL(R)

is an R-module homomorphism Q
F−→ Q′ such that F ◦ ν = ν ′ ◦ F .

A sequence 0 −→ (Q′, ν ′) −→ (Q, ν) −→ (Q
′′
, ν
′′
) −→ 0 in NIL(R) is exact if its

underlying sequence in P(R) is exact.

There exist exact functors

NIL(R) −→ P(R) (2.1.4)

(Q, ν) 7→ Q

and

P(R) −→ NIL(R) (2.1.5)

Q 7→ (Q, 0),

where 0 denotes the trivial endomorphism of Q.

Definition 2.1.7 (Nil–groups). For all n ∈ Z define Niln(R), the Nil–groups of R, by
the splitting induced by (2.1.5) in K-theory, i.e.,

Kn(NIL(R)) = Kn(R)⊕Niln(R). (2.1.6)



22 2. The Fundamental Theorem and Compatible actions

Remark 2.1.8. There is a subtle distinction in the literature between the groups NKn(R)
and Niln(R). One should formally call NKn(R), Bass Nil–groups and call the groups
Niln(R), Nil–groups. We avoid making an explicit differentation between them because
they are isomorphic, up to a degree shifting, as Theorem 2.2.1 shows.

The isomorphism NK1
∼= Nil0 below gives an insight for all degrees.

Lemma 2.1.9. [37] Let R be a ring. Then any matrix B ∈ GL(R[t]) can be reduced,
modulo GL(R) and E(R[t]), to a matrix of the form 1+At, where A is a nilpotent matrix
with entries in R.

Proof. Write B as B = B0 +B1t+ · · ·+Bdt
d with Bj ∈M(R). We reduce the degree d

up to d ≤ 1. Let us assume that d ≥ 1, then the following reduction holds in GL(R[t])

B ∼
(
B 0
0 1

)
∼
(
B td−1Bd
0 1

)
∼
(
B − tdBd td−1Bd
−t 1

)
,

where ∼ stands for equal modulo multiplication by matrices in E(R[t]) and GL(R).
Then B is equivalent to a matrix of degree d − 1. This reduction can be continued
to get B = 1 + At for A ∈ M(R) since B ∈ GL(R[t]) and B0 must be a unit. Let
B−1 = C0 + tC1 + · · ·+ trCr be the inverse of B then

1 = (1 +At)(C0 + tC1 + · · ·+ trCr) = (C0 + tC1 + · · ·+ trCr)(1 +At).

This yields the equations C0 = 1 and Cj = (−A)j . Since Ar+1 = 0 we conclude that
A is nilpotent.

Proposition 2.1.10. [37] Let R be a ring. Then NK1(R) is naturally isomorphic to
Nil0(R).

Proof. Each B ∈ GL(R[t]) can be reduced to 1 +At, with A nilpotent matrix by Lemma
2.1.9, then the image of NK1(R) in K1(R) consists of matrices of this form. Define

NK1(R) −→ Nil0(R)

[1 +At] 7→ [Rn, A].

This is a well–defined homomorphism since 1+At conjugated to 1+A′t in GLn(R[t])
implies, after sending t → 1, that 1 + A is conjugated to 1 + A′ in GLn(R), hence A is
conjugated to A′ in GLn(R).

A substitution of 1 + At by (1 + At) ⊕ (1k), where 1k is the identity in Mk(R),
corresponds replacing A by A⊕ 0k and [Rn, A] by [Rn, A] + [Rk, 0] that are the same in
K̃0 the reduced K0 group.

Notice that [1 +At] + [1 +A′t] = [(1 +At)⊕ (1 +A′t)] = [1 + (A⊕A′)t] and the last
one is sent to [Rn, A] + [Rm, A′]. The inverse is

Nil0(R) −→ NK1(R)

[Rn, A] 7→ [1 +At]

and this concludes the proof.
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2.2 Fundamental Theorem of Algebraic K-theory

In this section, we outline the proof of the Fundamental Theorem of Algebraic K-theory.
We focus on the K-theory of the projective line and the pair of localization sequences
described in [40].

Theorem 2.2.1 (Fundamental Theorem of Algebraic K-theory). Let R be a ring. Then,
for all n ∈ Z there exist natural isomorphisms

(a) Kn(R)⊕NKn(R) ∼= Kn(R[t]);

(b) Kn(R)⊕Kn−1(R)⊕NKn(R)⊕NKn(R) ∼= Kn(R[t, t−1]);

(c) NKn(R) ∼= Niln−1(R).

We need the following results.

The K-theory of the projective line

Let MOD(P1
R) be the Abelian category of triples M = (M+,M−; θ), where M+ is an

R[t]-module, M− is an R[t−1]-module, and θ : R[t, t−1] ⊗R[t] M
+
∼=−→ R[t, t−1] ⊗R[t−1] M

−

is an R[t, t−1]-module isomorphism.

A morphism M
F−→ N in MOD(P1

R) is a pair (f+, f−) such that f+ : M+ → N+ is an
R[t]-module homomorphism, f− : M− → N− is an R[t−1]-module homomorphism, and
the diagram of R[t, t−1]-module homomorphisms

R[t, t−1]⊗R[t] M
+ θ

∼=
//

1⊗f+

��

R[t, t−1]⊗R[t] M
−

1⊗f−
��

R[t, t−1]⊗R[t] N
+

ϕ

∼=
// R[t, t−1]⊗R[t] N

−

commutes.
Let M be an object in MOD(P1

R), for j ∈ Z the j-th Serre twist of M is the object
M (j) = (M+,M−; t−jθ). In particular, the j-th Serre twist of O = (R[t], R[t−1]; 1) defines
a functor

MOD(R) −→ MOD(P1
R)

M 7→ O(j)⊗RM := (M [t],M [t−1]; t−j),

where M [t] (resp. M [t−1]) denotes R[t]⊗RM (resp. R[t−1]⊗RM).

Definition 2.2.2 (K-theory of projective line). Let P(P1
R) be the full subcategory of

MOD(P1
R) of objects P = (P+, P−; θ) such that P+ (resp. P−) is finitely generated

projective R[t]-module (resp. finitely generated R[t−1]-module). The K-theory of the
projective line P1

R is
Kn(P1

R) = Kn(P(P1
R)).

The j-th Serre twist defines a functor

uj : P(R) −→ P(P1
R) (2.2.1)

P 7→ O(−j)⊗R P

for all j ∈ Z that induces the homomorphism uj∗ in K-theory. We only need u0∗ and
u1∗ to calculate Kn(P1

R).
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Theorem 2.2.3. [40, Theorem 9.11] Let R be a ring. Then

(u0∗, u1∗) : Kn(R)⊕Kn(R)→ Kn(P1
R) (2.2.2)

sending (x, y) 7→ u0∗(x) + u1∗(y) is an isomorphism.

For computational reasons, it is convenient to write the K-theory of the projective line
in other basis, precomposing the map (u0∗, u1∗) of Theorem 2.2.3 with the isomorphism(

1 0
1 −1

)
: Kn(R)⊕Kn(R) −→ Kn(R)⊕Kn(R)

(x, y) 7→ (x, x− y)

The localization sequences

We will consider exact sequences of categories that give rise to long exact sequences in
K-theory [40, Section 6].

Definition 2.2.4. Let R be a ring, R[t] its polynomial ring in variable t,
T = {ti|i ∈ N} the closed multiplicative set of powers of t and consider the localiza-
tion of R[t] by T , R[t]T = R[t, t−1].

Define PT (R) to be the full subcategory of MOD(R[t]) of objects M such that

(a) MT := R[t, t−1]⊗R[t] M is in P(R[t, t−1]) and

(b) there exists a short exact sequence

0→ Q→ P →M → 0

with Q,P in P(R[t]).

Define HT (R) to be the full subcategory of PT (R) of those M such that MT = 0.

The natural sequence of functors

HT (R)→ PT (R)
LT−−→ P(R[t, t−1]), (2.2.3)

with LT localization of R[t]-modules by T , gives rise to a long exact sequence [40, Corol-
lary 6.4] in K-theory

· · · ∂−→ Kn(HT (R))→ Kn(PT (R))→ Kn(R[t, t−1])
∂n−1−−−→ Kn−1(HT (R))→ · · ·

The inclusion of categories P(R[t]) ↪→ PT (R) satisfies the resolution theorem hypoth-
esis [40, Lemma 3.7], which implies that Kn(R[t]) ∼= Kn(PT (R)) and hence we have a
long exact sequence

· · · ∂−→ Kn(HT (R))→ Kn(R[t])→ Kn(R[t, t−1])
∂n−1−−−→ Kn−1(HT (R))→ · · · (2.2.4)

Definition 2.2.5. Define P−(P1
R) the full subcategory of MOD(P1

R) of objects M =
(M+,M−; θ) such that

(a) M− is in P(R[t−1]) and
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(b) there exists a short exact sequence

0→ Q →P →M → 0

with Q,P in P(P1
R).

Define H−(P1
R) the full subcategory of P−(P1

R) of those M such that M− = 0.

The natural sequence of functors

H−(P1
R)→ P−(P1

R)
α−→ P(R[t−1]), (2.2.5)

with α the obvious projection functor, gives rise to a long exact sequence [40, Theorem
9.14] in K-theory

· · · ∂−→ Kn(H−(P1
R))→ Kn(P−(P1

R))→ Kn(R[t−1])
∂−→ Kn−1(H−(P1

R))→ · · ·

Since the inclusion of categories P(P1
R) ↪→ P−(P1

R) satisfies the resolution theorem, there
is an isomorphism Kn(P1

R) ∼= Kn(P−(P1
R)) and hence we have a long exact sequence

· · · ∂−→ Kn(H−(P1
R))→ Kn(P1

R)→ Kn(R[t−1])
∂−→ Kn−1(H−(P1

R))→ · · · (2.2.6)

2.2.1 Proof of the Fundamental Theorem

We sketch now the proof of the fundamental theorem.

Lemma 2.2.6. The following categories are equivalent HT (R) ' NIL(R) and H−(P1
R) '

NIL(R).

Proof of Lemma 2.2.6. The functor

HT (R)→ NIL(R) (2.2.7)

M 7→ (M, t)

is an equivalence with inverse (Q, ν)→ Qν where Qν is Q considered as R[t]-module with
ν acting via t. The functor 2.2.7 is well defined since for any H ∈ HT (R) there exists
n ∈ N such that tnM = 0. Multiplying the terms of the resolution

0 −→ Q −→ P −→M −→ 0

by tn an application of the snake lemma yields

0 −→M −→ Q/tnQ −→ P/tnP,

since tnM = 0, then tnP ⊆ Q. Therefore, there is an exact sequence

0 −→M −→ Q/tnQ −→ Q/tnP −→ 0.

The module Q/tnP has projective dimension ≤ 1 and Q/tnQ is a projective R-module.
This implies that M is a projective R-module.

For the second equivalence consider the functor

H−(P1
R) −→ NIL(R)

(P, 0; 0) 7→ (P, t)
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which is well–defined since P is an object in P(R[t]) and R[t, t−1]⊗R[t]P ∼= 0 [40, Lemma
10.6]. The inverse of this functor is given by

H: NIL(R) −→ H−(P1
R) (2.2.8)

(Q, ν) 7→ (Qν , 0; 0).

This is well defined since the required resolution is given by

0 −→ (Q[t], Q[t−1]; t)
v−→ (Q[t], Q[t−1]; 1) −→ (Qν , 0; 0) −→ 0, (2.2.9)

where v = (t− ν, 1− t−1ν).

Outline of the proof of Theorem 2.2.1: The functor

β : MOD(P1
R) −→ MOD(R[t]) (2.2.10)

(M+,M−; θ) 7→M+

links (2.2.5) and (2.2.3). It restricts to the subcategories P−(P1
R)→ P(R[t]) andH−(P1

R)→
HT (R[t]), and induces Kn(P1

R)
β−→ Kn(R[t]) linking (2.2.6) with (2.2.4) by

· · ·Kn(NIL(R)) //

∼=

��

Kn(P1
R)

α //

β

��

Kn(R[t−1])
∂n //

��

Kn−1(NIL(R)) · · ·

∼=

��

· · ·Kn(NIL(R)) // Kn(R[t]) // Kn(R[t, t−1])
∂n // Kn−1(NIL(R)) · · ·

(2.2.11)

Part (a). The compositions βuj : P(R) → P(R[t]) are βuj(P ) = P [t] (i = 0, 1),
hence induce, in K-theory, the same homomorphism as the canonical functor P(R) −→
P(R[t]) splitting after sending t 7→ 0.

The compositions αuj : P(R) → P(R[t−1]) are αuj(P ) = P [t−1] (i = 0, 1), hence
induce, in K-theory, the same homomorphism as the canonical functor P(R)→ P(R[t−1])
splitting after sending t 7→ 1.

Hence the top row of diagram (2.2.11) splits as:

0→ Kn(R)
←−→ Kn(R[t−1])

∂n−→ Kn−1(NIL(R))→ (u0∗ − u1∗)Kn−1(R)→ 0.

The last map coincides with the canonical split surjection and hence

0→ Kn(R)� Kn(R[t−1])
∂n−→ Niln−1(R)→ 0. (2.2.12)

This last assertion is true because of the following. Extend the functors uj of (2.2.1) to
NIL(R) using the split surjection (2.1.4), this is

uj : NIL(R) −→ P(P1
R)

(Q, ν) 7→ uj(Qν).

In particular, for j = 1, 0 and by the resolution (2.2.9) there is an exact sequence of
functors

0 −→ u1 −→ u0 −→ H −→ 0

from NIL(R) to P(P1
R). This shows that H∗ = uo∗−u1∗ coincides, in K-theory, with the

canonical splitting (2.1.4) and hence it fits into the exact sequence (2.2.12).
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This shows that Niln−1(R) coincides with the cokernel of the canonical split injection
(2.1.3), then there is an isomorphism NKn(R) ∼= Niln−1(R). This proves part (c).

Part (b). Follows from diagram chasing to get from 2.2.11 a Mayer–Vietoris se-
quence:

· · · → Kn+1(R[t, t−1])
∂n+1−−−→ Kn(P1

R)→ Kn(R[t])⊕Kn(R[t−1])→ Kn(R[t, t−1])
∂n−→ · · ·

By the observation made on αui and βui above, the map

Kn(P1
R)→ Kn(R[t])⊕Kn(R[t−1])

factors by the same copy of Kn(R) in the decompostion of Kn(P1
R), thus the Mayer–

Vietoris sequence splits as

0→ Kn(R)� Kn(R[t])⊕Kn(R[t−1])
(i+)+(i−)−−−−−−→ Kn(R[t, t−1])

∂n−→ Kn−1(R)→ 0,

where i± come from the respective inclusions and ∂n is a split surjection.

2.3 Two actions on Nil–groups

2.3.1 Action in terms of Frobenius and Verschiebung endomorphisms

We describe how End0(Z) acts on Niln−1(R) using Frobenius and Verschiebung endomor-
phisms. Consider the categories END(Z) (see Definition B.4.1) and NIL(R). The tensor
product of R-modules defines a pairing

END(Z)×NIL(R) −→ NIL(R) (2.3.1)

((P, f), (Q, ν)) 7→ (P ⊗Z Q, f ⊗ ν).

that induces a product in K-theory [43, Section 9]

Ki(END(Z))×Kn−1(NIL(R)) −→ Ki+n−1(NIL(R))

valid for all i, n ∈ Z. We consider only the case i = 0. The copy of P(R) inside
NIL(R), reflects under pairing (2.3.1) to itself, then we have a well defined End0(Z)-
module structure.

End0(Z)×Niln−1(R) −→ Niln−1(R). (2.3.2)

The reverse characteristic polynomial χt (Section B.4) embeds the ring End0(Z) as
dense subring of the ring of Witt vectors W (Z). We describe the End0(Z)-module struc-
ture using the Frobenius and Verschiebung endomorphism. This is the same module
structure but described in an equivalent way.

Definition 2.3.1 (Frobenius and Verschiebung action). Let m ∈ N. The m-th Frobenius
Fm and the m-th Verschiebung Vm act on NIL(R) by

Fm((Q, ν)) := (Q, νm)

Vm((Q, ν)) := (Qm, Vm(ν))

where Vm(ν) is represented by the matrix
0 . . . 0 ν

1 0
...

...
. . .

. . . 0
0 . . . 1 0


.



28 2. The Fundamental Theorem and Compatible actions

Proposition 2.3.2. The operations Fm and Vm, for m ∈ N, defined in the category
NIL(R) describe the End0(Z)-module structure on Niln−1(R) given by (2.3.2) for all
n ∈ Z.

Proof. Since the elements 1−atm suffices to describe W (Z), it is enough to describe how
1−atm acts in Niln−1(R). Let Am : Zm → Zm be the endomorphism given by the matrix

0 . . . 0 a

1 0
...

...
. . .

. . . 0
0 . . . 1 0


whose reverse characteristic polynomial is χt(A

m) = 1 − atm. Let (Q, ν) be an element
of NIL(R), under the pairing (2.3.1) we have

(Zm, Am)× (Q, ν) ∼= (Qm, Am ⊗ ν)

and Am ⊗ ν = Vm(aν). Hence, in Niln−1(R) we have

(1− atm).[Q, ν] = [Qm, Vm(aν)] = Vm([Q, aν]).

2.3.2 Action in terms of restriction and induction

Fix m ∈ N, C the infinite cyclic group with generator t, and Cm ≤ C the only subgroup
of index m. Identify R[C] = R[t, t−1]. There exists ring homomorphisms

σm : R[Cm] −→ R[C]

tm 7→ tm

and

σ+
m : R[tm] −→ R[t]

tm 7→ tm.

Remark 2.3.3. There exists also a ring homomorphism σ−m : R[t−m] −→ R[t−1], but for
simplicity we only consider σ+

m. All the results we give for σ+
m hold for σ−m.

The ring homomorphisms σm and σ+
m induce restriction and induction homomor-

phisms in K-theory. These homomorphisms arise from the functors

resσm : MOD(R[C]) −→ MOD(R[Cm])

res
σ+
m

: MOD(R[t]) −→ MOD(R[tm])

coming from the restriction of scalars along σm and σ+
m and, from the functors

indσm : MOD(R[Cm]) −→ MOD(R[C])

ind
σ+
m

: MOD(R[tm]) −→ MOD(R[t])
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coming from the tensor product along σm and σ+
m.

Recall the localization functor

LT : MOD(R[t]) −→ MOD(R[C])

M 7→MT .

Theorem 2.3.4. There exists a natural transformation of functors between
LT ◦ ind

σ+
m
◦ res

σ+
m

and indσm ◦ resσm ◦ LT , from MOD(R[t]) to MOD(R[C]).

Proof. The localization of M comes equipped with a unique R[t]-module homomorphism

ρT : M −→MT such that for an R[t]-module homomorphism M
ϕ−→ N , with N an R[C]-

module, there exists a unique R[C]-module homomorphism MT −→ N such that the
diagram

M

ϕ
!!

ρT //MT

∃!
��

N

commutes.

The homomorphism ρT yields an R[tm]-module homomorphism r : res
σ+
m

(M) −→
res

σ+
m

(MT ).

Lemma 2.3.5. There exists an R[tm]-module homomorphism

res
σ+
m

(MT )
f−→ resσm(MT )

Proof of lemma 2.3.5: As sets, res
σ+
m

(MT ) = MT = resσm(MT ), define f as the identity

and extend it by linearity to R[tm].

Now, the R[t]-module ind
σ+
m

res
σ+
m

(M) comes with a unique homomorphism

ind
σ+
m

res
σ+
m

(M)
ρT−→ (ind

σ+
m

res
σ+
m

(M))T .

Since ind
σ+
m

res
σ+
m

(M) := R[t] ⊗σ+
m

res
σ+
m

(M), the unique homomorphism R[t] −→ R[C]

together with f from Lemma 2.3.5 yields

R[t]⊗σ+
m

res
σ+
m

(M)
1⊗r−−→ R[t]⊗σ+

m
res

σ+
m

(MT )
ρT⊗f−−−→ R[C]⊗σm resσm(MT ).

It follows that any R[t]-module homomorphism R[t]⊗σ+
m

res
σ+
m

(M) −→ N , with N an

R[C]-module, factors through R[C]⊗σm resσm(MT ). In particular, it implies that

R[C]⊗σm resσm(MT ) ∼= (R[t]⊗σ+
m

res
σ+
m

(M))T

that is indσmresσm(MT ) ∼= ind
σ+
m

res
σ+
m

(M)T as R[C]-modules.

The next theorem gives the B(C)-module structure on NKn(R) by restriciting the
action on the algebraic K-theory groups of R[C] to the summands appearing in the
Fundamental Theorem of Algebraic K-theory.

Theorem 2.3.6. For all m ∈ N the restriction and induction homomorphism in
K-theory are compatible with the Bass–Heller–Swan decomposition.
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Proof. Fix m ∈ N and consider res
σ+
m

(resp. resσm) and ind
σ+
m

(resp. indσm). First,

consider the localization sequence of categories (2.2.3)

HT (R) −→ PT (R)
LT−−→ P(R[C]).

Let M be in PT (R), then LT ind
σ+
m

res
σ+
m

(M) ∼= indσmresσm(LT (M)) is a projective

R[C]-module; it is the trivial module if M was in HT (R).
Theorem 2.3.4 yields the diagram

HT (R) //

ind
σ+
m

res
σ+
m

��

PT (R)
LT //

ind
σ+
m

res
σ+
m

��

P(R[C])

indσm resσm
��

HT (R) // PT (R)
LT
// P(R[C])

that induces a map of exact sequences in K-theory

· · · // Kn+1(R[C]) //

��

Kn(HT (R)) //

��

Kn(R[t]) //

��

Kn(R[C]) //

��

· · ·

· · · // Kn+1(R[C]) // Kn(HT (R)) // Kn(R[t]) // Kn(R[C]) // · · ·

where the vertical arrows correspond to the composition of restriction and induction in
K-theory groups. Now consider the second localization sequence (2.2.5)

H−(P1
R) −→ P−(P1

R)
α−→ P(R[t−1]),

where α is given on objects by α(M ) = M− and is obvious on morphisms.
Now, consider the sequence 2.2.5. We have a functor J : P−(P1

R) −→ P−(P1
R) given

in objects by

(M+,M−; θ) 7→ (ind
σ+
m

res
σ+
m
M−, ind

σ−m
res

σ−m
M−; indσmresσmθ).

The functor J is well defined and restricts to the category H−(P1
R). Therefore, The-

orem 2.3.4 yields the commutative diagram

H−(P1
R) //

J
��

P−(P1
R)

α //

J
��

P(R[t−1])

ind
σ−m

res
σ−m

��

H−(P1
R) // P−(P1

R) α
// P(R[t−1])

that induces a map of exact sequences in K-theory

· · ·Kn+1(R[t−1]) //

��

Kn(H−(P1
R)) //

��

Kn(P1
R) //

��

Kn(R[t−1]) · · ·

��

· · ·Kn+1(R[t−1]) // Kn(H−(P1
R)) // Kn(P1

R) // Kn(R[t−1]) · · ·

where the vertical arrows correspond to the composition of restriction and induction in
K-theory groups. Last, the functors β and α respect res

σ+
m

and ind
σ+
m

. This proves the

theorem.
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2.3.3 Compatibility of the actions

Let us define
resσm : NKn(R) −→ NKn(R)

and
indσm : NKn(R) −→ NKn(R)

as the restriction of resσm and indσm , defined on Kn(R[C]), to the summand NKn(R)
coming from Kn(R[t]) giving by the Bass–Heller–Swan decomposition of Kn(R[C]). We
could equally define the above maps on the other copy of NKn(R). The reason we use
the one from Kn(R[t]) is for simplicity on our exposition.

Theorem 2.3.7. The End0(Z)-module structure on Niln−1(R) and the B(C)-module
structure on NKn(R) coincide.

Proof. Fix m ∈ N. Then the following diagram

NKn(R)
∼= //

res
σ+
m
��

Niln−1(R)

Fm
��

NKn(R)
∼= //

ind
σ+
m
��

Niln−1(R)

Vm
��

NKn(R)
∼= // Niln−1(R)

commutes. The horizontal arrows are the isomorphisms (c) of Theorem 2.2.1. We re-
placed resσm and indσm with res

σ+
m

and ind
σ+
m

because of the compatibility with the

Bass–Heller–Swan decomposition stated in Theorem 2.3.6 for NKn(R).
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Chapter 3

Witt–Burnside ring

We start with the definition of BM( ), the completed Burnside ring of a profinite group
Γ. The notation corresponds to Elliott’s definition [14]. It includes, as part of the data, a
commutative monoid M . If M is the trivial monoid, then we recover Dress–Siebeneicher’s
definition [13].

We show that BM( ) is a Mackey functor, indeed, for H ≤o Γ, open subgroup of
Γ, we define maps BresHΓ and BindΓ

H of the completed Burnside ring giving the Mackey
functor structure. Moreover, for N Eo Γ, open normal subgroup of Γ, we define a ring
homomorphism BprojΓN and use it to prove the existence of a ring isomorphism

BM(Γ)
∼=−→ lim←−

N

BM(Γ/N). (3.0.1)

In Section 3.2, we define WΓ( ), the Witt–Burnside ring over Γ. This ring is a generaliza-
tion of the Witt vector ring (see Appendix B). The main result of the chapter is Theorem

3.2.3 giving a ring isomorphism BM(Γ)
∼=−→WΓ(Z[M ]) valid for all profinite groups.

In ordert to understand how WΓ(Z) acts on NKn(R), we relate WΓ(Z) to the ring
End0(Z) for Γ the profinite completion of the infinite cyclic group. Finally, Theorem
3.2.9 gives an interpretation of WΓ( ) in terms of inverse limits

WΓ(R)
∼=−→ lim←−

N

WΓ/N(R) (3.0.2)

valid for all commutative rings.

3.1 The completed Burnside Ring

The theory of profinite groups is vast, we only need the results about profinite groups
summarized in Appendix A. We follow the setting of Elliott [14] to define the completed
Burnside ring of a profinite group Γ.

The basic objects to define the Burnside ring B(Γ) of a group Γ were finite Γ-sets.
We replace finite Γ-sets by almost finite Γ-sets as basic objects. We use the notation
of Appendix A for open subgroups, closed subgroups etc.; and we fix, once and for all, a
commutative monoid M written multiplicatively and a profinite group Γ.

Definition 3.1.1 (Almost finite Γ-set). A Γ-set X is a discrete topological space with
a continuous Γ-action. A Γ-set X is almost finite if each transitive Γ-set appears, up to
isomorphism, finitely many times in the orbit decomposition of X.
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Every element x of a Γ-set X lies in a finite orbit as the following proposition shows.

Proposition 3.1.2. Any transitive Γ-set X is finite.

Proof. Let x ∈ X and Γx be its stabilizer. Then Γx ≤o Γ since X is discrete. Then
[Γ : Γx] <∞ because Γ is a profinite group.

The concept of Γ-string over M is the building block for Elliott’s definition of the
completed Burnside ring.

Definition 3.1.3 (Γ-string over M). A Γ-string over M is a pair (X, ‖ ‖X) where X is
an almost finite Γ-set with a function

‖ ‖X : Γ \X −→M

from the Γ-orbits of X to M . A morphism of Γ-strings (X, ‖ ‖X)
f−→ (Y, ‖ ‖Y ) between

two Γ-strings is a Γ-map X
f−→ Y satisfying

‖S‖X = ‖f(S)‖#S/#f(S)
Y

for all orbits S in X where # denotes the cardinality of the orbit. Let Γ-STRINGM be
the category of Γ-strings over M with morphisms of Γ-strings.

Let (X, ‖ ‖X) and (Y, ‖ ‖Y ) be a pair of Γ-strings over M . The disjoint union of
(X, ‖ ‖X) and (Y, ‖ ‖Y ) has X

∐
Y as underlying almost finite Γ-set and the function

given by

‖S‖X∐
Y =

{
‖S‖X , if S ∈ Γ \X
‖S‖Y , if S ∈ Γ \ Y .

The product of (X, ‖ ‖X) and (Y, ‖ ‖Y ) has X × Y as underlying almost finite Γ-set
and the function given by

‖S‖X×Y = ‖SX‖#S/#SXX ‖SY ‖#S/#SYY ,

where SX is the image of S in X under the projection to X and SY is the image of S in
Y under the projection to Y .

Definition 3.1.4 (Restriction of Γ-string). Let H ≤o Γ. The restriction of a
Γ-string (X, ‖ ‖X) to an H-string is (resHΓ X, ‖ ‖resHΓ X), with underlying H-set resHΓ X and
function

‖H · x‖resHΓ X := ‖Γ · x‖[Γx:Hx]
X .

Lemma 3.1.5. If X is an almost finite Γ-set and H ≤o Γ, then resHΓ X is an almost
finite H-set.

Proof. Notice first that each Γ-orbit S of X is a the disjoint union of finitely many H-
orbits, say S =

∐
Si. Let S = Γ.x and S′ = Γ.x′ be disjoint Γ-orbits of X, then the

H-orbits Si and S′i are all disjoint. Thus the number of orbits after taking restriction
remains finite.

Lemma 3.1.6. Let H ≤o Γ and (X, ‖ ‖X)
f−→ (Y, ‖ ‖Y ) be a map of Γ-strings, then

(resHΓ X, ‖ ‖resHΓ X)
res(f)−−−→ (resHΓ Y, ‖ ‖resHΓ Y )

is a map of H-strings.
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Proof. The map res(f) is an H-map by definition. Fix f(x) = y, we want to proof that

‖H.x‖resHΓ X = ‖H.y‖[H:Hx]/[H:Hy ]

resHΓ Y
. (3.1.1)

By definition and because f is a map of Γ-strings we have for the left hand side

‖H.x‖resHΓ X = ‖Γ.x‖[Γx:Hx]
X =

(
‖Γ.y‖[Γ:Γx]/[Γ:Γy ]

Y

)[Γx:Hx]

and by definition

‖H.y‖resHΓ Y = ‖Γ.y‖[Γy :Hy ]
Y .

Equality (3.1.1) follows from

[H : Hx][Γy : Hy]

[H : Hy]
=

[Γ : Γx][Γx : Hx]

[Γ : Γy]

since for indexes we have [Γ : Hy] = [Γ : Γy][Γy : Hy] and [Γ : Hx] = [Γ : H][H : Hx] and
[Γ : Hy] = [Γ : H][H : Hy].

Thus, for H ≤o Γ we have a functor

resHΓ : Γ-STRINGM −→ H-STRINGM (3.1.2)

Definition 3.1.7 (Induction of Γ-string). Let H ≤o Γ. The induction of an H-string
(Y, ‖ ‖Y ) to a Γ-string is (indΓ

HY, ‖ ‖indΓ
HY

), with underlying Γ-set indΓ
HY and function

‖Γ.[1, y]‖indΓ
HY

:= ‖H.y‖Y .

Recall that indΓ
HY = Γ ×H Y is the quotient of Γ × Y modulo the relation (γ, y) ∼

(γh, h−1y) for all γ ∈ Γ, y ∈ Y and h ∈ H endowed with Γ-action

Γ× indΓ
HY −→ indΓ

HY

(γ′, [γ, y]) 7→ [γ′γ, y].

Lemma 3.1.8. Let H ≤o Γ and Y be an almost finite H-set, then indΓ
HY is an almost

finite Γ-set.

Proof. Notice that each Γ-orbit of indΓ
HY satisfies that Γ.[1, y] ∼= Γ/Hy

∼= Γ ×H H/Hy.
Assume that Y =

∐
ni ·H/Hi is the orbit decomposition of Y , where ni ·H/Hi short for

disjoint union of ni copies of H/Hi. Then we have

Γ×H Y ∼=
∐
i

ni · (Γ×H H/Hi)

∼=
∐
i

ni · (Γ/Hi)

showing that indΓ
HY has only finitely many copies of each orbit type.

Lemma 3.1.9. Let H ≤o Γ and (X, ‖ ‖X)
f−→ (Y, ‖ ‖Y ) be a map of H-strings, then

(indΓ
HX, ‖ ‖indΓ

HX
)

ind(f)−−−−→ (indΓ
HY, ‖ ‖indΓ

HY
)

is a map of Γ-strings.
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Proof. The map ind(f) is a Γ-map by definition. Fix f(x) = y, we want to proof that

‖Γ.[1, x]‖indΓ
HX

= ‖Γ.[1, y]‖[Γ:Hx]/[H:Hy ]

indΓ
HY

. (3.1.3)

By definition and because f is a map of H-strings we have for the left hand side

‖H.x‖X = ‖H.y‖[H:Hx]/[H:Hy ]
Y

and the right hand side of (3.1.3) is by definition

‖H.y‖[Γ:Hx]/[Γ:Hy ]
Y .

The equality follows from the index identities [Γ : Hx] = [Γ : H][H : Hx] and
[Γ : Hy] = [Γ : H][H : Hy].

Thus, for H ≤o Γ we have a functor

indΓ
H : H-STRINGM −→ Γ-STRINGM (3.1.4)

Definition 3.1.10 (Projection of Γ-string). Let N Eo Γ. The projection of a Γ-string
(X, ‖ ‖X) to a Γ/N -string is (projΓNX, ‖ ‖projΓNX

), with underlying Γ/N -set projΓNX = XN

the N fixed points of X and function

‖(Γ/N) · x‖XN := ‖Γ · x‖X .

We have by definition that projΓN gives a functor

projΓN : Γ-STRINGM −→ Γ/N -STRINGM (3.1.5)

for N Eo Γ.

Definition 3.1.11 (Completed Burnside ring). Let M be a commutative monoid and
Γ a profinite group. The completed Burnside ring BM(Γ) of the profinite group Γ is the
Grothendieck ring of isomorphism classes of Γ-strings over M under disjoint union with
product given by Cartesian product.

The functors (3.1.2), (3.1.4) and (3.1.5) define maps of completed Burnside rings

BresHΓ : BM(Γ) −→ BM(H), for H ≤o Γ;

BindΓ
H : BM(H) −→ BM(Γ), for H ≤o Γ;

BprojΓN : BM(Γ) −→ BM(Γ/N), for N Eo Γ.

Indeed, BresHΓ and BprojΓN are ring homomorphisms while BindΓ
H is just an additive

homomorphism.

Remark 3.1.12. Let M = 1 be the trivial monoid, then B1(Γ) = B̂(Γ) is the completed
Burnside ring of Γ given by Dress and Siebeneicher and it is the completion of the Burn-
side ring B(Γ). See [28] and [13] fur further details.

Notation. Let (X, ‖ ‖X) be a Γ-string over M , we denote by X = [X, ‖ ‖X ] the corre-
sponding isomorphism class in BM(Γ). The notations BresHΓ (X) (respectively BindΓ

H(X)
and BprojΓN(X)) denotes the class [resHΓ X, ‖ ‖resHΓ X ] (respectively [indΓ

HX, ‖ ‖indΓ
HX

] and

[projΓNX, ‖ ‖projΓNX
])
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The following result allows to study completed Burnside rings of profinite groups from
Burnside rings of finite groups. It is also important because of the following, in Section
1.3, we mentioned that B(C) acts on Kn(R[C]) and studied this action in Chapter 2. It
exists a B1(C)-module structure, for M = 1 the trivial monoid, on NKn(R). We will
use Theorem 3.1.13 below to state conditions on B(C)-modules such that they extend to
B1(C)-modules.

Theorem 3.1.13. For any profinite group Γ there exists a ring isomorphism

BM(Γ)−→ lim←−
N

BM(Γ/N)

X 7→ (BprojΓN(X))N ,

where N runs over all open normal subgroups of Γ.

Proof. Recall that for L,N Eo Γ open normal subgroups of Γ with L ⊆ N there exists a
natural surjective homomorphism πLN : Γ/L→ Γ/N , by the functoriality of the Burnside
ring, πLN yields a ring homomorphism

BprojLN : BM(Γ/L)−→ BM(Γ/N) (3.1.6)

X 7→ BprojLN(X).

The homomorphism πΓ
N : Γ → Γ/N gives the projection and yields a ring homomor-

phism

BprojΓN : BM(Γ)−→ BM(Γ/N) (3.1.7)

X 7→ BprojΓN(X).

Homomorphisms (3.1.6) and (3.1.7) make the diagram

BM(Γ)
BprojΓL //

BprojΓN ((

BM(Γ/L)

BprojLN
��

BM(Γ/N)

commutative because for an almost finite Γ-set X and L ⊆ N we have isomorphisms

projΓN(X) ∼= XN ∼= projLN(XL) ∼= projLNprojΓL(X)

of almost finite Γ/N -sets. Then we have a ring homomorphism

BM(Γ)−→ lim←−
N

BM(Γ/N) (3.1.8)

X 7→ (BprojΓN(X))N .

We construct the inverse. Let X = (XN ) ∈ lim←−N BM(Γ/N). Since XN is in BM(Γ/N)
there is a unique expression

XN =
∑

N≤U≤Γ

µU (XN ) · Γ/U.
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By definition of inverse limit we have that BprojLN(XL) = XN , hence, for N ⊆ U , µU is
independent of N and we simply write µU (X). Notice also that

BprojLN(Γ/U) =

{
Γ/U, if N ⊆ U
0, else.

Combining these two observations, the inverse to (3.1.8) is

lim←−
N

BM(Γ/N)−→ BM(Γ) (3.1.9)

X = (XN ) 7→
∑
(U)

µU (X) · Γ/U,

where the sum runs over (conjugacy classes) open subgroups.

Mackey functor structure of completed Burnside ring

Let PGR be the category of profinite groups with group homomorphisms as morphisms
and PGRIFI be the subcategory of PGR whose morphisms are the injective group ho-
momorphisms having finite index image in the target.

Theorem 3.1.14. The functor BM( ), defined for profinite groups, is a cofinite Mackey
functor.

Proof. We check (a)-(d) from Definition 1.2.1. It suffices to give the isomorphisms at the
underlying almost finite Γ-sets.

(a) Let Γ
α−→ Γ′ be a morphism in PGR, then Bindα gives the covariant structure.

Let Γ
α
↪−→ Γ′ be a morphism in PGRIFI, then Bres

α
gives the contravariant structure.

(b) Let γ ∈ Γ and c(γ) : Γ −→ Γ conjugation by γ. For (X, ‖ ‖X), Γ-string over M ,
the Γ-map

indc(γ)X −→ X

[h, x] 7→ hγx

is an isomorphism of almost finite Γ-sets giving an isomorphism of Γ-strings over M .

(c) Let α : Γ
∼=−→ Γ′ be an isomorphism. For (X, ‖ ‖X), Γ′-string over M , the Γ′-map

Γ′ ×α resαX −→ X

[g′, x] 7→ g′x

is an isomorphism of almost finite Γ′-sets giving an isomorphsim of Γ′-strings over M .
For (Y, ‖ ‖Y ), Γ-string over M , the Γ-map

resα(Γ′ ×α Y ) −→ Y

[g′, y] 7→ α−1(g′)y

is an isomorphism of almost finite Γ-sets giving an isomorphsim of Γ-strings over M .
These two isomorphisms verify (c).

(d) The Mackey formula holds because for H,K ≤o Γ the transitive Γ-sets Γ/H and
Γ/K are finite and Proposition 1.1.12 is valid.
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Remark 3.1.15. The multiplicative structure of BM( ) and the fact that it is a cofinite
Mackey functor make BM( ) into a Green functor.

Assume that P is a Mackey functor on the open subgroups of Γ. The universal
property of the Burnside ring 1.2.9 gives an action

B(Γ)× P (Γ) −→ P (Γ) (3.1.10)

in terms of restriction and induction. We face the problem to determine if an action

BM(Γ)× P (Γ) −→ P (Γ), (3.1.11)

given in terms of restriction and induction and compatible with (3.1.10) exists or not.
Theorem 3.1.13 suggests to look closer for actions

BM(Γ/N)× P (Γ) −→ P (Γ)

for all N Eo Γ. There are still some conditions that P must satisfy and we list them in
the following chapter.

3.2 Witt–Burnside ring

In this section, we introduce the concept of Witt–Burnside ring over profinite group Γ as
a commutative ring valued functor WΓ( ). The definition incorporates the features of the
Witt ring with the combinatorial approach of the completed Burnside ring of a profinite
group Γ. Indeed, for Z[M ] the integral monoid ring of M there exists an isomorphism
WΓ(Z[M ]) ∼= BM(Γ).

The Witt–Burnside ring over Γ of any commutative ring R is isomorphic to an inverse
limit

WΓ(R) −→ lim←−
N

WΓ/N(R), (3.2.1)

where N Eo Γ. We generalize the Frobenius and Verschiebung endomorphisms of Witt
rings to endomorphisms of Witt–Burnside rings using the restriction and induction of
Γ-sets.

We use the notation of Appendix A, in particular Section A.3 on orbit categories.

Theorem 3.2.1. [13, 14] For any profinite group Γ, there is a unique functor WΓ( )
from the category of commutative rings to itself such that

(a) for any ring R, the set WΓ(R) coincides with the set
∏
Orf (Γ)R;

(b) for any ring R and Γ/H ∈ Orf(Γ) the H-th Witt polynomial map

ωH : WΓ(R) −→ R

a = (aΓ/K) 7→
∑

(H)≤o(K)

#morΓ(Γ/K,Γ/H)a(K:H)

Γ/K

is a ring homomorphism. The sum runs over conjugacy classes of K ≤o Γ such
that H ≤ γKγ−1 for some γ ∈ Γ and (K : H) denotes the index of H as subgroup
of γKγ−1.

Remark 3.2.2. The proof of Theorem 3.2.1 is beyond our purposes. The proof in [13]
employs universal polynomials, while the proof in [14] employs the extension problem of
ring–valued functors.
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Theorem 3.2.3. [14, Theorem 1.7] For any profinite group Γ and any commutative
monoid M there exists a a ring isomorphism

WΓ(Z[M ])
∼=−→ BM(Γ).

Outline of the proof: Let Z[M ](Γ) denotes the product
∏
Orf (Γ) Z[M ]. We endow Z[M ](Γ)

with three different ring structures.

The first ring structure is Z[M ]
(Γ)
P with pointwise addition and multiplication. The

second ring structure Z[M ]
(Γ)
B is given by transport structure with

b′ : BM(Γ) −→ Z[M ]
(Γ)
B (3.2.2)

X 7→

 ∑
Γ.x∼=Γ/H

‖Γ.x‖X


Γ/H

the counting orbits bijection.
For the third ring structure on Z[M ](Γ) take n ∈ N and the monoid ring homomor-

phism ( ){n} : Z[M ] → [M ] sending m 7→ mn. There exists an injective ring homomor-
phism

ω′ : Z[M ]
(Γ)
B −→ Z[M ]

(Γ)
P (3.2.3)

a 7→

 ∑
H≤oK

#morΓ(Γ/K,Γ/H)a{(K:H)}
Γ/H


Γ/H

and there exists a bijection [14, Proposition 1.9]

j : Z[M ](Γ) −→ Z[M ]
(Γ)
B (3.2.4)

a 7→

∑
(L)

∑
indΓ

LL/K∼=Γ/H

b′KBcoindL1 (aΓ/L)


Γ/H

,

where (L) denotes the conjugacy class of L ≤o Γ, b′K is the Γ/K-th coordinate of b′ and
BcoindL1 denotes the homomorphism B1(1) −→ BM(L) induced by coinduction (see [14]).
This bijection fits in a commutative diagram

Z[M ](Γ) j
//

ω
%%

Z[M ]
(Γ)
B

ω′

��

Z[M ]
(Γ)
P ,

where ω =
∏
ωH is the product of the H-th Witt polynomials. Since ω′ is a ring

homomorphism the domain of ω is a ring by transport structure. This defines the third

ring structure Z[M ]
(Γ)
W .

Now, consider the Burnside ring homomorphism defined by

b : BM(Γ) −→ Z[M ]
(Γ)
P (3.2.5)

X 7→

 ∑
ϕ∈morΓ(Γ/H,X)

‖ϕ(Γ/H)‖H/ϕHX


Γ/H

,
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where H/ϕH is short for #(Γ/H)/#ϕ(Γ/H). The Burnside ring homomorphism fits in
the commutative diagram

BM(Γ)
b′ //

b $$

Z[M ]
(Γ)
B

ω′

��

Z[M ]
(Γ)
P .

Finally, the map

i : Z[M ]
(Γ)
W −→ BM(Γ) (3.2.6)

a 7→
∑
(H)

BindΓ
H(BcoindH1 (aΓ/H))

is the unique isomorphism for which the diagram

Z[M ]
(Γ)
W

i //

ω
$$

BM(Γ)

b
��

Z[M ]
(Γ)
P

commutes [14, Proposition 1.10]. By the uniqueness of WΓ( ) we have WΓ(Z[M ]) =

Z[M ]
(Γ)
W . Since i is an isomorphism we conclude the proof.

Corollary 3.2.4. If M is the trivial monoid, then B1(Γ) = B̂(Γ) ∼= WΓ(Z) is the ring
isomorphism given by Dress–Siebeneicher [13].

Relation between Witt–Burnside ring and End0(Z)

Let C be the infinite cyclic group and Ĉ be its profinite completion, then Orf(Ĉ) =
{C/Cm | m ∈ N} and there exists a group homomorphism C/Cn −→ C/Cm if and
only if m divides n. The Cm-th polynomial of Theorem 3.2.1 coincides with the m-th
polynomial of Theorem B.2.1, then it is easy to see that W (Z) ∼= WĈ(Z) ∼= B1(C).

The counting orbits bijection b′ of (3.2.2), for the trivial monoid, has components b′m
such that

b′m(C/Cn) =

{
1, if m = n

0, else.

Consider the set theoretical bijection

b′ : B1(C) −→W (Z)

X 7→ (b′m(X))m

and define $m(1) := b′(C/Cm) the vector having 1 in the Cm-th coordinate and zero

elsewhere. The ring isomorphism of (B.2.2), W (Z)
Φ−→ Λ(Z), maps it to Φ($m(1)) =

(1− tm)−1.
Now, the endomorphism of free modules T : Zm −→ Zm, given by the matrix

0 . . . 0 1

1 0
...

...
. . .

. . . 0
0 . . . 1 0


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satisfies that [Zm, 0]− [Zm, T ] ∈ End0(Z) and the reverse characteristic polynomial maps
it to

χt([Zm, 0]− [Zm, T ]) = χt(0) · χt(T )−1 =
1

1− tm

i.e., the element C/Cm ∈ B1(C) corresponds to the element [Zm, 0]− [Zm, T ] in End0(Z).

3.2.1 Relation with Graham’s definition

In [16], Graham defined the ring FΓ(R) for a profinite group Γ and commutative ring R.
This ring is, in our notation, BR×(Γ) where R× is the set R considered as a multiplicative
monoid. The principal result in Graham’s work is the existence of a ghost map [16,
Proposition 1.1]

ψ : BR×(Γ) −→ R
(Γ)
P , (3.2.7)

X 7→

 ∑
ϕ∈morΓ(Γ/H,X)

‖ϕ(Γ/H)‖H/ϕHX


with same notation as in (3.2.5). Consider Z[R×]

σ−→ R the unique ring homomorphism
that is the identity on R×, then there exists a commutative diagram

BR×(Γ)
b //

ψ
$$

Z[R×]
(Γ)
P

Orf (σ)
��

R
(Γ)
P

,

where Orf(σ) is induced by σ. Elliott proved [14, Theorem 1.11] that there exists a
surjective ring homomorphism π : BR×(Γ) −→WΓ(R) for which diagram

BR×(Γ)

π

��

ψ

##

WΓ(R) ω
// R

(Γ)
P

(3.2.8)

is commutative. The map π is, as set theoretical map, the cleaning algorithm given
in [16, Section 6].

3.2.2 Witt–Burnside ring as inverse limit

Let Γ and Γ′ be a pair of profinite groups and

BF : BM(Γ) −→ BM(Γ′) (3.2.9)

be a set theoretical map that is functorial in M . We use the notation BF because our
interest is in maps between completed Burnside rings induced by functors. In particular,
those induced by the restriction (3.1.2), the induction (3.1.4) and the projection (3.1.5)
functors.
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Definition 3.2.5. A set theoretical map BF is well–behaved with respect to
Witt–Burnside ring if there exists a set theoretical map WF for which diagram

BR×(Γ)
BF //

π

��

BR×(Γ′)

π

��

WΓ(R)
WF

//WΓ′(R)

commutes for all commutative ring R. The map π is that of diagram (3.2.8) above. The
map BF is well-behaved with respect to product rings if there exists a set theoretical map
PF for which diagram

BR×(Γ)
BF //

ψ
��

BR×(Γ′)

ψ
��

R
(Γ)
P PF

// R
(Γ′)
P

commutes for all commutative ring R. The map ψ is map (3.2.7) above.

Proposition 3.2.6. [14, Proposition 4.1] If BF is well–behaved with respect to product
rings, then BF is well–behaved with respect to Witt–Burnside rings and WF is the unique
set theoretical map for which diagram

WΓ(R)
WF //

ω
��

WΓ′(R)

ω
��

R
(Γ)
P PF

// R
(Γ′)
P

is commutative for all commutative rings. Moreover, BF , WF and PF are all additive
(resp. multiplicative or ring homomorphism) or none of them. The map ω =

∏
ωH is

the product of the H-Witt polynomials.

We summarize propositions 4.7–4.10 of [14] into a single proposition.

Proposition 3.2.7. The maps induced from the functors resHΓ , indΓ
H and projΓN are well–

behaved with respect to product ring. In particular

(a) WresHΓ is a ring homomorphism for H ≤o Γ;

(b) WindΓ
H is an additive map for H ≤o Γ;

(c) WprojHΓ is a ring homomorphism for N Eo Γ.

Remark 3.2.8. The homomorphisms WresC
m

C and WindCCm correspond to them-th Frobe-
nius and m-th Verschiebung enodomorphisms defined in Section B.3. As before, C de-
notes the infinite cyclic group and Cm denotes the subgroup of C of index m.

Theorem 3.2.9. For all commutative rings R and all profinite groups Γ there exists a
ring isomorphism

WΓ(R) ∼= lim←−
N

WΓ/N(R), (3.2.10)

where N runs over all open normal subgroups of Γ.
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Proof. Fix R, Γ and denote by R× the underlying multiplicative monoid of R. For
L,N Eo Γ with L ⊆ N the ring homomorphism

BprojLN : BR×(Γ/L) −→ BR×(Γ/N)

gives a commutative diagram

BR×(Γ/L)
π //

BprojLN
��

WΓ/L(R)

WprojLN
��

BR×(Γ/N) π
//WΓ/N(R).

The ring homomorphism

BprojΓN : BR×(Γ) −→ BR×(Γ/N)

also gives a commutative diagram

BR×(Γ)
π //

BprojΓN
��

WΓ(R)

WprojΓN
��

BR×(Γ/N) π
//WΓ/N(R).

for N Eo Γ. Since BprojLN ◦BprojΓL = BprojΓN for L,N Eo Γ with L ⊆ N we have

WprojLN ◦WprojΓL = WprojΓN .

Then WΓ(R) coincides with lim←−N WΓ/N(R).

3.2.3 Nonexistence of inflation

For all profinite groups Γ and all commutative rings R we have ring homomorphisms

WprojΓN : WΓ(R) −→WΓ/N(R)

for N Eo Γ. The question if there exists a splitting map

WinfΓN : WΓ/N(R) −→WΓ(R) (3.2.11)

for any any profinite group Γ and any commutative ring R has a negative answer. We
give a counterexample following [35].

Definition 3.2.10. Let p be a prime number. A ring R is called p-strict ring provided
that R is complete and Hausdorff with respect to the p-adic topology, p is not zero divisor
in R and the residue field k = R/p is perfect, i.e., the map x 7→ xp is bijective in k.

Example 3.2.11. Let p be a prime number. Then R = Zp, the p-adic numbers, is a
p-strict ring whose residue field is k = Fp a field of characteristic p.

Theorem 3.2.12. Let R be a p-strict ring with residue field k. Then

(a) there exists a unique system of representatives τ : k → R called Teichmüller repre-
sentatives such that τ(xy) = τ(x)τ(y);
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(b) every element of x ∈ R can be written uniquely in the form x =
∑∞

n=0 τ(xn)pn for
xn ∈ k.

Example 3.2.13. Let R and k be as in Example 3.2.11. The Teichmüller representatives
are constructed as follows, F×p ∼= Z/(p− 1)Z, hence the non-zero elements of F×p are the
roots of the polynomial tp−1 − 1. By the Hensel’s lemma, each x ∈ F×p can be uniquely
lifted as τ(x) ∈ R satisfying τ(x)p−1 − 1 = 0. Making τ(0) = 0 we have the Teichmüller
representatives.

Theorem 3.2.14. [35, Theorem 2.13] Let R be a p-strict ring with residue field k and
Teichmüller representatives τ : k → R. Then the map

Ψ: WZp(k) −→ R

(xpi)i 7→
∞∑
n=0

τ(x
1/pn

pn )pn

is a ring isomorphism.

Corollary 3.2.15. The rings WZp(Fp) and Zp are isomorphic.

Consider Γ = Zp = N in the formulation of homomorphism (3.2.11), this yields a
ring homomorphism:

Winf
Zp
1 : Fp −→ Zp.

Hence the existence of an inflation homomorphism implies that Zp is an
Fp-algebra which is false. Then, the ring homomorphism (3.2.11) does not always exist.
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Chapter 4

Actions on equivariant homology
theories

In this chapter, we introduce the concept of an equivariant homology theory with re-
striction structure following [27]. Our main example of such a homology theory comes
from the Farrell-Jones conjecture as formulated in [10]. The idea behind such equivariant
homology theories is that they have a Mackey functor structure. Then it is possible to
study them using the module structure over the Burnside ring.

We start with a review of Loday’s assembly map for K-theory and point out that
this assembly map is compatible with the pairing giving by Pedersen and Weibel for the
non-connective algebraic K-theory spectrum [33]. We define a G-homology theory and
use the work in [10] to formulate the Farrell–Jones conjecture as the principal example
of a G-homology theory.

In Section 4.4, we define H?
∗ an equivariant homology theory. Again, the natural

example of an equivariant homology theory is the one coming from the algebraic K-
theory Or(G)-spectra defined by Davis and Lück [10].

Lück in [27] used the restriction structure on equivariant homology theories to define
an equivariant Chern character. Our example of an equivariant homology theory has also
a restriction structure.

In Section 4.5, for H?
∗ an equivariant homology theory with restriction structure, we

show that HG∗ (X) is a B(G)-module for all groups G and all G-CW -complex X.

In Section 4.6, we state and prove our main result, Theorem 4.6.4. It gives criteria
to extend a B(Γ)-module structure over an equivariant homology theory with restriction
to a BM(Γ)-module structure. We close the chapter with applications to K-theory.

4.1 Assembly maps in K-theory

We consider SPACES the category of compactly generated spaces with continuous maps
as morphisms, SPACES+ the category of pointed compactly generated spaces with base
point preserving continuous maps.

Definition 4.1.1 (Category of spectra). A spectrum E = {En, σn}n∈N0 is a sequence
of spaces En in SPACES+ with base-point-preserving maps σn : ΣEn → En+1, called
structure maps.
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The space ΣEn denotes the suspension space of En. A map of spectra E −→ E′

consists of a sequence of maps En
fn−→ E′n such that fn+1 ◦ σn = σn+1 ◦ Σfn, where Σfn

denotes the induced map in suspension spaces. We denote by SPECTRA the category
of spectra with maps of spectra as morphisms.

Definition 4.1.2 (Ω-spectrum). A spectrum E = {En, σn} is called an Ω-spectrum if
for each structure map σn : ΣEn → En+1 its adjoint map En → ΩEn+1 is a weak homo-
topy equivalence of spaces. We denote by Ω-SPECTRA the subcategory of SPECTRA
consisting of Ω-spectra.

For a spectrum E there is a sequence of homomorphisms

πi+n(En)
S−→ πi+n+1(En ∧ S1)

σn∗−−→ πi+n+1(En+1), (4.1.1)

where S is induced by the suspension map and σn∗ is induced from the structure maps.
The compositions of the homomorphisms in (4.1.1) form a directed system {πi+n(En)}
and the homotopy groups of E are defined by

πi(E) := colimn→∞ πi+n(En). (4.1.2)

Example 4.1.3. Let E be spectrum and X be a pointed CW -complex. The spectrum
X ∧ E with underlying spaces (X ∧ E)n = X ∧ En and structure maps 1 ∧ σn defines
Hi(X) := πi(X ∧ E), a reduced homology theory [22, Proposition 4F.2].

Definition 4.1.4. A homotopy of maps between spectra fk : E → F is a map of spectra
h : [0, 1]+ ∧ E → F whose composition with the inclusion ik : E → [0, 1]+ ∧ E, given by
e 7→ k ∧ e is fk for k = 0, 1.

Let us illustrate the idea of an assembly map in a naive way. Consider a functor
F : SPACES → SPECTRA. We want to compute the homotopy groups πi(F(X)), but
this might be hard. The idea of an assembly map is to replace F by a nicer functor E
such that πi(E(X)) is a generalized homology theory. The advantage is that, at least, we
can use spectral sequences to compute πi(E(X)) and get information about πi(F(X)).
We refer the reader to [21] for further details about the definition below.

Definition 4.1.5 (Assembly map). Let F : SPACES→ SPECTRA be a covariant func-
tor. An assembly map is a natural transformation α : E → F where E is a homotopy
invariant and strongly excisive functor with an homotopy equivalence E(∗) ' F(∗).

Loday’s product

We consider associative rings with unit and summarize here the results in [25, Chapter
2]. Let R and S be rings. The R⊗Z S-module isomorphism Rp⊗Sq ∼= (R⊗S)pq defines,
through the tensor product of matrices, a group homomorphism GLp(R)×GLq(S) −→
GLpq(R⊗ S), hence a continuous map

fp,q : BGLp(R)+ × BGLq(S)+ −→ BGLpq(R⊗ S)+. (4.1.3)

Let us consider the inclusion map ik : BGLk(R ⊗ S)+ ↪→ BGL(R ⊗ S)+ and the
stabilizing maps ipq ◦ fp,q : BGLp(R)+ × BGLq(S)+ −→ BGL(R⊗ S)+ to define

γp,q : BGLp(R)+ × BGLq(S)+ −→ BGL(R⊗ S)+
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by γp,q(x, y) = ipq ◦ fp,q(x, y)− ipq ◦ fp,q(x0, y)− ipq ◦ fp,q(x, y0). The maps γp,q are com-
patible with the stabilizing maps [25, Lemma 2.1.3], i.e., there exists an, up to homotopy,
commutative diagram

BGLp(R)+ × BGLq(S)+ �
�

//

γp,q

''

BGLp+1(R)+ × BGLq+1(S)+

γp+1,q+1

vv

BGL(R⊗ S)+.

The maps γp,q are trivial on BGLp(R)+ ∨ BGLq(S)+. The space BGL(R ⊗ S)+ is a
connected H-space [25, Theorem 1.2.6], hence there is a continuous map

γ̂p,q : BGLp(R)+ ∧ BGLq(S)+ −→ BGL(R⊗ S)+

unique up to homotopy such that the diagram

BGLp(R)+ × BGLq(S)+ // //

γp,q

''

BGLp(R)+ ∧ BGLq(S)+

γ̂p,q
ww

BGL(R⊗ S)+

commutes up to homotopy. Loday defined γ : BGL(R)+ × BGL(S)+ −→ BGL(R ⊗ S)+

( [25, p. 333]), unique up to weak homotopy equivalence. Similar arguments yields a
map

γ̂ : BGL(R)+ ∧ BGL(S)+ −→ BGL(R⊗ S)+

such that the following diagram

BGL(R)+ × BGL(S)+ // //

γ

''

BGL(R)+ ∧ BGL(S)+

γ̂
ww

BGL(R⊗ S)+

commutes up to weak homotopy equivalence [25, Lemma 2.1.8]. We use the map γ̂ to
induce a a pairing

πn(BGL(R)+)× πm(BGL(S)+)
?−→ πn+m(BGL(R⊗ S)+)

([f ], [f ′]) 7→ [f ] ? [f ′] := [γ̂(f ∧ f ′)]

Theorem 4.1.6. [25, Theorem 2.1.11] There exists a bilinear and associative
product, natural in R and S

Kn(R)×Km(S)
?−→ Kn+m(R⊗ S)

for n,m ≥ 1.
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Loday’s spectra

Definition 4.1.7 (Suspension ring). The cone ring of Z, ΛZ, is the ring of column and
row finite N× N-matrices over Z. The suspension ring ΣZ is the quotient of ΛZ by the
ideal of finite matrices. For any associative ring with unit R we define ΛR := ΛZ ⊗Z R
and ΣR := ΣZ⊗Z R.

Definition 4.1.8 (Loday’s K-theory spectra). Let R be a ring with unit. The algebraic
K-theory spectrum of R, K(R), is the sequence of spaces

K(R)n := {K0(ΣnR)× BGL(ΣnR)+}n∈N0

with structure maps given in [25, Definition 2.3.4].

Theorem 4.1.9. [25, Theorem 2.3.5] Let R be a ring. Then

(a) K(R) is an Ω-spectrum;

(b) Kn(R) = πn(K(R)) for n ∈ Z.

This spectrum has multiplicative properties

Proposition 4.1.10. [25, Proposition 2.4.2] Let R and S be rings. The continuous map

BGL(R)+ ∧ BGL(S)+ γ̂−→ BGL(R⊗ S)+ extends to a pairing of spectra

K(R) ∧ K(S) −→ K(R⊗ S).

Hence, for n,m ∈ Z there exists a well defined associative product

Kn(R)×Km(S) −→ Kn+m(R⊗ S)

For any ring R the spectra K(R) defines a generalized homology theory, namely, for
a pointed CW-space X consider

H̃n(X;K(R)) := colimk[S
n+k, X ∧ K(R)k] = πn(X ∧ K(R)).

The assembly map offers a way to compare H̃n(BG+;K(Z)) with Kn(Z[G]), that is,
let G be a group and consider the injective group homomorphism

G −→ GL(R[G])

g 7→

 g 0 · · ·
0 1 0
... 0

. . .


.

It induces j+ : BG −→ BGL(Z[G])+. Further, we compose it with the injective map
BGL(Z[G])+ ↪→ (K(Z[G]))0, sending x 7→ (0, x), to obtain a map

j+ : BG −→ K(Z[G])0.

Proposition 4.1.11. [25, Proposition 4.1.1] Let R be a ring with unit and G be a group.
The composition

BG+ ∧ K(R)n
j+∧1−−−→ K(Z[G])0 ∧ K(R)n

γ̂−→ K(R[G])n

defines a map of spectra
BG+ ∧ K(R) −→ K(R[G]). (4.1.4)

Definition 4.1.12 (Loday’s assembly map). Let G be a group. Loday’s assembly map,
AG, is the homomorphism induced on homotopy groups by (4.1.4), i.e.,

AG : πn(BG+ ∧ K(R)) −→ πn(K(R[G])) = Kn(R[G]). (4.1.5)
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4.2 Algebraic K-theory spectrum

The Algebraic K-theory of additive categories is easier to manage when it arises from a
spectra valued functor rather than from a space valued functor. Quillen’s original work
[34] to define higher algebraic K-theory is through the homotopy groups of a space which
happened to be an infinite loop space, therefore it defines a spectrum. Unfortunately, de-
looping is not functorial. This can be fixed with an iterated application of Waldhausen’s
S•-construction [44] assigning to an additive category a spectrum.

We follow and refer the reader for further details to [6]. Waldhausen considered cat-
egories C with a distinguished zero object 0C, and cofibrations coC and weak equivalences
wC, both subcategories of C. A functor F : C −→ D between categories with cofibrations
and weak equivalences is an exact functor if it preserves coC and wC, and F (0C) = 0D.

Example 4.2.1. The following are standard examples of categories with cofibrations
and weak equivalences.

(a) Any exact category C in the sense of Quillen [34] is a category with cofibrations
and weak equivalences. The zero object 0C is any zero object, the cofibrations are
the admissible monomorphisms, and the weak equivalences are the isomorphisms.

(b) An additive category C is a category with cofibrations and weak equivalences. The
zero object 0C is any zero object, the cofibrations are inclusions of direct summands,
up to isomorphism, and the weak equivalences are the isomorphisms.

Let C be a category with cofibrations and weak equivalences. For all n ≥ 0 there is
an associated category SnC of sequences of cofibrations of length n + 1, starting at 0C,
with a choice of quotients for each cofibration [6, Remark 18]. The category SnC is also
a category with cofibrations and weak equivalences.

The collection S•C = {SnC} is a simplicial category, i.e., it is a functor

S•C : ∆op −→ CAT

[n] 7→ SnC

where ∆ is the simplex category and CAT is the category of small categories.
Let CATc

w be the category of categories with cofibrations, weak equivalences and ex-
act functors and SCATc

w the category of simplicial categories with cofibrations, weak
equivalences and levelwise exact functors.

Definition 4.2.2 (S•-category). The S• construction is a functor

S• : CATc
w −→ SCATc

w (4.2.1)

C 7→ S•C

where S•C[n] := SnC.

We can iterate the S• construction. In particular, S
(2)
• C = S•S•C is a bisimplicial

category with cofibrations and weak equivalences; in general, we have a sequence of k-

simplicial categories with cofibrations and weak equivalences {S(k)
• C} and a sequence of

topological spaces {|wS(k)
• C|} obtained by geometric realization. These are the spaces we

need to define the K-theory spectrum of C. The structure maps comes from Waldhausen’s
observation that for any category C with cofibrations and weak equivalences there exists
an inclusion from the reduced suspension

Σ|wC| −→ |wS•C|.
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and by adjointness
|wC| −→ Ω|wS•C|.

We replace C with the category S
(n)
• C to get the structure maps

|wS(n)
• C|

wn−−→ Ω|wS(n+1)
• C|. (4.2.2)

The structure maps are homotopy equivalences for n ≥ 1 [6, Theorem 19].

Definition 4.2.3 (Algebraic K-theory spectrum). The (connective) algebraic K-theory
spectrum of a category C with cofibrations and weak equivalences, Kalg(C), is given by

{|wS(n)
• C| , wn}n∈N0 .

There are two observations. We make the convention |wS(0)
• C| := |wC|. The second

observation is that, indeed, it is an Ω-spectrum except in dimension n = 0, where it can
be described as a homotopy theoretic group completion (see [6]).

Remark 4.2.4. Example 4.2.1 shows that every exact category has cofibrations and exact
equivalences. Applying the algebraic K-theory spectrum to this category we recover
Quillen’s Q-construction [6, Theorem 26].

We have that the an iterated application of S•-construction yields a connective spec-
trum

Kalg : AdCAT −→ SPECTRA (4.2.3)

from the additive categories AdCAT to spectra whose homotopy groups are the K-theory
groups of the additive category.

Pedersen and Weibel in [33] use the spectrum Kalg to construct a non–connective
spectrum. First, they consider categories of possibly infinitely generated free modules
over a ring R equipped with a basis, further they assumed that the elements of this
basis are in a metric space X. Finally, they put restrictions on both, the objects an the
morphism. These are known as control conditions.

In our case, for an additive category A we consider the category CRi(A) of objects
parametrized by the Euclidean space Ri and bounded morphisms. The natural inclusion
Ri × {0} ↪→ Ri+1 yields an inclusion of categories

CRi(A) −→ CRi+1(A)

and a map of spectra
Kalg(CRi(A)) −→ Kalg(CRi+1(A))

which is naturally null–homotopic in two ways [7, p. 737]. Recall that for any spectrum
E the suspension spectrum, ΣE, is the spectrum with n-th space (ΣE)n := (E)n+1.
Pedersen and Weibel produced a functorial map of spectra

ΣKalg(CRi(A)) −→ Kalg(CRi+1(A))

or dually
Kalg(CRi(A)) −→ ΩKalg(CRi+1(A)).

which induces an isomorphism on πn except possibly on π0.
Using the directed system

Kalg(A)→ ΩKalg(CR(A))→ · · · → ΩiKalg(CRi(A))→ · · · (4.2.4)

we can define the non-connective algebraic K-theory spectrum.
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Definition 4.2.5. LetA be an additive category. The non-connective algebraicK-theory
spectrum of A is given by

K−∞(A) := hocolimi→∞ΩiKalg(CRi(A)).

Remark 4.2.6. The associated spectrum K−∞(A) of an additive category A, with homo-
topy groups the K-theory groups of A is, indeed, an Ω-spectrum [33].

The Pedersen–Weibel construction, described above, has a tensor product pairing in
the sense of [21, Lemma 4.1] i.e., for any tensor pairing of categories A × B → D the
natural tensor pairing

CRn(A)× CRm(B) −→ CRn+m(D)

induces a pairing of spectra

K−∞(A) ∧K−∞(B) −→ K−∞(D).

Theorem 4.2.7. [21, Theorem 4.2] For any rings R and S, there is a homotopy equiv-
alence between the Loday pairing K(R) ∧ K(S) → K(R ⊗ S) and the Pedersen-Weibel
pairing K−∞(R) ∧K−∞(S)→ K−∞(R⊗ S).

Notice that we write K−∞(R) for the K-theory of the category of finitely generated
free R-modules.

Now we state the assembly map in a more general setting. Let G be a groupoid and
RG⊕ the symmetric monoidal category associated to RG (defined in the next section)
then there is a natural transformation

AG : BG+ ∧K−∞(R) −→ K−∞(RG⊕) (4.2.5)

such that A∗ is a homotopy equivalence [21, Theorem 4.3].

Theorem 4.2.8. [21, Theorem 4.3] If G is a group G considered as a groupoid, then the
natural transformation AG induces in homotopy groups a map that is isomorphic with
Loday’s assembly map AG.

4.3 G-homology theories

We follow [10] to extend the functor K−∞ from additive categories to the category Or(G),
the orbit category of G. We use it as example of a G-homology theory.

Let us fix a small category C. The next step is to generalize the concept of a space
and spectrum to pointed C-space and C-spectrum as functors.

Definition 4.3.1 (C-space). A covariant pointed C-space X is a covariant functor

X : C −→ SPACES+.

A map between C-spaces is a natural transformation of functors. A contravariant
pointed C-space is defined in a similar way.

Example 4.3.2. Let G be a (discrete) group and Or(G) the orbit category. Let X be a
pointed G-space, i.e., a pointed topological Hausdorff space with a continuous G-action.
Then, there is a contravariant pointed Or(G)-space

mapG( , X) : Or(G) −→ SPACES+ (4.3.1)

G/H 7→ mapG(G/H,X) = XH

assigning to G/H the H-fixed points of X. Recall that mapG(Y,X) denotes the G-
equivariant maps from Y to X.
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Let X be a contravariant pointed C-space and Y be a covariant pointed C-space.
Their balanced smash product is the space

X ∧C Y =

 ∨
c∈Ob(C)

X(c) ∧ Y (c)

 / ∼,

where (X(φ)(x), y) ∼ (x, Y (φ)(y)) for all morphism φ : c→ d in C and points x ∈ X(d),
y ∈ Y (c).

Definition 4.3.3 (C-spectrum). A covariant C-spectrum E is a covariant functor

E : C −→ SPECTRA.

A map of C-spectra is a natural transformation of functors. The notion of
C-Ω-spectrum is obtained by replacing the target category with Ω-SPECTRA.

Let X be a contravariant pointed C-space and E be a covariant C-spectrum. We
define their balanced smash product spectrum X ∧C E by considering their level-wise
smash product X ∧C En with obvious structure maps.

Example 4.3.4. Let X be a left G-space and E be a covariant Or(G)-spectrum. We
have the balanced product of mapG( , X+) with E, mapG( , X+) ∧Or(G) E.

Definition 4.3.5 (G-homology theory). Let G be a (discrete) group and R be a ring.
Denote by G-CW -PAIR the category of pairs of G-CW -complexes in the sense of [30, p.
738]. A G-homology theory HG∗ with values in the category of R-modules is a collection
of covariant functors

HGn : G-CW -PAIR −→ MOD(R)

indexed by n ∈ Z together with natural transformations

∂Gn : HGn (X,A) −→ HGn−1(A) := HGn−1(A, ∅)

for n ∈ Z such that the following axioms are satisfied:

(a) G-homotopy invariance. If f0 and f1 are G-homotopic maps (X,A)→ (Y,B) of
G-CW -pairs, then HGn (f0) = HGn (f1) for all n ∈ Z.

(b) Long exact sequence of a pair. Given a G-CW -pair (X,A) there is a long exact
sequence

· · · −→ HGn+1(X,A)
∂−→ HGn (A)

HGn (i)−−−−→ HGn (X)
HGn (j)−−−−→ HGn (X,A)→ · · ·

where i : A→ X and j : X → (X,A) are the inclusions.

(c) Excision. Let (X,A) be a G-CW -pair and f : A → B a cellular map of
G-CW -complexes. Equip (X ∪f B,B) with the induced structure of a G-CW -
pair. Then the canonical map (F, f) : (X,A)→ (X∪f B,B) induces for each n ∈ Z
an isomorphism:

HGn (F, f) : HGn (X,A)
∼=−→ HGn (X ∪f B,B)
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(d) Disjoint union axiom. Let {Xi | i ∈ I} be a family of G-CW -complexes. Denote
by ji : Xi →

∐
iXi the canonical inclusion. Then the map⊕

i

HGn (ji) :
⊕
i

HGn (Xi) −→ HGn (
∐
i

Xi)

is bijective for each n ∈ Z.

Remark 4.3.6. A G-homology theory for G = {1} is a homology theory satisfying the
disjoint union axiom in the non-equivariant case.

Example 4.3.7. [10, Lemma 4.4] For any G-CW -pair (X,A) consider the space
X+ ∪A+

cone(A+), where cone(A+) denotes the reduced cone of the pointed space A+.
If E is a covariant Or(G)-spectrum, then

HG
n (X,A;E) := πn(mapG( , X+ ∪A+

cone(A+)) ∧Or(G) E)

is a G-homology theory.

4.3.1 Isomorphism conjecture for algebraic K-theory

Recall that a weak homotopy equivalence of spectra is a map of spectra E→ F inducing an
isomorphism on all homotopy groups. We want to extend K−∞ : AdCAT→ SPECTRA
to an Or(G)-spectra, KR, in such a way that KR(G/H) has the weak homotopy type of
K−∞(R[H]).

First, we extend K−∞ to the category GROUPOID and then we precompose it with
the transport groupoid (see 1.3.7). The following definitions are from Section 2 of [10].

Definition 4.3.8 (R-category). A small category C is an R-category if for any two objects
x and y the set morC(x, y) of morphisms from x to y carries the structure of an R-module
such that composition induces an R-bilinear map morC(x, y)×morC(y, z) −→ morC(x, z)
for all objects x, y and z in C.

Example 4.3.9 (Associated RC category). Given a category C there is an associated R-
category RC with the same objects as C and morphism set morRC(x, y) from x to y is given
by the free R-module RmorC(x, y) generated by the set morC(x, y). The composition is
induced by the composition in C in the obvious way. The functor C 7→ RC is the left
adjoint of the forgetful functor from the category of R-categories to the category of small
categories.

Definition 4.3.10 (Symmetric monoidal category). Let C be a R-category. We define
a new R-category C⊕, called the symmetric monoidal R-category associated to C with an
associative and commutative sum ⊕ as follows.

The objects in C⊕ are n-tuples x = (x1, x2, . . . , xn) consisting of objects xi in C for
n = 0, 1, 2, . . .. We will think of the empty set as 0-tuple which we denote by 0. The
R-module of morphisms from x = (x1, . . . , xm) to y = (y1, . . . , yn) is given by

morC⊕(x, y) :=
⊕

1≤i≤m,1≤j≤n
morC(xi, yj).

Given a morphism x
f−→ y, we denote by xi

fij−−→ yj the component which belongs to
i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. If x or y is the empty tuple, then morC⊕(x, y) is
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defined to be the trivial R-module. The composition of x
f−→ y and y

g−→ z for objects
x = (x1, . . . , xm), y = (y1, . . . , yn) and z = (z1, . . . , zp) is defined by

(g ◦ f)ik =

n∑
j=1

gjk ◦ fij

The sum on C⊕ is defined on objects by sticking the tuples together, i.e. for x =
(x1, . . . , xm) and y = (y1, . . . , yn) define

x⊕ y := (x1, . . . , xm, y1, . . . , yn).

The sum of morphism is the obvious one.

Define a GROUPOID-spectrum by

K−∞ : GROUPOID −→ Ω-SPECTRA (4.3.2)

G 7→ K−∞((RG )⊕)

Definition 4.3.11 (Or(G)-Ω-spectrum for K-theory). We define KR, the Or(G)-Ω-
spectrum over the ring R, for algebraic K-theory as the composition

Or(G)
GG−−→ GROUPOID

K−∞−−−→ Ω-SPECTRA.

There is a G-homology theory for K-theory. For any G-CW -pair (X,A) we have

HG
n (X,A;KR) := πn(mapG( , X+ ∪A+ cone(A+)) ∧Or(G) KR). (4.3.3)

The generalized assembly map is the map

AX : HG
n (X;KR) −→ HG

n (pt;KR) (4.3.4)

induced by the projection map X → pt from X to the single point space pt.

Example 4.3.12 ((KR,F)-assembly map). Let X = EF(G) the classifying space of the
family F, a G-CW -complex, unique up to G-homotopy, such that EF(G)H is contractible
if H ∈ F and empty otherwise. The map

AF : HG
n (EF(G);KR) −→ HG

n (pt;KR) = Kn(R[G]) (4.3.5)

is called the (KR,F)-assembly map.

Conjecture 4.3.13 (Farrell-Jones conjecture). The Farrell-Jones conjecture for
K-theory states that the (KR,VCYC)-assembly map is an isomorphism, where VCYC
is the family of virtually cyclic subgroups of G.

At the moment of writing there is no counterexample to to the Farrell-Jones conjec-
ture.
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4.4 Equivariant homology theories

An equivariant homology theory consists of a collection of G-homology theories, one
for each group G, with the additional property that homomorphisms of groups give
morphisms among G-homology theories. We follow the ideas in [27].

Definition 4.4.1 (Equivariant homology theory). An equivariant homology theory H?
∗

with values in MOD(R) consists of a G-homology theory HG∗ for each group G together
with an induction structure: given a group homomorphism α : H → G and an H-CW -
pair (X,A) where Ker(α) acts freely on X, then for all n ∈ Z there exists natural
isomorphisms

indα : HHn (X,A)
∼=−→ HGn (indα(X,A))

satisfying:

(a) Compatibility with the boundary homomorphism.

∂Gn ◦ indα = indα ◦ ∂Hn .

(b) Functoriality. Let β : G → K be another group homomorphism such that
Ker(β ◦ α) acts freely on X. Then we have for all n ∈ Z

indβ◦α = HKn (f) ◦ indβ ◦ indα : HHn (X,A)→ HKn (indβ◦α(X,A))

where f : indβindα(X,A)
∼=−→ indβ◦α(X,A), (k, g, x) 7→ (kβ(g), x) is the natural

K-homeomorphism.

(c) Compatibility with conjugation. For n ∈ Z, any g ∈ G, conjugation c(g) : G→
G and G-CW -pair (X,A) the homomorphism

indc(g) : HGn (X,A) −→ HGn (indc(g)(X,A))

agrees with the homomorphism induced by the G-homeomorphism f ′ : (X,A) →
indc(g)(X,A) which sends x 7→ [1, g−1x] in G×c(g) (X,A).

Example 4.4.2. [30, Proposition 157] Let KR : Or(G) −→ SPECTRA be the algebraic
K-theory spectra of Definition 4.3.11. Then, H?

∗(−;KR) is an equivariant homology
theory.

4.4.1 Restriction structure on equivariant homology theories

Definition 4.4.3 (Restriction structure). A restriction structure on an equivariant ho-
mology theory H?

∗ consists of the following data. For any injective group homomorphism
α : H ↪→ G, whose image has finite index in G, we require in G-CW-pairs (X,A) natural
homomorphisms

resα : HGn (X,A) −→ HHn (resα(X,A)).

We require:

(a) Compatibility with boundary homomorphism.

resα ◦ ∂Gn = ∂Hn ◦ resα.
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(b) Functoriality. If β : G → K is another injective group homomorphism whose
image has finite index in K, then resβ◦α = resα ◦ resβ.

(c) Compatibility of induction and restriction for isomorphisms. If α : H
∼=−→ G

is an isomorphism of groups, then the composition

HGn (X)
resα−−→ HHn (resαX)

indα−−−→ HGn (indαresαX)
T (X)−−−→ HGn (X) (4.4.1)

is the identity, where T (X) : indαresαX → X is the canonical G-homeomorphism.

(d) Double coset formula. Let H,K ≤ G be subgroups such that K has finite index
in G. Notice that |K\G/H| is finite in this case. For an H-CW-pair (X,A) let

f :
∐

KγH∈|K\G/H|

indKH∩Kγ resH∩K
γ

H (X,A)
∼=−→ resKG indGH(X,A)

be the canonical K-homeomorphism. Then, the following homomorphism agrees
for all n ∈ Z,

HHn (X,A)

∏
KγH∈|K\G/H|

indK
H∩Kγ resH∩K

γ

H

−−−−−−−−−−−−−−−−−−−−→
∏

KγH∈|K\G/H|

HKn (indKH∩Kγ resH∩K
γ

H (X,A))
∼=−→

∼=−→ HKn (
∐

KγH∈|K\G/H|

indKH∩Kγ resH∩K
γ

H (X,A))
HKn (f)−−−−→ HKn (resKG indGH(X,A))

with the homomorphism

resKG ◦ indGH : HHn (X,A) −→ HKn (resKG indGH(X,A)).

Remark 4.4.4. The notation indKH∩Kγ , as in Remark 1.1.13, indicates the induction coming
from the inner automorphism c(γ) : H ∩Kγ −→ K, conjugation by γ.

Example 4.4.5. Let KR : Or(G) −→ SPECTRA be the K-theory spectra. Then
H?
∗(−;KR) is an equivariant homology theory with a restriction structure. This can be

done adapting the proof in [31, Section 14] to our case.

4.5 The B(G)-module structure of HG
∗ (X)

In the previous sections, we introduced the concept of equivariant homology theory with
restriction structure. We now see that these two structures are sufficient to have a Mackey
functor structure.

Let G be any group. Denote by GR≤G be the subcategory of GR with objects the sub-
groups of G and group homomorphisms of subgroups of G as morphisms. Let GRIFI≤G
the subcategory of GR≤G whose morphisms are injective group homomorphisms having
finite image in the target.

Proposition 4.5.1. Let H?
∗ be an equivariant homology theory with a restriction struc-

ture. Then for all groups G, all G-CW -complexes X and all n ∈ Z there is a cofinite
Mackey functor H?

n(res?
GX) with values in MOD(Z).

Proof. Let us fix a group G, a G-CW -complexes X and n ∈ Z. Define the functor on
objects, H ≤ G, by HHn (resHGX).
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(a) Let H → G be a morphism in GR≤G. Then we have

HHn (resHGX)
indGH−−−→ HKn (indKHresHGX) −→ HKn (resKGX),

where the last map is induced by adjunction. This gives the covariant structure. If
H → K is a morphism in GRIFI≤G, then

HKn (resKGX)
resHK−−−→ HHn (resHKresKGX) = HHn (resHGX)

gives the contravariant structure.

(b) Let H ≤ G and γ ∈ G such that γHγ−1 = H. Then, conjugation c(γ) : H → H is
a map in GR≤G and the isomorphism

indc(γ)resHGX −→ resHGX

[h, x] 7→ hγx

verifies the second axiom of a cofinite Mackey functor.

(c) Follows since the restriction structure on H?
∗ implies compatibility of restriction

and induction for isomorphism.

(d) Follows since H?
∗ satisfies the double coset formula by definition.

Theorem 4.5.2. Let H?
∗ be as in Proposition 4.5.1. Then for all group G, all G-CW -

complexes X and all n ∈ Z, H?
n(res?

GX) is a B(G)-module.

Proof. Let H ≤f G and consider LG/H the composition

HGn (X)
resHG−−−→ HHn (resHGX)

indGH−−−→ HGn (indGHresHGX)
T (X)−−−→ HGn (X)

where T (X) : indGHresHGX → X is the canonical G-homeomorphism i.e., the one corre-
sponding to the identity by adjunction. Define an action

B(G)×HGn (X) −→ HGn (X)

(G/H, x) 7→ LG/H(x)

and extend it by linearity. As usual, the difficult part is to prove that LG/K ◦ LG/H
coincides with LG/K·G/H . Recall Proposition 1.1.14 for the product of basic elements in
B(G)

G/H ·G/K =
∑

KγH∈|K\G/H|

G/(H ∩Kγ).

We need the following result.

Lemma 4.5.3. Let H,K ≤f G and X be a G-CW -complex. Then

(a) for all γ ∈ G, resH∩K
γ

H resHGX and resH∩K
γ

G X are H ∩Kγ-homeomorphic,

(b) indGK(
∐

KγH∈|K\G/H|
indKH∩Kγ resH∩K

γ

G X) and
∐

KγH∈|K\G/H|
indGH∩Kγ resH∩K

γ

G X areG-homeo-

morphic.
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Proof of Lemma 4.5.3: (a) This observation is obvious.

(b) Holds because induction distributes over disjoint union and for all H ∩Kγ-space Y
there exists G-homeomorphism

indGK indKH∩KγY = G×K K ×H∩Kγ Y ∼= G×H∩Kγ Y = indGH∩KγY.

The proof will follow after we show the commutativity of the following diagram

HGn (X)
resHG //

(4)

��

HHn (resHGX)
indGH // HGn (indGHresHGX)

resKG

��

HKn (
∐

indKH∩Kγ resH∩K
γ

G X)

indGK

��

HKn (resKG indGHresHGX)
∼=
(2)
oo

indGK

��∏
HGn (indGH∩Kγ resH∩K

γ

G X)
∼=
(1)
// HGn (

∐
indGH∩Kγ resH∩K

γ

G X) HGn (indGKresKG indGHresHGX)
∼=
(3)
oo

where the vertical homomorphism (4) is∏
indGH∩Kγ resH∩K

γ

G : HGn (X)→
∏
HGn (indGH∩Kγ resH∩K

γ

G X)

and all indexes run over double cosets KγH ∈ |K\G/H|.
The isomorphism (1) is the natural isomorphism; the isomorphism (2) follows from

part (a) of Lemma 4.5.3 to have the K-homeomorphism

resKG indGHresHGX
∼=
∐

indKH∩Kγ resH∩K
γ

H (resHGX)

∼=
∐

indKH∩Kγ resH∩K
γ

G X.

The isomorphism (3) is a consequence of double coset formula. The map

HKn (
∐

indKH∩Kγ resH∩K
γ

G X)
indGK−−−→ HGn (

∐
indGH∩Kγ resH∩K

γ

G X)

in the middle part follows from (b) of Lemma 4.5.3. The small inner square is commuta-
tive by direct inspection. To see that the bigger square commutes, recall the isomorphism

indGKresKG indGHresHGX
∼= indGK

( ∑
KγH∈|K\Γ/H|

indKH∩Kγ resH∩K
γ

H

)
resHGX

∼=
∑

KγH∈|K\Γ/H|

indGH∩Kγ resH∩K
γ

G X

of G-CW -complexes. The diagram extends to the right as follows

HGn (indGHresHGX)

resKG
��

T (X)
// HGn (X)

resKG
��

HGn (resKG indGHresHGX)
resKG ◦T (X)

//

indGK
��

HGn (resKGX)

indGK
��

HGn (indGKresKG indGHresHGX)
F // HGn (indGKresKGX)

T (X)
// HGn (X)
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where F = indKG ◦ resKG ◦ T (X). The comoposition of the homomorphism (4), (1), (3), F
and T (X) of the lower part of the diagram corresponds to LG/K·G/H , by commutativity
is the same as LG/K ◦ LG/H given by the upper part of the diagram.

4.6 Extension to BM( )

In this section, we give, for profinte groups Γ, a criterion to extend modules over the
Burnside ring B(Γ) to modules over the completed Burnside ring B1(Γ). The main
result, Theorem 4.6.4, applies to NKn(R).

We also show that for commutative rings R if we take M = R×, the units of R,
and Γ = Ĉ, the profinite completion of C, there exists a BR×(C)-module structure
on NKn(R) that is compatible with the W (R)-module structure on Nil–groups defined
in [45].

Consider (I,≤) a directed set, i.e., a partially ordered set such that for every i, j ∈ I
exists k ∈ I with i ≤ k and j ≤ k. Assume further that for every j ∈ I the set
{i ∈ I|i ≤ j} is finite.

Let {Gi}i∈I be a surjective inverse system of finite groups indexed by I and for i ≤ j
let ϕij : Gj → Gi denotes the corresponding surjective group homomorphism.

Fix i, j ∈ I with i ≤ j and denote by Kij := Ker(ϕij) the kernel of the homomorphism
ϕij : Gj → Gi. We have an isomorphism Gi ∼= Gj/Kij , a commutative diagram

Gj
ϕij

//

ϕ̃ij ##

Gi

Gj/Kij

∼=

OO

where ϕ̃ij is the natural homomorphism and a bijection on subgroups

{H ≤ Gj | Kij ⊆ H} ←→ {L | L ≤ Gi}.
H 7→ ϕij(H)

For i ≤ j we have the projection homomorphism

Bprojji : BM(Gj) −→ BM(Gi) (4.6.1)

S 7→ SKij

of completed Burnside rings.

Lemma 4.6.1. For all i, j ∈ I such that i ≤ j, the projection homomorphism Bprojji is
surjective. Moreover, it is given on generators by

Bprojji(Gj/H) =

{
Gi/ϕij(H), Kij ⊆ H
0, else.

Proof. It suffices to proof the second statement. Since Kij EGj we have

projji(Gj/H) =

{
Gj/H, Kij ⊆ H
∅, else.

If Kij ⊆ H, then the Gj-action on Gj/H descends to a well defined Gi-action and ϕij

induces an isomorphism of Gi-sets Gj/H
∼=−→ Gi/ϕij(H).
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The inverse system {Gi}i∈I defines the system {BM(Gi),Bprojji} and we denote its
limit by lim←−i BM(Gi).

Recall that there is also the restriction homomorphism of Burnside rings

Bresϕij : BM(Gi)→ BM(Gj) (4.6.2)

S 7→ Bresϕij (S).

We describe Bresϕij on generators using the following Lemma.

Lemma 4.6.2. For all i, j ∈ I such that i ≤ j, there exists a Gj-isomorphism
resϕij (Gi/L) ∼= Gj/ϕ

−1
ij (L).

Proof. The Gj-set resϕij (Gi/L) is transitive because ϕij is surjective. The stabilizer of

e.L is {g ∈ Gj | ϕij(g)L = L} = ϕ−1
ij (L).

Example 4.6.3. Consider Γ a profinite group. The collection {Γ/N | N Eo Γ} of
finite groups is partially ordered by inclusion of the subgroups N . For Γ/N the set
{Γ/L ⊂ Γ/N} is finite, since the index [Γ : N ] is finite.

For L ≤ N there exists a canonical surjective homomorphism Γ/L → Γ/N defining
an inverse system of groups. The corresponding system of Burnside rings {BM(Γ/N),
BprojLN} is exactly that of Theorem 3.1.13, hence its inverse limit is BM(Γ) the completed
Burnside ring of Γ.

Theorem 4.6.4. Let (I,≤) be a direct set satisfying that for every j ∈ I the set
{i ∈ I|i ≤ j} is finite, {Gi, ϕij} be a surjective inverse system of finite groups indexed
by I and H be an abelian group. Assume that H is a BM(Gi)-module for all i ∈ I and
satisfies

(a) for each i ≤ j, the BM(Gi)-module structure of H is Bresϕij-compatible with the
BM(Gj)-module structure of H, i.e., the diagram

BM(Gj)×H // H

BM(Gi)×H

Bresϕij×Id
OO

// H

Id

OO

commutes;

(b) for every x ∈ H there exists i = i(x) ∈ I, such that for all j with i ≤ j, then
Ker(Bprojji) ⊆ AnnBM (Gj)(x) = {T ∈ BM(Gj) | T.x = 0}.

Then H has a module structure over the ring lim←−i BM(Gi).

Proof. Fix S = (Si) ∈ lim←−i BM(Gi) and x ∈ H and pick i(x) as in (b).
Define the multiplication of S on x by

S.x = Si(x).x (4.6.3)

Notice that Si(x) ∈ BM(Gi(x)) and the multiplication uses the BM(Gi(x))-module
structure of H.

For i(x) ≤ k, we have Bprojki(x)(Bresϕi(x)k
(Si(x)) = Si(x), by Lemmas 4.6.1 and 4.6.2,

thus Sk = Bresϕi(x)k
(Si(x)) + S′ by the structure maps and S′ ∈ Ker(Bprojki(x)). Thus,

S′.x = 0 by condition (b). This shows that Si(x).x = Sk.x for i(x) ≤ k, hence the action
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is well defined since for a different choice i′(x) there exists a k such that i(x) ≤ k and
i′(x) ≤ k.

The identity element 1 = (Gi/Gi)i ∈ lim←−i BM(Gi) acts as the identity element of
BM(Gi(x)) by definition.

Let x, y ∈ H. Then there exists k ∈ I such that i(x) ≤ k and i(y) ≤ k, moreover,
Si(x).x = Sk.x and Si(y).y = Sk.y. Then we have S.(x+ y) = Sk.(x+ y) = Sk.x+ Sk.y =
S.x+ S.y.

Finally, the existence, for x ∈ H, of the ring homomorphism Bproji(x) from the inverse
limit to BM(Gi(x)) implies that (S + S′).x = S.x + S′.x and S.(S′.x) = (SS′).x. This
concludes the proof.

4.6.1 Applications to K-theory

Let Γ = Ĉ be the profinite completion of the infinite cyclic group C and consider M = 1
the trivial monoid. Example 4.6.3 above gives a surjective inverse system of finite quotient
groups of Ĉ. We use Theorem A.3.3 to describe this system as {C/Cn | n ∈ N} where
Cn is the subgroup of C of index n ∈ N.

We describe now the projection and restriction homomorphisms for m,n ∈ N with m
dividing n. Recall that B1(Cn) is the free Z-module with basis {Cn/Cq | q divides n}.

The projection homomorphism is given by

Bprojnm : B1(Cn) −→ B1(Cm) (4.6.4)

Cn/Cq 7→

{
Cm/Cmq/n, n/q divides m

0, else.

The restriction homomorphism is given by

Bresϕmn : B1(Cm) −→ B1(Cn) (4.6.5)

Cm/Cq 7→ Cm/Cq = Cn/Cqn/m.

Notice that for all n ∈ N the rings B1(Cn) act on the K-theory groups of R[C], by
restiction and induction, i.e.,

B1(Cn)×Km(R[C]) −→ Km(R[C])

(
∑

aq · Cn/Cq, x) 7→
∑

aqindσn/q ◦ resσn/q(x)

where σn/q : Cn/q → C is the canonical inclusion. The homomorphism 4.6.5 shows that,
for n ∈ N, the actions of B1(Cn) are Bresϕmn compatible in the sense of Theorem 4.6.4.

Finally, recall that in Theorem 2.3.7 we used the Bass–Heller–Swan decomposition
Theorem to prove the compatibility of the actions defined in terms of resϕmn and indϕmn
with the action defined in terms of Fmn and Vmn on Nil–groups. The next result is well
known in the literature.

Lemma 4.6.5. [20] For every n ∈ Z and each x ∈ NKn(R), there exists a positive
integer i(x) such that Fm(x) = 0 for m ≥ i(x)

Proof. The Frobenius homomorphism Fm : NKn(R) −→ NKn(R) is induced by the func-
tor sending (Q, ν) ∈ NIL(R) to (Q, νm), for (Q, ν) there exists a positive integer i(ν) with
(Q, νm) = (Q, 0) for m ≥ i(ν). The claim follows from compatibility of the actions.
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Lemma 4.6.5 gives condition (b) of Theorem 4.6.4. Hence we conclude

Theorem 4.6.6. There exists a B1(C)-module structure on NKn(R) for all rings R.
Moreover, this structure is compatible with the usual W (Z)-module structure of NKn(R).

4.6.2 The BR×(C)-module structure of Nil–groups

Let R be a commutative ring with unit and M = R× the units of R. Using Theorem 4.6.4
for M = R× we offer another description of the W (R)-module structure of Nil–groups
described in [45].

First, recall that for R× ↪→ R×, monoid map from the units of R to the underlying
multiplicative monoid of R, there exists a commutative diagram (3.2.8)

WΓ(Z[R×]) //

��

BR×(Γ)

��

WΓ(Z[R×])
∼= //

WΓ(σ) &&

BR×(Γ)

π

��

WΓ(R)

where the isomorphism is given by Theorem 3.2.3, the ring homomorphism WΓ(σ) is
induced by σ : Z[R×] → R the ring homomorphism that extends the identity R× → R,
and π is a surjective ring homomorphism with set–theoretical section (see [14]):

WΓ(R) −→ BR×(Γ) (4.6.6)

(aH) 7→
∑
(H)

[Γ/H, aH ]

where (H) is the conjugacy class of H ≤o Γ and [Γ/H, aH ] is the isomorphism class of
the Γ-string Γ/H with constant function ‖ ‖ = aH . We restrict to Γ = Ĉ the profinite
completion of C to state our result.

Fix r ∈ R×. The ring homomorphism

[r] : R[t]→ R[t]

t 7→ rt

induces a map in K-theory groups Kn(R[t]) → Kn(R[t]). The effect of [r] is that the
R[t]-module structure is now multiplication by rt.

We have a functor

[r] : END(R)→ END(R)

(P, f) 7→ (P, rf)

where rf denotes the endomorphism f followed by multiplication by r. The functor

END(R)→ P(R[t])

(P, f)→ Pf ,
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where Pf denotes the R[t]-module P with t acting via f , gives, up to isomorphism, a
commutative diagram of categories

END(R) //

[r]

��

P(R[t])

[r]

��

END(R) // P(R[t]).

The functor [r] restricts to the category NIL(R), moreover, it is compatible with the
splitting of P(R) from NIL(R). This defines the homomorphism

[r] : Niln(R) −→ Niln(R)

that corresponds, via NKn(R) ∼= Niln−1(R), with the homothety operator.
Now, if r ∈ R× the same arguments holds for the ring homomorphism

[r] : R[t, t−1]→ R[t, t−1].

t±1 7→ r±1t±1

.

Theorem 4.6.7. Let R be a commutative ring with unit. For all n ∈ Z there exists a
BR×(C)-module structure on NKn(R). Moreover, this structure is compatible with the
W (R)-module structure of NKn(R).

Proof. Let [C/Cm, r] be the class of C/Cm, i.e., the C-string over R× with constant
function r ∈ R× and underlying almost finite C-set C/Cm. Recall the m-th Frobenius,
Fm, and the m-th Verschiebung, Vm, operators. The homothety operator satisfies [r][s] =
[rs], [r]Vm = Vm[rm] and Fm[r] = [rm]Fm for all r, s ∈ R×.

Define

BR×(C)×Niln−1(R) −→ Niln−1(R),

([C/Cm, r], x) 7→ LrC/Cm(x) := Vm[r]Fm(x)

and extend by linearity. We only need to show they are compatible with the product in
BR×(C). For m,n ∈ N, r, s ∈ R a direct computation on C-strings yields

[C/Cm, r][C/Cn, s] =
∐
d

[C/Cmn/d, rn/dsm/d],

where d = g.c.d(m,n) is the greatest common divisor of m and n. For x ∈ Niln−1(R) we
have

Lr
n/dsm/d

C/Cm.C/Cn(x) = dLr
n/dsm/d

C/Cmn/d
(x)

= dVmn/d[r
n/dsm/d]Fmn/d(x).

On the other hand we have

LrC/CmL
s
C/Cn(x) = Vm[r]FmVn[s]Fn(x)

= Vm[r]dVn/dFm/d[s]Fn(x)

= dVmn/d[r
n/dsm/d]Fmn/d(x),

since Proposition B.3.4 states that FmVn = dVn/dFm/d, VmVn = Vmn and FmVn = Fmn.
This shows that

Lr
n/dsm/d

C/Cm.C/Cn = LrC/CmL
s
C/Cn

and concludes the proof.
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Appendix A

Profinite Groups

A.1 Basic definitions

A profinite group is an inverse limit of finite groups. Various collections of finite groups
give various profinite groups. We make this more precise.

Definition A.1.1 (Class of finite groups). A class of finite groups C is a non-empty
collection of finite groups that contains all isomorphic images of groups in C, i.e., if
G ∈ C and H ∼= G, then H ∈ C.

Example A.1.2. The following classes of groups are important to our research. They
are the easiest classes to handle.

(a) The class C of all finite groups.

(b) Let p be a prime number. The class Cp of all finite p-groups.

Definition A.1.3 (Pro-C group). Let C be a class of finite groups. A pro-C group G is
an inverse limit

G = lim←−
i

Gi (A.1.1)

of an inverse system {Gi, ϕij : Gj → Gi} with surjective structure maps of groups Gi ∈ C.
Here each Gi has the discrete topology.

The surjectivity hypothesis in Definition A.1.3 is necessary to work in vast generality,
nevertheless, we can weaken this hypothesis if we restrict to subgroup closed classes of
finite groups.

Definition A.1.4 (Subgroup closed class). A class of finite groups C is subgroup closed
if for any G ∈ C and H ⊆ G then H ∈ C.

Any inverse limit taken over a subgroup closed class C is a pro-C group [36, p. 19].
We consider only closed subgroups classes without explicit mention.

Example A.1.5. The class of all finite groups C and the class of all p-groups Cp are
subgroup closed.

Notation. If C is the class of all finite groups we call pro-C groups profinte groups and
we call a pro-Cp groups pro-p groups.
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Topology of profinite groups

The properties of a class C determine the topology of of a pro-C group G. We formulate
properties of a class that ensure that the topology is rich enough for our purposes.

Definition A.1.6. Let C be a class of finite groups.

(a) C is closed under quotients if for any G ∈ C and H E G then G/H ∈ C.

(b) C is closed under subdirect product if for any finite group G and normal subgroups
N1, N2 E G such that G/N1, G/N2 ∈ C then G/N1 ∩N2 ∈ C.

A class C that is closed under quotients and subdirect products is a formation.

Example A.1.7. The classes C and Cp are formations.

A pro-C group is an inverse limit of compact Hausdorff totally disconnected spaces Gi
in some formation C, this makes G itself into a compact Hausdorff totally disconnected
space [47, Proposition 1.1.5]. The following results characterize the open subsets of G.

Lemma A.1.8. [36, Lemma 2.1.2] In a compact topological group G, a subgroup U is
open if and only if U is closed of finite index.

Theorem A.1.9. [36, Theorem 2.1.3] Let C be a formation of finite groups. The follow-
ing conditions on a topological group G are equivalent.

(a) G is a pro-C group,

(b) G is compact Hausdorff totally disconnected and for each open normal subgroup
U E G the quotient G/U is in C.

Notation. Let G be a topological group and H ≤ G a subgroup.

(a) We write H ≤o G if H is an open subgroup of G, respectively, H ≤c G if H is a
closed subgroup of G;

(b) we write H Eo G if H is an open normal subgroup of G, respectively, H Ec G if H
is a closed normal subgroup of G;

(c) we write H ≤f G if H has finite index in G, respectively, and H Ef G if H is a
normal subgroup of finite index in G.

We introduce the concept of pro-C completion of a group. Let C be a formation, G
be a group and consider the collection

N = {N Ef G | G/N ∈ C}. (A.1.2)

This collection is not empty since G ∈ N and it defines an inverse system {G/N}
where the structure maps ϕMN : G/N → G/M are given by the canonical projection
map whenever N ≤M . The pro-C completion of G is the inverse limit

GĈ = lim←−
N∈N

G/N.
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Example A.1.10. (a) Let C the formation of all finite groups and G = Z be the
infinite cyclic group. The collection N = {nZ | n ∈ N} defines the profinite
completion

Ẑ = lim←−
n∈N

Z/nZ

i.e., the profinite completion of the infinite cyclic group is the inverse limit of all
finite cyclic groups.

(b) Let Cp the formation of all finite p-groups and G = Z be the infinite cyclic group.
The collection Np = {pnZ | n ∈ N0} defines the pro-p completion

Zp = lim←−
n∈N0

Z/pnZ.

The notation we use here is the standard notation of Number Theory to denote the
p-adic integers.

A.2 The pro-C completion

Definition A.2.1 (Bounded from below). A non-empty collection N of normal subgroups
of finite index of a group G is bounded from below if for any N1, N2 ∈ N there exists
N ∈ N such that N ≤ N1 ∩N2.

Example A.2.2. Let G be a group and C be a formation. The family

NC(G) = {N Ef G | G/N ∈ C}

that we used to define the profinite completion of G is bounded from below, because
formations are closed under subdirect products, compare with Definition A.1.3, (b).

A collection N in G bounded from below defines a topology on G, namely, by making
N into a fundamental system of neighborhoods of the identity element 1 ∈ G.

Remark A.2.3. We call the topology of G associated to NC(G), as in Example A.2.2, the
pro-C topology of G or the full pro-C topology of G.

Example A.2.4. The collections NC(Z) and NCp(Z) of Example A.1.10 define the full
profinite topology of Z and the full pro-p topology of Z respectively. Both topologies are
Hausdorff as the following result states.

Proposition A.2.5. The pro-C completion of G is Hausdorff if and only if⋂
N∈NC(G)

N = 1

Remark A.2.6. The Example A.1.10 describes Ẑ and Zp as an inverse limit of finite
groups, by definition, both are profinite groups. The Example A.2.4 endows Z with a
profinite topology and a pro-p topology.

Definition A.2.7 (Completion). Let G be a group and C be a formation of finite groups.
The completion of G with respect to its pro-C topology is

GĈ = lim←−
N∈NC(G)

G/N.
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Notice immediately that the completion GĈ is a pro-C group. It is almost immediate
that there exists a continuous homomorphism

i : G −→ GĈ (A.2.1)

g 7→ (gN)N∈NC(G)

that is injective if and only if G is Hausdorff, with respect to the C-topology defined in
Remark A.2.3.

The group G is dense in GĈ, this allows us to establish a relation between subgroups.
The following lemma characterizes such relation.

Lemma A.2.8. [36, Proposition 3.2.2] Let G be Hausdorff in its pro-C topology. Identify
G with its dense image i(G) in GĈ. For any X ⊆ G let X be its closure in GĈ.

(a) There exists a bijection

Φ : {N | N ≤o G} −→ {U | U ≤o GĈ}
H 7→ H

with inverse

Φ−1 : {U | U ≤o GĈ} −→ {N | N ≤o G}
V 7→ V ∩G.

(b) Φ sends normal subgroups to normal subgroups.

(c) If H,K ≤o G with H ≤ K then [K : H] = [K : H]. Moreover, if H E K then
K/H ∼= K/H.

A.3 The orbit category of a profinite group

The main result of this appendix is Theorem A.3.3. It simplifies the exposition in Chapter
3 of the Witt-Burnside ring.

Definition A.3.1 (Orbit category). The orbit category Or(G) of G consists of homoge-
neous transitive G-spaces G/H with G-maps as morphisms. The finite orbit subcategory
Orf (G) is the subcategory of finite homogeneous transitive G-spaces G/H of Or(G), i.e.,
[G : H] <∞.

Remark A.3.2. Recall that if T is a transitive G-set, then only after choosing a point
t ∈ T we can identify T with G/H, with H = Gt the stabilizer of t, so T ∼= G/H is not
canonical. See Lemma 1.1.8.

Let C be a formation and assume that G is Hausdorff in its full pro-C topology. Our
interest focus in the subcategory Orf (GĈ) and we describe it in terms of Orf (G).

Theorem A.3.3. Let G be Hausdorff in its pro-C topology and GĈ be its pro-C comple-
tion. Then there exists an equivalence of categories

Orf (G) −→ Orf (GĈ)
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Proof. First, we give a the functors on objects.
Let G/H be in Orf (G), then H ≤c G with finite index, hence, H ≤o G [36, Propo-

sition 2.3.2]. Thus, by Lemma A.2.8, there exists a unique open subgroup H ≤o GĈ
associated with H. Since GĈ is compact, H is closed of finite index by Lemma A.1.8.
This shows that GĈ/H is an object in Orf (GĈ).

The inverse is given as follows. Let GĈ/V be an object in Orf (GĈ), since V ≤o GĈ,
then G∩V is open in G, thus G∩V is closed in G. Since [GĈ : V ] = [G : V ∩G] is finite,
then G/G ∩ V is an object in Orf (G).

We use Lemma 1.1.8 to define these functors on homomorphisms. That is,
{gK ∈ G/K | H ⊆ gK} the morphisms in G from G/H to G/K, correspond to the
set {gK ∈ GĈ/K | H ⊆

g
K} of morphisms in GĈ from GĈ/H to GĈ/K.

Example A.3.4. The finite orbit category of the pro-C completion of Z is uniquely
determined by Orf (Z). Hence, it is characterized by Orf (Ẑ) = {Z/nZ | n ∈ N}. A
morphism Z/nZ −→ Z/mZ exists if and only in m divides n.
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Appendix B

Witt vector ring

The concept of Witt vector ring was introduced by Ernst Witt [48] and later generalized
by Jean Pierre Cartier [8]. An extensive work about the Witt vector rings is that of
M. Hazewinkel [23].

For those who have been in touch with the theory of Witt vectors it is not surprising
the complexity of performing explicit computations with formulas, they become involved
even for an explicit description of the product. We privilege applications over strictly
formal definitions.

We motivate Witt vectors from linear algebra and generalized this to projective mod-
ules over a ring R. Proceeding in this way we link W (R), the Witt vectors of R, with
the algebraic K-theory of the category of endomorphisms over the ring R. This is a
convenient point of view to describe the action of the Witt ring on Bass Nil–groups.

We conclude this appendix with a review of the Frobenius and Verschiebung endo-
morphisms of W (R) using the ideas of Almkvist [1–3] and Grayson [18] to give matrix
expressions for Frobenius and Verschiebung endomorphisms. Recall that Frobenius is a
ring endomorphisms while Verschiebung is only an additive endomorphism.

B.1 Motivation

Let k be a field of characteristic zero, V a finite dimensional vector space over k and

V
L−→ V a linear transformation. The vector space V is characterized, up to isomorphism,

by its dimension over k, dimkV .

The linear transformation L has trace Tr(L) and reverse characteristic polynomial
χt(L) = det(1− tL) in variable t. Of course, χt(L) as well as the trace are not complete
invariants. There is no deeper reasons to chose one or the other than merely convenience
as they both are related by the exponential trace formula.

Proposition B.1.1 (Exponential–Trace formula). Let V be a finite dimensional vector
space over k and L : V → V be a linear transformation. Then we have

−t d
dt

log(χt(L)) =
∞∑
i=1

Tr(Lk)tk.

in the ring of formal power series kJtK.
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Proof. Take V = kn and assume that k is an algebraically closed field. Then χt(L) =∏n
i=1(1− vit) where vi are the eigenvalues of L counted with multiplicity. Then we have

−t d
dt

log(χt(L)) =
n∑
i=1

vit

1− vit

=
n∑
i=1

(vit)(1 + v1t+ v2
2t

2 + · · · )

=
n∑
i=1

∞∑
j=1

vji t
j

=

∞∑
j=1

(

n∑
i=1

vji )t
j

=

∞∑
j=1

Tr(Lj)tj .

For a general field k there exists a surjection p : A −→ k where A is a subring of a
closed field, lift L to L′ : An −→ An and since the formula holds for L′ by applying p it
holds for L.

Let V
L−→ V and V ′

L′−→ V ′ as before. There exists direct sum V ⊕ V ′ L⊕L
′

−−−→ V ⊕ V ′

and tensor product V ⊗k V ′
L⊗L′−−−→ V ⊗k V ′ operations with vector spaces and dimk, Tr

and χt satisfies:

(a) dimK(V ⊕ V ′) = dimK(V ) + dimK(V ′) and dimK(V ⊗ V ′) = dimK(V ) · dimK(V ′);

(b) Tr(L⊕ L′) = Tr(L) + Tr(L′) and Tr(L⊗ L′) = Tr(L) · Tr(L′);

(c) χt(L⊕ L) = χt(L) · χt(L′).

We postpone the description of χt(L⊗ L′) until we have show the existence of Witt
vectors. The previous list suggests an additive invariant behavior of trace and character-
istic polynomial. Indeed, this was the departing point of Almkvist to define characteristic
polynomial for the category of endomorphisms of a small subcategory of an abelian cat-
egory [3].

A more general setting is the following. We change the field k by a commutative ring
with unit R, the vector space V by a finitely generated projective R-module P and the

linear transformation L by an R-module endomorphism P
f−→ P . We try to classify, up

to isomorphism, the pairs (P, f). This is our departing point to study W (R).

B.2 Construction of the Witt vector ring

Recall that E. Witt introduced the concept of p-Witt vectors or p-typical Witt vectors
for a prime number p, Cartier generalized this and introduced the concept of (big) Witt
vectors or generalized Witt vectors. We work only with big Witt vectors. Let us state
Cartier’s theorem.

Theorem B.2.1. [8] There exists a functor W from the category of commutative rings
with unit to itself such that:
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(a) for any commutative ring R, the set W (R) consists of sequences a = (an)n≥1 of
elements in R and for all ring homomorphism f : R→ S, the homomorphism W (f)
sends a to the sequence (f(an))n≥1,

(b) for every commutative ring R and every integer n ≥ 1 the map

ωn : W (R) −→ R

a 7→ ωn(a) :=
∑
d|n

da
n/d
d

is a ring homomorphism.

Outline of the proof: We reproduce parts of the proof in [24].
Part (a). Fix R and let RJtK be its ring of power series over t. The augmentation

homomorphism RJtK t7→0−−→ R, restricts to a unit group homomorphism RJtK× → R× and
this defines the abelian group (under series multiplication)

Λ(R) = Ker(RJtK∗ → R∗) = 1 + tRJtK. (B.2.1)

We endow the abelian group Λ(R) with a multiplication ∗R : Λ(R) × Λ(R) → Λ(R)
such that:

- ∗R is right and left distributive with respect to multiplication of series,

- for all a, b ∈ R, (1− at)−1 ∗R (1− bt)−1 = (1− abt)−1, where (1− at)−1 denotes the
geometric progression

∑
i≥0 a

iti in the formal sense.

- ∗ is functorial in R, i.e., if R
ϕ−→ S is a ring homomorphism, then the diagram

Λ(R)× Λ(R)
∗R //

��

Λ(R)

��

Λ(S)× Λ(S)
∗S // Λ(S)

commutes.

Once this multiplication ∗R is defined in Λ(R) we use the bijection

Φ: W (R) −→ Λ(R) (B.2.2)

a 7→
∏
d≥1

(1− adtd)−1

to define a + b = Φ−1(Φ(a) · Φ(b)) and a ∗ b = Φ−1(Φ(a) ∗R Φ(b)) in W (R).
We show existence of ∗R.
Let n ≥ 0 an integer and consider the augmentation map on the truncated poly-

nomial ring over R, R[t]/(tn+1) → R. As before, this induces a multiplicative group
homomorphism in the units and we define

Λn(R) = ker(R[t]/(tn+1)∗ → R∗).

Notice that Λ(R) = lim←−n Λn(R). Consider Mn(R) = 〈{1− at | a ∈ R}〉 the subgroup
of Λn(R) generated by the linear polynomials 1 − at. Each a ∈ R defines an R-algebra
homomorphism:

R[t]/(tn+1) −→ R[t]/(tn+1)

t 7→ at
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and induces ϕa : Λn(R) → Λn(R) satisfying ϕaϕb = ϕab. Consider the subring En =
〈{ϕa | a ∈ R}〉 of the Z-linear endomorphisms ring of Λn(R), End(Λn(R)) and the
En-module homomorphism

En −→ Λn(R) (B.2.3)

ϕa 7→ (1− at)

whose image is precisely Mn(R) hence isomorphic to the ring En/I, where I is the kernel
of the homomorphism (B.2.3) so Mn(R) has a ring structure.

H. Lenstra ( [24], Lemma 2) constructed for any ring R a R-algebra R such that for
all n ≥ 0, Λn(R) = Mn(R) and such that as R-module, R, it has a basis that contains
the unit element to show that Λn(R) ⊆ Λn(R) = Mn(R) is a subring and hence itself a
ring.

Finally, Λn is a functor from the category of commutative rings to itself and all the
natural maps Λn+1 → Λn are morphisms of funtors showing that Λ(R) = lim←−n Λn(R) has
a ring structure.

Part (b). Let a =
∏
d(1− adtd)−1 and consider the logaritmic derivative

t
d

dt
log : Λ(R) −→ tRJtK (B.2.4)

a 7→ t
d

dt
log(

∏
d

(1− adtd)−1).

The image of a is:

t
d

dt
log(a) = t

∑
d≥1

d

dt
log(1− adtd)−1

=
∑
d≥1

dadt
d

∑
n≥0

(adt
d)n


=
∑
d≥1

∑
n≥1

d(and t
nd)

=
∑
n≥1

∑
d|n

da
n/d
d

 tn

=
∑
n≥1

ωn(a)tn.

Since ωn((1− at)−1) = an is multiplicative and logarithmic derivative takes multipli-
cation into addition we have that each ωn is a ring homomorphism.

We close this section with a commutative diagram of rings that summarizes the maps
used in the proof

W (R)
Φ //

ω

��

Λ(R)

t d
dt

log

��∏
n≥1R

∼= // tRJtK

(B.2.5)
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where
∏
n≥1R has pointwise sum and product. The ring isomorphism Φ is given by

(B.2.2), the ghost map ω =
∏
ωn where ωn are the homomorphisms given by (b) Theorem

B.2.1. The bottom line isomorphism sends (an)n≥1 to
∑

n≥1 ant
n. In elements, diagram

(B.2.5) looks like:

a � //
_

��

∏
d(1− adtd)−1

_

��

(
∑

d|n da
n/d
d )n

� //
∑∞

n=1(
∑

d|n da
n/d
d )tn.

B.3 Frobenius and Verschiebung

We review the Frobenius and Verschiebung endomorphisms defined on Witt vector rings.
Our approach is intended to clarify the correspondence of Frobenius and Verschiebung
endomorphism with matrix expressions.

Fix n ∈ N and a commutative ring R we first define n-th Frobenius and n-the Ver-
schiebung

Fn : Λ(R) −→ Λ(R)

and

Vn : Λ(R) −→ Λ(R).

and then transport this back to W (R) via the isomorphism (B.2.2).

Frobenius

In order to keep simple formulas we introduce a change of coordinates for Λ(R). For
further details see paragraphs 9.10 and 9.61 in [23]. The functor Λ(−), as set–theoretical
functor, is representable by the free polynomial ring Z[h] := Z[h1, . . . , hd, . . .]. We
can think of Z[h] as the usual ring of symmetric functions on infinitely many variables
X1, . . . , Xd, . . . by writting

hd := hd(X) =
∑

j1≤...≤jd

Xj1 · · ·Xjd .

The hd(X) are known as complete symmetric functions. Using a geometric series
expansion and perfoming the product it is easy to see that∑

d≥0

hdt
d =

∏
d≥1

(1−Xdt)
−1.

Now, assume that Φ(a) =
∏
d≥1(1− adtd)−1 = 1 + a′1t+ a′2t

2 + · · · in Λ(R), and that
for all d ∈ N

a′d = hd(ε1, . . . , εd, . . . ),

where εi are elements in a larger ring containing R. This condition is necessary because
one may need to invert elements to write a′i in terms of εi explicitely. In this way we
could write ∏

d≥1

(1− adtd)−1 =
∏
d≥1

(1− εdt)−1.



78 B. Witt vector ring

In this new coordinate the n-th Frobenius endomorphism Fn is given by

Fn : Λ(R) −→ Λ(R) (B.3.1)∏
d≥1

(1− εdt)−1 −→
∏
d≥1

(1− εnd t)−1.

We can obtain the expression of Fn in ghost coordinates if we take logarithmic deriva-
tive in both sides of (B.3.1) i.e.,

t
d

dt
log(

∏
d≥1

(1− εdt)−1) = −t d
dt

∑
d≥1

log(1− εdt)

= −t d
dt

∑
d≥1

−∑
j≥1

(
εjdt

j

j
)


=
∑
j≥1

(
∑
d≥1

εjd)t
j

and similarly

t
d

dt
log(

∏
d≥1

(1− εnd t)−1) =
∑
j≥1

(
∑
d≥1

εnjd )tj .

Define pj =
∑

d≥1 ε
j
d, then pnj =

∑
d≥1 ε

nj
d and hence, Fn(pj) = pnj .

Remark B.3.1. We can think of Fn : W (R) → W (R) as the unique endomorphism such
that ωm(Fn(a)) = ωmn(a).

Verschiebung

The n-th Verschiebung endomorphism Vn is defined as

Vn : Λ(R) −→ Λ(R) (B.3.2)

f(t) −→ f(tn)

i.e., taking the n-th power of t. Assume that f(t) =
∏
d(1 − adtd)−1, then Vn(f(t)) =∏

d(1 − adtnd)−1. The expression for Vn in ghost coordinates is obtainead after taking
logarithmic derivative on both sides of (B.3.2) this yields

t
d

dt
log(f(t)) =

∑
m≥1

ωm(a)tm

and

t
d

dt
log(f(tn)) =

∑
m≥1

nωm(a)tnm

where, as bijection (B.2.2) states, a is determined by the coefficients of f(t). In ghost
coordinates we have

Vn(ωm) =

{
nωm/n, if n divides m

0, else.
(B.3.3)

Remark B.3.2. We can think of Vn : W (R)→ W (R) as the unique homomorphism such
that Vn((am)) = (bm) where

bm =

{
am/n, if n divides m

0, else.
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The following lemma characterizes Fn and Vn and establishes a general principle in
the theory of Witt vectors, to demonstrate certain equations it suffices to check them on
vectors of the form 1− at.

Lemma B.3.3. [8] Let R be a ring. The endomorphisms Vn and Fn of Λ(R) are char-
acterized by the formulas:

(a) Vn(1− at) = 1− atn,

(b) Fn(1− at) = 1− ant.

The following list summarizes standard relations between Frobenius and Verschiebung
endomorphisms.

Proposition B.3.4. The following are identities between the endomorphisms Fn and Vn
of W (R) and Λ(R).

(a) Vm ◦ Vn = Vmn for all m,n ∈ N,

(b) Fm ◦ Fn = Fmn for all m,n ∈ N,

(c) if d = g.c.d(m,n) then Fm◦Vn = dVn/d◦Fm/d. In particular, if d = 1 they commute,

(d) (Frobenius reciprocity) for all f(t), h(t) ∈ Λ(R) we have

Vn(f(t) ∗ Fn(h(t))) = (Vn(f(t))) ∗ h(t).

B.4 Relations with the K-theory of endomorphisms

We mentioned that characteristic polynomial and trace familiar from linear algebra have
analogues for projective modules over a ring. We present here the work of G. Almkvist
[1–3] and D. Grayson [18]. From now on we consider only commutative rings with unit.

Definition B.4.1. We define the category END(R) of pairs (P, f) where P is an object

in P(R) and P
f−→ P is an endomorphism of P . A morphism between two objects

(P, f)
F−→ (P ′, f ′) in END(R) is an R-module homomorphism F : P → P ′ such that

F ◦ f = f ′ ◦ F . A sequence in END(R) is exact if its underlying sequence in P(R) is
exact.

Reverse characteristic polynomial

Let (P, f) be an object in END(R). Since P is finitely generated projective R-module
there exists Q such that P ⊕Q ∼= Rn is a free module of rank n, thus f can be extended
to all Rn by the zero endomorphism in Q. The reverse characteristic polynomial of f is

χt(f) = det(1n − t(f ⊕ 0Q)) ∈ R[t],

where 1n is the identity endomorphism of Rn. This definition is independent of the choice
of Q and for any exact sequence in END(R)

0 // P ′ //

f ′

��

P //

f

��

P
′′

f
′′

��

// 0

0 // P ′ // P // P
′′

// 0

(B.4.1)
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satisfies
χt(f) = χt(f

′)χt(f
′′
). (B.4.2)

Recall that there exists an exact pairing of categories

END(R)× END(R) −→ END(R)

((P, f), (P ′, f ′)) 7→ (P ⊗R P ′, f ⊗ f ′)

inducing a product in K-theory [43, Section 9]. In particular, K0(END(R)) is a ring.
Moreover, there are split functors

END(R) −→ P(R) (B.4.3)

(P, f) 7→ P

and

P(R) −→ END(R) (B.4.4)

P 7→ (P, 0)

where 0 denotes the trivial endomorphism of P . Showing that K0(R) is a direct summand
of K0(END(R)). Indeed, since tensorizing with the zero endomorphism gives the zero
endomorphism, K0(R) is an ideal in K0(END(R)). We define End0(R) to be the quotient
ring

K0(END(R))/K0(R).

We use the reverse characteristic polynomial χt in order to describe a map out of
End0(R). We want the target of this map to be a group such that, according to (B.4.2),
for exact sequences in END(R) we also have χt(f

′) = χt(f)χt(f
′′
)−1. We need to extend

the target of χt in order that it constitutes an invariant for endomorphisms. To solve
this consider the multiplicative group of rational functions with constant term 1

R̃ =

{
1 + a1t+ · · ·+ ant

n

1 + b1t+ · · ·+ bmtm
|ai, bj ∈ R

}
.

G. Almkvist endowed R̃ with a product ∗R defined in Section B.2 and considered the
ring homomorphism

End0(R) −→ R̃

[P, f ] 7→ χt(f).

For a diagram (B.4.1) it satisfies, [P, f ]− [P ′, f ′] 7→ χt(f)/χt(f
′). Moreover, it is an

isomorphism [3, Theorem 3.3] and χt(f⊗f ′) = χt(f)∗χt(f ′) and χt(f⊕f ′) = χt(f)χt(f
′).

This completes the description of χt(f ⊗ f ′) = χt(f) ∗ χt(f ′) started in Section B.1.

Matrix interpretation of Fn and Vn

The ring R̃ ↪→ Λ(R) embeds as subring and we have

End0(R)
∼=−→
χt

R̃ ↪→ Λ(R)
∼=←−
ϕ
W (R).

This interpretation allows us to consider End0(R) as a subring of W (R), as such, we
define Fn and Vn on the ring End0(R).

Lemma B.3.3 characterizes Fn and Vn on elements 1− at. Using χt we define
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- The n-th Frobenius map Fn is given by:

Fn : End0(R) −→ End0(R)

[P, f ] 7→ [P, fn].

- The n-th Verschiebung map Vn is given by:

Vn : End0(R) −→ End0(R)

[P, f ] 7→ [Pn, Vnf ]

where Pn is the direct sum of n copies of P and the endomorphism Vnf is repre-
sented by matrix: 

0 . . . 0 f

1 0
...

...
. . .

. . . 0
0 . . . 1 0


.

The following proposition illustrates how we proceed to prove formulas for W (R) in
terms of endomorphisms.

Proposition B.4.2. [18]

(a) Fn(a ∗ b) = Fn(a) ∗ Fn(b) corresponds to the equality (f ⊗ g)n = fn ⊗ gn for
endomorphisms f and g.

(b) FnVn = n corresponds to the equality

(Vn(f))n =

f . . . 0
...

. . .
...

0 . . . f


.



82 B. Witt vector ring



Bibliography

[1] Gert Almkvist. Endomorphisms of finitely generated projective modules over a
commutative ring. Ark. Mat., 11:263–301, 1973.

[2] Gert Almkvist. The Grothendieck ring of the category of endomorphisms. J. Algebra,
28:375–388, 1974.

[3] Gert Almkvist. K-theory of endomorphisms. J. Algebra, 55(2):308–340, 1978.

[4] Arthur Bartels and Wolfgang Lück. Induction theorems and isomorphism conjectures
for K- and L-theory. Forum Math., 19(3):379–406, 2007.

[5] Serge Bouc. Burnside rings. In Handbook of algebra, Vol. 2, pages 739–804. North-
Holland, Amsterdam, 2000.

[6] Gunnar Carlsson. Deloopings in algebraic K-theory. In Handbook of K-theory. Vol.
1, 2, pages 3–37. Springer, Berlin, 2005.

[7] Gunnar Carlsson and Erik Kjær Pedersen. Controlled algebra and the Novikov
conjectures for K- and L-theory. Topology, 34(3):731–758, 1995.

[8] Pierre Cartier. Groupes formels associés aux anneaux de Witt généralisés. C. R.
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Abstract

In this thesis, we study the Nil–groups appearing in the Bass–Heller–Swan decomposition
on K-theory. These groups are hard to compute, but accessible through their module
structure over W (Z), the Witt vector ring of the integers Z. We generalize this structure.

For a profinite group Γ, we endow H?
∗, an equivariant homology theory with restric-

tion, with a module structure over B(Γ), the Burnside ring of Γ. Then, we give conditions
on H?

∗ to extend its B(Γ)-module structure to a module structure over BM(Γ), the com-
pleted Burnside ring of Γ. We show that when M = 1 is the trivial monoid, Γ is the
profinite completion of the infinite cyclic group and H?

∗ is the equivariant homology the-
ory in the formulation of the Farrell-Jones conjecture, then the BM(Γ)-module structure
coincides with the W (Z)-module structure.





Zusammenfassung

In der vorliegenden Dissertation wurden die Nilgruppen untersucht, die in der Bass–
Heller–Swan Zerlegung der K-Theorie auftauchen. Diese Gruppen sind zwar schwer zu
berechnen, jedoch zugänglich durch ihre Modulstruktur über W (Z), dem Wittvektor
Ring der ganzen Zahlen Z. Wir verallgemeinern diese Struktur.

Für eine profinit Gruppe Γ statten wir H?
∗, eine äquivariante Homologietheorie mit

Einschränkungen, mit einer Modulstruktur über B(Γ), dem Burnside Ring von Γ, aus.
Dann geben wir Bedingungen für H?

∗ an, um ihre B(Γ)-Modulstruktur zu einer Modul-
struktur über BM(Γ), dem vervollständigte Burnside Ring von Γ, zu erweitern. Wir
zeigen, dass, wenn M = 1 das triviale Monoid ist, Γ die profinit Vervollständigung
der unendlichen zyklischen Gruppen ist und H?

∗ die äquivariante Homologytheorie aus
der Formulierung der Farrell-Jones Vermutung, dann die BM(Γ)-Modulstruktur mit der
W (Z)-Modulstruktur übereinstimmt.
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