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“What we observe is not nature itself, but nature
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Abstract

The Variability of the stratosphere is crucial for the evolution of the Earth-climate system as

a whole. Stratospheric variability on various time scales is influenced by a number of forcings,

such as the Quasi-Biennial Oscillation, the El Niño- Southern Oscillation, the 11-yr solar cycle, or

volcanic eruptions, that interact to create a complex system. This link is particularly nonlinear

during winter when planetary waves can propagate upward to interact with the stratospheric mean

flow. Most commonly, sophisticated chemistry-climate models simulate stratospheric variability,

driven by the interactions between dynamics, radiation, and chemistry. However, climate models are

computationally expensive and quantifying the importance of forcing factors is difficult. In contrast,

statistical methods are mathematically simpler, computationally less expensive, and weight forcing

factors according to their importance. Statistical methods learn variability patterns from historical

data and can potentially forecast these patterns into the future.

For the first time, a wide class of statistical methods is used in this work to model stratospheric

variability in data from observations, reanalyses, and model simulations. The statistical methods are

partly nonlinear and nonstationary making them appropriate to cope with the complex feedbacks

that govern the stratosphere. These advanced methods, along with a standard linear method, are

compared with respect to their ability to model stratospheric variables on different temporal and

spatial domains. The considered methods are linear discriminant analysis (LDA), a cluster method

based on finite elements (FEM-VARX), a neural network, namely the multi-layer perceptron (MLP),

and the support vector machine (SVM). It is shown how an optimal, method-specific set of tuning

parameters is estimated using information criteria along with cross-validation.

A prominent example of dynamical wave-mean flow interactions during winter are sudden strato-

spheric warmings (SSWs). SSWs are dramatic extreme events characterized by a great temperature

increase on daily time scales and a breakdown of the polar vortex. While the resulting anomalies can

descend downward and provide predictive skill for tropospheric weather conditions, forecasting SSWs

themselves remains a difficult task. It is shown in this work that polar stratospheric variability can be

modeled and forecasted using nonlinear and nonstationary statistical methods while incorporating all

significant forcing factors. Moreover, an approach based on a nonlinear neural network is presented

that can classify SSWs in major, minor, and final warmings for the recent climate. The statistical

importance of the forcing factors and their nonlinear interrelationships are estimated. In addition,

global stratospheric temperature and ozone are statistically modeled due to their specific importance

for indicating changes in dynamics and composition. The four statistical methods are used to quan-

tify the natural variability inherent in the stratosphere so that the impact of anthropogenic forcings

can be attributed appropriately. Considering various data sets along with the different independent

statistical methods makes it feasible to estimate robust uncertainties. Using the statistical methods,

variability in temperature and ozone is successfully forecasted up to the year 2100. It is shown in

this work that the standard linear method leads to robust results on the monthly scale but is clearly

outperformed by the advanced methods on the daily scale.





Zusammenfassung

Die Variabilität der Stratosphäre ist entscheidend für die Entwicklung des gesamten Klimasys-

tems. Stratosphärische Variabilität auf verschiedenen Zeitskalen wird beeinflusst durch eine An-

zahl von Antrieben wie der Quasi- zweijährigen Oszillation, der El Niño- Southern Oscillation, dem

11- jährigen solaren Zyklus oder Vulkanausbrüchen welche interagieren und ein komplexes System

erzeugen. Diese Verknüpfung ist besonders nicht-linear im Winter, wenn sich planetare Wellen ver-

tikal ausbreiten und mit dem stratosphärischen Grundstrom interagieren. Normalerweise simulieren

fortschrittliche Klima- Chemie- Modelle stratosphärische Variabilität, die von den Wechselwirkungen

zwischen Dynamik, Strahlung und Chemie bestimmt wird. Klimamodelle sind jedoch recheninten-

siv und machen es schwierig die Bedeutung von Antriebsfaktoren zu quantifizieren. Im Gegensatz

dazu sind statistische Methoden mathematisch einfacher, rechnerisch weniger anspruchsvoll, und

gewichten Faktoren nach ihrer Bedeutung. Statistische Methoden lernen Variabilitätsmuster aus

historischen Daten und können diese Muster potentiell vorhersagen.

Zum ersten Mal wird in dieser Arbeit eine breite Klasse von statistischen Methoden verwendet,

um stratosphärische Variabilität in Daten aus Beobachtungen, Reanalysen und Modellsimulatio-

nen zu modellieren. Die statistischen Methoden sind teilweise nicht-linear und nicht-stationär, so

dass sie mit den komplexen stratosphärischen Feedbacks angemessen umgehen. Diese fortschrit-

tlichen Methoden, zusammen mit einem standard linearem Verfahren, werden verglichen mit Bezug

zur Fähigkeit der Modellierung von stratosphärischen Variablen auf verschiedenen zeitlichen und

räumlichen Domänen. Die verwendeten Verfahren sind die lineare Diskriminantenanalyse (LDA),

ein Cluster-Verfahren basierend auf finiten Elementen (FEM-VARX), ein neuronales Netz, nämlich

das Multilayer Perceptron (MLP) und die Support Vector Machine (SVM). Es wird gezeigt, wie ein

optimaler, methoden-spezifischer Satz von Tuning-Parametern mit Hilfe von Informationskriterien

und Kreuzvalidierung bestimmt werden kann.

Ein prominentes Beispiel für dynamische Interaktionen von Wellen mit dem Grundstrom während

des Winters sind plötzliche Stratosphärenerwärmungen (SSWs). SSWs sind dramatische Extrem-

ereignisse, gekennzeichnet durch einen starken Temperaturanstieg auf täglichen Zeitskalen und einem

Zusammenbruch des Polarwirbels. Die daraus resultierenden Anomalien können sich nach unten

fortsetzen und bieten Potential für die Vorhersage von troposphärischen Wetterlagen. Prognosen

für SSWs selbst sind jedoch besonders schwierig. Es wird in dieser Arbeit gezeigt, dass polare

stratosphärische Variabilität mit nicht-linearen und nicht-stationären statistischen Methoden mod-

elliert und prognostiziert werden kann, so lange alle signifikanten Faktoren miteinbezogen werden.

Darüber hinaus wird ein Ansatz auf Basis eines neuronalen Netzes vorgestellt, das SSWs in Major-,

Minor- und Final- Warmings klassifizieren kann. Dabei wird die statistische Bedeutung der Fak-

toren und deren nicht-lineare Zusammenhänge abgeschätzt. Stratosphärische Temperatur und Ozon

werden aufgrund ihrer spezifischen Bedeutung für Veränderungen in Dynamik und Zusammenset-

zung statistisch modelliert. Die vier statistischen Methoden werden verwendet, um die inhärente

natürliche Variabilität in der Stratosphäre zu quantifizieren. Dadurch kann der Einfluss der anthro-



pogenen Antriebe bestimmt werden. Die Berücksichtigung verschiedener Datensätze zusammen mit

den unabhängigen statistischen Verfahren macht es möglich robuste Unsicherheiten abzuschätzen.

Schliesslich wird mit Hilfe der statistischen Methoden Variabilität in Temperatur und Ozon erfol-

greich bis zum Jahr 2100 vorhergesagt. Es wird in dieser Arbeit gezeigt, dass die standard lineare

Methode zu robusten Ergebnissen auf der monatlichen Skala führt. Die fortschrittlichen Methoden

sind jedoch deutlich besser für die Modellierung und Vorhersage auf der täglichen Skala geeignet.
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Chapter 1

Introduction

The characteristics of the Earth’s atmosphere change depending on spatial and temporal scales.

This is referred to as variability. Stratospheric variability, as considered in this work, has become

increasingly important over the past 60 years. The destruction of ozone since the 1960s, due to

man-made ozone depleting substances (ODS), has not only changed the composition and dynamics

of the stratosphere [Solomon, 1999] but also climate of the troposphere, particularly evident in

near-surface temperature over Antarctica [Thompson and Solomon, 2002]. The combined effects

of the loss of ozone along with the release of greenhouse gases [e.g., Stolarski et al., 2010], most

importantly carbon dioxide and methane, into the atmosphere has led to a stratospheric height-

dependent cooling trend up to three times stronger in magnitude than the warming trend found at

tropospheric levels [Randel et al., 2009]. According to future projections made by various chemistry-

climate models, the stratospheric negative temperature trend will persist linearly and well into the

second half of the 21st century [SPARC CCMVal, 2010; WMO, 2011]. Due to the ban on ODS

instigated by the Montreal protocol in 1987, stratospheric ozone has shown significant signs of

recovery over the polar regions in recent years [Randel and Thompson, 2011]. Ozone is expected to

reach 1980 levels by the year 2050. From then onwards, ozone could over-recover to values higher

than those of 1960, according to future simulations [WMO, 2011]. This expected ozone trend

is attributed to the strong increase of greenhouse gases in the 21st century, leading to increased

heating and convection in the tropics and a likely acceleration of meridional transport processes in

the stratosphere [Eyring et al., 2007].

Aside from long-term trends, as prominently observed in temperature and ozone, caused by

anthropogenic emissions many other naturally occurring phenomena are equally important for the

stratosphere [e.g., Andrews et al., 1987]. In this work, the natural variability inherent in the strato-

sphere is quantified. Anthropogenic change can be attributed appropriately, only if the importance

of natural variability is known. Natural modes and forcings appear in different facets in the strato-

sphere. Some are a result of the internal interactions in the stratosphere, such as the Quasi-Biennial

Oscillation [Baldwin et al., 2001] or Sudden Stratospheric Warmings [Matsuno, 1971], others are

external forcings, such as solar variability [e.g., Gray et al., 2010] or volcanic eruptions [Robock,

2000]. Oceanic variability, as prominently observed in the El Niño- Southern Oscillation [Trenberth,

1
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1997], also plays a major role for stratospheric processes [e.g. Manzini et al., 2006; Randel et al.,

2009]. All of these modes and forcings, internal as well as external, interact to create a nonlin-

ear and complex response in the stratosphere [e.g., Calvo et al., 2009; Richter et al., 2011]. This

stratospheric response affects processes in other atmospheric layers. A particularly strong coupling

is observed during northern hemisphere winter, when the remainders of extreme events in the polar

stratosphere tend to descend downward to influence near-surface weather [Baldwin and Dunkerton,

2001; Thompson, 2003].

In order to quantify natural variability in the climate system, chemistry-climate models are

commonly used to perform sensitivity experiments. This means that a particular forcing is altered

in a certain way, and the consequent change of variability is simulated within the climate model

[e.g., SPARC CCMVal, 2010; Richter et al., 2011]. However, this is computationally expensive and

is limited by the fact that only a few forcing combinations can be evaluated. Therefore, this work

investigates the possibility of modeling stratospheric processes using purely statistical methods.

These methods are mathematically simpler and computationally less demanding. Even though

statistical methods do not simulate physical processes explicitly, one can use them to learn about

underlying relationships to forcing factors. A wide range of statistical methods is applied in this

work. The statistical methods are trained with historical data based on reanalyses, observations,

and model simulations. Training refers to the process of learning the patterns inherent in the

data. Since atmospheric processes are generally nonlinear and nonstationary, statistical methods are

applied that are able to cope with these properties. In contrast, standard and widely-used tools of

analysis, such as multiple linear regression (MLR), can only model linear and stationary variability.

However, because of its robustness and simplicity, MLR is one of the most common tools to analyze

stratospheric variability [e.g., Bodeker et al., 1998; Crooks and Gray, 2005; SPARC CCMVal, 2010].

In this work, the modeling and forecast performance of MLR is compared to that of the advanced

statistical methods.

Aside from the impact of forcing factors, this work also aims at forecasting stratospheric variabil-

ity on time scales ranging from days to decades. When the goal is to forecast on the climatological

scale, sophisticated chemistry-climate model runs are commonly performed, which is proven to be re-

liable when combining independent model projections [SPARC CCMVal, 2010; WMO, 2011]. When

the goal is to make daily to seasonal weather forecasts in the stratosphere, general circulation model

runs consisting of multiple observation constrained ensemble members are performed [e.g., Gerber

et al., 2009; Kuroda, 2010]. This is successful on the daily, but looses skill on the seasonal scale.

A very different approach is taken in this work. Stratospheric forecasts on various time scales are

performed using purely statistical methods. The methods forecast by learning variability patterns

with the help of forcing factors known to influence stratospheric processes. The trained model can

then be evaluated with factors it has not been trained with. This process is referred to as forecasting

in atmospheric science and more generally as statistical pattern recognition [Ripley, 1996].

It is common practice in the stratospheric community to apply a certain statistical method for

a specific application. Usually comparisons between different methods are not addressed. For the
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first time in this work, a comparison of different and independent statistical methods is performed,

applied to the modeling of variability on different stratospheric spatial and temporal scales. Modeling

in this sense means the purely data-driven training of a statistical method, often with the help of

external factors. The considered methods are linear discriminant analysis (LDA), a cluster method

based on finite elements (FEM-VARX), a neural network, namely the multi-layer perceptron (MLP),

and the support vector machine (SVM). The training is successful when the statistical model has

learned the underlying linear or nonlinear patterns. The modeling performance is assessed with

several measures suitable for regression and classification problems. The statistical methods have

been selected for their ability to deal with nonlinearity, nonstationarity, multi-dimensional data,

as well as regression and classification problems. Another important criterion was whether the

corresponding computational libraries are efficiently implemented and freely available. Advanced

statistical methods can often not be applied without estimating a set of tuning parameters. A full

set of these parameters is referred to as the model architecture and is estimated using information

criteria along with cross-validation. The goal of this thesis is to answer three major questions: 1)

What is gained by applying more complex statistical methods, as opposed to simple, linear methods?

2) Can statistical methods be used to forecast stratospheric behavior? 3) Which of the statistical

approaches is best suited to tackle stratospheric problems?

The variability in stratospheric temperature and ozone is specifically important for indicating

changes in dynamics and composition. The considered statistical methods are used to model the

large-scale variability in temperature and ozone of the global stratosphere on a zonal mean domain

in observations, reanalyses, and model simulations. Despite of the zonally averaged data, the

dimensionality is still large. With standard resolutions, the product of the number of latitudes times

the number of pressure levels is around one thousand. Therefore, the first step is to reduce the

dimensionality of data from various sources, using principal component analysis while still retaining

at least 90% of the variance found in the data. The reduced representation is then used to train

the statistical models with data representing the recent climate. The different statistical models

are compared with respect to their regression performance. Once the variability is modeled, the

impact of forcing factors influencing stratospheric processes is calculated. From this, the statistical

importance of forcing factors originating naturally, i.e. natural variability, is estimated. With the

natural variability being quantified, it is possible to estimate the impact of anthropogenic forcings on

recent climate in the stratosphere. Considering various data sets, along with the four independent

statistical methods, makes it feasible to estimate robust uncertainties for the impacts of each of the

forcing factors that influence stratospheric variability. In addition, long-range statistical forecasts up

to the year 2100 are made with reasonable assumptions about the forcing factors. The statistical

forecasts are compared to future projections simulated by sophisticated chemistry-climate models

[SPARC CCMVal, 2010].

Sudden stratospheric warmings (SSWs) are important phenomena with broad implications for

tropospheric weather [Baldwin and Dunkerton, 2001]. They were first observed by scientists at

the Free University of Berlin [Scherhag, 1952]. An SSW is a prominent example of the interac-
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tion between the stratospheric westerly mean flow during winter and dissipating planetary waves

[McIntyre, 1982]. SSWs are characterized by an increase in temperature of up to 70K within a

few days in the polar stratosphere, a breakdown of the polar vortex, and a reversal of the zonal

flow in the stratosphere [Labitzke and van Loon, 1999]. SSWs are dramatic extreme events and

their occurrence is influenced by a number of phenomena, such as the Quasi-Biennial Oscillation,

the 11-year solar cycle, the El Niño- Southern Oscillation, volcanic eruptions, etc. Previous efforts

investigated the impact of these factors [e.g., Holton and Tan, 1980; Labitzke, 1987; Camp and

Tung, 2007a,b; Mitchell et al., 2011] and showed that only the combined effect of all the relevant

forcings leads to a consistent picture. However, the statistical analysis of previous work is based on

linear and stationary assumptions, which are violated in the polar stratosphere. In this work, the

occurrences of SSWs and their classification is investigated with nonlinear statistical methods, while

including a range of relevant forcing factors simultaneously [Blume et al., 2012]. SSWs are classified

in major, minor, and final stratospheric warmings within this framework, while estimating onset,

intensity, and duration of the warming events. The nonlinear interrelationships between the forcing

factors are computed. In addition, polar stratospheric variability, as observed in geopotential and

temperature anomalies, is forecasted using partly nonlinear and nonstationary statistical methods

[Blume and Matthes, 2012]. In a hindcast experiment, the performance of the different methods is

assessed. Finally, the polar stratospheric variability for the winter 2011/12 is successfully forecasted

using purely statistical methods while making reasonable assumptions about the external factors.

♦ ♦ ♦

This work is arranged as follows. Chapter 2 introduces variability important for the stratosphere.

Chapter 3 concisely presents the statistical methods employed in this work and makes first compar-

isons between them. Data used all throughout this work are introduced in Chapter 4. In Chapter 5,

the global stratospheric variability of the recent climate is modeled to then quantify natural vari-

ability. In addition, statistical forecasts are made and compared to model simulations. Chapter 6

presents a novel approach to the classification of sudden stratospheric warmings for the time of

1958 to 2010, which is able to distinguish major, minor, and final warmings. Moreover, nonlin-

ear interrelationships between forcing factors are investigated. Chapter 7 aims at forecasting polar

stratospheric variability using statistical models and at estimating the importance of external factors.

Finally, conclusions and an outlook to further research are given.



Chapter 2

Stratospheric Variability

The Earth’s atmosphere can be naturally grouped into different vertical layers, each having certain

physical, chemical, and radiative properties. The lowest part of the atmosphere is distinguished

between the troposphere up to approx. 10 km (higher in the tropics, lower at high latitudes),

followed by the stratosphere up to approx. 50 km, and the mesosphere up to approx. 90 km. This

grouping is most commonly made according to the vertical temperature gradient in the atmosphere as

indicated in Fig. 2.1. Since the temperature in the stratosphere increases gradually with height due to

absorption of solar radiation by ozone, there is little turbulence found making it a stable atmospheric

layer. There are different physically consistent simulation approaches that aim at modeling the

middle atmosphere and its variability [Andrews et al., 1987]. Historically, General Circulation Models

(GCMs) provided the first approach, simulating dynamically and radiatively induced processes. For

the stratosphere in particular, chemical processes play a crucial role because of the aforementioned

importance of ozone and other gases such as chlorine and bromine. Chemically induced reactions

in the atmosphere alter dynamical and radiative processes. Therefore, in order to simulate the

interactions between dynamics, radiation, and chemistry, Chemistry-Climate Models (CCMs) are

developed since the late 1990s which simulate chemical processes in addition to the physics of

dynamics and radiation. The latest generation of CCMs from modeling centers all over the globe

were compared in the recent Chemistry Climate Model Validation-2 Activity (CCMVal-2) [SPARC

CCMVal, 2010] embedded in SPARC1. The most recent advancement are CCMs coupled to ocean,

land, and cryosphere models which, as a whole, are referred to as Earth System Models (ESMs).

ESMs often simulate interactions with the biosphere.

Almost all ozone, as shown in Fig. 2.1, is found in the stratosphere between 100 and 1 hPa

where the so-called ozone layer peaks at around 30 hPa in the tropics and at around 70 hPa over

the polar region. Ozone is responsible for the absorption of a great deal of solar radiation in the

ultra-violet (UV) band making ozone important for all life on earth because of the damaging effects

that UV may cause to living organisms. Ozone is produced in the tropics involving solar radiation

and is dynamically transported to the poles via global meridional circulation processes. Atmospheric

1SPARC is short for Stratospheric Processes And their Role in Climate. SPARC is a core project of the World
Climate Research Program (WCRP).

5
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Figure 2.1: The typical vertical evolution of atmospheric temperature in Kelvin depending on height
from the troposphere to the thermosphere. Figure from Mohanakumar [2008].

dynamics have a strong seasonal dependence. During summer, the stratosphere is in radiative

balance because planetary waves from the troposphere cannot propagate upwards due to an easterly

flow in the zonal mean. During winter, however, the westerly mean-flow allows wave propagation and

possible dissipation in stratospheric levels causing nonlinear interactions and dynamical feedbacks.

Prominent feedbacks are sudden stratospheric warmings as the main manifestation of stratospheric

variability during winter.

2.1 Sudden Stratospheric Warmings

The variability of the north-polar stratospheric vortex is a key dynamical feature of the middle

atmosphere [Labitzke and van Loon, 1999]. Specifically, its breakdown during winter resulting in

a sudden stratospheric warming [Scherhag, 1952; Labitzke, 1972]. Sudden stratospheric warmings

(SSW) are characterized by stratospheric temperatures increasing by 25K on average, but up to 70K

in extreme cases, within a few days. The polar vortex is a low pressure region in the stratosphere

over the pole during winter. The large temperature gradient between low latitudes and the pole

in the stratosphere leads to strong thermal westerly winds in mid latitudes during winter which is

referred to as the polar night jet [Baldwin and Holton, 1988]. The field of high potential vorticity

in the polar stratosphere defines the polar vortex.

The variability of the polar vortex is a prominent example of dynamical wave-mean flow inter-

actions [McIntyre, 1982]. Long planetary waves with wave numbers one or two are induced in the

troposphere to then propagate upwards. According to the Charney-Drazin criterion [Charney and
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Figure 2.2: The evolution of the zonal mean zonal wind at 60◦N, 10 hPa (blue) and the temperature
averaged on the polar cap (60◦N-90◦N) at 10 hPa (red) for the winter 1998/99, taken from the
ERA-40 reanalysis. The white line denotes the respective 45-year long-term mean and the shading
the corresponding standard deviation. Labeled is the first day of the respective month.

Drazin, 1961], these waves will only reach the stratosphere if the zonal mean flow is westerly (only

during winter) and if this flow is not too strong in magnitude. The planetary waves can be induced

on, e.g., mountain ranges or blocking situations [Charney and Eliassen, 1949; Labitzke, 1965; Mar-

tius et al., 2009; Dörnbrack et al., 2012]. Once these waves reach the upper stratosphere, lower

mesosphere they can dissipate and deposit their momentum there which slows down the zonal flow

and may even reverse it. If the zonal flow reverses, meaning easterly zonal winds in the zonal mean,

the polar vortex is either weakened and largely displaced from the pole or split into two smaller

vortices [e.g., Labitzke and Naujokat, 2000; Charlton and Polvani, 2007]. A reversal of the zonal

flow is equivalent to the occurrence of an SSW. Due to the uneven land-sea distribution and the

numerous mountain ranges in the northern-hemisphere, planetary waves are constantly induced in

the troposphere making a vortex breakdown much more likely in the northern hemisphere than in

the southern. There is an SSW taking place every two years on average [Labitzke and Naujokat,

2000] in the northern hemisphere. In contrast, there is only a single SSW in the year 2002 [Varotsos,

2004] on the entire observed record of the southern hemisphere.

To illustrate the dynamics of an SSW in the northern hemisphere, Fig 2.2 shows the progress of

the zonal mean zonal wind at 60◦N, 10 hPa (blue) and the temperature averaged on the polar cap

(60◦N-90◦N) at 10 hPa (red) for the winter 1998/99, taken from the ERA-40 reanalysis [Uppala

et al., 2005]. The white line denotes the respective 45-year long-term mean and the shading

the corresponding standard deviation. The zonal flow reversed twice during this winter. First in

December and second at the end of February [Labitzke and Naujokat, 2000]. Therefore, two sudden

stratospheric warmings took place during the winter 1999/98 which is a very extraordinary situation
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since SSWs usually happen only once per winter, if at all. The two SSWs of the winter 1999/98

are naturally accompanied by a strong temperature increase over the polar region as observed in

Fig. 2.2. Detecting sudden stratospheric warmings is usually done using the zonal wind from Fig. 2.2.

This effective measure was first introduced by the Stratospheric Research Group Berlin [Labitzke and

Naujokat, 2000] and incorporated by the World Meteorological Organization (WMO). It was used by

Charlton and Polvani [2007] to compile climatologies of sudden stratospheric warmings derived from

reanalyses data. However, work made by Blume et al. [2012] and presented in Chapter 6 showed

that SSWs can also be classified by only incorporating polar cap temperatures along with external

forcings influencing the polar vortex. In fact, another commonly used measure is the meridional

temperature gradient at 10 hPa, which is positive (warmer at the pole than at mid-latitudes) during

stratospheric warming events. A positive temperature gradient indicates a warming, such as a minor

or Canadian Warming, but only the reversal of the zonal mean zonal wind at 60◦N indicates a major

stratospheric warming. Chapter 6 describes these different events in more detail and presents a novel

approach for classifying them.

SSWs are an exciting subject of ongoing research not only because of their impact on strato-

spheric dynamics and composition but also due to their remarkable influence on the northern hemi-

sphere winter in the troposphere. A large number of extreme vortex events in the stratosphere is

shown to propagate downward on time scales of 10 to 20 days [Baldwin and Dunkerton, 2001]. This

downward propagation then leads to an increased probability of cold anomalies over north America,

Asia, and Europe within 60 days of the SSW central date [Thompson, 2003]. This is likely ac-

companied by a weakening of the North-Atlantic Oscillation and winter storm tracks that are found

more southern than during strong vortex conditions [Baldwin and Dunkerton, 2001]. Since there

are at least 10 days needed for anomalies to propagate downward to the surface during weak vortex

events, there is predictive skill for the troposphere and near-surface weather. However, forecasting

SSWs themselves remains very difficult. When making polar stratospheric forecasts, general circula-

tion model runs are performed that consist of multiple observation constrained ensemble members.

These forecasts are reliable on a daily scale but, on a seasonal scale, they quickly become computa-

tionally expensive and loose their forecast skill [Gerber et al., 2009; Kuroda, 2010; Dörnbrack et al.,

2012].

Another way of approaching seasonal forecasts for the polar vortex, is understanding statistical

relationships between external variability factors and the dynamics in the polar stratosphere. The

most prominent natural forcing factors include the Quasi-Biennial Oscillation (QBO) [e.g., Baldwin

et al., 2001], the El Niño-Southern Oscillation (ENSO) [e.g., Manzini et al., 2006], the 11-year

solar cycle [e.g., Gray et al., 2010], and high impact volcanic eruptions [Robock, 2000]. Previous

efforts investigated the impact of external factors on the polar vortex. Holton and Tan [1980, 1982]

showed that the QBO east phase leads to a generally warmer, more disturbed polar vortex and vice

versa for QBO west. This so-called Holton-Tan relationship was later shown to be present during

solar minimum but significantly weaker during solar maximum [e.g., Labitzke, 1987; Labitzke and

van Loon, 1988]. Labitzke and co-authors showed that sudden stratospheric warmings are most
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likely to happen during solar maximum (minimum) and QBO west (east) phase. Accordingly, the

work made by Camp and Tung [2007a] found the least-perturbed vortex state to take place during

solar minimum and QBO west conditions. Recent studies have shown that positive ENSO phases

(El Niño) lead to a more disturbed polar vortex as opposed to negative ENSO phases (La Niña)

where the vortex is less disturbed [Camp and Tung, 2007b; Mitchell et al., 2011]. In agreement with

previous work, Blume et al. [2012] has found that the QBO and ENSO have the largest impact on

the polar vortex, followed by the solar cycle. The least understood forcing factor is aerosols injected

into the stratosphere by very strong but rare volcanic eruptions [Robock, 2000] leading to nonlinear

feedbacks with other forcings [e.g., Garfinkel and Hartmann, 2007].

The external factors influencing the polar vortex interact with each other, resulting in a complex

and nonlinear dynamical response [e.g., Calvo et al., 2009; Richter et al., 2011]. Accordingly, Blume

et al. [2012] derived nonlinear patterns important for SSWs, connecting QBO, ENSO, and the solar

cycle (see Chapter 6). Blume and Matthes [2012] showed that there is great potential in statistically

forecasting extreme vortex events when incorporating all significant factors simultaneously while

training a statistical model allowing for nonlinear relationships (see Chapter 7). The natural forcings

and modes of variability important for stratospheric processes are introduced in the following.

2.2 Natural Variability Factors

Variability means the significant change of physical properties of a system, such as the stratosphere.

This change may happen on many different time scales, from hours to centuries. It may be peri-

odically, a long-term trend, or even just a singular one-time event. Variability in the stratosphere is

the result of a complex link between various forcings influencing the evolution of the stratosphere.

These forcings may be part of the internal stratospheric variability (e.g., Quasi-Biennial Oscillation,

Northern Annular Mode) or external forcings (e.g., solar variability, volcanoes, greenhouse gases,

ozone depleting substances). In the following, the most prominent forcings of natural origin are

introduced.

2.2.1 The Quasi-Biennial Oscillation

The Quasi-Biennial Oscillation (QBO) is an east-west oscillation in zonal wind in the tropical strato-

sphere where stronger easterlies and weaker westerlies alternate with an irregular period averaging to

approx. 28 months with highest amplitudes in the middle and lower tropical stratosphere [Baldwin

et al., 2001]. Figure 2.3 shows observed equatorial zonal mean zonal wind anomalies from 1964

to 1990. The QBO first appears in the upper stratosphere to then propagate downward to the

lower stratosphere where it is typically defined at 50hPa (≈ 21 km). The more chaotic zonal wind

regime observed in the upper stratosphere is also influenced by the Semi-Annual Oscillation (SAO)

[e.g., Garcia et al., 1997] with a period of approx. 6 months extending well into the mesosphere.

The QBO is driven by gravity, inertia-gravity, Kelvin, and Rossby-gravity waves originating from the
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Figure 2.3: Observed monthly equatorial zonal mean zonal wind anomalies in ms−1; figure from
Baldwin et al. [2001]. The contour interval is 6 ms−1, with the band between -3 and 3 ms−1

unshaded. Red represents positive (westerly) and blue negative (easterly) winds. The seasonal cycle
was removed from these data (deseasoned) making easterly and westerly amplitudes comparable in
magnitude.

troposphere and their dissipation in the stratosphere [Holton and Tan, 1982; Baldwin et al., 2001].

Even though the QBO’s amplitude decreases very fast when leaving the equator, its influence on the

extra-tropical and polar stratosphere along with sudden stratospheric warmings is large [e.g., Holton

and Tan, 1980, 1982; Labitzke and van Loon, 1988; Camp and Tung, 2007a]. The north-polar

stratospheric vortex is found to be more disturbed and weaker during phases of QBO east whereas

QBO west phase lead to a stronger, less disturbed vortex. During QBO east, upward-propagating

Rossby waves are more likely to be guided towards the polar vortex to then disturb the westerly

flow during winter. This is referred to as the Holton-Tan mechanism [Holton and Tan, 1980, 1982].

There have been also links found that connect the QBO directly with phenomena in the lower

troposphere [e.g., Coughlin and Tung, 2001; Thompson, 2003].

In order to quantify the influence of the QBO on extratropical phenomena in the stratosphere,

such as polar vortex variability, it is common practice to define time-dependent indices. A common

QBO index is the zonal mean zonal wind at 50 hPa averaged between 5◦ S and 5◦N [Holton and

Tan, 1980]. However, depending on the specific teleconnection under investigation, a different level

may be more appropriate. One efficient way of obtaining a more general representation is computing

empirical orthogonal functions (EOFs; see Section 3.1) [Wallace et al., 1993] of the deseasoned zonal

mean zonal wind field between 100 and 1 hPa, averaged between 5◦ S and 5◦N. The two leading

EOFs represent almost all variance in this region and are often used simultaneously for statistical

analysis in the stratosphere. The correlation fields of U (zonal wind) with the first (QBO1) and

second EOF (QBO2) are shown in Fig. 2.4 along with their principal components calculated from

the ERA-40 reanalysis. Explained variance of each EOF is given in parentheses. It is observed that

the QBO1 correlation maximizes at 50 hPa, making its principal component equivalent to the regular

QBO index at 50 hPa. The QBO2 correlation maximizes at 20 hPa. QBO2 is referred to as the

orthogonal QBO because the dot product between QBO1 and QBO2 is zero. Please note that since

QBO1 and QBO2 are principal components they have zero mean.
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Figure 2.4: Top: Correlation fields of U (zonal wind) with the first (QBO1) and second EOF
(QBO2) calculated from ERA-40. Areas that are not hatched denote correlation coefficients that
are statistically significant at the 95% confidence level. Explained variance of each EOF is given in
parentheses. Bottom: The corresponding principal components for a sample period.

2.2.2 The Annular Modes

The two annular modes are the largest extratropical modes of variability in the stratosphere [Baldwin

and Dunkerton, 2001] aside from the seasonal cycle. There is the Northern Annular Mode (NAM),

centered around the north pole, and the Southern Annular Mode (SAM), centered around the south

pole. A regional manifestation of the NAM in the troposphere is the North-Atlantic Oscillation

(NAO) [e.g., Hurrell and Deser, 2009] largely affecting weather in the North-Atlantic region. As

the name suggests, NAM and SAM represent ring-like structures around the corresponding pole.

They can be imagined as a dipole which redistributes atmospheric mass between the polar and the

subtropical regions. For instance, a positive anomaly in geopotential over the north pole leads to

a negative anomaly in the subtropics and vice versa, with the zero line somewhere around 60◦N.

The tropospheric annular modes are thought as to originate from the interaction between baroclinic

eddies and the tropospheric mid-latitude jet [Haynes, 2005]. At the same time in the stratosphere,

the variability of the polar stratospheric vortex is a result of tropospheric wave forcing and its

interaction with the zonal flow [Charney and Drazin, 1961]. However, studies such as Gerber and

Vallis [2005] find that annular modes are expected in any momentum and mass conserving rotating
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Figure 2.5: Top: NAM and SAM patterns in meters at 10 hPa calculated from monthly geopotential
anomalies of the ERA-40 reanalysis. Explained variance of each EOF is given in parentheses. Bottom:
The corresponding principal components in standard deviations for a sample period.

system. The physical causes of the annular modes are still under investigation.

Following Baldwin and Thompson [2009], the NAM can be defined as the leading EOF per pres-

sure level of area-weighted geopotential anomalies from 20◦N to 90◦N, and accordingly from 20◦ S

to 90◦ S for the SAM. The result of this procedure is shown in Fig. 2.5 which shows NAM and SAM

patterns (the leading EOFs) in geopotential meters at 10 hPa along with the corresponding monthly

NAM and SAM indices (principal components). It is observed that the dipole structure between high

and middle latitudes is more pronounced on the northern hemisphere. Also, the positive anomaly

over the north pole is weaker than that over the south pole reflecting the aforementioned large

influence of planetary waves on the northern-hemisphere polar stratosphere (compare Section 2.1).

During the respective winter, the north-polar vortex is generally much weaker than the south-polar

vortex due to more tropospheric wave disturbances on the northern hemisphere [e.g., Haynes, 2005].

The NAM and SAM indices, as shown in the bottom panel of Fig. 2.5, reflect the strength
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of the polar vortex. A positive value indicates a strong vortex whereas a negative value indicates

a weak vortex [Baldwin and Dunkerton, 2001]. The daily stratospheric NAM index is commonly

used to measure the disturbance of the polar vortex and the occurrence of sudden stratospheric

warmings. For instance, the NAM index in Fig. 2.5 (bottom) accurately shows the occurrences of

sudden warmings in the late 1980s [Labitzke and Naujokat, 2000] represented by the large negative

anomalies (larger than ≈ 2σ in magnitude) during this time. In contrast, the absence of large

negative anomalies during the 1990s represents no occurrences of sudden warmings. Furthermore,

the NAM is a powerful way of quantifying coupling between the stratosphere and the troposphere

during extreme events in the polar stratosphere. Baldwin and Dunkerton [2001] showed that strong

stratospheric anomalies in the polar region can propagate downward to the troposphere within

approximately 10 days to then significantly affect tropospheric weather conditions for up to 60 days

[Thompson, 2003]. This may be used to improve predicting weather in the troposphere.

2.2.3 Sea Surface Temperatures

The variability in sea surface temperature (SST) and other oceanic parameters play a key role in the

development of weather and climate not only in the troposphere, but in the stratosphere as well. In

particular, interannual time scales are dominated by phenomena linking ocean and atmosphere. The

El-Niño Southern Oscillation (ENSO) [Trenberth, 1997], as the dominant global mode of oceanic

variability, is the result of tropical ocean-atmosphere interactions which is therefore observed in

oceanic variables such as SST or salinity as well as in atmospheric variables such as air temperature

or sea level pressure [e.g., Deser et al., 2010]. ENSO has great implications for other atmospheric

phenomena. For instance, it has been shown that ENSO modulates tropical stratospheric ozone

and temperature [Randel et al., 2009]. Moreover, it was reported that El-Niño, the warm phase of

ENSO, leads to a significantly more disturbed north-polar stratospheric vortex [e.g., Manzini et al.,

2006; Camp and Tung, 2007b; Mitchell et al., 2011] than during neutral or negative ENSO phases

(La Niña). The resulting vortex anomalies may subsequently propagate downward affecting weather

in the troposphere [Cagnazzo and Manzini, 2009].

There are different ways of defining ENSO. Since, in this work, the influence of ENSO on the

stratosphere is investigated, the popular Nino3.4 index is used which is reported as having the most

significant global teleconnections [Trenberth, 1997]. The Nino3.4 index is the area-weighted average

in sea surface temperature anomalies in the box from 170◦ E to 120◦ E and from 5◦ S to 5◦N. It is

equivalent to the leading EOF of SST anomalies of the mostly ice-free domain between 60◦ S to 60◦N

[Deser et al., 2010]. The first four EOFs are shown in Fig. 2.6 along with the corresponding principal

components, calculated from observed monthly detrended SST anomalies from the HadlSST1 data

set [Rayner et al., 2003]. They explain more than 40% of the world-wide SST variance, aside from

the seasonal cycle. It is observed that the first EOF corresponds to ENSO with its center of action

in the central to western equatorial Pacific. ENSO has direct SST teleconnections mainly in the

northern and southern Pacific, but also in the central Indian and Atlantic Ocean. The second EOF
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Figure 2.6: Top: The first four EOFs in Kelvin of monthly observed detrended SST anomalies
between 60◦ S and 60◦N. The first EOF corresponds to ENSO, the second to the AMO, the third
to the NPO/WP pattern, and the forth one to the PDO. See text for a description of the different
patterns. Bottom: The corresponding monthly principal components for a sample period.

reveals the Atlantic Multidecadal Oscillation (AMO) [Schlesinger and Ramankutty, 1994] with its

center of action in the North-Atlantic. The AMO has direct SST teleconnections mainly in the

northern and central Pacific. The third EOF, as observed in Fig. 2.6, corresponds to the North

Pacific Oscillation- West Pacific (NPO/WP) teleconnection pattern [e.g., Linkin and Nigam, 2008]

with its center of action in the north-west and central Pacific. The NPO/WP has direct SST

teleconnections with the northern Atlantic, the eastern Pacific and the oceanic region surrounding

Australia. The fourth EOF clearly reveals the Pacific Decadal Oscillation (PDO) [Bond and Harrison,

2000; MacDonald and Case, 2005] with its center of action in the North-Pacific. The PDO has direct

SST teleconnections in the equatorial western Pacific, the southern Indian ocean, and the northern

and southern Atlantic ocean. There are other ways to determine indices for these phenomena, e.g.,

the AMO is more commonly defined as the area-weighted average of SST anomalies over the North

Atlantic. However, it is observed that the four main modes of world-wide SST variability are obtained
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Figure 2.7: The solar irradiance in mW per m2 and wavelength at the top of the atmosphere (solid
spectral irradiance) and at the Earth’s surface (dashed spectral irradiance). The spectral variability
along with the total variability (≈ 1 W/m2) is also shown. Figure from Lean [2000].

consistently with an EOF analysis, making it a robust representation and easy to reproduce.

2.2.4 The 11-Year Solar Cycle

Solar heating is essential for the Earth’s weather and climate system. In a good approximation,

the sun can be considered a black body emitter with a temperature of 5900 K [Stix, 2004]. The

integrated or total solar irradiance (TSI) at the top of the atmosphere is 1366 W/m2 [Lean, 2000]

which is referred to as the solar constant. The TSI is, however, not constant and varies on different

timescales from days to centuries [Gray et al., 2010]. The most important mode of solar variation

for recent weather and climate evolution is the 11-year solar cycle which is an irregular oscillation in

solar irradiance averaging to a period of approx. 11 years. When the solar cycle is referenced in this

work, the 11-year solar cycle is meant. The variation in solar activity results in broad implications

for processes in the stratosphere, in particular due to changes in the ultra-violet band. There is a

significant solar influence, observable mainly in upper and lower equatorial stratospheric levels [e.g.,

Gray et al., 2010]. This solar signal can be observed in different variables such as ozone, temperature,

or wind. In combination with other variability factors, the solar cycle influences the polar vortex

and the occurrence of sudden stratospheric warmings [e.g., Labitzke and van Loon, 1988; Camp

and Tung, 2007a; Gray et al., 2010]. A possible mechanism for this was proposed by Kodera and

Kuroda [2002] which states that an increased heating around the equatorial stratopause during solar

maximum leads to a greater temperature gradient between tropics and pole during early winter.

This gradient, according to the thermal wind equation, leads to an increased vertical gradient of

zonal winds in mid-latitudes and a strengthening of the polar vortex and therefore less interactions

between the westerly mean-flow and planetary waves. This proposed mechanism was later verified
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Figure 2.8: Left: Daily (black) and monthly (red) F10.7 for the period from 1957 to 2011. Right:
The corresponding normalized frequency distributions along with the 120 sfu threshold separating
solar minimum from solar maximum conditions.

by general circulation model simulations [Matthes et al., 2004]. There are also significant solar

impacts reported in the literature concerning, e.g., the QBO [Salby and Callaghan, 2006], tropical

SSTs [White and Liu, 2008], and the North-Atlantic Oscillation [Kodera, 2002]. It has been shown

that there is a robust solar cycle signal all throughout tropospheric levels [Coughlin and Tung, 2004].

The TSI changes by about 1 W/m2 (≈ 0.1%) from solar minimum to solar maximum during

the solar cycle [Lean, 2000]. This change in solar irradiance is not distributed evenly across the

different wavelengths. Fig. 2.7 shows the spectral irradiance along with the spectral variability from

102 to 105 nm. The spectral variability is much higher in the ultra-violet (UV) range towards smaller

wavelengths than in the rest of the spectrum. The UV range is of particular importance for the

stratosphere because ozone (O3) mainly absorbs radiation in this band. Therefore, stratospheric

variability in ozone and temperature will mostly be affected by short-wave changes in the solar

spectrum [Haigh, 1994, 1996]. As shown in Fig. 2.7, also oxygen (O2) absorbs in the UV band.

Most absorption in the infra-red is done by water vapor (H2O) and carbon dioxide (CO2) making

them, along with methane, important greenhouse gases. It is observed that only solar radiation in

the visible range does not experience a significant absorption in the Earth’s atmosphere and can

penetrate to the surface.

There are different proxies being used in the atmospheric science measuring the solar variability.

In this work, a proxy is used that represents the spectral variability in the UV. It was observed

that spectral changes are greatest in the UV and that ozone mainly absorbs in this band (see

Fig. 2.7). The utilized proxy is the solar radio flux at 10.7 cm [e.g., Gray et al., 2010], called the

F10.7 measured in solar flux units (1 sfu = 10−22 Wm−2Hz−1). The F10.7 data are taken at the

observatory in Penticton, British Columbia, Canada and are available at the National Oceanic and At-

mospheric Administration (NOAA) website under ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed
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Figure 2.9: The globally averaged aerosol optical depth (AOD) at a wavelength of 550 nm along
with the globally most significant volcanic eruptions including year of eruption and corresponding
latitude [Sato et al., 1993].

SOLAR_RADIO/FLUX/Penticton_Observed. The F10.7 is highly correlated to other measures of

solar variability such as the TSI or the sunspot number [e.g. Gray et al., 2010]. Fig. 2.8 shows

the daily and monthly F10.7 for the period of 1957 to 2011 (approx. 4.5 cycles) along with the

corresponding normalized frequency distributions. The time series reveal the approximately decadal

period as mentioned earlier. In this work, a value of 120 sfu is used to distinguish between solar

minimum and maximum conditions as denoted in Fig. 2.8. This threshold divides the frequency

distributions in two approximately equally sized parts and is therefore equivalent to the median of

the distribution. Other works, such as Labitzke et al. [2006], have considered 110 sfu and 150 sfu for

thresholds indicating solar minimum and maximum, respectively. This, however, does not take the

solar density distribution (see right panel of Fig. 2.8) into account and potentially neglects events

between the two thresholds.

2.2.5 Volcanic Eruptions

Volcanic eruptions are one of the least understood factors influencing the climate system [IPCC,

2007]. To have an effect on the stratosphere in particular, volcanic eruptions have to be powerful

enough to inject aerosols well into the stratosphere. This is more likely when the eruption takes place

in the tropics since vertical aerosol transport becomes more likely with increased convection [Robock,

2000]. Aerosols from strong tropical eruptions enter the stratosphere and are dynamically spread

to higher latitudes and around the globe. In the past 60 years, there have been only three volcanic

eruptions that injected significant amounts of aerosols into the stratosphere. Only the eruptions of

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed


CHAPTER 2. STRATOSPHERIC VARIABILITY 18

Mt. Agung (1963), El Chichón (1982), and Mt. Pinatubo (1991) were powerful enough to have an

influence on stratospheric dynamics and composition [Robock, 2000]. Fig. 2.9 shows the globally

averaged aerosol optical depth (AOD) at a wavelength of 550 nm [Sato et al., 1993] received from

the NASA Goddard Institute for Space Studies under http://data.giss.nasa.gov/modelforce/

strataer. AOD represents the optical thickness of air at a wavelength where transmission of light is

strongly influenced by volcanic aerosols due to absorption and scattering. The aerosol optical depth

is the extinction coefficient integrated over a vertical column. Therefore, the globally averaged AOD

can be used as a proxy of aerosol density. Fig. 2.9 clearly depicts the three large eruptions. In

addition, two smaller ones are charted in the late 1960s and the 1970s. Large volcanic eruptions

have significant effects on the Earth’s climate. It has been observed that volcanic eruptions lead to

global surface cooling by up to 0.1-0.2 K which may last up to 2 or 3 years after the eruption [Robock

and Mao, 1995]. On the other hand, there is increased heating observed in the stratosphere [Angell,

1997] due to enhanced absorption in the infra-red. Moreover, depletion of stratospheric ozone is

observed following powerful volcanic eruptions [Solomon, 1999].

2.3 Temperature and Ozone Trends

There are significant long-term trends in stratospheric temperature and ozone, observed for the

recent climate (∼1960 to present) and simulated for the future climate (present to ∼2100). Under-

standing the causes and evolution of these trends is crucial for understanding stratospheric variability

as a whole.

2.3.1 Recent Climate

The recent climate in the stratosphere is governed by a decrease in temperature [Randel et al.,

2009]. Fig. 2.10 shows the temperature trends from 1958 to 2007 from the surface to the middle

stratosphere averaged for three different latitude ranges and different observational data sets. There

is a robust temperature trend in the middle stratosphere of around -0.5 K/decade adding up to

a total temperature decrease of -2.5 K over the last 50 years, being almost independent of the

considered latitude range. This decrease is up to a factor of three stronger in magnitude than the

temperature increase observed in tropospheric levels [IPCC, 2007] as observed in Fig. 2.10. The

stratospheric temperature decrease is considered to be mainly caused by two factors: 1) The increase

in tropospheric greenhouse gases (mainly CO2) causing less back-radiation in the infra-red to the

stratosphere; and 2) The increase of ozone depleting substances (mainly chlorine and bromine)

leading to less ozone and therefore less absorption of solar radiation in the ultra-violet resulting in

less warming. The observed stratospheric temperature trends have also been confirmed by most

CCMs during the SPARC CCMVal-2 initiative [SPARC CCMVal, 2010]. The trend in the upper

stratosphere (not shown) is even found to be slightly stronger than the trend in lower levels mainly

driven by the destruction of ozone.

http://data.giss.nasa.gov/modelforce/strataer
http://data.giss.nasa.gov/modelforce/strataer
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Figure 2.10: Temperature trends from 1958 to 2007 of the annual mean temperature from the
surface to the middle stratosphere averaged for three different latitude ranges and different obser-
vational data sets. Figure from Randel et al. [2009].

Fig. 2.11 shows observed stratospheric ozone trends from 1979 to 2004, estimated from a

number of observational instruments. The trends are shown for the northern and the southern mid-

latitudes. It is observed that there is quite some uncertainty in ozone estimation in the stratosphere.

Nevertheless, significant trends are observed in the lower stratosphere with up to 4% and in the upper

stratosphere with up to 8%. Within the uncertainty, the observed ozone trends in mid-latitudes are

similar for northern and southern hemisphere. The ozone trends in the tropics are slightly smaller

but retain the same height-dependent structure.

The trends in ozone are unevenly distributed across the latitudes. The largest trends observed for

the recent climate are found over Antarctica (∼25%) followed by the Arctic region (∼10%) [WMO,

2007]. These trends have a strong seasonal variation because ozone depletion is favored during

times of low temperature. When stratospheric temperatures drop below a certain threshold (approx.

-78◦ C) during winter then polar stratospheric clouds can form which further increase the destruction

of ozone [Solomon, 1999]. Hence, ozone loss is highest in the winter hemisphere, especially in the

Antarctic region due to its very low temperatures and stable polar vortex [Andrews et al., 1987].

Both the depletion of ozone and the observed ozone trends are highest during spring time. During

this time of the year the well-known ozone hole appears over Antarctica which denotes a region of

very low ozone. Minimum spring-time column ozone has dropped by more than 50% with respect

to values of 1980 over Antarctica [WMO, 2007] and by approx. 30% over the Arctic. In addition,

the ozone density is highest over the poles [Solomon, 1999]. Ozone depletion implies cooling in the

stratosphere. It was reported by Thompson and Solomon [2002] that ozone destruction leads to a

strengthening of the polar vortex. The recent climate change observed in the southern hemisphere,
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Figure 2.11: Vertical profile of ozone trends in percent with respect to a climatology over the
northern (left) and the southern (right) mid-latitudes, estimated from a number of observational
instruments for the period of 1979 to 2004. The horizontal bars denote a 95% confidence interval.
Figure from WMO [2007].

most evident in near-surface temperature over Antarctica, is attributed to ozone depletion in the

stratosphere [e.g., Thompson and Solomon, 2002].

Responsible for the observed ozone depletion are mainly long-lived chlorofluorocarbons (CFCs)

released by man into the atmosphere. The most reactive CFCs are chlorine (Cl) and bromine (Br)

which effectively destroy ozone in several catalytic cycles with the help of oxygen and solar radiation

[Solomon, 1999]. From these two elements an index called Equivalent Stratospheric Chlorine (ESC)

can be defined as ESC = Cl + 60 · Br [Eyring et al., 2007], reflecting the fact that bromine is 60

times more reactive than chlorine. ESC naturally reflects the observed and simulated global trends

in ozone. It maximized somewhere between the years 1995 to 2000 and slowly decreases since.

Accordingly, first significant ozone recovery could be observed in recent years over the Arctic and

Antarctic regions [Randel and Thompson, 2011]. The decrease in ESC is attributed to the restriction

on the emissions of CFCs established by the Montreal Protocol in 1987. However, CFCs will still

continue destroying ozone on a high level due to their long residence time. Hence, understanding

the evolution of the recent climate is crucial for making reasonable projections into the future.

2.3.2 Future Projections

During CCMVal-2, future projections until 2100 were carried out using CCM simulations performed

by several independent modeling groups. Fig. 2.12 shows the simulated evolution of global column

ozone for the time of 1960 to 2100 along with the evolution of ESC, normalized to the value of 1960.



CHAPTER 2. STRATOSPHERIC VARIABILITY 21

Figure 2.12: The simulated evolution of global column ozone for the time of 1960 to 2100 along
with the evolution of ESC (red), normalized to the value of 1960. The projections represent a mean
across the different CCMVal-2 future simulations (blue), along with a 95% confidence interval.
Figure from WMO [2011].

The projections represent a mean across the different CCM simulations. Ozone change is evidently

governed by the change in ESC. Ozone will return to values of 1960 by around 2050. Towards the

end of the 21st century, ozone is expected to over recover to values significantly larger than those of

1960 due to increased heating and convection in the tropics caused by the positive temperature trend

in the troposphere WMO [2011]. It is speculated that there will be an acceleration of meridional

transport processes in the stratosphere further favoring the increase in extra-tropical ozone [Eyring

et al., 2007].

Fig. 2.13 shows trends in K/decade of global, annual mean temperature from the upper tropo-

sphere to the upper stratosphere from different and independent CCMVal-2 simulations for the first

and the second half of the 21st century. The model results agree relatively well and are able to re-

produce the observed recent climate trends (see Fig. 2.10). Further, it is observed that the negative

stratospheric temperature trend persists into the 21st century, maximizing in the upper stratosphere

with about -0.8 K/decade. As previously indicated, the global stratospheric temperature trend is a

result of a superposition of the effects of ozone depleting substances and greenhouse gases such as

carbon dioxide and methane, resulting in an almost linear stratospheric trend from 1960 to 2100

[Stolarski et al., 2010]. However, in the upper troposphere the temperature trend remains positive

with about 0.4 K/decade throughout the 21st century.

2.4 Statistical Analysis

Modeling the atmosphere using climate models is physically self-consistent and effective. During

the SPARC CCMVal initiative [SPARC CCMVal, 2010], it was shown that most CCMs are able to

realistically reproduce behavior and processes in the troposphere and the stratosphere. In order to
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Figure 2.13: Trends in K/decade of global, annual mean temperature from the middle troposphere
to the upper stratosphere from different and independent simulation runs for the first and the second
half of the 21st century. Figure from SPARC CCMVal [2010].

measure what is realistic, statistical analysis is needed. By using statistical techniques, information

about a system can be synthesized and significant information is extracted. Moreover, the importance

of variability factors on processes in the atmosphere is commonly attributed using statistical methods.

Forecasting, down-scaling, and even data assimilation is also envisaged with statistical models in

the atmospheric science community. Statistical analysis in the atmospheric science has become

an important and broad field of research [von Storch and Zwiers, 2001]. The introduction of fast

processing units along with the availability of free and efficient compilers and statistical libraries,

constantly pushes the limit of sophisticated methods in this field.

Different statistical methods are applied in the atmospheric sciences [Wilks, 1995]. It is generally

distinguished between descriptive and inferential statistics. Descriptive statistics aims at finding

key measures describing a set of data. This could be something like a simple sum, a correlation

coefficient, or a tailor diagram. In contrast, inferential statistics aims at learning inherent patterns

from the population that the data is supposed to represent [Jain et al., 2000]. Inferential statistical

methods are, e.g., regression analysis [Montgomery et al., 2006], or data clustering [Jain et al.,

1999]. A complete statistical analysis will generally make use of both, methods of descriptive and

inferential statistics. There are two main branches of inference: Frequentist and Bayesian inference.

The frequentist [Wilks, 1995] approach aims at drawing repeated samples from a population to infer

a statistical model. In contrast, the Bayesian approach [Jaynes, 2003] infers a model by finding a

prior degree of belief denoting a probability density. Frequentist methods are usually simpler and

more straight forward, which could be the reason for their popularity. As a result, Bayesian methods

are not often used in the atmospheric sciences. This work follows the frequentist approach. A

number of statistical methods inferring statistical models for pattern recognition are reviewed in the

next chapter.

An important statistical method for atmospheric science is the principal component analysis
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Figure 2.14: The result of a multiple linear regression trained with monthly observed quasi-global
(60◦ S-60◦N) column ozone data, subject to several external factors. From top to bottom: Observed
column ozone (black) and regression result (red); seasonal cycle (blue); solar cycle (red); QBO
(purple); ENSO (light blue); Residual (gray); Volcanoes (green); ESC (red). Figure from Chapter 8
of SPARC CCMVal [2010].

(PCA) [Jolliffe, 2002], also called empirical orthogonal function (EOF) analysis. PCA can generally

be applied to a variety of problems, specifically when prominent variabilities dominate the system

and/or dimension reduction is needed. Another important method is that of multiple linear regression

[Montgomery et al., 2006] which is the most commonly used regression technique in stratospheric
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research [e.g., Bodeker et al., 1998; Crooks and Gray, 2005; Randel et al., 2009; Gray et al., 2010;

SPARC CCMVal, 2010]. To illustrate its use, Fig. 2.14 shows the result of a linear model (red) trained

with observed quasi-global (60◦ S-60◦N) column ozone data (black) being subject to external factors

(also called features or basis functions), such as the offset (blue), the solar cycle (red), the QBO

(purple), or equivalent stratospheric chlorine (ESC). This linear statistical model is able to quite

effectively approximate the observed data. The amplitude of each of the external factors indicates

its relative importance for the regression result. As observed, most variability is attributed to ESC,

the offset (mainly the annual cycle), the solar cycle, and the QBO. However, the residual (gray)

is of the size of most external factors or even larger. Hence, more advanced, e.g., nonlinear or

nonstationary techniques could be used to improve the modeling.

Many more advanced regression, classification, and cluster techniques are utilized in the at-

mospheric community. For instance, Walter and Schönwiese [2002] addressed the detection and

attribution of observed global climate change in global temperature anomalies using a neural net-

work; Lu et al. [2009] used a nonlinear neural network to receive an alternative representation of

the QBO; Coughlin and Gray [2009] use the K-Means cluster algorithm to determine two distinct

states in the polar stratosphere, one representing normal, the other weak vortex conditions; Nao

et al. [2006] presents a technique based on support vector machines to estimate the surface area

of polar stratospheric clouds; and Franzke et al. [2009] used a recently introduced cluster technique

(FEM-VARX) based on finite elements to identify large-scale dynamical circulation patterns in GCM

simulations. However, to my knowledge no systematic comparison of a range of statistical methods

exists, applied to stratospheric variability. A wide class of supervised and unsupervised statistical

methods is reviewed in the following. These methods are partly nonlinear and nonstationary making

them appropriate for modeling and forecasting the complex variability in the stratosphere.



Chapter 3

Statistical Learning Approaches

Learning refers to the process of obtaining and synthesizing information from a given data set. Once

sufficient patterns in a given system have been learned, unknown patterns can be recognized. This

process is referred to as statistical pattern recognition [Ripley, 1996]. A statistical model learns these

patterns and is, ideally, able to predict information. It is said that a statistical model is inferred

from the data it is trained with, the training sample. In this work, by the term statistical model one

incarnation, i.e. one set of parameters that uniquely determine the model is meant.

The statistical methods considered in this work can be grouped into supervised and unsupervised

learning procedures [Marques de Sá, 2001]. A schematic picture showing the idea behind supervised

and unsupervised learning is shown in Fig. 3.1. Supervised learning is the task of inferring a function

(a trained model) from a known training sample consisting of fixed pairs of input and target objects.

An object, in the sense of statistical learning, can be any mathematical structure representing

characteristics of the system to be analyzed. In this work, an object will usually be a time series

which is a sequence of multi-dimensional data depending on time. Input objects are called features

and target objects are called truths. Later in this work, features will also be referred to as external

factors or forcings. When learning in unsupervised mode, there are only features given to the learning

approach and the response is computed by the underlying algorithm. Hence, there is no truth the

response can be directly compared with and knowledge about the system must come into play.

Please note the difference between target and response: Target is what the statistical model is

trained with in supervised mode. Response is what the statistical model “answers” when presented

with features, after the model has been trained.

This chapter describes statistical methods that can be used for regression, classification, and

clustering. Regression is the task of finding a function mapping from the features to a real-valued

vector. Classification is the task of finding a function mapping from the features to a discrete vector

holding class labels. This function is called a classifier. Regression and classification are used in

supervised mode. Clustering, on the other hand, assigns class labels to certain combinations of

features, but there is no truth the statistical model is trained with. Hence, clustering is done in

unsupervised learning mode.

Depending on the statistical approach and underlying algorithm, different types of patterns

25
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Figure 3.1: A schematic picture showing the principles of supervised and unsupervised learning.
In the atmospheric science, features are often referred to as external factors. Truth denotes some
target data set and response the model output. In supervised learning, truth and response can be
compared to measure the model performance. In unsupervised learning, the model performance can
be assessed with knowledge from the considered system.

can be recognized. In general, it is distinguished between methods that learn and recognize linear

patterns (see Section 3.2, 3.3, 3.5) and methods that can learn and recognize nonlinear patterns (see

Section 3.4, 3.5) in terms of the relationships between features and response. This work introduces

both types of pattern recognition algorithms. Most time series models make the assumption that

underlying processes that govern the evolution of time series are stationary. This means they do not

change their characteristics significantly over time. However, this assumption is often not met in real

world situations, especially not in atmospheric science. Therefore, a recently developed multivariate

statistical method (FEM-VARX) is used which treats the underlying, generally unknown process as

nonstationary (see Section 3.3).

3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) [Jolliffe, 2002; Hannachi et al., 2007] aims at finding orthogonal

modes representing large variability structures in the underlying data. These modes, called empirical

orthogonal functions (EOFs), form a complete orthogonal basis in which the first EOF represents

the mode of largest variance, the second EOF the mode of second largest variance, and so on.

PCA is an unsupervised statistical method clustering a data matrix X ∈ Rm×k where m denotes

the number of observations and k the number of variables (dimensions). In atmospheric science, k

usually denotes the number of grid points and m the number of steps in time. In the following, it

is assumed that none of the column vectors in X have zero variance.
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PCA derives an orthogonal basis U ∈ Rk×k to which X can be transformed (rotated) so that

P = X ·U ∈ Rm×k , (3.1)

is also orthogonal. The EOFs are the columns of U and are given by the eigenvectors of the

covariance matrix of X. The columns of P are called the principal components. The data matrix X

consisting of columns that are possibly correlated with each other, is now transformed into a matrix

P consisting of completely uncorrelated columns. In this work, matrix U is computed using the

covariance method. Other methods to compute U are the singular value decomposition [Jolliffe,

2002] of X and, especially fast for large k and a small number of desired EOFs, the iterative Lanczos

method [Cullum and Willoughby, 2002]. The advantage of the covariance method is that it can be

solved using almost any statistical library. In addition, it is possible to compute only a maximum

number of EOFs. Inspite of computing only a few EOFs, the sum across all eigenvalues is given

through the trace of the covariance matrix.

The covariance matrix of X is given as C = 1
m

XXT ∈ Rk×k where the columns of X are

mean centered. For large enough m, as usually the case in atmospheric science, 1
m

approaches the

unbiased estimator 1
m−1

. The eigenproblem that determines eigenvectors and eigenvalues can now

be formulated by

C ·U = U ·Λ , (3.2)

where U denotes the eigenvectors of C (EOFs of X) and Λ ∈ Rk×k the diagonal matrix of the

eigenvalues λi of C. All λi are real and larger than zero since C is symmetric and positive-definite.

Because of large k, the eigenproblem in Eq. 3.2 must be solved numerically. As C is a quadratic

matrix, Eq. 3.2 is solved using the efficient Multishift QR algorithm [Braman et al., 2002] making use

of the symmetric structure of C. After solving Eq. 3.2, the eigenvalues are arranged in descending

order and the eigenvectors accordingly. It should be noted that PCA makes three major assumptions:

a) Linearity imposed by the transformations in Eq. 3.1 and 3.2; b) The columns in X are jointly

distributed according to a Gaussian distribution; and c) Modes representing large variability structures

are orthogonal to each other.

The sum of all eigenvalues E =
∑k

i=1 λi is called the energy of the eigenvalues which is equal

to the trace of C. The variance explained by the i-th EOF is then given by λi/E. PCA is mainly

applied with two different goals in mind: 1) Finding a small number of high-variance EOFs that help

understanding the underlying data and 2) Dimension reduction by retaining only a certain number

of EOFs.

When used to understand the underlying data, it needs to be determined if it is possible to

statistically distinguish between neighboring EOFs. A rule of thumb was proposed by North et al.

[1982] stating that an eigenvalue λi possesses an approximate sampling error of

∆λi = λi ·
√

2

m
. (3.3)
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Figure 3.2: An PCA example for observed global sea surface temperature anomalies from 50◦ S to
50◦N on a coarse grid. Top left: The first 10 normalized eigenvalues representing the explained
variance; Top right: The normalized first principal component for a sample period; Bottom: The
eigenvector (EOF) corresponding to the first eigenvalue.

Two neighboring EOFs with indices i < j are now considered to be statistically independent if

λi−∆λi > λj +∆λj, and otherwise considered to be degenerated and statistically not independent.

An PCA example for observed global sea surface temperature anomalies from 50◦ S to 50◦N is

shown in Fig. 3.2. The data are arranged so that grid points denote the columns of X and time

the rows of X. The first EOF explains approximately 16% of the overall variance and is statistically

independent from the proceeding EOF as can be derived from the graph of normalized eigenvalues

(top left). In fact, eigenvalues and corresponding eigenvectors are independent until the fourth

eigenvalue since sampling errors do not overlap up to this eigenvalue. The eigenvector along with

the principal component corresponding to the first eigenvalue are also displayed in Fig. 3.2. The first

EOF reveals the El Niño- Southern Oscillation (ENSO). The first principal component is equivalent

to the Nino3.4 index [Deser et al., 2010] showing, e.g., the prominent El Niño of 1997. It is common

practice to weight each grid cell with its area prior to computing a PCA to account for converging

longitudes towards higher latitudes. On a Gaussian grid, the weights are given by
√

cos(lat) where
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lat denotes the current latitude [e.g., Baldwin and Dunkerton, 2001]. The eigenvectors resulting

from an area-weighted data matrix should then be scaled back using these weights.

When using PCA for dimension reduction the procedure is the following: At first a fraction

of the total variance stot ∈ (0, 1) (accumulated variance) to be retained must be given. For all

applications in this work a value of stot = 0.9 corresponding to 90% total variance is selected as it

leads to a reasonable number of EOFs and a small loss of information. Once stot is selected,

p = min
p′≤k

sp′ ≥ stot , (3.4)

denotes the number of EOFs to be retained. This means that the matrix U of eigenvectors reduces

to a matrix U′ ∈ Rk×p containing the first p EOFs. Putting Matrix U′ into Eq. 3.1 leads to the

matrix P′ ∈ Rm×p holding the first p principal components. The number of dimensions are now

reduced from k to p where k/p can be of the order of 102 or more, depending on the specific

application.

After reducing the dimensions, the p columns of P′ may be, for instance, used as targets for a

regression analysis. The regression response P′fit may then be rotated back using Eq. 3.1 to receive

Xfit = P′fit ·U′T , (3.5)

where Xfit ∈ Rm×k has the same number of rows and columns as the original data matrix X.

To compute a principal component analysis, a C++ program was written as part of this thesis

using functionality from the Intel Math Kernel Library (MKL) which is available at http://www.

intel.com/software/products/mkl. The C++ program was documented and bundled in a

package and is available for download at http://wekuw.met.fu-berlin.de/~ChristianBlume.

At the Institute for Meteorology, FU Berlin, it is pre-installed and can be executed by typing ’pca’

in the terminal.

3.2 Linear Discriminant Analysis (LDA)

Linear discriminant analysis (LDA) [Wilks, 1995; Montgomery et al., 2006] is a supervised statistical

method that can be used for either regression or classification. For regression problems LDA is often

referred to as multiple linear regression (MLR) which is one of the most common statistical tools

to analyze stratospheric variability [e.g., Crooks and Gray, 2005; SPARC CCMVal, 2010]. In the

following, it is assumed that there are m training events, or m steps in time, and a vector of features

x ∈ Rk. LDA models a set of data by using a function y : Rk → K given as

y(x) = xTβ + β0 , (3.6)

which is linear in its parameters β ∈ Rk. In Eq. 3.6, β0 ∈ R denotes a bias term, also called offset,

and K is a either a set of class labels for classification or R for regression. The parameters β do not

http://www.intel.com/software/products/mkl
http://www.intel.com/software/products/mkl
http://wekuw.met.fu-berlin.de/~ChristianBlume
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Figure 3.3: An LDA example for a sample time series of equatorial ozone anomalies at 1hPa displayed
in black and regression result (fit) displayed in red. The right panel shows the corresponding residual
including mean µ and standard deviation σ along with a Gaussian distribution in black fitted onto
the residual.

depend on time making LDA a stationary method.

The equation for estimating β ∈ Rk+1, which now includes the offset term, is

y = Xβ , (3.7)

where y ∈ Km denotes the vector of targets and X ∈ Rm×(k+1) a matrix of the k features and

one offset over m steps in time. For regression problems, the columns of X are often called basis

functions. Applying the method of least squares and multiplying Eq. 3.7 with XT , the normal

equations are given by

XTXβ = XTy ⇐⇒ β = (XTX)−1XTy , (3.8)

where (XTX)−1XT denotes the Moore-Penrose pseudo inverse of X, which requires X to have full

rank. The LDA model response is now given by

yfit = Xβ = X(XTX)−1XTY . (3.9)

LDA, like every statistical method, will always be left with a residual given by

r = y − yfit ∈ Km , (3.10)

which should be small compared to Y in terms of variance. The LDA error variance matrix is given

by

E =
|r|2

df
· (XTX)−1 ∈ R(k+1)×(k+1) , (3.11)
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Figure 3.4: An LDA classification example with two features x1 and x2 and two classes 1 and 2.
The decision hyperplane separates the two classes.

where df are the degrees of freedom given by df = m − k − 1. The standard errors ∆β of β are

given through the diagonal elements of E in Eq. 3.11 so that

∆βi =
√
Eii ∀i = 1, .., k . (3.12)

LDA makes several assumptions to the data. The main assumptions are: 1) The relationships

between the features and the target are linear; 2) The residual is distributed according to a Gaussian

distribution with zero mean; and 3) The residual is not auto-correlated.

An LDA example is shown in Fig. 3.3 for a sample time series (m = 550) of monthly equatorial

ozone anomalies at 1 hPa displayed in black. The LDA regression result (fit) is shown in red and

the residual histogram in blue along with a Gaussian distribution in black fitted onto the residual.

Six features (e.g., QBO, ENSO) are used in this example leading to a total number of seven

free parameters (see Eq. 3.6). The residual is approximately Gaussian with zero mean, a small

standard deviation compared to the truth, and an only small auto-correlation (not shown) making

the regression results acceptable.

They are several extensions proposed to improve LDA as described above. One of them is the

Fourier expansion applied for atmospheric problems by e.g., Bodeker et al. [1998] and in Chapter 8

of SPARC CCMVal [2010]. The idea is to multiply each feature (or basis function) with a sine and

cosine term of a certain period. In atmospheric science, this period could be one year so that the

Fourier expansion would express the seasonal dependency of a certain feature. However, this work

does not make use of that because it significantly increases the parameter space (e.g., factor of 5

for two Fourier pairs per feature) and does usually not reduce the residual significantly. Therefore, it
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does not meet the principle of Occam’s Razor which favors simpler models while carrying sufficient

information (see Section 3.7).

When LDA is used for classification problems, the offset β0 is usually chosen so that y < 0 for

class 1 and y ≥ 0 for class 2 in the case of two classes. Then, a geometrical picture can be drawn:

Let a and b be two events on the decision boundary, it follows that y(a) = y(b) = 0 and therefore

(a − b)T · β = 0. This is shown schematically for a 2-dimensional example in Fig. 3.4 with two

features x1 and x2 and two classes 1 and 2. It is observed that LDA is the task of finding a vector

β which is orthogonal to the decision hyperplane.

To solve regression and classification problems with LDA, a C++ program was written as part of

this thesis using classes from the Toolkit for Multivariate Data Analysis (TMVA) which is available

at http://tmva.sourceforge.net.

3.3 Finite element method plus vector auto-regression (FEM-

VARX)

FEM-VARX [Horenko, 2010b] is a supervised and unsupervised statistical method. FEM-VARX

uses a combination of vector auto-regression with external factors (VARX) [Hamilton, 1994] and a

recently introduced clustering procedure [Horenko, 2010a] based on a finite element method (FEM).

The FEM clustering approach was recently successfully applied to identify large-scale dynamical

circulation patterns in GCM simulations [Franzke et al., 2009]. The VARX model is trained in

supervised mode whereas the FEM clustering is trained in unsupervised mode. FEM-VARX, just like

LDA, can be used in a nonlinear way by transforming the features with nonlinear functions. The

optimal functions performing this transformation are generally unknown. In fact, there is an infinite

number of possible transfer functions. Therefore, FEM-VARX along with LDA are used as linear

models. However, due to a nonstationary jump process switching between regimes (called clusters)

within the given system, FEM-VARX is a powerful time series model. Due to this jump process,

FEM-VARX is a nonstationary statistical method.

In the following, it is assumed that there is a feature vector x ∈ Rn (n external factors), T steps

in time, and a target vector y ∈ Rd in d dimensions over T steps in time. Let us further assume

that y can be partitioned into K clusters with parameters Θ = (θ1, ..., θK) and cluster affiliations

Γ(t) = (γ1(t), ..., .γK(t)). The cluster affiliations are subject to

γi(t) ≥ 0
K∑
i=1

γi(t) = 1 ∀t ∈ [1, T ] . (3.13)

Since clusters represent persistent states of the analyzed system, a persistency threshold C is

http://tmva.sourceforge.net
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introduced which limits the maximum transitions from a given cluster to any other cluster so that

T−1∑
t=1

|γi(t+ 1)− γi(t)| ≤ C ∀i = 1, ..., K . (3.14)

The cluster parameters θi = (µi,Ai,Bi) contain the parameters of the VARX model response

y∗t,i for cluster i and time t given by

y∗t,i = µi +
m∑
q=1

Ai
qyt−q + Bixt ∀i = 1, ..., K , (3.15)

where µi ∈ Rd, Ai
q ∈ Rd×d, and Bi ∈ Rd×n. In Eq. 3.15, m denotes the memory determining

the order of the auto-regressive process. Including auto-regressive processes can be very useful to

forecast time series as it involves the use of information from time t− q about the time series to be

forecasted for time t. Unfortunately, it is computationally expensive to compute the optimal value

for m. In addition, due to the more complex structure of the VARX model for m > 0 in Eq. 3.15, it

is much harder to extract an estimate for the importance of external factors. This importance may

even be reduced due to the additional auto-regressive term. For these reasons, this work does not

consider auto-regressive processes implying m = 0.

In order to determine cluster parameters and cluster affiliations, the average clustering functional

given by

L(Θ,Γ(t)) =
K∑
i=1

T∑
t=0

γi(t)g(yt, θi)→ min
Θ,Γ(t)

, (3.16)

is minimized, where g(yt, θi) = |yt − θi|2 denotes the model distance functional. L is minimized

by a discretization of the data in finite elements [Horenko, 2010a] and a subsequent simulated

annealing procedure [Kirkpatrick et al., 1983]. Simulated annealing is a numerical technique that

aims at finding a global solution to a complex optimization problem. It may, however, only find a

local instead of a global optimum. Simulated annealing is an adaptation of the Metropolis-Hastings

algorithm [Metropolis et al., 1953], producing random realizations of a thermodynamic system using

Monte-Carlo methods. If not stated otherwise, a sufficiently large number of annealing steps of 100

is used to find the near-optimal solution.

Having L minimized and Θ and Γ(t) computed, the model response is evaluated by

y∗t =
K∑
i=1

γi(t)y
∗
t,i ∀t ∈ [1, T ] , (3.17)

where y∗t,i denotes the local VARX model response for cluster i at time t (see Eq. 3.15). The total

number of free parameters NP in FEM-VARX is given by the number of parameters in the VARX
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Figure 3.5: FEM-VARX cluster affiliation for K = 2 for a sample time series of observed equatorial
stratospheric zonal mean zonal wind anomalies at 20hPa (gray) taken from ERA-40 for a represen-
tative period. The algorithm was constrained with C = 100 (solid black) and C = 400 (dashed
black).

model (Eq. 3.15) and the cluster affiliation (Eq. 3.13) along with the number of clusters K so that

NP = K · (NΓ + d+ n · d+m · d2) , (3.18)

where NΓ denotes the number of cluster transitions (or jumps).

In general, FEM-VARX has three tuning parameters to be determined for every application.

These parameters are the number of clusters K, the persistency threshold C, and the memory m.

Since m = 0 in this work, the search is restricted to finding optimal pairs of K and C with the help

of information criteria (see Section 3.7).

As an example of the FEM-VARX clustering, a one-dimensional time series of equatorial strato-

spheric zonal mean zonal wind anomalies at 20hPa is analyzed without incorporating any external

factors. The FEM cluster affiliation for two clusters is displayed in Fig. 3.5 with the time series in

gray. The algorithm was constrained with two different persistency thresholds: C = 100, shown

in solid black, and C = 400, shown in dashed black. As observed from Fig. 3.5, the clustering for

larger C leads to more transitions between the clusters in agreement with Eq 3.13. The result for

C = 100 leads to a more persistent clustering clearly representing lower values of the time series in

cluster 1 (easterly winds) and higher values in cluster 2 (westerly winds).

After the FEM-VARX time series model has been successfully trained, forecasts can be made

using FEM-VARX. As forecasting involves the evaluation of Eq. 3.17 with unseen features, a pro-

cedure is needed to forecast Γ(t) for t > T in a first step. This can be done by assuming that the

jump process Γ(t) is a Markov process. A Markovian system is governed by a process in which the
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next state only depends on the current state. The forecast of the jump process can be expressed by

Γ(t+ 1) = Γ(t)P(xt) for t > T , (3.19)

where P(xt) denotes the probabilistic transition matrix at time t depending on features xt. The

computation of P(xt) is described in detail by Horenko [2011]. Once Γ(t) is available, Eq. 3.15 and

Eq. 3.17 can be evaluated with external factors from the forecast period to obtain a prediction y∗t

for t > T .

To solve regression and clustering problems with FEM-VARX, a MATLAB program was used

written by Illia Horenko and colleagues from the Institute of Computational Science at the University

of Lugano. This program was further adjusted for efficient use as part of this thesis. Additionally,

a wrapper class in C++ was written for the FEM-VARX time series model.

3.4 Multi-Layer Perceptron (MLP)

A multi-layer perceptron (MLP) [Ripley, 1996] can be trained as a supervised or unsupervised

method, depending on the problem to be solved. In this work, an MLP is trained in supervised

mode. It is stationary as its parameter space does not depend on the event number or time when

analyzing time series. An MLP can be used in a linear or nonlinear fashion depending on the selected

transfer function. An MLP is a neural network which is actively being applied in atmospheric science.

For instance, Lu et al. [2009] used a neural network to receive an alternative representation of the

QBO; Walter and Schönwiese [2002] addressed the detection and attribution of observed global

climate change in global temperature anomalies using a neural network; and Elgaali and Garcia

[2004] modeled the climate change impacts on irrigation water supplies in Arkansas river basin with

a neural network. A review of neural networks is given by Zhang et al. [1998].

In the following, it is assumed that there is a feature vector x ∈ Rk with k elements and m

training events (m steps in time). An MLP is a fully connected feed-forward neural network [Bishop,

1995] with one or more hidden layers located between input and output layer. Each layer consists

of a certain number of neurons in parallel. Fig. 3.6 shows a neuron with sigmoidal transfer function

and a two-layer MLP in a schematic picture. Each neuron calculates a weighted linear combination

of its N inputs so that its output y is given by

y = f

(
N∑
i=1

wixi + θ

)
, (3.20)

where wi ∈ R and θ ∈ R denote weights and bias, respectively, and xi the input to the neuron

from synapse i. The weights are given at each synapse (connection between two neurons) and the

biases at each neuron. The scalar function f in Eq. 3.20 is called the transfer function. It is most

commonly chosen to be a sigmoid f : R→ (0, 1) of the form f(x) = (1 + e−x)−1 [Kurkova, 1992]

which is used in this work and displayed in Fig. 3.7. Other common transfer functions are the radial
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Figure 3.6: Schematic picture of a neuron (left) with sigmoidal transfer function and a multi-layer
perceptron (right) with input, output, and two hidden layers.

basis function and the hyperbolic tangent [Bishop, 1995]. The transfer functions at the output layer

are linear (compare Fig. 3.6).

Approximation and generalization performance of the MLP stem from the nonlinear transfer

functions and the numerous connections within the hidden layer(s). An MLP with a single hidden

layer implements a single hyperplane. An MLP with two hidden layers implements arbitrary convex

regions containing intersections of hyperplanes. It has been shown that an MLP with sigmoidal

transfer functions and two hidden layers can approximate any continuous function [Kurkova, 1992].

For this reason, the analysis is restricted to an MLP with a maximum of two hidden layers and the

sigmoid transfer function.

The learning algorithm used to determine the free parameters of the network is the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [Avriel, 2003]. It is a faster variation of the standard

back-propagation [Bishop, 1995]. In this work, a maximum of 1000 training iterations (epochs)

are performed. To avoid overfitting and computational overhead, the training is aborted once the

training algorithm converges or once 1000 epochs are reached.

BFGS uses a gradient search technique to iteratively adjust weights w and biases Θ via mini-

mizing a cost function given by

1

2

m∑
i=1

q∑
j=1

(y
(i)
j − y

∗(i)
j (w,Θ))2 → min

w,Θ
, (3.21)

where q denotes the number of output neurons. In Eq. 3.21, y ∈ Kq denotes the desired output

and y∗ ∈ Kq the actual MLP response over m training events with K being a set of class labels for

classification problems or R for regression. The minimization problem is unconstrained and generally
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Figure 3.7: The sigmoid transfer function given by f(x) = (1 + e−x)−1 as used in the multi-layer
perceptron.

non-convex [Bishop, 1995]. The effect of resulting local minima can be reduced by performing

several training realizations (O(10)) with different initial values for weights and biases. If not stated

otherwise, 10 different MLP training realizations are performed in this work while retaining the

realization with the smallest training error.

There are two tuning parameters that have to be determined: 1) The number of neurons

(L1 > 0) in the first hidden layer and 2) The number of neurons (L2 ≥ 0) in the second hidden

layer. The MLP tuning parameters can be determined with information criteria or cross-validation

as described in Section 3.7. From L1 and L2 along with the number of features L0 (No. of input

neurons) and targets L3 (No. of output neurons), the MLP’s total number of free parameters is

given by

NP = Nw +NΘ with Nw = L0L1 + L1L2 + L2L3 , NΘ = L0 + L1 + L2 + L3 , (3.22)

where Nw denotes the total number of weights and NΘ the total number of biases of the MLP.

Please note that Eq 3.22 can be easily extended to MLPs with more than two hidden layers.

When an MLP is used to solve classification problems, the network response needs to be post-

processed in order to obtain conditional probabilities. This is done via the softmax function given

by

pi =
exp(y∗i )∑q
j=1 exp(y∗j )

, (3.23)

where q denotes the number of output neurons and pi the probability of output i given the remaining

probabilities pj for all j 6= i.

To solve regression and classification problems with an MLP, a C++ program was written as

part of this thesis using classes from the Toolkit for Multivariate Data Analysis (TMVA) which is
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Figure 3.8: Schematic picture of the principles of support vector classification for two classes
{1, 2}. The encircled class members denote the support vectors. The decision hyperplane (solid
line) is shown along with the classification margin (dashed lines).

available at http://tmva.sourceforge.net.

3.5 Support Vector Machines (SVMs)

Support vector machines (SVMs) [Vapnik, 1995] are statistical methods that can be applied for

regression and classification problems. For regression, it is referred to as support vector regression

(SVR) whereas for classification, it is referred to as support vector classification (SVC). SVMs are

stationary as their parameter space does not depend on the event number, or when analyzing time

series, on time. They can be used in a linear or nonlinear fashion. A detailed SVM tutorial is given by

Burges [1998]. There were also extensions developed that allow SVMs to be used for unsupervised

data clustering [Ben-Hur et al., 2001]. In this work, SVMs are exclusively applied to supervised

regression and classification problems. In the following, it is assumed that there is a feature vector

x ∈ Rk in k dimensions and m training events (m steps in time).

3.5.1 Support Vector Classification

Support vector machines aim at classifying a data set by maximizing a margin that defines a sepa-

rating hyperplane. In general, the larger this margin the better the generalization performance. Let

us assume that there is a target y ∈ {1, 2} over m training events that is not perfectly separable,

which means that there will be a certain amount of misclassification. Then, a vector w ∈ Rk, a

parameter b ∈ R, and a so called “slack” variable ξi ≥ 0 can be found so that

yi(〈w,xi〉 − b) ≥ 1− ξi ∀i ∈ {1, ...,m} , (3.24)

http://tmva.sourceforge.net
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Figure 3.9: A schematic picture of the kernel trick in a two-dimensional feature space and two
classes {1, 2}. The kernel trick aims at transforming into a linearly separable space without ever
computing φ explicitly.

where 〈·, ·〉 denotes a dot-product. The principles of support vector classification are shown in

Fig. 3.8 for two classes {1, 2} and a two-dimensional feature vector x = (x1,x2). It is observed

that the pair (w, b) defines the separating hyperplane where 〈w,x〉 − b = 0. The encircled feature

vectors on the margin (dashed lines) are called the support vectors.

The classification margin defined by M = 2/|w| is to be maximized with respect to the con-

straints given in Eq. 3.24. Hence, maximizing the margin is equivalent to minimizing the cost

function
1

2
|w|2 + C

m∑
i=1

ξi → min
w,b,ξ

, (3.25)

being subject to Eq. 3.24. In Eq. 3.25, C > 0 denotes a parameter describing the trade-off between

maximizing the margin and minimizing the training error. Introducing slack variables is equivalent

to support vector machines with soft margins. Eq. 3.25 is a constrained quadratic optimization

problem that has a unique solution. It is solved by translating into Lagrangian formalism [Burges,

1998]. The resulting non-zero Lagrangian multipliers define the support vectors.

In order to use SVMs in a nonlinear way, the kernel trick is used which transforms the feature

space using a nonlinear kernel function into a higher dimensional space (SVMs are kernel machines).

The dot-product in Eq. 3.24 is replaced by a kernel function. Ideally, the kernel trick makes the

transformed feature space linearly separable. A schematic picture of the kernel trick in a two-

dimensional feature space and two classes {1, 2} is provided in Fig. 3.9. The kernel trick aims at

transforming the feature space into a linearly separable space of features without ever computing the

transferring function φ explicitly. This principle is applicable wherever there are only dot-products

and a suitable kernel can be found.

The most common kernels are the polynomial, the radial basis, and the hyperbolic tangent kernel.



CHAPTER 3. STATISTICAL LEARNING APPROACHES 40

Figure 3.10: A nonlinear, two-dimensional classification example with two classes (red, black) in
which LDA, MLP, SVM with linear kernel, and SVM with a radial basis kernel are compared. Shading
denotes the probability of being in class red.

It was shown that the radial basis kernel is the most efficient while being simple and including the

linear case [Keerthi and Lin, 2003]. Therefore, this work uses the radial basis kernel when aiming at

the nonlinear statistical modeling with SVMs. It is given by

G(xi,xj) = exp(−γ|xi − xj|2) , (3.26)

where γ > 0 denotes the kernel parameter. To apply SVMs in practice, the cost parameter C and the

radial basis parameter γ have to be selected. This is done using cross-validation (see Section 3.7.2)

on a grid of pairs of (C, γ).

A nonlinear two-dimensional classification example with two classes (red, black) in which LDA,

MLP, SVM with linear kernel, and SVM with a radial basis kernel are compared is displayed in

Fig. 3.10. The shading denotes the probability of being in class red. It is observed that LDA and

SVM linear (C = 1) are not able to discriminate between the classes. In contrast, the nonlinear

classifiers, SVM radial (C = 1, γ = 1) and MLP (L1 = 10, L2 = 5), are able to efficiently classify

this data set.
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Figure 3.11: Schematic picture of the principles of support vector regression. The circles denote
the data points that are supposed to be approximated using SVR. The regression result (solid line)
is shown along with the “wiggle” room around it (dashed lines) given by ε. It is observed that
|y − f(x)| − ε denotes the maximum loss.

3.5.2 Support Vector Regression

Let there be a target y ∈ R over m training events. The support vector algorithm for regression

is similar to that for SVC. Analogous to soft margins by introducing slack variables, SVR is con-

cerned with using Vapnik’s ε-insensitive loss function [Vapnik, 1995]. The cost function in Eq 3.25

transforms to
1

2
|w|2 + C

m∑
i=1

(ξi + ξ′i)→ min
w,b,ξ,ξ∗

, (3.27)

which is to be minimized subject to

f(xi)− yi ≤ ε+ ξi (3.28)

yi − f(xi) ≤ ε+ ξ′i , (3.29)

for ξi, ξ
′
i ≥ 0 and all i = 1, ...,m, where f(x) = G(w, x) + b with the radial basis kernel G (see

Eq. 3.26) and b ∈ R. A schematic picture of SVR for a one-dimensional regression problem is shown

in Fig. 3.11. For simplicity, this is presented without using the kernel-trick. The circles denote the

data points that are supposed to be approximated and the solid line the actual regression result. SVR

aims at approximating y leading to a maximum loss of |y− f(x)| − ε. Through the introduction of

slack variables ξi, SVR is generally more robust against outliers than LDA. Similar to SVC, Eq. 3.27

is minimized by translation into Lagrangian formalism [Vapnik, 1995].

In SVR, one faces the problem of selecting another parameter ε representing the maximum loss.

The work made by Smola et al. [1998] shows that an optimum ε scales with the random noise level

of y. It is often unclear what the noise level might be. For the applications in this work, it turns
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out that ε = 0.1σy is a reasonable value leading to acceptable training and forecast results. σy

denotes the standard deviation of the target time series y. SVR results presented in this work, are

also rather insensitive to choices of ε. Altering ε by a factor of 2 does not change regression results

notably. After ε is selected, one has to determine optimal pairs of (C, γ) using cross-validation (see

Section 3.7.2).

To solve regression and classification problems with SVR and SVC, respectively, a C++ program

was written using LIBSVM (A Library for Support Vector Machines) which is available at http:

//www.csie.ntu.edu.tw/~cjlin/libsvm.

3.6 Performance Measures

After a statistical method has been successfully trained it can be evaluated with features (external

factors) it has been trained with (seen data) to receive a fit; or with features it has not been

trained with (unseen data) to receive a forecast. In order to quantify how well the method performs,

performance measures have to be computed for fit and forecast assuming that there exist a true

representation, called truth, for both regimes. In the following, y denotes the truth, y∗ the response

of the statistical method, and m the number of events.

When considering performance measures, it must be generally distinguished between classifica-

tion and regression problems. However, there are two popular measures that can be used in both

cases:

1. The mean prediction error (MPE) is defined as

MPE =
1

m

m∑
i=1

|yi − y∗i | , (3.30)

which measures the averaged deviation of the response from the truth.

2. The sum of squared errors (SSE) is defined as

SSE =
m∑
i=1

(yi − y∗i )2 . (3.31)

from which error variance se = 1
m

SSE and error standard deviation σe =
√
se are derived

assuming that the residual is mean-centered.

3.6.1 Classification

For the following let there be two classes, namely the signal (class 1) and the background (class

0), and let yS and yB be the respective area-normalized response distributions. Three important

performance measures for classification problems can be defined:

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
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1. The separation S between signal and background is given by

S =
1

2

∫ ∞
−∞

(yS(x)− yB(x))2

yS(x) + yB(x)
dx . (3.32)

which quantifies how well the method is able to discriminate signal from background events.

2. The signal efficiency εS at a given background efficiency εB is defined by

εS =

∫ ∞
a

yS(x)dx . (3.33)

where a is given by εB =
∫∞
a
yB(x)dx. A representative background efficiency of 0.01 has

been selected. εS also measures the power of discriminating signal from background.

3. The integral of the receiver operating characteristic (ROC) curve is given by

IROC =

∫ 1

0

(1− εB)dεS , (3.34)

where 1− εB is called the background rejection. IROC measures the integrated true positive

rate of a classification problem.

The three performance measures S, εS, and IROC are bounded between 0 and 1, where 0 means the

worst and 1 the best performance achievable. Detailed overviews of signal analysis can be found in

e.g., Spackman [1989] and Fawcett [2006].

3.6.2 Regression

Aside from MPE and SSE, two additional performance measures are suitable for regression problems:

1. The correlation coefficient R given by

R =
µyy∗ − µyµy∗

σyσy∗
, (3.35)

where µ denotes the mean and σ the standard deviation of the distribution of the truth y or

the response y∗, respectively. R measures the linear dependence between two variables and is

bounded between -1 and 1 where 1 denotes the best performance achievable.

2. The explained variance EV is given by

EV = 1− σ2
e

σ2
y

, (3.36)

where σ2
e = 1

m
SSE denotes the error variance and σ2

y the sample variance of the truth y. EV

does not have a lower bound but its upper bound is 1. The closer EV to 1 the better the

regression result.
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3.7 Optimal Model Architecture

When applying statistical methods to solve classification or regression problems, a number of tuning

parameters must be selected. A full set of these parameters for a specific method and underlying

algorithm is called an optimal model architecture [Burnham and Anderson, 2002]. An example

would be the number and kind of features, the number of clusters in FEM-VARX, the number of

hidden layers in the MLP, or the value of an optimal trade-off parameter in SVM.

There are two major approaches that tackle the problem of model selection, both aiming at

meeting the principle of Occam’s Razor [Ariew, 1976]. Occam’s Razor states that the simplest

model is the preferred model if it contains as much information as any of the more complicated

models. A model represents one incarnation or one specific architecture of a statistical method.

The two approaches are 1) information criteria [Burnham and Anderson, 2002] that aim at

minimizing

training error + number of parameters, (3.37)

and 2) the method of cross-validation [Kohavi, 1995] that aims at minimizing the

forecast error. (3.38)

A more complex model, i.e. a model with more degrees of freedom (e.g. more parameters), is

generally able to more efficiently approximate the training data than a simpler model. However, as

the model complexity increases, the forecast error will eventually start decreasing which is denoted

as overfitting. It is the goal of Occam’s Razor to find the optimal trade-off between approximating

the training data and generalizing to unseen data (forecasting).

Both approaches presented here, information criteria and cross-validation, are very different and

one is more suitable than the other for certain situations and methods. Cross-validation is generally

not suitable for non-stationary methods. Hence, it cannot be used with FEM-VARX since cross-

validation does not retain the temporal order of the cluster affiliation (see Section 3.3). On the

other hand, only cross-validation is suitable for methods, such as SVM (see Section 3.5), where the

number of tuning parameters is constant but their optimal values need to be estimated. Therefore,

information criteria can be applied to LDA, MLP, and FEM-VARX whereas cross-validation can be

applied to LDA, MLP, and SVM. Both model selection approaches will be applied in this work and

reviewed in the following sections.

3.7.1 Information Criteria

There are two major information criteria [Liddle, 2008]. The first to be reviewed is the Bayesian

Information Criterion (BIC) [Schwarz, 1978] which is defined as

BIC = −2 ln(Lmax) + ln(n)k (3.39)
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where Lmax denotes the maximized value of the model likelihood, k the number of model parameters,

and n the number of training events. Under the assumption that the residuals are independent and

identically distributed according to a Gaussian distribution [Priestley, 1983], Eq. 3.39 becomes

BIC = n ln(σ2
e) + ln(n)k (3.40)

where σ2
e denotes the error variance.

The second criterion to be reviewed is the Akaike Information Criterion (AIC) [Akaike, 1974]

which is defined as

AIC = −2 ln(Lmax) + 2k (3.41)

where Lmax denotes again the maximized value of the model likelihood and k the number of model

parameters. Corrected for small sample sizes [Liddle, 2008] and under the assumption that the

residuals are independent and identically distributed according to a Gaussian distribution, Eq. 3.41

becomes

AIC = n ln(σ2
e) + 2k +

2k(k + 1)

n− k − 1
(3.42)

where σ2
e denotes the error variance and n the number of training events.

The simplified versions of BIC and AIC given in Eq. 3.40 and Eq. 3.42 respectively, can now

be easily applied in practice having in mind the assumptions about the residuals. The difference

between AIC and BIC is essentially that the BIC penalizes the parameter space more strongly than

the AIC does [McQuarrie and Tsai, 1998], meaning that a model selected by the BIC is often less

complicated. This can be seen when comparing the seconds summands in Eq. 3.39 and Eq. 3.41

since ln(n)k (BIC) is usually larger than 2k (AIC) for the same number of parameters k.

When applying the information criteria to LDA and MLP, the simplified versions given in Eq. 3.40

and Eq. 3.42 will be used. The SVM tuning parameters are estimated using cross-validation, since

the number of parameters in SVM is fixed (C and γ), but their optimal values need to be determined.

For FEM-VARX, there are no assumptions being made about the residuals as they are fitted

explicitly for each cluster by choosing from a wide set of likelihood functions (such as, Gaussian,

exponential, etc.). Hence, BIC and AIC are calculated in its general form given by Eq. 3.39 and

Eq. 3.41 respectively, incorporating the number of FEM-VARX model parameters (see Eq. 3.18).

The procedure of model selection using information criteria is the following: Firstly, all models

are trained and evaluated that could be a potential candidate for the optimal model which depends

highly on the specific application and the statistical method to be used. Secondly, BIC and AIC are

evaluated for every model, where the model with the lowest value of each BIC and AIC is preferred.

The result will be two models because two independent criteria are applied. A favorable but rare

situation is when both BIC and AIC point to the same model. Generally, the models will be different

and the model used must be selected heuristically. For instance, the more complicated model or

the model not including an important feature would be rejected. Therefore, the more that is known

about the given system, the better the guess can be on which criterion to use.



CHAPTER 3. STATISTICAL LEARNING APPROACHES 46

3.7.2 Cross-Validation

The method of cross-validation [Kohavi, 1995] aims at selecting the model with the smallest forecast

error or, in other words, the model with the best generalization performance. The data set with

which this performance is evaluated can be independent or an unseen part of the data set that the

model is trained with. To avoid systematic errors, the evaluation data set must be drawn from the

same population as the training data set.

They are many different approaches to cross-validation [Picard and Cook, 1984]. One very

common approach is dividing a data set into k subsets where the subset members may be randomly

picked or assigned with knowledge of the system. If certain events are logically necessary to be

included during training, then they should not be used for forecasting. In this work, a time series is

divided into k contiguous subsets of equal length, ensuring that k is not too small so that there are

always sufficient training events. The model is then trained on all k − 1 subsets where the subset

being left out is used to compute the forecast error. This is done for all k subsets, so that each

subset is forecasted exactly one time. All forecasts are combined and the overall cross-validation

error can be computed represented by the mean prediction error (see Eq. 3.30) or the correlation

coefficient (see Eq. 3.35).

With cross-validation, each model has to be trained and evaluated k times, meaning that cross-

validation is approximately a factor of k computationally more expensive than information criteria.

However, if the main goal is to statistically forecast, cross-validation should be used since it aims

at minimizing the forecast error. If the goal is not to forecast but to select the model with the

best descriptive power, information criteria should be used since information criteria optimize on the

full training period. As previously mentioned, the optimal model architecture of certain statistical

methods can only be estimated using either cross-validation or information criteria.

3.7.3 Model Averaging

Instead of selecting a single model, a set of models can be selected which are subsequently averaged

[Burnham and Anderson, 2002]. This approach often leads to better explanatory power and better

forecasts. Moreover, an uncertainty imposed by the different model realizations can be estimated.

This work follows a simple but efficient model averaging procedure summarized by Turkheimer et al.

[2003]. Let there be N models coming from a model selection procedure as described in the previous

subsections. Depending on the application, there are n models with n ≤ N that are used further.

Each of these n models gets a weight ωi assigned to it with

ωi ∈ [0, 1] and
n∑
i=1

ωi = 1 . (3.43)

The simplest assumption would be to set ωi = 1
n
∀i = 1, ..., n. Since the weights in Eq. 3.43

somewhat represent the performance of a particular model, the weights may be received from
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measures like the cross-validation errors, information criteria, or a correlation coefficient.

The model average Θ is now given by

Θ =
n∑
i=1

ωiΘi , (3.44)

where Θi denotes the response from model i. The uncertainty estimate of this average is given by

σΘ =
n∑
i=1

ωi

√
σ2
i + β2

i (3.45)

where βi = Θi − Θ. In Eq. 3.45, σi denotes the uncertainty of the response from model i which

can in general be estimated using bootstrap (see next section). The strength of Eq. 3.45 is that

it incorporates not only the uncertainties (σi) of each model but also their response variation (βi)

with respect to the model average.

3.8 Bootstrapping

Bootstrapping [Efron, 1979] is a method aiming at evaluating uncertainties independently from

underlying distributions. Assumptions, such as normality, do not have to be made. Its simplicity and

general applicability make it a powerful method used in many fields of research [Davison and Hinkley,

1997]. It is based on randomly sampling from a given distribution and evaluating the quantity of

interest. Each of these random estimates is called a bootstrap. Bootstrapping is considered a Monte

Carlo Method. This work makes use of two important bootstrapping procedures reviewed in the

following.

3.8.1 Case Resampling

Let there be a random variable X which is distributed according to an arbitrary discrete distribution

F of size NF . Let λ be the quantity of interest calculated from X; λ might be a sample average

or correlation coefficient. The non-parametric bootstrap method of case resampling [Efron and

Tibshirani, 1986] randomly draws NB independent samples with replacement of size NF from F . It

is non-parametric because no parameters need to be chosen prior to the sampling and no density

function is fitted onto F . When sampling with replacement, F is the same for all sampling iterations.

It ensures that the samples are independent and identically distributed. For each bootstrap, the

quantity of interest λ̃ is calculated. Since the bootstraps are normally distributed for many bootstraps

(large NB) for most estimators λ according to the central limit theorem, the bootstrap standard

error is given by

σe =

(
1

NB

NB∑
i=1

(λ̃i − 〈λ̃〉)2

) 1
2

, (3.46)
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where λ̃i denotes one bootstrap and 〈λ̃〉 the mean of all NB bootstraps. A typical uncertainty

estimate is now given by λ± σe. If not stated otherwise, a sufficiently large value of NB = 1000 is

used in this work. For unbounded estimators λ, such as the sample average, 〈λ̃〉 will be zero. For

bounded estimators, such as a correlation coefficient, 〈λ̃〉 will usually denote a noise level not equal

to zero.

3.8.2 Gaussian Process Sampling

When dealing with time series models, ordinary bootstrapping, such as case resampling, would

destroy the inherent correlation of the time series. Therefore, this work uses the parametric bootstrap

method of Gaussian process sampling [Kirk and Stumpf, 2009] to estimate the uncertainty of the

response y∗ of a time series model. To do so, NB bootstraps are drawn from all n features of the

time series model so that

x̃kt ∼ N (xkt , σ
k) ∀t , (3.47)

where xkt denotes the value of feature k at time t, x̃kt the corresponding bootstrap, σk the sample

standard deviation of xk, and N a Gaussian distribution with mean xkt and standard deviation σk.

The time series model is now evaluated NB times to obtain ỹ∗t for each time t. The bootstrap

standard error is then given by

σe,t =

(
1

NB

NB∑
i=1

ỹ∗
2
i,t

) 1
2

∀t , (3.48)

so that a typical uncertainty estimate is y∗t ±σe,t. Also here and if not stated otherwise, a sufficiently

large value of NB = 1000 is used in this work. Bootstrapping time series models can be seen as

testing empirically how sensitive the model response is to changes in the features. Another approach

would be to case resample the residual distribution after training and use the resampled residual to

train the statistical model. Each training on randomized residuals is then called a bootstrap. As

this is computationally expensive for many bootstraps, it has not been done in this work.

3.8.3 Confidence Interval

The confidence interval is computed under the valid assumption that the bootstraps are normally

distributed for most estimators according to the central limit theorem. This yields

κ± σeΦ−1(α) , (3.49)

where κ denotes the quantity of interest λ or the response of a time series model y∗ at a given

time. In Eq. 3.49, σe denotes the bootstrap standard error and Φ−1(α) the probit function at a

confidence level of α, e.g., Φ−1(0.95) = 1.96. The probit function is the inverse of the standard
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normal cumulative density function defined by

Φ−1(α) =
√

2 erf−1(α) , (3.50)

where erf−1 is the inverse error function implemented in almost any computing library. The error

function is given by

erf(x) =
2√
π

∫ x

0

e−t
2

dt . (3.51)

3.9 Normalization and Impact of the Features

3.9.1 Normalization

Features generally have different physical units and may tremendously differ in magnitude. Therefore,

prior to using features for solving classification or regression problems, the features need to be

normalized appropriately, making their magnitudes comparable. There are different approaches to

the problem of normalization [e.g., Bishop, 1995]. Let x be a given feature on m training events,

two simple and popular methods are given by

1.

x̂i =
xi − µx
σx

∀i = 1, ...,m , (3.52)

where µx denotes the mean of x and σx its standard deviation. The normalized feature x̂ has

zero mean and a variance of one.

2.

x̂i = 2
xi −maxx

maxx−minx
+ 1 ∀i = 1, ...,m , (3.53)

where maxx denotes the maximum of x and minx its minimum. The normalized feature x̂

has its maximum at 1 and its minimum at -1.

Which of these methods to be used in practice is mostly arbitrary. However, there are cases

for which Eq. 3.53 will lead to unwanted results, such as when a feature contains outliers. It is

recommended to try both normalizations and finally select the one leading to the best performance.

3.9.2 Impact

An important part of statistical modeling is the quantification of statistical importance or impact

of each of the features on the model response. For complex statistical models, the feature to be

analyzed is altered and the statistical model is re-evaluated. For this, the model response after

training y∗ is considered an equilibrium state. The perturbed model response y∗k is then the result

of altering feature k. Hence, the impact Ik of feature k averaged over a considered period of time

can be defined by

Ik =
√

var(y∗ − y∗k) , (3.54)
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Method LDA FEM-VARX MLP SVM

Nonlinear built-in no no yes yes
Nonstationary built-in no yes no no
Multivariate output no yes yes no
Unique solution yes no no yes
Regression yes yes yes yes
Classification yes no yes yes
Supervised learning yes yes yes yes
Unsupervised learning no yes yes yes
Data clustering no yes yes yes
Time for training (s) O(1) O(100) O(100) O(10)
Information criteria yes yes yes no
Cross-validation yes no yes yes

Table 3.1: Comparison of the different learning approaches. ’built-in’ denotes that nonlinearity or
nonstationarity are part of the underlying algorithm of the specific method. ’Multivariate output’
denotes that the model response can be multi-dimensional. ’Unique solution’ denotes that the train-
ing leads to results that are independent of the initialization of the training algorithm. ’Regression’
and ’Classification’ denotes that a model can be used to solve problems with regression and classi-
fication, respectively. ’Supervised’ and ’unsupervised’ learning denotes if a model can be trained in
supervised or unsupervised mode. ’Data clustering’ denotes if it is possible to cluster a given data
set which is typically done using unsupervised learning. ’Time for training’ denotes the approximate
time in seconds that is needed for one training realization on a typical desktop machine on one
core, which may vary depending, e.g., on the number of features or the number of training events.
’Information criteria’ denotes if information criteria, such as AIC and BIC, can be used for model
selection. ’Cross-validation’ denotes if cross-validation can be used for model selection.

where var(·) denotes the sample variance, y∗ the original model response, and y∗k the perturbed

model response for feature k held constant at its median, keeping all other features at their original

values as used during training. The median was selected as an average state because it is more

robust than the mean when dealing with non-Gaussian distributions that may be largely skewed. The

impact, as defined in Eq. 3.54, represents the averaged response deviation from the equilibrium state

given by y∗. The uncertainties of this estimate are generally computed with a bootstrap procedure

(see Section 3.8). The impact Ik can be simplified for the special case of LDA. From Eq. 3.54 and

Eq. 3.6, one obtains the estimate

Ik = |βk|
√

var(xk) , (3.55)

where βk denotes coefficient k and xk the corresponding feature (or basis function).

In order to be able to compare impacts throughout different statistical models, the impact needs

to be normalized. This is done by dividing by the sum of all impacts to obtain the relative impact

Irel
k =

Ik∑n
i=1 Ii

, (3.56)

where n denotes the number of all features.



CHAPTER 3. STATISTICAL LEARNING APPROACHES 51

3.10 Comparing the Learning Approaches

This section aims at providing an overview of the similarities and differences of the different learn-

ing approaches previously introduced, namely LDA, FEM-VARX, MLP, and SVM. The method of

principal component analysis (PCA) is not included here since it cannot be used as a time series

model. When necessary, PCA is used for dimension reduction before and after the training of the

above learning approaches.

Table 3.9.2 presents important characteristics of the different statistical learning approaches. It

should be noted that all considered methods can be used in a linear and stationary way. Aside from

comparing methods and their performance for a specific application, this compilation will help to

make the initial decision of which method(s) to use. It is observed in Table 3.9.2 that the perfect

method is not any of the methods considered here. The perfect statistical method does not exist.

However, certain methods are better for certain applications than others. For instance, when it

is known that the process to be modeled is nonstationary, then a nonstationary method, such as

FEM-VARX, should be used. If the relationships between the features and the process to be modeled

are nonlinear, then a nonlinear method, such as MLP, should be used.

There are no modeling examples given in this section because it highly depends on the specific

application which method will perform best as observed in the next chapters. There may be even

applications for which the simplest of all considered methods, namely LDA, performs most efficiently.

In the upcoming chapters, the four statistical learning approaches will be compared with respect

to their ability to model and forecast stratospheric variability on different stratospheric domains,

variables, and time scales.



Chapter 4

Data

This chapter introduces the data sets that the upcoming statistical investigations are based on. This

includes data from observations, reanalyses, and climate model simulations.

4.1 Observations

Making stratospheric observations using radiosondes, satellites, or lidar is essential for understanding

the evolution of weather and climate in the stratosphere. The higher the quality and resolution of

the observations, the better the past is understood and the higher the chance to make reliable

predictions into the future. Stratospheric observations are generally considered as having a higher

quality with the introduction of satellite measurements (satellite era) in 1979 [e.g., Randel et al.,

2009; Blume et al., 2012]. In this work, observations from different sources for ozone and sea surface

temperature are utilized.

Ozone

Two observational data sets for ozone are used in this work:

• The NIWA-3D (referred to as NIWA hereafter) ozone data set [Hassler et al., 2009] is a

gridded monthly data set based on observations. Where observations were not available, data

points were computed by a regression model. NIWA has a horizontal resolution of 5◦ and 70

pressure levels from approx. 878 hPa to 0.05 hPa. NIWA is available from January 1979 to

December 2007.

• The Randel&Wu (referred to as RANDEL hereafter) ozone data set [Randel and Wu, 2007]

is a gridded monthly data set based on observations and an ozone climatology by Fortuin

and Kelder [1998]. Where observations were not available, data points were computed by

a regression model. RANDEL has a horizontal resolution of 5◦ and 31 pressure levels from

approx. 300 hPa to 0.1 hPa. RANDEL is available from January 1979 to December 2005.

52
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Sea Surface Temperature

Observations of sea surface temperature (SST) are taken from the HadlSST1 data set [Rayner

et al., 2003], available at the Met Office Hadley Centre, UK. HadlSST1 is a gridded data set, has a

horizontal resolution of 1◦, and is available from 1870 to present day.

4.2 Reanalyses

Reanalysis data sets play an important role when trying to understand climate and weather develop-

ment over the past sixty years. Reanalyses provide world-wide gridded data sets on a high-resolution

temporal domain for many different variables (e.g., temperature, wind, geopotential). They are

often available up to the stratopause or even higher.

Reanalyses are produced in a data assimilation system [Kalnay, 2003], meaning that available

observations are assimilated into a model simulation. Therefore, a reanalysis data set is a best

guess incorporating observations and model simulations. Naturally, the higher the quality of the

observations and the more realistic the model simulation, the better is the reanalysis. The considered

reanalyses are generally more reliable during the satellite era from 1979 onwards. Also, the data

assimilation scheme (e.g., 4D-Var, Ensemble Kalman) plays a crucial role as it ultimately combines

model and observations. There are many different reanalyses from all over the globe. In this work,

two European and two American reanalyses are utilized:

• The ERA-40 (referred to as ERA40 hereafter) reanalysis [Uppala et al., 2005] was computed

by the European Centre for Medium-Range Weather Forecasts (ECMWF) for the period of

September 1957 to August 2002. It is based on a spectral model with T159L60 and a model

top at 0.1 hPa (lower mesosphere). A 3D-Var assimilation system was used for ERA40. In

this work, ERA40 is utilized in a horizontal resolution of 1.1◦ on 23 pressure levels from 1000

to 1 hPa. ERA40 was originally intended to only cover 40 years. ERA stands for ECMWF

re-analysis.

• The ERA-Interim (referred to as ERAInt hereafter) reanalysis [Simmons et al., 2006] is also

being computed by the ECMWF for the period of January 1979 to present day. It is based on

a spectral model with T255L60 and a model top at 0.1 hPa (lower mesosphere). ERAInt uses

the more powerful 4D-Var assimilation system. In this work, ERAInt is utilized in a horizontal

resolution of 0.7◦ on 31 pressure levels from 1000 to 1 hPa. ERAInt is intended to eventually

replace ERA40.

• The NCEP/NCAR (referred to as NCEP hereafter) reanalysis I [Kalnay et al., 1996] is being

computed by the National Center for Environmental Prediction (NCEP), USA in collaboration

with the National Center for Atmospheric Research (NCAR), USA for the period of January

1948 to present day. It is based on a spectral model with T255L28 and a model top at 3 hPa

(upper stratosphere). A 3D-Var assimilation system was used for NCEP. In this study, NCEP
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is used in a horizontal resolution of approx. 2.5◦ and 17 pressure levels from 1000 to 10 hPa.

There is also the NCEP/NCAR reanalysis II beginning in 1979 with higher horizontal and

vertical resolution (not used in this study).

• The MERRA reanalysis [Rienecker et al., 2011] is being computed by the National Aeronau-

tics and Space Administration (NASA), USA for the period of January 1979 to present day.

The grid used for MERRA is 0.5◦ (lat) x 2/3◦ (lon) with 72 vertical levels up to 0.01 hPa

(mesosphere). A 3D-Var assimilation system was used for MERRA. In this study, MERRA is

used in a horizontal resolution of approx. 0.5◦ and 42 pressure levels from 1000 to 0.1 hPa.

MERRA stands for Modern Era Retrospective Analysis for Research and Applications.

There are a few studies carried out in the past that systematically compared reanalyses and

observational data sets for the stratosphere. Randel et al. [2004] compared middle atmosphere

climatologies in temperature and zonal winds in observations and reanalyses and found significant

differences for temperatures near the tropical tropopause and in the polar lower stratosphere, tem-

peratures near the global stratopause, and zonal winds throughout the tropics. More differences

appeared when comparing oscillations in zonal wind such as the tropical semiannual oscillation and

the quasi- biennial oscillation. Labitzke and Kunze [2005] compared stratospheric north-polar tem-

perature trends and found a good agreement between historical hand-analyzes prepared at FU Berlin,

ERA40, and NCEP. Randel et al. [2009] show that stratospheric trends in temperature and ozone

agree well between different observational data sets during the satellite era (1979-2007) but deviate

for the pre-satellite era (1958-1978). Studies carried out by Charlton and Polvani [2007] and Blume

et al. [2012] compared stratospheric warming climatologies between ERA40 and NCEP and found

very similar monthly frequency distributions but significant differences during the pre-satellite era.

4.3 Chemistry-Climate Models

During the Chemistry-Climate Model Validation Activity 2 (CCMVal-2) [SPARC CCMVal, 2010]

instigated by the SPARC initiative and the World Climate Research Program (WCRP), numerous

chemistry-climate models (CCMs) simulated the recent past and the future climate while incorpo-

rating common forcing fields (e.g., SSTs, solar cycle, greenhouse gases, etc.). The CCMVal website

(http://www.pa.op.dlr.de/CCMVal) states that “the goal of CCMVal is to improve understand-

ing of CCMs and their underlying GCMs (General Circulation Models) through process-oriented

evaluation, along with discussion and coordinated analysis of science results”. The output of the

different model simulations is stored on the British Atmospheric Data Centre (BADC) which can

be accessed by registered users. This work makes use of several simulation runs of three different

CCMs [Morgenstern et al., 2010] which participated in CCMVal-2 (MRI, WACCM) or with which

equally constrained runs were performed (EMAC-FUB):

• EMAC-FUB - The ECHAM5/MESSy Atmospheric Chemistry model [Roeckner et al., 2003,

2004; Jöckel et al., 2006] is a spectral chemistry-climate model, which is simply referred to

http://www.pa.op.dlr.de/CCMVal
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Figure 4.1: Left: Surface total chlorine (solid) and total bromine (dotted) as defined in the A1
scenario [WMO, 2007]. Right: Surface CO2 (solid), N2O (dotted), and CH4 (dashed) as defined in
the A1b scenario [IPCC, 2001]. Figure from Chapter 2 of SPARC CCMVal [2010].

as EMAC in the following1. It was run with a vertical resolution of 39 layers (L39) up to

0.01 hPa (≈80 km) and a horizontal resolution of 2.8◦ (T42). The model results are available

on a Gaussian grid in a resolution of 2.8◦ and 31 pressure levels from 1000 to 0.1 hPa. The

QBO in EMAC is nudged in a latitude range from 7◦ S to 7◦N and from 70 to 12 hPa. Nudging

refers to the gentle pushing of simulated values towards observed values. For the QBO, this

is done with a weighting function decreasing exponentially away from the equator. Nudging

is necessary when important modes of variability cannot be generated internally.

• MRI - The Meteorological Research Institute model [Shibata et al., 1999, 2005; Shibata and

Deushi, 2008] is a spectral chemistry-climate model. It was run with a vertical resolution of 68

layers (L68) up to 0.01 hPa (≈80 km) and a horizontal resolution of 2.8◦ (T42). The model

results are available on a Gaussian grid in a horizontal resolution of 2.8◦ and 31 pressure levels

from 1000 to 0.1 hPa. The QBO in MRI is self-consistent and internally generated. This is

possible due to the dense vertical layering in MRI.

• WACCM - The Whole Atmosphere Community Climate Model [Garcia et al., 2007; Kinnison

et al., 2007; Richter et al., 2010], version 3.5, is a finite-volume chemistry-climate model. It

was run with a vertical resolution of 66 layers up to 5.96 ·10−6 hPa (≈140 km) and a horizontal

resolution of 1.9◦(lat) x 2.5◦(lon). The model results are available on a Gaussian grid with

31 pressure levels from 1000 to 0.1 hPa. The QBO in WACCM is nudged in a latitude range

from 22◦ S to 22◦N and from 90 to 3 hPa [Matthes et al., 2010].

Using these CCMs, the different research groups performed reference simulations from January

1960 to December 2005 (REF-B1) as well as future projections from 1960 to 2100 (REF-B2)

1The name EMAC-FUB is historically grown and used for the L39 version as run at the Institute for Meteorology,
Freie Universität Berlin (FUB). There is also a L90 version developed and run at the Max-Planck-Institute for
Chemistry in Mainz, Germany, generally referred to as EMAC.
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that are analyzed in this work. The reference runs, REF-B1 and REF-B2, are the most realistic

simulations performed during the CCMVal-2 initiative [Eyring et al., 2008]. The REF-B1 runs

were constrained with observed forcings in SSTs, solar cycle, volcanic eruptions, greenhouse gas

emissions, and ozone depleting substances. The REF-B2 runs were forced with simulated SSTs,

constant solar irradiance (except EMAC where observed solar cycles where repeated into the future)

and no volcanic eruptions. The QBO was repeated into the future for CCMs nudging the QBO

(EMAC, WACCM). The greenhouse gas (GHG) emissions were prescribed according to the A1b

scenario [IPCC, 2001] and ozone depleting substances (ODS) according to the A1 scenario [WMO,

2007]. The most important GHGs and ODSs, as used for the aforementioned reference simulations,

are shown in Fig. 4.1 for the time period of 1950 to 2100. Chlorine and bromine are shown on the

left, carbon dioxide, nitrous oxide, and methane on the right. This figure is taken from Chapter 2 of

SPARC CCMVal [2010] where it states: “The ODSs increase sharply during the 1970s and 1980s,

resulting in an approximate 6-folding of organic chlorine and a doubling of organic bromine at peak

abundances in the 1990, relative to pre-industrial times. For the 21st century, a continuous decline,

in accordance with the Montreal Protocol, is anticipated. The decline is substantially slower than

the increase in the 20th century. By contrast, for the leading greenhouse gas CO2 a steady increase

is anticipated, leading to a more than doubling by 2100, compared to 1950. N2O follows a similar

trend, albeit with smaller growth rates. CH4, by contrast, is anticipated to undergo a trend reversal

around 2050.” The red bar in Fig. 4.1 separates the REF-B1 to the left from the REF-B2 period to

the right. REF-B2 actually denotes the full period of 1960 to 2100 but only REF-B2 results from

2006 onward are considered in this work. In the following, the large-scale stratospheric variabilities

in temperature and ozone in the CCM simulations and the previously introduced reanalyses and

observations are statistically modeled and the natural contribution is quantified.



Chapter 5

Quantification of Natural Variability

The statistical methods introduced in Chapter 3 are applied to the large-scale statistical modeling of

the global stratosphere on a zonal mean domain. Considering zonally averaged data, i.e. averaging

along each latitude across all longitudes, is a good approximation because most systematic strato-

spheric variations are in latitude and height [e.g., Haynes, 2005]. The statistical methods considered

in this regression study are linear discriminant analysis (LDA), a cluster method based on finite

elements (FEM-VARX), a neural network, namely the multi-layer perceptron (MLP), and support

vector regression (SVR). LDA is equivalent to multiple linear regression for regression problems.

The variables to be modeled are monthly temperature and ozone because of their specific

importance for indicating variability in the radiative budget, dynamics, and chemistry (see Chapter 2).

All temperature and ozone time series considered in this study are deseasoned, i.e. anomalies with

respect to their long-term mean. Once variability is modeled, the impact of forcing factors is

calculated. From this, the statistical importance of forcing factors originating naturally, i.e. natural

variability, is estimated. The impact of anthropogenic forcings on recent climate in the stratosphere

can then be estimated. Considering various data sets along with the four independent statistical

methods makes it feasible to estimate robust estimates and uncertainties for the impacts of each of

the forcing factors that influence stratospheric variability.

The statistical methods are trained with data representing the recent climate for the time

period from 01/1980 to 12/2005 which is the longest common period among the different data

sets. Selecting this period ensures comparability between different data sets and garanties the

highest available quality of observations and reanalyses due to the introduction of satellites in 1979

(satellite era). The reanalyses and observations considered in this chapter are ERAInt, MERRA,

RANDEL, and NIWA (see Sections 4.1, 4.2). The SPARC CCMVal-2 model simulations considered

are EMAC-FUB, WACCM, and MRI where statistical training is performed with the REF-B1 runs

(see Section 4.3). In addition, long-range statistical forecasts up to the year 2100 are made with

reasonable assumptions about the forcing factors. These statistical projections are compared with

simulated projections within CCMVal-2, namely the REF-B2 runs (see Section 4.3).

The statistical methods are trained by incorporating a range of forcings and modes of variability

that are known to influence the stratosphere. These so-called external factors, as described in

57
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Truth PCA    Model
Statistical 1PCA Response

Features

Comparison

Figure 5.1: A schematic picture showing the principal of dimension reduction in combination with a
statistical model incorporating features (external factors). The high-dimensional truth is decomposed
by a PCA and only the first n principal components are retained, explaining at least 90% of the
overall variance. See text for explanation.

Chapter 2, are variabilities in sea surface temperature (ENSO, AMO, NPO/WP, PDO), in equatorial

zonal mean zonal wind (QBO1, QBO2), the annular modes (NAM, SAM), the solar cycle (SFL), and

volcanoes (AOD). In addition, a sine and a cosine with a period of one year are included, representing

the seasonal dependency of the stratosphere. For the temperature modeling, a linear trend term

(TRE) is included, whereas for ozone, ESC is used to represent long-term behaviour (see Section 2.3).

During selection and computation of the external factors, as described in Chapter 2, it was ensured

that none of the hemispheres were favored a priori by, e.g., using principal components to obtain

suitable indices. In order to make the different external factors comparable in magnitude, all indices

are normalized between -1 and +1 according to Eq. 3.53. Factors for sea surface temperatures,

equatorial zonal mean zonal winds, and annular modes were detrended before being presented to a

statistical model.

As one part of this chapter, the four different statistical methods are compared with respect

to their regression performance. Prior to the actual training, the optimal model architectures need

to be determined with the help of information criteria and cross-validation (see Section 3.7). Due

to the naturally high-dimensional space (latidude, level, time), an efficient procedure for dimension

reduction is applied in a first step, namely principal component analysis (see Section 3.1), while still

retaining almost all variance found in the data.

5.1 Dimension Reduction

This analysis consideres the stratosphere on a zonally averaged domain. Therefore, the variables

depend on latitude, pressure level, and time. All latitudes are considered from 90◦ S to 90◦N and

11 pressure levels at 100, 70, 50, 30, 20, 10, 7, 5, 3, 2, and 1 hPa. Hence, with a typical horizontal

resolution of 2◦ the spatial dimension has a size of approximately 90 x 11≈ 1000. Hence, every sta-

tistical method would have to model 1000 dimensions. Assuming that the training for one dimension

takes about a minute and considering that this work deals with many data sets and four statistical
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Figure 5.2: The result of a PCA calculated for temperature in ERAInt. This figure displays the
variance (black) along with the accumulated variance (green) explained by the first 16 eigenvalues
and corresponding EOFs. The error bars and the hatched area denotes the standard sampling error
calculated with North’s rule of thumb (see Eq. 3.3). The graph in red denotes the level above
which an eigenvalue can be considered as not being caused by a noise process at a 99% confidence,
estimated with bootstrap based on case resampling (see Section 3.8).

methods, one realizes that analyzing the entire raw domain is computationally time consuming.

Therefore, principal component analysis (see Section 3.1) is used to reduce dimensionality, prior to

the actual statistical modeling. This is displayed schematically in Fig. 5.1. The high-dimensional

raw domain (truth) is decomposed by a PCA and only the first n principal components (PCs) are

retained, explaining at least 90% of the overall variance. These n PCs are then modeled by the

statistical model with the help of the external factors (features). The result is then transformed

back by inverting the PCA (PCA−1; see Eq. 3.5). The resulting response can be directly compared

to the truth.

The idea of dimension reduction is exemplarily presented for the temperature in ERAInt but

performed on all data sets considered in this chapter. Fig. 5.2 displays the variance (black) along with

the accumulated variance (green; see Eq. 3.4) explained by the first 16 eigenvalues and corresponding

EOFs. The error bars and the hatched area denotes the standard sampling error calculated with

North’s rule of thumb (see Eq. 3.3). It is observed that already 16 EOFs explain more than 90% of

the overall variance. All 16 eigenvalues are significant on a 99% confidence level with respect to a

noise process simulated by bootstrap based on case resampling as described in Section 3.8.

With a spatial dimension size of 704 (#latitudes x #levels) in ERAInt, the number of dimen-

sions are therefore reduced by a factor of 704/16 = 44 (!), only loosing about 10% of the overall

variance. Fig. 5.3 shows the first two EOFs of this PCA, representing the large variability in the

north-polar stratosphere and its connection to the equatorial stratosphere. The first EOF repre-
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Figure 5.3: The two leading EOFs in Kelvin of a PCA calculated from temperature anomalies in
ERAInt. Both represent the large variability in the north-polar stratosphere and its teleconnection
to the equatorial stratosphere.

sents how positive (negative) temperature anomalies in the polar upper stratosphere (north-polar

variability) coincide with negative (positive) anomalies at the equatorial stratopause (semiannual

oscillation). The second EOF represents how positive (negative) anomalies in the polar middle and

lower stratosphere (polar vortex) coincide with negative (positive) anomalies over the equator in the

upper and lower stratosphere. Both EOFs represent the fact that warm/cold polar vortex conditions

result in an opposite temperature anomaly in the tropics [e.g., Kodera, 2006; Yoshida and Yamazaki,

2011]. The first two leading EOFs have centers of action in the northern hemisphere due to the

much higher variability there compared to the southern hemisphere (compare Chapter 2). On one

hand, it can be seen how PCA is used for dimension reduction, on the other hand, it is used to

obtain insights into high-dimensional data sets.

Naturally, it is interesting to investigate how much variance is retained regionally using the PCA

dimension reduction. This is calculated by simply omitting the statistical model as displayed in

Fig. 5.1 and directly comparing truth and response. Fig. 5.4 shows the resulting explained variance

(EV) according to Eq. 3.36. It is observed that EV is generally larger than 70% except for the

low-latitude tropopause where higher-order EOFs play a larger role. For the most part, EV is even

larger than 80%, and larger than 90% for the polar regions and the equatorial stratosphere. There

is slightly more variance explained on the northern hemisphere due to the higher variability present

in this region (see Section 2.1). When averaging the entire EV field, a resulting value of 84% is well

within the uncertainty range of the accumulated variance at the 16th EOF in Fig. 5.2. It can be

concluded that the dimension reduction is very efficient while retaining most variance. The regional

explained variance is similar for ozone and the other data sets (not shown). The number of retained

EOFs for temperature, ozone, and the different data sets are given in Table 5.1. For temperature,

the CCMs underestimate variability in the stratosphere represented by the lower number of retained

EOFs in comparison to ERAInt and MERRA. For ozone, the number of EOFs are similar between

observations and CCM simulations, except for WACCM which may overestimate variability. In the
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Figure 5.4: The explained variance (EV) according to Eq. 3.36 as a result of a PCA and a subsequent
back-transformation while retaining 90% of the overall variance calculated for ERAInt.

Table 5.1: Number of retained EOFs for temperature, ozone, and the different data sets.

ERAInt MERRA RANDEL NIWA EMAC WACCM MRI

T 16 15 n/a n/a 10 10 11

O3 n/a n/a 9 7 10 17 9

following, the reduced representation, as presented in Table 5.1, is used to compute optimal model

architectures.

5.2 Optimal Model Architecture

Each of the statistical methods considered in this chapter, except LDA, has free tuning parameters.

A full set of these parameters is called the model architecture (see Section 3.7). In order to determine

the optimal model architecture, a k-fold cross-validation is carried out (see Section 3.7.2) for MLP

and SVR. Cross-validation is used because a long-term forecast is conducted for each statistical model

at the end of this chapter. A value of k = 5 is selected to ensure that there is sufficient training data

(20 years) and a forecast period on interannual scales (5 years). As described in Section 3.7, the

optimal FEM-VARX architecture is determined with the help of information criteria. FEM-VARX is

referred to as FVX in this chapter. FVX and MLP are used in a multivariate mode, meaning that

their target object is a vector carrying all target dimensions (the EOFs given in Table 5.1). SVR

and LDA can only be used in univariate mode, meaning that a separate training for each target

dimension needs to be performed (compare Table 3.9.2).

The procedure of estimating the optimal model architecture is exemplarily presented for the
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Figure 5.5: FVX information criteria received from the temperature in ERAInt. Displayed are
∆(AIC) and ∆(BIC), respectively, calculated for two clusters K and a varying persistency threshold
C.

temperature in ERAInt. Fig. 5.5 shows ∆(AIC) and ∆(BIC) where ∆(·) denotes a simple function,

called information difference, that subtracts the global minimum minus one from each value. This

was calculated for FVX for K = 1, 2 and a varying number of the persistency thresholds C. Please

note that FVX with K = 1 would be equivalent to LDA. The smallest ∆ across all combinations then

points to the optimal model architecture (compare Section 3.7). Therefore, both criteria, AIC and

BIC, clearly favor two clusters. Also higher numbers of clusters were tested which were consistently

rejected by the information criteria (not shown).

AIC and BIC select K = 2 but the results differ for the persistency threshold C. The AIC

result is given more trust because C = 12 (see Eq. 3.14) allows clusters to form on the 25-year

time series that resemble the QBO which is one of the largest sources of natural variability in the

stratosphere (see Section 2.2.1). In contrast, with C = 3, as favored by the BIC, there would be

only very few transitions possible between clusters, making it impossible to cluster QBO variability

and its influence. Following equal reasoning, all FVX results presented in this chapter are based on

AIC results.

Fig. 5.6 presents the 5-fold cross-validation result for MLP and SVR received from the tempera-

ture in ERAInt, showing the mean prediction error (MPE) in Kelvin (see Eq. 3.30). The smaller the

MPE the better the cross-validation result. Hence, the minimum value denotes the optimal model

architecture. For MLP, 8 neurons in the first and 0 neurons in the second hidden layer are optimal.

Therefore, the cross-validation selects a network with only one hidden layer in this case. Please note

that the white areas in the MLP plot denote regions where the training algorithm failed (certain

number of neurons) or where the number of parameters exceeded the number of steps in time (to

avoid overfitting). There is one other local minimum found for MLP with 7 neurons in the second

hidden layer as observed in Fig. 5.6. However, the number of free parameters according to Eq. 3.22

is much larger than that of the global minimum and is therefore rejected. For SVR, C = 102 and

γ = 3 · 10−2 is the optimal setting found by the cross-validation for the temperature in ERAInt.



CHAPTER 5. QUANTIFICATION OF NATURAL VARIABILITY 63

Neurons in 1. Hidden Layer
2 4 6 8 10 12 14

N
e

u
ro

n
s
 i
n

 2
. 

H
id

d
e

n
 L

a
y
e

r

0

2

4

6

8

10

12

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8

(8, 0)

MLP     ERAInt     Temperature

lg(C)
0 1 2 3 4 5 6 7

)
γ

lg
(

7

6

5

4

3

2

1

0

6

6.2

6.4

6.6

6.8

7

7.2

7.4

7.6

7.8

8
(1e+02, 3e02)

SVR     ERAInt     Temperature

Figure 5.6: Cross-validation result for MLP (left) and SVR (right) received from the temperature in
ERAInt, showing the mean prediction error in Kelvin (see Eq. 3.30). The optimal pairs of parameters
are indicated.

Table 5.2: The optimal model architectures for FVX (K,C), MLP (L1, L2), and SVR (C, γ) for
each data set. Results are shown separately for temperature (T) on the left and ozone (O3) on the
right. Not applicable where left blank.

FVX MLP SVR T FVX MLP SVR O3

ERAInt 2, 12 8, 0 102, 3 · 10−2

MERRA 2, 9 5, 0 3 · 103, 3 · 10−3

RANDEL 2, 28 8, 0 105, 3 · 10−2

NIWA 2, 6 6, 7 104, 10−1

EMAC 2, 21 5, 0 104, 3 · 10−3 2, 37 6, 6 105, 10−2

WACCM 2, 12 6, 0 103, 10−2 2, 9 5, 7 104, 10−1

MRI 2, 21 5, 0 104, 3 · 10−3 2, 3 5, 0 3 · 104, 3 · 10−2

There is actually a large space of parameters C and γ in the neighborhood of the optimal setting

that lead to similar cross-validation results, making SVR a robust model for this application.

The model selection is now extended to all other data sets. Table 5.2 summarizes the optimal

model architectures for FVX (K,C), MLP (L1, L2), and SVR (C, γ) for each data set. The results

are shown separately for temperature (T) and ozone (O3). The model settings for temperature are

generally similar among the different data sets. Two clusters in FVX are favored with persistencies

C between 9 and 21. One hidden layer in MLP is selected with number of neurons between 5 and 9.

Also, selected settings for SVR are relatively similar and well within the range of low cross-validation

errors as displayed on the right panel of Fig. 5.6. For ozone, the selected settings lead to slightly

more free parameters to be trained with FVX and MLP and a larger variation among the different

data sets. FVX still favores two clusters but now with persistencies C between 3 and 37. It is

interesting to note that ozone variability in RANDEL and EMAC leads to a significantly higher C

than variability in NIWA, WACCM, and MRI where the presistencies for temperature are not far

apart. The larger the percistency C the more transitions between clusters are possible, implying
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that the statistical model (FVX) becomes more complex (more parameters). However, It is difficult

to conclude anything from the value of C about the variability found in the different data sets due

to the many dimensions considered simultaneously. Also interesting to note is that ozone variability

in NIWA, EMAC, and WACCM leads to an MLP with two hidden layers (more parameters) whereas

variability in RANDEL and MRI leads to only one hidden layer (less parameters). The estimated

optimal model architectures, as displayed in Table 5.2, are now used to perform the final training

with each of the statistical models. The models are then evaluated and compared with respect to

their regression performance.

5.3 Regression Performance

The regression performance of each statistical model is assessed with the help of the explained

variance (EV) as defined in Eq. 3.36. A value of EV of around 30% or higher is an acceptable value

as it corresponds to an approximate correlation coefficient between statistical model and truth of 0.5

(EV ≈ R2). This is shown exemplarily for one reanalysis, one observational data set, and one CCM.

These representative data sets are ERAInt, RANDEL, and EMAC in Fig. 5.7 for temperature and

in Fig. 5.8 for ozone for three different latitude ranges: The tropical (20◦ S-20◦N), the midlatitude

(20◦N-60◦N), and the polar region (60◦N-90◦N). Performance results for the southern hemisphere

are similar and omitted for simplicity.

Concerning the temperature results, it is seen that the tropical regression performance is ac-

ceptable for most parts of the stratosphere, particularly for EMAC and the other CCMs (not shown).

For ERAInt, a drop of performance in the upper stratosphere higher than 5 hPa is observed, also

obtained for MERRA (not shown). A decrease of performance is also observable towards the lower

stratosphere below 50 hPa which is strongest in midlatitudes. This is mainly an artifact of the di-

mension reduction, also visible in the ozone results in Fig. 5.8. Low values of explained variance are

observed in Fig. 5.4 from 100 to 50 hPa without using a statistical model, particularly in the extrat-

ropics. There are interesting performance differences between the statistical models in Fig. 5.7. For

ERAInt, MLP performs the worst and SVR the best. However, for the polar region there is a region

between 20 and 3 hPa where FVX performs the best. There is no significant difference between the

different statistical models in the polar stratosphere in EMAC and the other CCMs (not shown). For

the tropics and midlatitudes, SVR performs best closely followed by MLP. FVX and LDA perform

very similar for the temperature in EMAC. For the modeling of temperature, it is generally observed

that LDA does not perform significantly worse than MLP or FVX. Only SVR is significantly better

than the other methods throughout almost all regions and pressure levels.

The ozone modeling performance, as displayed in Fig. 5.8, is generally higher than that for

temperature, especially for RANDEL across all considered pressure levels. This is also true for NIWA.

For all statistical models and most part of the stratosphere, it is even above 60% EV corresponding to

a correlation of approx. 0.8 between statistical model and truth. Again, SVR performs significantly

better than any of the other methods. MLP and FVX perform very similar over all latitude ranges
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tropics midlatitudes polar

Figure 5.7: Explained variance (EV) for temperature for ERAInt (top) and EMAC (bottom) for
different latitude regions. The considered latitude ranges from left to right are: The tropical (20◦ S-
20◦N), the midlatitude (20◦N-60◦N), and the polar region (60◦N-90◦N). The higher EV, the better
the regression performance. Values of EV of at least 30% are acceptable as they correspond to an
approximate correlation of 0.5 between statistical model and truth.

and pressure levels, except for the polar region in EMAC where MLP even drops below 30% EV.

LDA clearly performs the worst for this application. Similar to the temperature results, EV in

EMAC and the other CCMs (not shown) show a clear decrease in regression performance towards

lower stratospheric levels (compare Fig. 5.7). The regression performance is generally lower at the

upper stratosphere as observed for ozone and temperature. This is not an artifact of the dimension

reduction but a result of insufficient information from external factors about the variability in this

region. To achieve better modeling results at these pressure levels, other external factors governing

the variability in this region, such as the semiannual oscillation, would have to be included.

The regression performance is summarized in Table 5.3 for temperature, ozone, all data sets,

and the different statistical models. Displayed is the explained variance (EV) in percent averaged

over the entire stratosphere. Results are shown separately for temperature (T) and ozone (O3).
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tropics midlatitudes polar

Figure 5.8: Explained variance (EV) for ozone for ERAInt (top) and EMAC (bottom) for different
latitude regions. The considered latitude ranges from left to right are: The tropical (20◦ S-20◦N),
the midlatitude (20◦N-60◦N), and the polar region (60◦N-90◦N). The higher EV, the better the
regression performance. Values of EV of at least 30% are acceptable as they correspond to an
approximate correlation of 0.5 between statistical model and truth.

Concerning temperature, it is seen that LDA and FVX perform very similar for the two reanalyses

ERAInt and MERRA, explaining about 27% of the variance. This is also true for the performance

of MLP for MERRA. For ERAInt, MLP only explains about 23% variance. SVR clearly performs

best for the reanalyses with a value of about 38%. For the CCMs, SVR also explains around 40%

whereas the other methods perform significantly worse. In particular, LDA and FVX for MRI explain

only 14% and 18%, respectively. Also, MLP is not much better with 21%. The reason for this

poor performance might have to do with the internally generated QBO in MRI and more complex

teleconnections with higher latitudes [Naoe and Shibata, 2010]. Concerning ozone, a very similar

ranking among the statistical models is observed with SVR explaining most variance. As already

seen in Fig. 5.8, EV is generally higher for ozone than it is for temperature. This is due to the large

impact of stratospheric chlorine and bromine expressed by ESC compared to the smaller impact of
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Table 5.3: Regression performance: The explained variance (EV) in percent averaged over the
entire stratosphere for LDA, FVX, MLP, and SVR, presented for each data set. Results are shown
separately for temperature (T) on the left and ozone (O3) on the right. Not applicable where left
blank. The mean across the data sets is given at the bottom along with its standard error (σ/

√
n).

LDA FVX MLP SVR T LDA FVX MLP SVR O3

ERAInt 29 28 23 39
MERRA 27 26 28 37
RANDEL 55 64 65 79
NIWA 53 63 68 81
EMAC 30 31 35 42 50 53 48 63
WACCM 29 26 23 44 49 54 46 78
MRI 14 18 21 35 65 68 63 77

Mean 26±3 26±2 26±2 39±1 54±3 60±3 58±4 76±3

the linear trend term in the modeling of temperature. The next section will address this issue in more

detail. It is interesting to note that the regression performance for ozone variability is the lowest

in EMAC and WACCM across all statistical models. The reason for this might be an important,

currently not included external factor such as the semiannual oscillation.

To obtain a final comparison between the different statistical models, the mean across the data

sets is given at the bottom of Table 5.3 together with its standard error (σ/
√
n). For temperature,

LDA, FVX, and MLP lead to equal performances with small error bars. SVR outperforms all other

methods by about a factor of 1.5 with a mean EV of 39%. For ozone, SVR again performs much

better than the other statistical models, outperforming them by a factor of about 1.3 with a mean

EV of 76%. FVX and MLP perform very similar for ozone with approx. 59% EV. The mean EV value

of 54% for LDA is smaller than that of FVX and MLP, but the uncertainty ranges overlap which

makes it difficult to rank the performances differently. It can be concluded that SVR clearly explains

significantly more variance when statistically modeling monthly temperature and ozone anomalies in

the stratosphere. The performances of LDA, FVX, and MLP are not significantly different from one

another for this particular application. It is investigated in the next section if the different regression

results lead to different statistical impacts of the external factors.

5.4 Estimating the Statistical Importance

The statistical impact of the external factors on each of the statistical models and the variability

in different data sets is investigated. This is done with the help of the relative impact as defined

in Eq. 3.56. This impact depends on the variable (temperature or ozone) and the particular data

set that the statistical model was trained with. Having the impact calculated, the natural climate

variability inherent in the stratosphere is quantified from averaged statistical impacts across statistical

models and the different data sets. This makes it possible to assign a robust uncertainty to the

statistical impacts of the external factors on the different variables. In addition, it is shown where
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Table 5.4: Weights for each statistical model used for the model averaging. They are derived from
the individual explained variances for temperature and ozone. See text for explanation.

LDA FVX MLP SVR

T 0.22 0.22 0.22 0.33
O3 0.22 0.24 0.23 0.31

the external factors have largest impacts in the stratosphere.

5.4.1 Individual Impacts

The individual impact of each external factor on a certain statistical model and data set is averaged

across the stratosphere and displayed in Fig. 5.9 for temperature and in Fig. 5.10 for ozone. SST

denotes the sum of the four SST factors, QBO the sum of the two factors QBO1 and QBO2, SFL the

solar cycle, AOD the aerosol optical depth, AM the sum of NAM and SAM, SI the seasonal influence

as the sum of sine and cosine term, TRE the linear trend term, and ESC the effective stratospheric

chlorine (compare Chapter 2). The factors in sea surface temperature were added up due to their

significant interrelationships [e.g., Deser et al., 2010]. The QBO factors were added up because

they are two indices describing the same height-evolving phenomena in the equatorial stratosphere

(see Section 2.2.1 for a description of the QBO). When averaging NAM and SAM impacts across

the stratosphere, their impacts are almost identical in all here considered data sets. Hence, NAM

and SAM contribute equally to the AM impact. Of course, all external factors influence each other

to some extent which cannot be avoided within a statistical analysis. However, the grouping here

was done according to the origin of the external factors, making it physically plausible.

The results are displayed for each statistical method with the corresponding standard error. The

statistical impacts of each factor on the different methods are averaged using the model averaging

procedure described in Section 3.7.3. The average (Mean), as displayed in Fig. 5.9 and Fig. 5.10, is

weighted according to the individual explained variances (EV) presented in the previous subsection.

The corresponding weights are summarized in Table 5.4, giving SVR the largest weight as it explains

more variance than the other models. To obtain these weights, EV for a specific model is divided by

the sum of all EVs. By doing so, it is assumed that the statistical model explaining more variance

is able to more effectively weight the external factors according to their statistical importance.

Temperature

When examining the ERAint results in Fig. 5.9, it is noted that AM has the largest impact of about

25% where half of this value is attributed to NAM and SAM, respectively. Whereas AM impacts in

ERAInt computed with SVR and MLP are close to the mean, the impact from LDA is 30% whereas

that from FVX is the lowest with 20%. This deviation among the statistical models is reflected by a

standard error of the mean of around 3%. The mean AM impacts for the other data sets are slightly
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Figure 5.9: The impact of each external factor on temperature averaged across the stratosphere,
displayed for the reanalyses (top) and the three CCMs (bottom). For each external factor, the impact
is shown for each statistical model including its standard error (σ/

√
n). The average across the

statistical models (Mean) is weighted according to the individual explained variances (see Table 5.4).

higher, varying from 30% to 34%. As for ERAInt, the AM impact from FVX in the other data sets

is slightly lower than that from SVR, MLP, and LDA.

The second most important natural factor is the QBO, as observed for all data sets in Fig. 5.9

with only small differences among the statistical models. However, the QBO impact from FVX is

once again slightly smaller than that from the other statistical models. The mean QBO impact

is 20% for ERAInt, MERRA, and EMAC, 23% for WACCM and 17% for MRI. The third most

important natural factor is SST which varies among the different data sets between a minimum of

12% for MRI and a maximum of 16% for ERAInt. For SST, FVX generally attributes the highest

importance and MLP the lowest. Only for WACCM, the SST impacts among the statistical models

agree well. The two least important factors are SFL and AOD which range between 3% (AOD for

EMAC) and 12% (AOD for MRI) across the different data sets. The AOD impact variation between

the statistical models varies on a range comparable to that of the QBO impact. In contrast, this

variation for SFL is rather small, meaning the statistical models agree well about the importance of

this factor in the different data sets. Also the variation of the mean SFL impact across the data sets
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is very small and even negligible among the CCM simulations. A minimum of the mean SFL impact

of 6% (CCMs) and a maximum of 8% (MERRA) is obtained. The mean SI impact is of the order of

the SFL and AOD impact. It is 5% for all data sets but ERAInt (7%). The statistical models agree

quite well throughout the different data sets except for SVR which appears to overestimate the SI

impact by about 3%.

The impact of the linear trend term (TRE) for ERAInt varies substantially among the statistical

models as seen in Fig. 5.9. This is reflected by the large standard error of 6% around the mean

TRE impact of 16%. The TRE impact has its minimum at 5% (SVR) and its maximum at 29%

(FVX). This points to a large uncertainty of the importance of this factor in ERAInt. However, this

large deviation among the statistical models is not observed for the other data sets where the mean

TRE impact error is not larger than 3%, being in the range of the mean AM impact error. The

mean TRE impact does not vary much among the different data sets. The mean TRE impact has

its minimum at 12% for WACCM and its maximum at 17% for MRI. Hence, there is relatively little

variation observed for the mean TRE impact among the different data sets. The smallest attribution

of the linear trend term is generally computed by SVR compared to the other statistical models.

Only the TRE impact from LDA is always close to that of the mean TRE impact across the different

data sets, making it a robust model for estimating trends. MLP and FVX seem to both slightly

overestimate the TRE impact, depending on the considered data set.

Ozone

The corresponding impact of each external factor on ozone averaged across the stratosphere is

displayed in Fig. 5.10. At first glance it is similar to that for temperature (see Fig. 5.10). However,

there are significant differences among the different data sets, most notably when comparing NIWA

with the remaining data sets. NIWA shows a large mean ESC impact of 38%, FVX even going up

to 49% whereas the impact for SVR is around 30% which is more in agreement with mean ESC

impacts found in RANDEL (28%), EMAC (24%), WACCM (22%), and MRI (34%). For NIWA, the

second most important factor with a mean impact of approx. 15% is SST closely followed by QBO

(13%), SFL (9%) and AOD (6%). An extremely small impact of 4% has AM in NIWA, not being in

agreement with the other data sets which all point to significantly higher mean AM impacts ranging

from 12% for EMAC up to 16% for MRI. NIWA is partly output of a regression model [Hassler

et al., 2009] which is why natural variability might be underestimated. However, RANDEL is also

partly output of a regression model but variability seems to be more realistically represented than in

NIWA.

In contrast to NIWA, the QBO is more important for ozone variability in the other data sets. In

fact, it is the most important natural factor with mean impacts of 22% for RANDEL, 23% for EMAC

and WACCM, and 14% for MRI. The QBO impact in MRI might be under-represented because the

QBO is internally generated in MRI and is subsequently significantly different in amplitude and period

compared to the observed QBO [Shibata et al., 2005]. The same fact is observed for the QBO impact

on temperature as seen in Fig. 5.9 where the QBO impact from MRI is significantly lower than that
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Figure 5.10: The impact of each external factor on ozone averaged across the stratosphere,
displayed for the reanalyses (top) and the three CCMs (bottom). For each external factor, the impact
is shown for each statistical model including its standard error (σ/

√
n). The average across the

statistical models (Mean) is weighted according to the individual explained variances (see Table 5.4).

of the other data sets. The QBO is nudged in EMAC and WACCM (see Section 4.3) and therefore

more realistically represented in terms of amplitude and period. Please note that the mean QBO

impacts on ozone for RANDEL, EMAC, and WACCM are almost identical. Also, the QBO impacts

on temperature are very similar between ERAint, MERRA, EMAC, and WACCM (compare Fig. 5.9).

However, results for temperature are relatively similar among the different data sets. In contrast,

the relative impacts on ozone are only similar between RANDEL, EMAC, and WACCM. This will

also be reflected by the uncertainty ranges for the impact on ozone in the upcoming subsection.

MLP generally attributes more impact on ozone variability to the QBO than the other statistical

models. This is especially pronounced for EMAC and WACCM. Another important factor is the SST

impact which appears underestimated by MLP throughout all data sets by up to 9%. SVR on the

other hand, appears to overestimate this impact by about 4%. The SST impacts from LDA and FVX

are fairly similar through almost all data sets. The mean SST impact is the smallest for MRI (12%)

and the largest for EMAC and WACCM (16%). The magnitude of the AM impact is comparable to

that of the SST impact throughout all data sets (except NIWA). The mean AM impact on ozone
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ranges from 12% for EMAC to 15% for MRI (excluding NIWA). Therefore, it is significantly smaller

by at least a factor of two compared to the AM impact on temperature. Only LDA appears to

overestimate the AM impact by 4% on average. The AM impacts from the remaining statistical

models are close to eachother and to the mean AM impact. Similar to the temperature results,

the mean impacts computed for SFL and AOD on ozone are the smallest, ranging for SFL from

8% (WACCM) to 10% (EMAC) and for AOD from 5% (RANDEL) to 10% (MRI). Similar to the

temperature results, the statistical models do not vary significantly for the SFL and AOD impacts.

They agree well for these two factors. The mean SI impact is of the order of the SFL and AOD

impact or slightly larger. It varies quite substantially between the data sets from 6% (MRI) to 13%

(NIWA). The mean SI impact shows the largest standard error among the mean impacts in all data

sets aside from NIWA and MRI. SVR is most likely overestimating and LDA underestimating the SI

impact on ozone. It cannot be answered at this point why the statistical models deviate to that

extent for this factor.

There are factors that are weighted similarly and others that are weighted differently among

the four statistical models. Strongly robust estimates are obtained for SFL and AOD thoughout

all data sets where the impacts agree well. Other factors, including SST, QBO, and AM, lead to

impacts where the different statistical models do vary resulting in a mean standard error of 4% on

average. The largest differences are observed for the TRE impact in ERAInt and the ESC impact

in NIWA and MRI where standard errors go up to 8%. The methods that deviate from the mean

impacts are most commonly the advanced statistical models whereas LDA is almost always quite

close (1-2%) to the mean impact. Only the AM impact is slightly overestimated by LDA and the SI

impact underestimated in temperature and ozone. The application of advanced statistical models,

such as MLP, SVR, and FVX, does not seem to be necessary for this application at first glance.

However, the application of several independent statistical models makes it possible to quantify a

robust estimate including uncertainty for the impact of factors influencing variability in temperature

and ozone. For example, without the application of FVX, MLP, and SVR, reasonable estimates of

the impact of the annular modes (AM) and the seasonal influence (SI) are not possible.

5.4.2 Averaged Impacts and Natural Variability

To summarize the statistical impacts, the individual mean impacts, as displayed in Fig. 5.9 and

Fig. 5.10, are averaged across the different data sets as presented in Fig. 5.11. The different

impacts and their errors are combined with the averaging procedure introduced in Section 3.7.3

while assigning equal weight to all data sets.

For temperature, it is observed that the annular modes (AM) have the largest impact of 30%

(15% NAM, 15% SAM), followed by the QBO terms with an impact of 20%. SST and TRE are

moderately important with 15% whereas SFL and AOD have an impact of 7 and 8%, respectively.

The uncertainty ranges are of moderate size with 3-4% for SST, QBO, AOD, AM and only 1%

for SFL, indicating robust results. The TRE impact uncertainty is quite large with 5% resulting
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Figure 5.11: The impact of each external factor on stratospheric temperature (left) and ozone
(right) averaged across the different data sets. The average was computed according to the model
averaging procedure described in Section 3.7.3, assigning equal weights to all data sets. The sum of
all natural factors (SST, QBO, SFL, AOD, AM, SI) is given on the light blue background including
its standard error in parentheses, calculated from Gaussian error propagation.

from the variation in the data sets and the variation among the statistical models, especially for the

TRE impact in ERAInt (compare Fig. 5.9). The SI impact is the smallest with 5±3% which is not

surprising as the temperature and ozone data were deseasoned prior to the statistical modeling.

The statistical impact of external factors on stratospheric temperature was also investigated

in Chapter 8 of SPARC CCMVal [2010] (referred to hereafter as Ch8Val2). This was done for the

tropical region (25◦ S-25◦N) and for all CCMs that participated in CCMVal-2. The statistical method

of choice for this analysis was multiple linear regression analysis (equivalent to LDA for regression

problems). The external factors were ENSO (Nino3.4 index; compare Section 2.2.3), QBO (standard

QBO plus one orthogonal term; compare Section 2.2.1), solar cycle (F10.7; compare Section 2.2.4),

an artificial term for each of the three major volcanic eruptions (see Section 2.2.5), a trend term

(linear for T, ESC for O3; compare Section 2.3), and an offset term for seasonal influence. Annular

modes were not included in the analysis of Ch8Val2 as it was assumend that they do not influence

tropical processes significantly, at least not on monthly time scales. However, this is not true entirely

as shown in the next section.

Fig. 5.11 presents a ranking of the impact of external factors on stratospheric temperature. A

similar ranking was obtained in Ch8Val2, when averaging the absolute magnitudes of the regression

coefficients across the different CCMs and the stratospheric levels from 100 to 1 hPa. The following

approxmate values are absolute magnitudes: It is found that the QBO has the largest impact of 1 K,

followed by the trend term with 0.8 K, and ENSO with 0.4 K which is in relative agreement to the

ranking shown in Fig. 5.11. The approximate impacts of the solar cycle (0.4 K) and the volcanic

eruptions (1 K) are about a factor of 2 higher than those found here. This is because SFL and AOD
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have a much larger impact in the tropics which is the region that was mainly analyzed in Ch8Val2.

In this study, the impacts are an average across the global stratosphere, not only the tropics, which

decreases the impacts of SFL and AOD.

The sum of the impacts on temperature of all natural factors (SST, QBO, SFL, AOD, AM,

SI) is given on the light blue background including its standard error in parentheses, calculated

with Gaussian error propagation. It is observed that temperature variability in the stratosphere is

determined to 85±7% by natural variability. Therefore, at least 100-(85+7) = 8% of the global

monthly stratospheric variability in temperature cannot be explained by external factors representing

only natural variability. The linear trend (TRE) impact is 15±4%, meaning that the 8% non-

natural variability computed above are even smaller than the lower bound (15-4=11%) of the TRE

impact. Therefore, variability in stratospheric temperature in the recent climate (1980-2005) was

determined to at least 8% by forcings of non-natural, i.e. anthropogenic origin. As mentioned in

Section 2.3, the combined effects of GHGs and ODS are responsible for the almost linear stratospheric

temperature decrease in the recent and future climate. Randel et al. [2009] found a height-dependent

cooling trend for 1979-2007 of about 0.5 K/decade in the middle and lower stratosphere and up to

1.5 K/decade in the upper stratosphere. This could also be reproduced by a range of chemistry-

climate models [SPARC CCMVal, 2010].

Concerning the results for ozone, as displayed on the right-hand side of Fig. 5.11, the impacts

are similar to those of temperature. However, AM is significantly less important for ozone with an

impact of only 12% and SFL slightly more important with 8%. ESC is very important for changes

in ozone with an impact of 29%. The QBO with 19% and SST with 15% are the most important

natural factors for variability in stratospheric ozone whereas AOD is the least important with 7%.

Therefore, impacts of SST, QBO, SFL, and AOD on ozone are not signficantly different from those

on temperature. Major differences between the impacts on ozone and temperature are found for

AM, SI, and the trend term (TRE or ESC) as shown in Fig. 5.11. The uncertainties are generally

larger by 1-2% than those for temperature reflecting the large difference between impacts on ozone

for NIWA and the other data sets (compare Fig. 5.10).

The impact of external factors on ozone was primiarly investigated in Ch8Val2 by using the same

analysis as introduced above for temperature. A similar ranking was obtained in Ch8Val2, when

averaging the absolute magnitudes of the regression coefficients across the different CCMs and the

stratospheric levels from 100 to 1 hPa. The following approximate values are absolute magnitudes

relative to an ozone climatology: The largest impact on ozone variability was found for the QBO

with 5%, followed by ENSO with 3%. SFL and volcanic eruptions with 1% impact each are in

relative agreement to the impacts found here. The factor with the smallest impact was found be

ESC in the Ch8Val2 analysis with about 0.5%. This does not agree with the large ESC impact in

this study because of the different latitude ranges. As mentioned in Section 2.3, ozone loss due to

ESC is much larger in the extra-tropical and polar regions.

The sum of the impacts of all natural factors on ozone (SST, QBO, SFL, AOD, AM, SI) is given

on the light blue background on the right of Fig. 5.11, including its standard error in parentheses.
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Ozone variability in the stratosphere is determined to 71±10% by natural variability. Therefore,

at least 100-(71+10) = 19% of the global monthly stratospheric variability in temperature cannot

be explained by external factors representing only natural variability. The term representing trends

in chlorine and bromine (ESC) impact is 29±7%, meaning that the 19% non-natural variability

computed above are even smaller than the lower bound (29-7=22%) of the ESC impact. Therefore,

variability in stratospheric ozone in the recent climate (1980-2005) was determined to at least 19%

by forcings of non-natural, i.e. anthropogenic origin. The ozone loss in stratospheric levels is caused

by the depeletion due to long-lived chlorine and bromine represented by ESC (see Section 2.3). The

trend in ozone depends greatly on latitude and season but is greatest during late winter and spring

over Antarctica with about 40-50% loss with respect to pre-1980 values. The ozone loss during

spring over the Arctic is about a factor of two smaller and more variable. The loss in the tropics is

much smaller with only a few percent [WMO, 2007]. In the following, it is investigated where the

different external factors appear to be most important regionally in the stratosphere.

5.4.3 Regional Importance

This section examines where the external factors have their individual regions of highest statistical

impact in the stratosphere averaged across the four statistical models and the different data sets. To

do so, only the natural factors, other than AM, having the largest impact are displayed depending on

the specific region in the stratosphere. This is shown on the upper panel of Fig. 5.12 for temperature

and ozone. Blue denotes SST, green QBO, yellow SFL, and red AOD. A factor’s impact is statistically

significant on the 95% level if the corresponding region is not covered with a hashed pattern. For

instance, the strongest natural factor aside from AM at the equator in 30 hPa is the QBO (note the

green significant area). The impact of AM is superimposed using isolines with a distance of 20%.

For temperature, it is observed how there are several centers of AM activity. Most pronounced over

the poles past 60◦N/S (compare Section 2.2.2) and strong in the lower tropical stratosphere for

temperature. The NAM is responsible for the strongest AM activity (up to approx. 70% in the

middle polar stratosphere) in the northern hemisphere and the SAM for AM activity in the southern

hemisphere (up to approx. 60% in the middle polar stratosphere). For ozone, the overall AM impact

is at least a factor of two smaller (compare Fig. 5.11) but the centers of activity remain in similar

regions of the stratosphere. The highest activity, caused by the NAM on ozone, is found to be in

the north-polar middle stratosphere (up to approx. 30%).

NAM and SAM do not only have an impact on the extratropical, but also on the tropical

stratosphere, particularly notable for temperature in Fig. 5.12. This impact is especially large in

the lower stratosphere (approx. 30%) between approx. 30◦ S-10◦ S and 10◦N-30◦N. This reflects

the fact that anomolous temperatures in the polar region tend to lead to temperature anomolies

in the lower tropical stratosphere which is an indirect effect of wave-mean flow interaction in the

polar stratosphere [Kodera, 2006]. The impacts of NAM and SAM on ozone in the tropical lower

stratosphere are more in midlatitudes and a factor of three smaller than those for temperature.
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Figure 5.12: Individual regions of highest statistical impact of the external factors averaged across
the four statistical models and the different data sets for temperature (left) and ozone (right). Top:
The natural factors, other than AM, having the largest impact is displayed depending on the specific
region in the stratosphere where blue denotes SST, green QBO, yellow SFL, and red AOD. The
impact of AM is superimposed using isolines with a distance of 20%. Bottom: The statistical impact
of TRE and ESC using isolines with a distance of 5%.

However, NAM and SAM impacts on ozone are much more pronounced in the middle and upper

tropical stratosphere. They are only moderate (10-20%) but extend over a large range reaching

from the equator to midlatitudes up to 60◦ S/N. It is not clear if this denotes an actual relationship

or rather a statistical artifact.

The following focuses on the natural factors, other than AM, as displayed in the upper panel of

Fig. 5.12. For both temperature and ozone, it is observed that the SST anomalies have the largest

impact on the extratropical region past 50◦N/S. This SST impact is only moderate with 10-15%,

as observed in Fig. 5.11, but still larger than any of the other natural factors in the extratropics.

Significant impacts of variabilities in SSTs, especially by ENSO on extratropical dynamics, have also

been reported by, e.g., Camp and Tung [2007b], Calvo et al. [2009], and Mitchell et al. [2011].

However, there are also significant links between ENSO and temperature along with ozone in the

tropical lower stratosphere [Randel et al., 2009; SPARC CCMVal, 2010], as observed in Fig. 5.12.

The tropical region is largely dominated by QBO variability for both temperature and ozone.

The QBO impact on temperature is rather symmetric around the equator whereas the impact on
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ozone is less pronounced on the northern hemisphere. The QBO is a phenomena of the equatorial

stratosphere (compare Section 2.2.1). It was reported numerous times that the QBO affects tropical

processes in the stratosphere to a large extent [e.g., Holton and Tan, 1980; Baldwin et al., 2001;

SPARC CCMVal, 2010]. This is not only true for the tropics but also for the extratropics and

the polar region in particular. Many studies have shown [e.g., Holton and Tan, 1982; Labitzke,

1987; Camp and Tung, 2007a; Blume et al., 2012] that the QBO governes dynamics in the polar

stratosphere to a great deal, also shown in the following chapters.

The SFL impact on temperature is high and significant at the stratopause between 30◦ S-20◦ S

and 20◦N-30◦N. The SFL impact centers are similar for ozone but are slightly larger and lower

at around 3 hPa. In fact, the SFL impact for temperature and ozone is around 10% in the upper

stratosphere from approx. 50◦ S to 50◦N and around 5% in the lower equatorial stratosphere between

10◦ S and 10◦N (not shown) in agreement with, e.g., Frame and Gray [2010]. The upper solar signal

is a direct result of an increased UV absorbtion by ozone during solar maximum and, hence, increased

heating in this region. The lower solar signal is a matter of ongoing research and is most likely a

result of the dynamical interplay with the QBO [Matthes et al., 2010]. The CCM simulations during

CCMVal-2 do not all show a lower solar signal, whereas the upper signal is quite consistent among

the CCMs [SPARC CCMVal, 2010, Chapter 8]. The SFL impact on ozone is also significant but

smaller for the polar stratosphere (more than 5%). Similar to SSTs and the QBO, the solar cycle

has a significant influence on extratropical processes in the stratosphere (compare Section 2.2.4), in

particular during northern hemisphere winter [e.g., Kodera and Kuroda, 2002; Labitzke et al., 2006;

Camp and Tung, 2007a]. This is addressed in more detail in the following chapters.

The AOD impact on temperature is large in the lower equatorial stratosphere but not significant.

A significant AOD signal is observed for ozone between approx. 20◦ S and 20◦N at around 30 hPa.

Both AOD signals range between 10% and 15% and are in agreement with previous work that showed

that volcanic eruptions have their greatest influence in lower tropical levels of the stratosphere [e.g.,

Robock, 2000; SPARC CCMVal, 2010]. The influence of volcanic eruptions on the extratropical

and polar stratosphere is still poorly understood [e.g. Frame and Gray, 2010; Mitchell et al., 2011].

This is because volcanic eruptions have to be powerful enough to inject sufficient aerosols into the

stratosphere. During the observed stratospheric record, this has only happend three times (compare

Section 2.2.5).

The impact of TRE on temperature is displayed on the lower panel of Fig. 5.12. The TRE impact

is high in the upper stratosphere (up to 35%) and lowest over the poles in the middle stratosphere

(less than 10%). A very similar pattern was found by [Randel et al., 2009] as mentioned earlier.

Similar to Fig. 5.11, ESC has a larger and regionally wider impact on ozone than TRE on temperature.

The ozone variability in the entire upper stratosphere from about 7 hPa to 1 hPa is governed by ESC

to at least 30%. High ESC impacts are also observed over Antarctica (approx. 25%). ESC impacts

are smallest in the equatorial middle and the north-polar middle stratosphere. This ESC impact

pattern on ozone agrees well with previous work based on observations [Staehelin et al., 2001].
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5.5 Long-Term Forecasting

In this section, statistical forecasts from 2006 to 2100 are made using each of the statistical models.

These forecasts are then compared to REF-B2 model simulations made with EMAC, WACCM, and

MRI (compare Chapter 4). This will answer two major questions: 1) Is it possible to adequately

predict long-term stratospheric trends with statistical models? 2) Which of the statistical models is

best suited for future projections? In order to make future projections, there has to be assumptions

about the external factors. The SST variabilities along with the QBO factors from 1980 to 2005

have been simply repeated for the forecast period where it was ensured that connecting points are

smooth. To project the 11-year solar cycle into the future, the representative solar cycle number 23

from 04/1996 to 07/2008 is repeated until 2100. Volcanic eruptions cannot be predicted which is

why AOD is kept at its median computed from the training period (1980-2005). There can be no

assumptions being made about the annular modes which is why they are held at their medians as

well.

The resulting statistical forecasts on a yearly resolution, along with the corresponding REF-

B2 model simulation (orange), are presented for the temperature on the left panel of Fig. 5.13.

Displayed is the first principal component (PC) of the entire spatial domain calculated from 1980 to

2100 along with the variance it explains (EV). The slope m is calculated from a linear fit from 2005

to 2100 for the CCM and each statistical model. The orthonormal EOF, shown on the right panel

of Fig. 5.13, corresponds to the first PC. It is now easy to estimate the trend in a certain region of

the stratosphere. For instance, the first temperature PC of EMAC reveals a trend of -1.19 K/y. This

value is now multiplied with 0.06, a value of the equatorial upper stratosphere of the corresponding

first EOF. The resulting value of -0.07 K/y indicates the temperature trend for this region.

When examining the temperature results for all three CCMs, it is noted that EV is always close

to 90% for the first principal component. This means that the first PC is highly representative for the

long-term, interannual stratospheric behavior. Forecasting the first PC implies forecasting almost

90% of the overall stratospheric variance. It is observed for all three CCMs that the first PC can be

forecasted well by the statistical models. The slopes between CCM forecast and statistical forecast

are similar. This holds for temperature as shown in Fig. 5.13 but also for the corresponding ozone

results as displayed in Fig. 5.14. It can be concluded that it is possible to forecast the long-term

stratospheric behavior using statistical models. For temperature, the long-term behavior is governed

by the linear trend (TRE). For ozone, the long-term behavior is governed by effective stratospheric

chlorine (ESC). The interannual behavior is mainly governed by SFL but also by forcing in SST.

The solar cycle signal is stronger for ozone (compare Fig. 5.11) and can be observed in the PCs. It

is noted that the statistical ozone forecasts for EMAC get out of phase for the solar cycle. This is

not an error in the statistical forecasts but simply caused by different solar cycle forcings. For the

EMAC projection, the last four solar cycles form the recent climate were repeated whereas only one

representative solar cycle was repeated for the statistical forecasts.

The forecast performance, in terms of slope, is summarized in Table 5.5 for temperature and



CHAPTER 5. QUANTIFICATION OF NATURAL VARIABILITY 79

Figure 5.13: Left: Statistical temperature forecasts in a yearly resolution along with the REF-B2
model simulations for the first PC for EMAC (top), WACCM (middle), and MRI (bottom). The
variance explained (EV) by the EOF and the different slopes for each time series calculated from
2005 to 2100 are also displayed. Right: The orthonormal EOF corresponding to the first PC along
with the variance it explains in parentheses.
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Figure 5.14: Left: Statistical ozone forecasts in a yearly resolution along with the REF-B2 model
simulations for the first PC for EMAC (top), WACCM (middle), and MRI (bottom). The variance
explained (EV) by the EOF and the different slopes for each time series calculated from 2005 to
2100 are also displayed. Right: The orthonormal EOF corresponding to the first PC along with the
variance it explains in parentheses.
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Table 5.5: Comparison of the different statistical slopes with respect to the simulated CCM slope
for temperature and ozone. Shown is 1− |mMod−mCCM|

|mCCM|
averaged across the three CCMs so that

values close to one denote a good forecasting performance.

LDA FVX MLP SVR

T 0.96 0.96 0.96 0.96
O3 0.95 0.95 0.90 0.96

ozone with each statistical model averaged across the results for the CCMs. Shown is one minus the

relative difference to the reference run, meaning that values close to one denote a good forecasting

performance. It is observed that there is no difference between the different statistical models for

temperature and only small differences for ozone. Only MLP reveals a significantly lower forecast

performance for ozone than the other methods which may be caused by a possible overfitting

during the MLP training. Overall, the long-range statistical forecasts for the stratosphere covering

several decades are efficient. Furthermore, already a simple linear and stationary method, such as

LDA, can forecast variability on these time scales. However, it was shown in Table 5.5 that most

reliable forecasts can be made using SVR. However, the differences between the statistical model

performances are not significant.

5.6 Concluding Remarks

In this study, the large-scale stratospheric variability in monthly zonal mean deseasoned temperature

and ozone is modeled using purely statistical methods with the help of external factors known to

influence stratospheric processes. The statistical methods, introduced in Chapter 3, are LDA, FEM-

VARX, MLP, and SVR. These methods are partly linear, nonlinear, stationary and nonstationary. The

wide range of different statistical approaches, makes it possible to assign robust uncertainties to the

impacts of external factors. The learning approaches are trained with historical data representing

the recent climate (1980-2005) from observations, reanalyses, and CCM simulations. Since the

dimensionality of the data to be modeled is large, principal component analysis (see Section 3.1)

was used to efficiently reduce dimensionality (see Table 5.1).

It was shown how optimal model architectures for FEM-VARX, MLP, and SVR can be deter-

mined with the help of information criteria and cross-validation (see Table 5.2). After being set

up with the optimal setting, the statistical models are trained and evaluated to measure their re-

gression performance. It was observed that there is no significant difference between the regression

performance (see Table 5.2) of LDA, FEM-VARX, and MLP. SVR clearly outperformed the other

statistical models by a factor of 1.5 for temperature and a factor of 1.3 for ozone in terms of averaged

explained variance. For the following, it was assumed that a learning approach that can model more

variability will also be able to more realistically weight external factors according to their statistical

importance (see Table 5.4).

The statistical modeling in this study was performed with the help of a range of external
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factors. The natural factors considered were: SST, QBO, SFL, AOD, NAM, SAM, and a seasonal

influence (SI). In addition, it was aimed at including terms representing anthropogenic influence.

For temperature, this was done by including a linear trend term representing the linear stratospheric

temperature trend observed for the recent climate and simulated for the future (see Section 2.3). For

ozone, ESC, representing chlorine and bromine as the main ozone depleting substances, was included

(see Section 2.3). The individual impacts of all these factors on temperature (see Fig. 5.9) and ozone

(see Fig. 5.10) were computed for the different statistical models and data sets. For temperature, it

was found that the mean impacts agree quite well across the data sets. The statistcal models agree

in the percent range for most factors but disagreed significantly for factors such as TRE in ERAInt

or AM in EMAC by up to about 20%. For ozone, the variation among the statistical models is

similar. The differences across the data sets are much larger. Especially the impacts found in NIWA,

which is itself output of a regression model, are quite different from the other data sets. In NIWA,

the ESC impact is overestimated whereas the QBO impact is underestimated. The QBO impact

appears also underrepresented in MRI which may be caused by the internally generated QBO. The

QBO in MRI is significantly different from the observed QBO in terms of amplitude and period.

Concerning the different statistical models, it was found that it were mostly the more advanced

models (FVX, MLP, SVR) that deviated from the mean impact whereas the linear and stationary

LDA was usually close to this mean value. However, including the different methods makes it possible

to compute robust impacts including uncertainties. For AM and SI in particular, the computation

of reasonable impacts would have been not feasible without including all four statistical methods.

One challenge in the current study is that the number of training events, i.e. the number of steps in

time, is quite small. The training period from 1980 to 2005 consists of a total of only 312 months

which is why FEM-VARX and MLP do not perform significantly better than the linear regression

technique. It will be shown in the following chapters that this drastically changes when more training

events become available.

In order to obtain further insight, the individual impacts were averaged across all data sets

and all statistical models. The results were robust estimates including uncertainties of the overall

impact of external factors on stratospheric variability found in temperature and ozone (see Fig. 5.11).

For temperature, it was found that the annular modes have the largest combined impact of 30%.

However, half of that is attributed to NAM and SAM, respectively. Hence, the QBO with an impact

of 20% is the most important factor for stratospheric temperature. Another important forcing

is SST which showed an overall impact of 15%. The impact of the linear trend term is similar.

In contrast, the impacts of SFL (7%), AOD (8%), and SI (5%) are rather small. A comparable

factor ranking was observed for ozone. In fact, the impacts of SST, QBO, SFL, and AOD on

ozone variability are not significantly different from those on temperature. The AM impact is found

to be smaller (12%) and the ESC impact to be larger (29%) than the corresponding impacts for

temperature. With these impacts and their uncertainties at hand, it was possible to quantify the

overall natural variability inherent in the stratosphere. For temperature, the natural factors combined

explain 85±7% of the total temperature variability, implying that there is at least 8% variability that
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is anthropogenically caused by the emissions of greenhouse gases and ozone depleting substances

(see Section 2.3). For ozone, the natural factors are responsible for 71±10% variability indicating

that at least 19% is of anthropogenic origin due to the emissions of ozone depleting substances

(see Section 2.3). The importance ranking of the external factors found agree with previous work

[e.g., SPARC CCMVal, 2010, Chapter 8]. Aside from the globally averaged impact, the regional

importance of each external factor was computed, averaged across the data sets and the statistical

models (see Fig. 5.12). Despite of the differences between data sets and models, large significant

areas were observed. It was found that the AM and SST mainly govern variability in the extratropics,

whereas the tropics are governed by the QBO, SFL (more upper), and AOD (more lower). The trend

terms, TRE and ESC, are highest (up to 30-35%) in the upper stratosphere but take values of at

least 10-15% in lower stratospheric levels (see Section 2.3).

Finally, long-term statistical forecasts until 2100 with each of the statistical methods were

performed. This was done for temperature (see Fig. 5.13) and ozone (see Fig. 5.14) while making

reasonable assumptions about the external factors. The natural factors have been either repeated

(SST, QBO, SFL) or held at their medians (AM, AOD, SI). The trend term was linearly extended

(TRE) for temperature. ESC was extended according to the A1 scenario for ozone (see Section 4.3).

It was found that the statistical models are able to reliably forecast the long-term behaviour in the

stratosphere. Aside from short-term interannual behaviour, the statistical forecasts agreed well with

those made by the CCM simulations (REF-B2). It can be concluded that long-term stratospheric

statistical forecasts are good and effective. Suprisingly, there is no significant performance difference

between the statistical models (see Table 5.5). Only MLP performs slightly worse for the ozone

forecast than the other models. From the results produced in this particular study, the usage of

advanced statistical models, such as LDA, FVX, MLP, is justified when it is nessecary to compute

reliable impacts of external factors including uncertainties. When only long-term forecasts are made,

a linear and stationary model, such as LDA, is sufficient. This is because the trend term in the

temperature and ozone forecasts dominates the overall behaviour.

One has to be careful when interpreting the results presented in this study. Statistical models

incorporating external factors always make a range of assumptions. As observed, assumptions such

as stationarity and linearity did not play a big role for this particular application. Other assumptions,

such as the independence, might play a bigger role. It is known from the literature that all the

forcings and modes of variability used here influence each other to some extent. As mentioned

earlier, this cannot be avoided in a statistical analysis, but has to be thought of when analyzing

results. Please note that almost zero correlation between two forcings, e.g., QBO and ENSO, does

not indicate their physical independence. In addition, the relatively small number of training events

may influence the regression performance and the statistical importance of external factors.

There are several improvements that could be made in future analysis of this kind. A range of

temporal lags could be investigated to find out if lagging a certain factor improves the regression

performance. This would dramatically increase computation time since the optimal model architec-

tures have to be determined for every combinations of lags. The dimension reduction was done to
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greatly decrease computation time. For one data set and one multivariate statistical method, such

as FEM-VARX, it should be feasible to repeat the modeling on the full domain. However, it is not

expected that results for impact or forcast will change signficantly but the regression performance

may increase. It will also be interesting to include other factors, such as the semiannual oscillation,

into the analysis to see if impacts and performance change.



Chapter 6

Classification of Sudden Stratospheric

Warmings

The variability of the north-polar stratospheric vortex is a key dynamical feature of the middle

atmosphere specifically, its breakdown during winter resulting in a sudden stratospheric warming (see

Section 2.1). There have been several methods proposed in the past that can classify stratospheric

warmings and measure the variability of the stratospheric vortex. Very common is the method

based on the zonal mean zonal wind at 60◦N and 10 hPa originally introduced by the Stratospheric

Research Group Berlin [Labitzke and Naujokat, 2000] and incorporated by the World Meteorological

Organization (WMO). It was used by Charlton and Polvani [2007] to compile climatologies of

sudden stratospheric warmings derived from reanalyses data. It is a simple and effective method for

measuring if and when a sudden stratospheric warming takes place leading to a vortex breakdown.

Another method is based on the Northern Annular Mode (NAM) [Baldwin and Dunkerton, 2001]

computed from geopotential anomalies in the middle stratosphere. The NAM measures the deviation

from the climatological mean state of the polar middle atmosphere. It measures the amount of

disturbance but cannot alone be used to detect the occurrence of a vortex breakdown. It is widely

used to detect downward propagation into the troposphere. The method based on 2D-moments

[e.g., Mitchell et al., 2011] is a different way of measuring vortex variability. In contrast to the zonal

wind measure and the NAM, it directly examines the geometrical structure of the vortex, such as

position and size. In addition, it is used to measure the vortex strength.

In this chapter1, a method is proposed that extends and combines the zonal wind measure and

the NAM approach but does not examine the vortex structure. It incorporates significant atmospheric

forcings, called external factors, that play an important role in the winter time evolution of the polar

stratosphere. These externals factors are the Quasi-Biennial Oscillation (QBO) [e.g., Holton and

Tan, 1980, 1982], the El Niño-Southern Oscillation (ENSO) [e.g., Manzini et al., 2006], and the

11-year solar cycle (SFL) [e.g., Gray et al., 2010]. These forcings interact and create a complex

and nonlinear dynamical response [e.g., Calvo et al., 2009; Richter et al., 2011]. There are previous

1This chapter, except for Section 6.9, was published with a few minor changes in Blume et al. [2012].
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efforts, such as e.g., Labitzke and Kunze [2009a], Camp and Tung [2007a,b], or Mitchell et al. [2011],

that statistically investigated the impact of these forcings on the evolution of the polar vortex. Their

analysis methods are linear, incorporating only a few factors at the same time. Here, a nonlinear

method is used with three external factors simultaneously to classify not only sudden stratospheric

warmings but also minor and major final warmings as well as undisturbed vortex states at the same

time. The classification procedure is a continuous analysis of stratospheric warming events for 52

consecutive winters on the period from 1958 through 2010. In addition, the derived framework is

used to classify stratospheric warmings in data from chemistry-climate model simulations.

In contrast to previous methods, the proposed classification method does not lead to a yes/no

criterion but a continuous probability measure, which has the advantage of detecting the amount

of deviation from the climatological mean state of the Arctic stratosphere. This disturbance of the

polar vortex can then end up in one of the aforementioned stratospheric warming events. Dealing

in terms of probabilities has the advantage of obtaining a temporal evolution of the likelihood of

occurrence of a stratospheric warming state (e.g. major warming state), given the remaining states.

In addition, the temporal onset, duration, and intensity of stratospheric warming events is calculated

independently of a particular pressure level.

In this chapter, a wide class of supervised learning methods is considered and a classification

method for stratospheric warmings based on a nonlinear statistical model, a neural network, is

proposed. A supervised statistical method needs fixed pairs of input and output objects presented

to it during training, meaning that the true outcome is known a priori (compare Chapter 3). It is

shown that a nonlinear model is suited better to recognize the complex, nonlinear response between

atmospheric forcings and polar vortex variability. Moreover, it is demonstrated that the approach

based on a neural network can classify not only major mid-winter stratospheric warmings (referred to

hereafter as major warmings), but also minor stratospheric warmings (referred to hereafter as minor

warmings) as well as major final stratospheric warmings (referred to hereafter as final warmings).

So-called Canadian warmings will be grouped into the class of minor warming events.

Major and final warmings are characterized by a strong anomalous temperature increase at most

pressure levels of the Arctic middle stratosphere, accompanied by a breakdown of the polar vortex

and a reversal of the zonal stratospheric flow in mid-latitudes from westerlies to easterlies. Major

warmings are often preceded by blocking situations in the troposphere over the Atlantic and/or

Pacific sector [Martius et al., 2009]. Major warmings happen on average every other year during

mid-winter; hence there is enough time for the polar vortex to recover after a major warming. The

polar vortex does not recover after a final warming as they take place at the transition between

winter and summer circulation. Please note that final warmings naturally happen every year whereas

final warmings [Labitzke and Naujokat, 2000] in this work have to be accompanied by an anomalous

temperature increase with respect to a climatology (major final warming). Minor warmings are

characterized by an anomalous temperature increase, and do not lead to a reversal of the zonal

stratospheric flow in mid-latitudes, but to a disturbed polar vortex. Minor warmings often take

place more than once in a given winter and are typically more upper stratospheric events. Canadian
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warmings are minor warmings with the difference that anomalous temperatures are observed mainly

in lower levels of the polar stratosphere. They are characterized by an enhancement of the Aleutian

high [Labitzke and van Loon, 1999].

6.1 Data and External Factors

Three reanalysis data sets are utilized in this study (compare Chapter 4): ERA40, ERAInt, and

NCEP. Time series from ERA40 and ERAInt have been combined to one data set that is referred

to hereafter as ERA. This combination is justified by a small approximately Gaussian residual with

zero mean calculated from the overlapping period (1989 to 2002) between the time series used

in this work, separately calculated from ERA40 and ERAInt. In this combined set, ERA40 data

have been used until 3/1/1989 and ERAInt data thereafter. This date has been selected because

stratospheric temperatures and winds are very similar at and around this date, leading to a smooth

transition between the two data sets. Both data sets, ERA and NCEP, are utilized for the time

from 10/1/1958 through 5/1/2010, which covers 52 winters. ERA is utilized to train the statistical

model. NCEP is utilized for validation, because it is quite different from ERA in the polar region due

to sparseness of observations, especially on the daily scale and for the pre-satellite era [Labitzke and

Kunze, 2005; Charlton and Polvani, 2007]. Also, it only reaches up to 10 hPa leading to potentially

different variability compared to ERA. ERA and NCEP have many input factors in common but

especially during the pre-satellite era, forcings in sea surface temperature (as seen in e.g. ENSO)

along with equatorial stratospheric winds (as seen in e.g. QBO) are significantly different. Except

for the zonal wind, all time series are normalized to ensure similar magnitudes according to Eq 3.52.

This analysis makes use of three external factors which describe large-scale phenomena important

for the stratosphere. It has been shown in previous studies [e.g., Labitzke and van Loon, 1988; Camp

and Tung, 2007a,b; Mitchell et al., 2011] that there exists a complex link between the external

factors, namely the Quasi-Biennial Oscillation (QBO), the El-Niño Southern Oscillation (ENSO),

the solar cycle (SFL), and the vortex variability. These studies showed e.g., that the least perturbed

vortex state is solar minimum and QBO west. It was also shown that the polar vortex is more likely

to break down during El Niño-like conditions. Other studies have shown that this link is nonlinear

[Calvo et al., 2009; Richter et al., 2011]. The idea behind this study is to incorporate these external

factors to classify stratospheric warmings on the one hand, and on the other to obtain insight into

their statistical importance and interrelationships. A brief description of the corresponding indices

is given in the following.

The QBO index is the 50 hPa zonal mean zonal wind anomaly averaged between 5◦ S and 5◦N

(compare Section 2.2.1). For a representation of ENSO (compare Section 2.2.3), the Nino3.4 index

[Trenberth, 1997] is used, which is the area-weighted average in sea surface temperature anomalies

in the box from 170◦ E to 120◦ E and from 5◦ S to 5◦N. As a proxy for the solar irradiance, the

daily radio flux at a wavelength of 10.7 cm (F10.7; ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed
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Figure 6.1: Normalized first principal component for ERA (black) and NCEP (gray) for a sample
period from summer 2005 to summer 2010 covering 5 winters. Labeled is the first of January of the
particular year.

SOLAR_RADIO/FLUX/Penticton_Observed) is utilized (compare Section 2.2.4). There are a few

missing values in the daily F10.7 which were filled by a linear interpolation, computed from the

neighboring measurements. In order to reduce short-term fluctuations, the daily external factors

have been sent through a low-pass filter calculating the 10-day running mean. This value was

chosen to be more than a few days but a lot less than a month. Hence, daily short-term extremes

are avoided in ENSO, QBO, and SFL; but an approximately weekly resolution is retained.

6.2 Temperature Representation

The classification procedure uses stratospheric temperatures because warming events have to be

detectable naturally in Arctic temperatures. Temperature time series are considered at 10, 20,

and 30 hPa levels where stratospheric warmings are always observed. They are also observable in

upper and lower parts of the polar stratosphere depending whether the event is a vortex split or

displacement event. Vortex splitting events tend to be observable near-instantaneously throughout

most parts of the polar stratosphere (approx. 20-40km) whereas vortex displacement off the pole

increases with altitude [Matthewman et al., 2009].

The temperature time series are taken as a area-weighted average over the north-polar cap be-

tween 60◦N and 90◦N and are anomalies relative to their individual long-term mean. This treatment

makes the time series equivalent to the northern annual mode in temperature (not geopotential) at

the respective levels. The resulting temperature time series are highly correlated. But, the inputs to

a classification approach should be decorrelated. A principal component analysis (see Section 3.1)

of the three time series reveals that the first principal component (PC1) explains more than 90%

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed
ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/SOLAR_RADIO/FLUX/Penticton_Observed
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of the overall variance in both ERA and NCEP (not shown). Therefore, PC1 is solely used as a

robust representation of the temperature anomalies in the Arctic middle stratosphere, not favoring

a particular pressure level. The normalized PC1 is displayed in Fig. 6.1 for ERA and NCEP, for

a sample period of 5 winters from autumn 2005 to spring 2009. Because of the high degree of

explained variance, PC1 is not used for classification only but also as a measure for the intensity of a

stratospheric warming event (see Section 6.8). Intensity is therefore not only a measure of strength

but also of vertical expansion. It is taken as the maximum PC1 value during a warming event.

6.3 Training Sample

The main property of a supervised statistical model is that fixed sets of input and output objects

are presented to it during training. The output is often called the truth, which has to be obtained

externally. In this study, it is made use of, among other, the zonal mean zonal wind at 60◦N and

10 hPa to receive time series of the four vortex states. The training sample is called the set of data

that is presented to the statistical model during training. The statistical model will learn from the

training sample. It can then be evaluated without using anything but the polar-cap temperature and

the external factors. Here, the model learns the patterns between the given inputs and the vortex

variability, making it possible to classify warming events in frequency, intensity, and duration, but

also to learn about impacts and relationships of the input factors.

Four classification time series have been produced, representing four different states of the Arctic

stratosphere. The first three are major (Wmajor), minor (Wminor), and final (W final) stratospheric

warmings. The last is the undisturbed state (W undis) in which no stratospheric warmings take place.

Please note that W undis does not denote that the polar vortex is not perturbed at all. It simply

denotes the absent of stratospheric warming events. Three time series are used to calculate the

training sample: PC1, the zonal mean zonal wind at 60◦N and 10 hPa, U10,60N; and the long-term

mean of the 30 hPa polar-cap temperature, T 30.

The training sample is computed from ERA as follows. Firstly, the disturbed state W dis at time

t is defined as

W dis
t :=

{
1 PC1t > 1

0 otherwise
, (6.1)

which means that PC1 needs to exceed one standard deviation. This only happens during winter

time. The value of one sigma is relatively robust towards the number of derived major warmings,

and leads to just the right amount of average minor and final warmings per winter compared to

observations. The undisturbed state W undis is now given by

W undis
t := 1−W dis

t , (6.2)

which denotes the state that is least disturbed. Please note that the polar stratosphere is constantly

perturbed by the dissipation of planetary waves [Labitzke and van Loon, 1999]. The next task is to
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Figure 6.2: Normalized PC1 for the winter 87/88. The long-term mean of the 30 hPa temperature
T 30, the standard deviation σ = 1, and the estimated stratospheric warming events are displayed.
Labeled is the first day of the particular month in a given year.

extract major, minor, and final warmings from W dis. It is started with final warmings. T 30
t denotes

a temporal measure so that T 30
t < 0 represents the winter and T 30

t > 0 the summer period (T 30
t is

normalized). Therefore, values close to zero represent the transition between winter and summer or

vice versa.

To classify major final warmings (referred to simply as final warmings), the following definition

is appropriate

W final
t :=

{
1 W dis

t = 1 ∧ T 30
t ≥ 0

0 otherwise
, (6.3)

which implies that disturbed states that happen in the transition phase from winter to summer are

counted as final warming events. There are no disturbed states at the transition from summer to

winter.

In order to determine major warmings, U10,60N needs to be incorporated. According to, e.g.,

Charlton and Polvani [2007], a major warming event takes place if U10,60N < 0 (easterlies) during

the winter time. Therefore, the major warming state is defined as

Wmajor
t :=

{
1 W dis

t = 1 ∧ W final
t = 0 ∧ U10,60N

t < 0

0 otherwise
. (6.4)

A neighborhood of 5 days was added in which the zonal mean zonal wind can become easterly. The

peak in temperature in the middle stratosphere during a major warming is usually a few days earlier
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than the wind reversal in 60◦N. The minor warming state is now simply given by

Wminor
t :=

{
1 W dis

t = 1 ∧ W final
t = 0 ∧ Wmajor

t = 0

0 otherwise
. (6.5)

During the procedure of computing an appropriate training sample, it was ensured that contiguous

events in W dis where assigned to only one type of warming state. The warming states fulfill the

condition

Wmajor
t +Wminor

t +W final
t +W undis

t = 1 ∀t . (6.6)

For instance, the results for the winter 1987/88 are displayed in Fig. 6.2. The minor, major, and

final warming events are observed clearly. The time axis labels indicate the first day of the particular

month in a given year.

6.4 Memory in the System

Since there might be certain memory in the system, an estimate of the temporal lags of the external

factors (QBO, ENSO, SFL) that minimize the classification error has to be determined. For reasons

of simplicity and to reduce computational efforts, this calculation is restricted to a linear classification

procedure using linear discriminant analysis (see Section 3.2) and only one target. This target has

been chosen to be Wmajor as major warmings are of greatest interest.

A temporal lag larger than zero for SFL does not seem to reduce the classification error at all.

Therefore, the SFL lag has been fixed to zero, and only the lags for QBO and ENSO have been

varied between 0 and 180 days. An analysis with a step size of 1 day has been performed to find the

optimal lags of 93 days for the QBO and 140 days for ENSO. These lags minimize the classification

error and are used in all further analysis steps.

After estimating a set of lags for the external factors, it is interesting to calculate linear cor-

relations between all input time series. It is generally favorable to use uncorrelated input variables

when facing classification problems. The correlation matrix (not shown) reveals that there is no

correlation apparent between any of the input variables. This also holds when keeping all time series

at zero lag.

6.5 Statistical Methods for Classification

In this section, three different supervised statistical methods previously introduced in Chapter 3 are

compared with respect to their ability to classify sudden stratospheric warming events. These meth-

ods are linear discriminant analysis (LDA), the support vector machine with linear kernel (LSVM),

and the multi-layer perceptron (MLP). LDA and LSVM represent the group of linear classifiers,

whereas MLP is a nonlinear classifier.
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Table 6.1: Performance measures (see Section 3.6.1) for LDA, LSVM, and MLP. The largest value
(best performance) is underlined for the particular class and the particular performance measure.

S εS IROC

Class LDA LSVM MLP LDA LSVM MLP LDA LSVM MLP

Major 0.857 0.814 0.864 0.490 0.542 0.945 0.984 0.981 0.987
Minor 0.831 0.733 0.851 0.080 0.107 0.935 0.963 0.941 0.983
Final 0.822 0.527 0.862 0.044 0.095 0.950 0.953 0.801 0.997
Undisturbed 0.898 0.909 0.882 0.869 0.985 0.981 0.995 0.998 0.999

The tuning parameters for LSVM and MLP have been chosen somewhat intuitively for this

comparison (LDA does not have tuning parameters). For LSVM, the cost parameter C was varied

between 0.1 and 10 and the value with the best performance (C = 1) was selected for further

analysis. For the MLP, 10 neurons in the first and 5 neurons in the second hidden layer are chosen.

These values are of the same order as the number of inputs to avoid overfitting. The MLP was

trained 10 times with different, randomly chosen initial parameters and the realization with the best

performance was kept. The training for each method was performed in such a way that events where

assigned alternating to train and test data sets.

The classification results are presented in Table 6.1 for LDA, LSVM, and MLP with respect

to the performance measures introduced in Section 3.6.1. The largest value (best performance) is

underlined for the particular class and performance measure. Firstly, MLP clearly outperforms the

linear models in all performance measures when classifying stratospheric warmings. Out of the linear

models, LSVM performs better than LDA for the warming classes with respect to εS but worse with

respect to S and IROC. If the goal is to only discriminate between undisturbed and disturbed states,

LSVM is even slightly better than MLP. This is not unexpected since the only difference between

a disturbed and undisturbed Arctic stratosphere is a simple linear cut on PC1 (see Eq. 6.1). The

goal of this study is the correct classification of stratospheric warmings. Hence, MLP clearly wins

this method comparison with respect to the given performance measures. MLP seems to be able

to classify stratospheric warmings rather well as all performance measures are close to one. Hence,

MLP is the method of choice for the following analysis. In the next section, the MLP analysis is

explained in greater detail and a pathway towards an optimal MLP model architecture is presented.

6.6 Optimal Model Architecture

Neural networks are widely used methods for efficient pattern recognition [Ripley, 1996]. Here,

an artificial neural network recognizes patterns in temperature anomalies and external factors to

classify stratospheric warming events as major, minor, and final warmings. More specifically, the

neural network here is a multi-layer perceptron (MLP) in which all neurons of a certain layer are

connected via synapses to all neurons in the neighboring layers (see Section 3.4). The training is
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Figure 6.3: The BIC differences according to Eq. 6.7 for varying number of hidden neurons. The
white square (∆ = 0) denotes the optimal model architecture with 23 neurons in the first and 4
neurons in the second hidden layer. Please note the valley of small BIC values around the optimum.

performed so that events are assigned alternating to train and test data set. The input layer consists

of five input neurons, which are T 30, PC1, QBO, ENSO, and SFL. The output layer consists of

four neurons representing four different states of the polar stratosphere. The first three are major

(Wmajor), minor (Wminor), and final (W final) stratospheric warmings. The last is the undisturbed

state (W undis), in which no stratospheric warmings take place.

The optimal model architecture of the MLP is estimated. The number of hidden layers as well

as the number of hidden neurons within these layers need to be determined. The dimensions of

input and output layers have been specified in Section 6.1. Each MLP setting is considered to

be a separate statistical model. Methods from information theory (see Section 3.7.1) were shown

to have remarkable ability to discriminate between statistical models. In comparison with cross-

validation (see Section 3.7.2), this approach is computationally a lot less expensive and leads to the

model setting with the best descriptive power whereas cross-validation focuses more on forecasting

(see Section 3.7). As mentioned above, events are assigned alternating to train and test data

set, therefore, incorporating a simple cross-validation with neighboring events that helps to avoid

overfitting.

The information criterion leading to the optimal model architecture in this study is the Bayesian

Information Criterion BIC as given by Eq. 3.40. This version of the BIC is applicable under the

assumption that the errors are independent and identically distributed according to a Gaussian

distribution [Priestley, 1983]. This assumption holds for this problem (not shown). The BIC can

be understood as an estimator for the balance between explained variance and the number of free

model parameters. The model with the smallest information criterion of all tested models is the
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preferred model. Hence, the BIC differences can be defined as

∆i = BICi − BICmin , (6.7)

where BICmin denotes the minimal BIC value within the sample of tested models and i one model

out of this sample (∆ = 0 for the best model).

In order to determine the optimal model architecture, the MLP needs to be trained many times

with different model configurations. The MLP training has been repeated 10 times with different,

randomly chosen initial parameters for each model configuration. In order to reduce the effect of local

minima, the resulting σ2
e used to calculate the BIC is taken as the mean of those 10 optimizations.

The number of hidden neurons is varied in the hidden layers. The results of Eq. 6.7 are displayed

in Fig. 6.3 where the white square indicates ∆ = 0. This procedure was repeated using the Akaike

Information Criterion as given by Eq. 3.42, which led to a more complicated model architecture with

significantly more free parameters and was therefore rejected. The resulting optimal model setting

has two hidden layers with 23 neurons in the first and 4 neurons in the second layer. The MLP

has now been trained 100 times with this specific architecture. The run with the smallest error is

chosen. The classification results of this run are presented in the following.

6.7 Probabilities of Stratospheric Warmings

In this section first classification results based on conditional probabilities for each of the classes are

presented. Additionally, the statistical method is validated. To ensure that the MLP response values

can be interpreted as conditional probabilities, the value yi of output neuron i needs to be transferred

via the softmax function as given by Eq. 3.23. Having computed conditional probabilities, a threshold

value is determined for each class above which a certain probability is significantly different from the

background. This is called the cuti at class i. To do so the area-normalized background probability

distribution PB,i is integrated for each class i so that

α =

∫ cuti

0

PB,i(x)dx , (6.8)

where α = 0.999, so that a probability pi greater than cuti is significantly different from the

background at a confidence level of 99.9%. The resulting values are 0.32, 0.34, and 0.25 for major,

minor, and final warming class, respectively. The cuts are relatively small, which indicates a good

classification performance.

6.7.1 Three Sample Winters

Further insights into the MLP response are now envisaged. Three adjacent sample winters are

selected that include all three types of warming events. Fig. 6.4 shows the evolution of the prob-
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Figure 6.4: Evolution of the probabilities in ERA for major, minor, and final warmings for the three
winters in the period from summer 1986 to summer 1989. Labeled is the first day of the particular
month in a given year.

abilities for major, minor, and final warmings for the period from summer 1986 to summer 1989.

Results for ERA (training data set) and NCEP (validation data set, not shown) are very similar.

The winter 1987/88 appears to be the most variable on this period. A minor warming in November

1987, lasting about 5 days, is observed. A major warming [Baldwin and Dunkerton, 1989; Naujokat

et al., 1988] takes place in the beginning of December 1987, lasting about 20 days. A short minor

warming appears as a precursor to this major warming. Ultimately, a final warming lasting about 15

days takes place in March [Labitzke and Naujokat, 2000]. The probabilities shown in Fig. 6.4 give

a good representation of what was observed (compare Fig. 6.2). The classification performance is

now assessed in greater detail.

6.7.2 Classification Performance

In addition to the performance measures used in Section 6.5, the classification performance is

assessed with respect to the mean prediction error (MPE) as defined in Eq. 3.30. For a perfect

classification it is expected that MPE equals zero. Table 6.2 presents the performance measures for

each class as calculated from the ERA classification results. A very high classification performance

is obtained. The separation S, the signal efficiency εS, and the integral of the ROC curve IROC are

very close to one for all classes. This represents a very good ability of discriminating signal from

background events.

MPE is very close to zero for all classes, which implies that only in rare cases the MLP response

is not close to the data that the MLP has been trained with (the training sample, see section 6.1).

Therefore, the MLP is able to reliably detect major, minor, and final warming states, and of course,

the undisturbed state.
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Table 6.2: The performance measures for the optimal MLP setting for each class.

Class S εS(εB = 0.01) IROC MPE

Major 0.992 0.969 0.996 0.0023
Minor 0.985 0.929 0.990 0.0026
Final 0.962 0.968 0.987 0.0015
Undisturbed 0.990 0.991 0.995 0.0010

Table 6.3: Relative impact in percent on the MLP response according to Eq. 6.9 for each input
neuron and output class.

Input Major Minor Final Undisturbed

T 30 22.2 22.4 54.0 0.8
PC1 26.9 23.7 31.2 97.5
QBO 19.3 19.9 4.6 0.7
ENSO 17.4 17.9 4.9 0.6
SFL 14.3 15.9 5.3 0.4

6.7.3 Impact of the Input Neurons

It is of great interest to estimate the individual impact of the five input neurons on the MLP response.

This gives an insight into the statistical importance of each of the input factors. The impact Ii,k

of input factor i on output class k is simply chosen to be the variance of MLP response differences

given by

Ii,k = Var(y
(i)
k − yk) , (6.9)

where yk denotes the MLP response at output neuron k and y
(i)
k the corresponding MLP response

where input factor i was set to zero. If an input neuron had no impact on the MLP Eq. 6.9 would

give zero. Table 6.3 presents the relative impact in percent on the MLP response according to

Eq. 6.9 for each input neuron and output class.

It is observed that the impacts are quite different for different output classes. For the undisturbed

case only PC1 plays an important role. This is expected as the undisturbed state is simply defined by

a linear cut on PC1 (see Section 6.3). The final warming state is mostly governed by PC1 and T 30

since the definition of the final warming state was only based on these two factors (see Section 6.3).

When looking at major and minor warming states, the external factors become more important

and necessary to discriminate major from minor warmings. The QBO shows the largest impact,

followed by ENSO and the solar cycle in agreement with previous studies [e.g., Labitzke and Kunze,

2009b; Camp and Tung, 2007a,b; Mitchell et al., 2011] that also investigated the impact of these

forcings and found a similar ranking. Hence, the neural network combines QBO, ENSO, and SFL

in a nonlinear fashion to distinguish between major and minor stratospheric warmings. Therefore,

the external factors, namely QBO, ENSO, and SFL, should be incorporated in order to classify
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stratospheric warmings successfully. It was mentioned earlier that there is practically no linear

correlation between any of the input time series. However, as Table 6.3 shows, there exist nonlinear

combinations of input factors that lead to different stratospheric warming states.

6.8 Stratospheric Warming Climatologies

This section presents stratospheric warming climatologies extracted from resulting probabilities for

52 winters from 1958 through 2010. In order to identify stratospheric warmings, a threshold is

defined above which a signal in one of the output neurons is counted as an event signal. An event

signal has to be significant; hence, it needs to exceed the cut values (see Section 6.7). In order to

get an estimate for the training data set ERA, the first derivative dQ/dp of the cumulative density

function of the response distribution is calculated of each warming class. As an increasing derivative

denotes a regime change, the thresholds is defined where dQ/dp starts rising from its constant level

with increasing quantiles. The resulting thresholds for ERA are 0.41, 0.41, and 0.45 for major,

minor, and final warming events, respectively. It is found that the resulting ERA warming event

numbers and distributions are not sensitive with respect to slightly different thresholds.

As the validation set NCEP is a priori unknown, and to avoid counting events caused by a

possible overfitting, a reasonable NCEP threshold needs to be found that is larger than any of the

ERA thresholds but smaller than the theoretical limit given by Eq. 3.23. An NCEP threshold of

0.47 for all warming classes was selected leading to reasonable distributions and event numbers

as presented in the following. The resulting NCEP events are more sensitive with respect to this

threshold than the ERA events but can still be changed in the percentage range and the event

numbers and monthly distributions would not change significantly.

6.8.1 Warming Events

To obtain stratospheric warming events, contiguous warming days need to be grouped together. To

do so, minimal temporal distances between adjacent warming events are defined. Is this distance

exceeded without output neuron i above the given probability threshold, then warming event i is

finished and a new warming event may eventually take place. For these distances 30 days are chosen

for major warmings, 5 days for minor warmings, and 100 days for final warmings. The number for

final warmings is rather arbitrary as they may only take place once a year during the transition from

winter to summer circulation. 30 days are selected for major warmings because it is known from

observations [e.g., Labitzke and van Loon, 1999] that major warmings may last 20 days but that

neighboring major warmings in the same winter are at least one month apart. The relatively short

period of 5 days for minor warmings was chosen since minor warmings are usually not proceeded

by a great cooling in the Arctic stratosphere, as major warmings are [Labitzke and van Loon, 1999;

Charney and Drazin, 1961]. Therefore, adjacent minor warming events can be closer than major

warming events.
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Table 6.4: Total number of stratospheric warming events (top) and relative number of events per
year (bottom) for the different warming classes and the two data sets. The uncertainties are given
in parentheses (standard error of mean).

Data Major Minor Final Total

ERA 31 74 27 132
NCEP 26 76 28 130

ERA 0.6 (0.1) 1.4 (0.2) 0.5 (0.1) 2.5 (0.3)
NCEP 0.5 (0.1) 1.5 (0.2) 0.5 (0.1) 2.5 (0.3)

First results of this procedure are shown in Table 6.4 for ERA and the validation data set NCEP.

Absolute number (upper part) and relative number (lower part) of warming events are presented. It

is observed that values for ERA and NCEP are very similar for all warming classes. This indicates

a successful validation of the classification procedure using NCEP. Only the major warming case

shows slightly less events in NCEP than in ERA. This discrepancy for major warmings has also been

reported by Charlton and Polvani [2007].

To summarize, there is a major warming event approximately every other year whereas minor

warmings happen at least once a year on average. (Major) Final warmings take place every second

year, too. These results are in good agreement with Charlton and Polvani [2007] who find approxi-

mately 0.6 SSWs per winter. Labitzke and Naujokat [2000] find approximately 0.5 major mid-winter

warmings, approximately 1 minor warmings (half of which are Canadian warmings), and 0.25 major

final warmings per winter. The differences between ERA and NCEP found in this study are due to

differences in the two data sets, particularly in PC1 and ENSO during the pre-satellite era before

1979.

6.8.2 Change in Circulation

The question remains whether the detected major and final warming events lead to a vortex break-

down and therefore a change in circulation (easterly zonal winds) in the stratosphere in mid-latitudes.

Minor warmings should only slow down the circulation but not reverse it. In order to tackle this

question, the zonal mean zonal wind at 60◦N and 10 hPa is incorporated. If the zonal wind is

negative (easterlies) then a change in circulation took place and the polar vortex broke down. An

interval of 20 days around the central warming date of major and final warmings was considered to

find the minimum zonal wind.

The result of this analysis is shown in Fig. 6.5 for all warming classes and both data sets. Values

for minor warmings temporally very close to major or final warmings are not shown as they lead to

ambiguous wind results. The numbers represent the winter in which the warming took place; e.g.

98 means the winter 1998/99. The zonal wind reversed for almost all major and final warmings in

ERA and NCEP, which confirms the classification procedure.

There are only a few clear falsely detected major warmings for which the vortex was disturbed,
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Figure 6.5: Scatter diagram of stratospheric warming intensity against the zonal mean zonal wind
at 60◦N and 10 hPa. Numbers represent winters; (e.g. 98 means the winter 98/99) in which major
warming(s) took place. The results are shown for ERA (left) and NCEP (right). Values for minor
warmings temporally very close to major or final warmings are not shown as they lead to ambiguous
wind results.

and the circulation slowed down but did not reverse. In ERA these are the winters 81/82 and 04/05.

In NCEP these are the winters 63/64, 84/85, and 03/04. It is the nature of a statistical method that

it is never 100% effective. However, all final warming events were classified correctly. Despite of a

few differences, the classified stratospheric warmings are in good agreement with previous studies

[Charlton and Polvani, 2007; Labitzke and Naujokat, 2000]. None of the detected minor warming

events led to a change in circulation.

6.8.3 Stratospheric Warming Frequencies

The classification results are now analyzed and presented in more detail with respect to their oc-

currences and intensities. Monthly climatologies of major, minor, and final warmings are shown in

Fig. 6.6. The uncertainties are displayed as error bars. Firstly, the distributions for ERA and NCEP

are similar. Most major warmings take place in January. Minor warmings happen all throughout

the winter but most take place in February for ERA and January for NCEP, whereas final warmings

clearly peak in March and April. There are no major warmings taking place in November, which is

in agreement with observations [Labitzke and Naujokat, 2000]. Major warmings show highest inten-

sities with large variability followed by minor and final warmings. As expected, the minor warming

intensities peak in January and decrease towards beginning and end of the winter. The final warming

intensities are also very variable and peak in March.

Charlton and Polvani [2007] show monthly distributions for major warmings retrieved from a

classification method based on the zonal mean zonal wind at 60◦N and 10 hPa. These results are

similar to the distribution for major warmings shown in Fig. 6.6. There have been a few SSWs found

by Charlton and Polvani [2007] in November which were most likely Canadian warmings. They found

more SSWs in March simply because some of those are counted as final warmings in the present

analysis.

It is of great interest to investigate the temporal evolution of the three warming classes over the
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Figure 6.6: Monthly distributions in events/year (top) and intensity (bottom) of the three warming
classes for ERA (left) and NCEP (right). The error bars represent the standard error of mean
(top) and the standard deviation (bottom), respectively. Please note the different color scheme for
frequency (histograms) and intensity (graphs).

52 year period. Their frequency of occurrence and intensity in bins of 4 years is presented in Fig. 6.7.

The frequency distributions resemble observations rather well [Labitzke and Naujokat, 2000]. For

instance, the clear minimum of major warming activity observed in the 1990s is obtained. There are

also periods of higher major warming activity in the 1970s. Minor warmings were especially frequent

during the 1980s and 1990s. Final warmings do not show significant occurrence variabilities. The

results for ERA and NCEP in Fig. 6.7 are again qualitatively similar. Differences appear mostly

during the pre-satellite era before 1979. In comparison to Charlton and Polvani [2007], differences

for the major warming case are mainly due to different methodologies and classification strategies.

The intensities presented in Fig. 6.7 are also similar in ERA and NCEP. A great decrease in

major warming intensity is observed during the 1970s and large intensities in the past 30 years. The

mean minor warming intensities seem to be rather constant through out the whole period whereas

the final warming intensities show a peak in the 1980s to then decrease to minor warming levels.

Mean intensity and the corresponding standard deviation of the three warming events and their

duration in days for ERA and NCEP is presented in Table 6.5. The results for ERA and NCEP agree

rather well. On average, major and final warmings last about 20 days and minor warmings only

8 days. There is a large variability in duration as the standard deviation takes values of about 10

days for each warming class. On average, Major warmings are twice as intense as minor and final

warmings with medium variability.

Table 6.5 also shows the linear correlation between intensity and duration for each warming
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Figure 6.7: Distributions in bins of 4 years of occurrence (top) and intensity (bottom) of the three
warming classes for ERA and NCEP, respectively. All bins start at September 1 and stop at August
31 of the respective years. Error bars represent one standard deviation around the mean. Please
note the different color scheme for frequency (histograms) and intensity (graphs).

class. All correlation factors are significant (t-test) at the 95% confidence level. For ERA, all

correlation factors are greater than 0.6 which leads to the expected conclusion that warmings with

larger intensities generally last longer, and vice versa. For NCEP, the correlation factors are slightly

smaller.

6.8.4 Marginalized Probability Distributions

The neural network can be considered as a function (classifier) mapping from a 5-dimensional input

space to a 4-dimensional probability space. In order to retain an understanding of the relationships

between the input factors despite the high dimensionality, the resulting probability distributions are
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Table 6.5: Mean intensity in standard deviations of stratospheric warming events and their mean
duration in days for the different stratospheric warming events in ERA (top) and NCEP (bottom).
The corresponding standard deviation is given in parentheses. The correlation between duration and
intensity is also given. All correlation factors are significant (t-test) at the 95% confidence level.

Data Class Intensity Duration Correlation

Major 3.7 (1.2) 23.0 (10.7) 0.61
ERA Minor 1.9 (0.9) 8.4 (8.3) 0.75

Final 2.2 (1.0) 20.1 (10.9) 0.67

Major 3.2 (1.4) 16.7 (12.3) 0.53
NCEP Minor 2.1 (1.0) 8.9 (10.5) 0.52

Final 2.2 (0.9) 20.2 (10.5) 0.41

marginalized. Motivated by previous studies, the relationships between QBO, ENSO, and SFL are

particularly interesting. Therefore, these factors have been varied and the resulting MLP response

investigated.

PC1 has been fixed and the responses have been averaged for the mid-winter between December

and February (DJF). Additionally, the results have been split for solar maximum and solar minimum

conditions where a value of 120 solar flux units (sfu) of the f10.7 cm solar radio flux was used to

separate the two regimes. The resulting marginalized probability distributions are shown in Fig. 6.8

for the major warming state. The shading denotes the probability of the occurrence of a major

warming and the black thick line an approximately significant probability of 0.3. The numbers in

Fig. 6.8 represent the winter in which the major warming took place; e.g. 87 means the winter

1987/88.

A moderately high disturbance of PC1 = 3 (compare Fig. 6.5) was selected, implying that the

condition for the disturbed state is fulfilled and the MLP discriminates between two states; major

warmings and minor warmings. Due to the aforementioned averaging, the patterns in Fig. 6.8

represent climatological mean states for DJF. These patterns are highly nonlinear, which emphasizes

the usefulness of a nonlinear statistical method. Previous studies have shown, that the considered

forcings interact and create a complex and nonlinear dynamical link [e.g., Calvo et al., 2009; Richter

et al., 2011].

The superimposed boxes in Fig. 6.8 represent a schematic frequency distribution of QBO and

ENSO; the larger the box the greater the population density of a particular bin, i.e. a large box stands

for a high frequency of a particular combination of QBO-ENSO values and vice versa. Hence, these

population densities are naturally different for solar maximum and minimum. Highly populated

regions are observed, but also combinations of QBO and ENSO that have not been seen in the

data at all. The larger the population, the more the MLP response can be trusted. In regions

with zero population (no boxes), the MLP predicts probabilities. Considering the good validation

results for NCEP, which is an unseen data set, the MLP predictions can be considered trustworthy.

Nevertheless, they need to be confirmed by data from chemistry-climate model simulations.
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Figure 6.8: Marginalized probability distributions (shading; black line denotes p = 0.3) for the major
warming state depending on ENSO and the QBO for solar minimum (left) and solar maximum
(right) for PC1 = 3, denoting a moderate vortex disturbance. The darker the shading the higher
the probability for a major warming. The numbers denote the winter of a major warming; e.g. 87
denotes the winter 87/88. The superimposed boxes represent a schematic frequency distribution of
QBO and ENSO; the larger the box the greater the population density for a particular bin, i.e. a
large box stands for a high frequency of a particular combination of QBO-ENSO values.

There are two main regions that are not populated. The first is the region of large negative

ENSO values (La Niña) and small absolute QBO values (around zero) for both solar maximum and

minimum. La Niña events are rather rare and the transition between QBO west and QBO east and

vice versa is very fast (often within a month), whereas a QBO phase (east or west) can last about a

year. The other underpopulated region is that of large positive ENSO values (El Niño) during solar

maximum for almost all values of the QBO. Hence, El Niño events are only rarely found during solar

maximum conditions.

Fig. 6.8 presents various probability features for major warmings. Despite the averaging, almost

all major warming events fall into the significant area of p ≥ 0.3, indicating a robust classification.

Please note the aforementioned averaging over SFL regimes and the mid-winter implying that prob-

abilities for a specific event may be different from what is shown in Fig. 6.8. There are regions of

high probabilities for QBO west and solar maximum conditions, as also found by Camp and Tung

[2007a]; Labitzke and Kunze [2009b]. However, there is a region for strong QBO west in both solar

maximum and minimum, in which moderate and La Niña-like ENSO events show only small proba-

bilities. The high population density in this region makes the probabilities particularly trustworthy.

This indicates strong nonlinear relationships between QBO and ENSO as also found by e.g., Calvo

et al. [2009]; Richter et al. [2011]. Linear interrelationships as emphasized by e.g., Camp and Tung

[2007a,b] and Labitzke and Kunze [2009b] are not sufficient to explain this pattern.

The very intense major warming of the winter 08/09 (solar minimum, QBO west, and slightly

negative ENSO values) is very close to the significant region in Fig. 6.8. Hence, this major warming

along with the major warming in 06/07 are part of the nonlinear rules determined by the MLP,
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whereas these events have been previously treated as exceptions from linear rules [e.g., Labitzke and

Kunze, 2009a].

Despite the high probabilities, only a few major warmings are found to happen during the

transition from QBO west to east or vice versa (see Fig. 6.8). This is because of the aforementioned

fast transition between QBO phases (west↔east). Moreover, it is known from observations [Baldwin

et al., 2001] that the QBO phase transition takes place mostly during the northern hemisphere

summer. By definition, sudden stratospheric warmings take place only during the winter time.

During QBO east and solar maximum conditions, only negative ENSO values show significant

probabilities. During QBO west, moderate and El Niño-like conditions lead to significant major

warming probabilities. For solar minimum and QBO east, strong positive ENSO events lead to

large probabilities, too. A probability minimum is observed for ENSO values close to zero. This

minimum appears also for QBO west but for slightly negative ENSO values and more dependent on

the strength of the QBO. In general, the probability for a disturbance to become a major warming

leading to a vortex breakdown is greater during solar minimum conditions (note the large significant

area) than during solar maximum. As also found by Butler and Polvani [2011], El Niño-like and La

Niña-like conditions make the occurrence of major stratospheric warmings more likely as opposed to

neutral ENSO conditions. The only exception is the small major warming probability for El Niño-like

conditions during solar maximum and QBO east.

6.9 Classification in CCM Simulations

This section aims at classifying stratospheric warmings in REF-B1 CCM simulations for the period

from July 1960 to June 2005, considering only full winters. The CCMs are EMAC-FUB, MRI, and

WACCM (see Section 4.3). The same framework as above is applied including the computation of a

training sample (see Section 6.3) for each CCM and a corresponding training of the neural network

incorporating the five input factors (T 30, PC1, QBO, ENSO, SFL) while using a lag of 93 days for the

QBO and 140 days for ENSO (compare Section 6.4). T 30, PC1, and QBO are computed from the

output of each CCM, whereas ENSO (Nino3.4 index) is computed from HadlSST1 (see Section 4.1)

and SFL is the F10.7 radio flux as in Section 6.1. Lagging the external factors in the same way as

for the reanalyses above has three advantages: 1) It keeps classifications results comparable between

reanlyses and CCMs, 2) The optimal neural network architecture for the CCMs is the same as for the

reanalyses with 23 neurons in the first and 4 neurons in the second hidden layer (see Fig 6.3), and 3)

The same event thresholds are used as for ERA which are 0.41 for major warmings, 0.41 for minor

warmings, and 0.45 for final warmings. More than 95% of the warming events recognized by the

neural network in each of the different CCM simulations were classified correctly. The classification

was tested using the zonal mean zonal wind at 10 hPa and 60◦N (compare Fig. 6.5).
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Table 6.6: Relative number of stratospheric warming events per year (bottom) for the different
warming classes and the three CCMs over the 45-yr period. The uncertainties are given in parentheses
(standard error of mean).

Data Major Minor Final Total

EMAC 0.8 (0.1) 1.8 (0.3) 0.5 (0.1) 3.0 (0.4)
MRI 0.4 (0.1) 2.0 (0.3) 0.5 (0.1) 2.9 (0.4)
WACCM 0.6 (0.1) 1.6 (0.2) 0.3 (0.1) 2.6 (0.4)
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Figure 6.9: Monthly distributions in events/year of the three warming classes for EMAC (left), MRI
(middle), and WACCM (right). The error bars represent the standard error of mean.

6.9.1 REF-B1 Simulations: EMAC, MRI, WACCM

Stratospheric warmings are classified in the REF-B1 simulations made with EMAC, MRI, and

WACCM using the neural network approach. Relative event numbers per year are shown in Ta-

ble 6.6 for major, minor, and final warmings and the different CCM simulations. The number of

major warmings per year are significantly different across the CCMs. Most major warming events

are found in EMAC (0.8), followed by WACCM (0.6), and MRI (0.4). These results agree well

with the number of major SSWs found in chapter 4 of SPARC CCMVal [2010] where major SSWs

were classified using the zonal wind criterion as in Charlton and Polvani [2007]. The number of

minor warmings are statistically indistinguishable between the different CCMs averaging to approx.

1.8/yr. The number of final warmings is 0.5/yr for EMAC and MRI and significantly smaller with

0.3 for WACCM. The total number of events is again indistinguishable across the CCMs averaging

to 2.8/yr.

When comparing the CCM with reanalyses results, as shown in Table 6.4, it is found that major

and minor warming frequencies are best represented in WACCM whereas final warming frequen-

cies agree well with EMAC and MRI. Also, the total number of warming events in the considered

reanalyses agrees best with WACCM results. However, the sampling errors are quite high due to

the short time series (only 45 years), making it difficult to distinguish between event numbers from

the different CCMs. That being said, WACCM appears to have the most realistic representation in

terms of average relative event numbers.

The corresponding monthly distributions of major, minor, and final warming events for the
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Table 6.7: Relative impact in percent of the input factors on the MLP response for major warmings
according to Eq. 6.9 and the different CCMs.

Input EMAC MRI WACCM

T 30 28.8 25.2 24.1
PC1 25.3 23.6 28.4
QBO 18.7 14.0 19.4
ENSO 15.4 21.1 15.3
SFL 11.8 15.9 12.8

different CCM simulations are shown in Fig. 6.9. First off, the major warming distributions agree

well with those found in chapter 4 of SPARC CCMVal [2010]. Slight differences are due to different

methodologies as already pointed out in Section 6.8. EMAC simulates most major warmings in early

(Nov.) and late winter (Feb. and Mar.) similar to MRI which even simulates a few major warmings

in October but only little in March. Major warmings in EMAC and MRI are underrepresented during

mid-winter. The major warming distribution as found in WACCM agrees best among the CCMs with

those found in the considered reanalyses (see Fig. 6.6) except for slightly too many major warmings

in November and too few in February. Other than that the major warming distribution in WACCM

peaks in January with approx. 0.2/yr just like the distributions in ERA and NCEP.

Despite of the overall, slightly higher number of minor warmings per year in the CCMs, the

monthly minor warming distributions are quite similar to those in reanalyses. Interestingly, the

minor distributions of EMAC and MRI are very similar to that of NCEP and appear to be normally

distributed around mid-winter. WACCM, on the other hand, has a minor warming distribution very

similar to that of ERA with an almost flat distribution throughout the winter. Only the high (0.3/yr)

minor warming frequency in March, as found in WACCM, does not agree with the reanalyses. Final

warmings take place in March and April where events in April are most likely to take place in EMAC

and WACCM. March is the month with highest final warming frequency in MRI. In contrast, final

warmings populate March and April almost equally in ERA and NCEP (see Fig. 6.6).

It is interesting to compute the statistical importance of each of the input factors. To do so,

the impact on the MLP response for major warmings according to Eq. 6.9 and the different CCMs

is shown in Table 6.7. The other warming states are omitted here for simplicity because impacts

on minor warmings are very similar to those on major warmings, more over, final warmings are only

governed by T 30 and PC1. From Table 6.7 one can see that T 30 and PC1 have the largest impact

all throughout averaging to about 25%. For EMAC and WACCM this is followed by the QBO, as an

external forcing, with approx. 18%. Moderatly important for EMAC and WACCM are ENSO with

approx. 15% and SFL with approx. 12%. It is interesting to note that the impacts of the external

forcings (QBO, ENSO, SFL) are very similar in EMAC and WACCM. As noted earlier, ENSO and

SFL are equal for all simulations and the QBO is almost identical in EMAC and WACCM as the QBO

is nudged in both CCMs (see Section 4.3). Equal forcings does not imply similar teleconnections

to the polar middle stratosphere. However, this appears to be the case here as shown in Table 6.7.



CHAPTER 6. CLASSIFICATION OF SUDDEN STRATOSPHERIC WARMINGS 107

It should be noted that the ranking of the input factors for major warmings in ERA, as shown in

Table 6.3, is best represented in the impacts for WACCM.

MRI shows a ranking of the input factors that is different from EMAC and WACCM, only the

impacts of T 30 and PC1 are similar. A significant difference is observed for the external forcings.

The QBO with 14% is less important in MRI whereas ENSO with 21% and SFL with 16% are more

important. The QBO in MRI is internally generated which could be the reason for this difference

across the CCMs.

In order to obtain insight into the interrelationships between the input factors during mid-winter,

marginalized probability distributions for the major warming state for DJF are shown in Fig. 6.10.

They are computed in the same way as the distributions for ERA presented earlier in Fig. 6.8. The

top panel shows results for solar maximum and the bottom panel for solar minimum. The boxes

represent a frequency distribution of QBO-ENSO pairs. As ENSO (Nino3.4 index) and SFL are

equal across all CCMs, it is noted that the QBO in EMAC and WACCM is rather similar whereas

the QBO in MRI is significantly different. The QBO in MRI appears to be weaker in magnitude.

The probability patterns for the major warming state in Fig. 6.10 are significantly different across

the CCMs and do not have much in common with the ERA pattern in Fig. 6.8. The only pattern

that agrees in most part with ERA is the WACCM pattern for solar minimum. This does not hold for

solar maximum conditions. However, the CCM patterns are still highly nonlinear confirming previous

studies [e.g. Garfinkel and Hartmann, 2007; Calvo et al., 2009]. They represent relationships between

the external forcings and SSWs as shown in the literature (compare Section 6.8.4). At least, MRI and

WACCM show an increased probability for major warmings during QBO east which could indicate

that the Holton-Tan mechanism [Holton and Tan, 1980, 1982] is present in these simulations. EMAC,

on the other hand, shows an increased probability for QBO west for both solar conditions. All CCM

patterns point to a high probability during El Niño events (large ENSO values) in agreement with

the literature on this subject [e.g., Camp and Tung, 2007b; Mitchell et al., 2011]. Work made by

Butler and Polvani [2011] reported that La Niña events also lead to more major warmings. This is

found for EMAC and WACCM during solar minimum and for ERA (see Fig. 6.8). It is concluded that

some of the established connections between external forcings and SSWs are recovered. However,

the nonlinear CCM patterns are different to eachother and do not agree with the ERA patterns.

Robust teleconnection patterns could not be estimated. The non-linear relationships between the

external forcings and the major warming probability are significantly different across the CCMs.

6.9.2 A Study of Sensitivity with WACCM

So far, stratospheric warmings in reanalyses and realistically forced CCM simulations (REF-B1)

were classified. Here, stratospheric warmings in two artificially altered WACCM simulation runs are

recognized by the neural network and results are compared to the REF-B1 WACCM run. The two

altered runs are equally forced as the REF-B1 run except that 1) The QBO is not nudged resulting

in a constant easterly phase which is referred to hereafter as WACCM-QBO and 2) Climatological
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Figure 6.10: Marginalized probability distributions (shading; black line denotes p = 0.3) for the
major warming state depending on ENSO and the QBO for solar minimum (left) and solar
maximum (right) for PC1 = 3, denoting a moderate vortex disturbance. The darker the shading the
higher the probability for a major warming. The superimposed boxes represent a schematic frequency
distribution of QBO and ENSO; the larger the box the greater the population density for a particular
bin, i.e. a large box stands for a high frequency of a particular combination of QBO-ENSO values.
Distributions are shown for EMAC (top), MRI (middle), and WACCM (bottom).

SSTs are prescribed resulting in neutral ENSO phase conditions referred to hereafter as WACCM-

SST. The three runs, WACCM, WACCM-QBO, and WACCM-SST, are also analyzed for 45 years

from June 1960 to July 2005. Richter et al. [2011] has already partly analyzed these runs concerning

sudden stratospheric warmings but only for a period of 30 years. They analyzed an additional fourth

run with constant easterly phase instead of a QBO and climatological SSTs. Richter et al. [2011]
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Table 6.8: Relative number of stratospheric warming events per year (bottom) for the different
warming classes and the different WACCM sensitivity runs over the 45-yr period. The uncertainties
are given in parentheses (standard error of mean).

Data Major Minor Final Total

WACCM 0.6 (0.1) 1.6 (0.2) 0.3 (0.1) 2.6 (0.4)
WACCM-QBO 0.4 (0.1) 2.0 (0.3) 0.5 (0.1) 2.9 (0.4)
WACCM-SST 0.6 (0.1) 1.8 (0.3) 0.4 (0.1) 2.8 (0.4)

found that the latter run is far off from realistic polar stratospheric variability. They conclude that

at least one of the forcings (QBO, SSTs) has to be incorporated in the WACCM model simulation

to obtain observed frequencies of sudden stratospheric warmings.

In order to classify stratospheric warmings with the neural network framework, the external

forcings (QBO, ENSO, SFL) are solely taken from the REF-B1 WACCM simulation. The internal

variability factors (T 30, PC1) are computed from each individual simulation. This will indicate, e.g.,

how important the QBO time series still is for vortex variability even though a QBO is not simulated

(as in WACCM-QBO). Similar to the REF-B1 classification results, the neural network is able to

classify more than 95% of all stratospheric warming events correctly as measured with the zonal

wind criterion (compare Fig. 6.6).

The relative event numbers per year are shown in Table 6.8 for major, minor, and final warmings

and the different CCM simulations. WACCM and WACCM-SST show a realistic frequency of major

warmings with 0.6/yr. The frequency of WACCM-QBO is significantly smaller with 0.4/yr. Richter

et al. [2011] find the opposite and observe that WACCM-QBO is more realistic than WACCM-SST.

They have analyzed a 30 year period. The differences are caused by sampling on different periods.

The minor warming frequencies of the artificial runs (approx. 1.9/yr) are slightly higher than that of

WACCM. They average to approx. 1.8 minor warmings per year. The frequencies of final warmings

of the artificial runs are also slightly higher than that of WACCM and are actually more in agreement

with the final warming frequency in ERA and NCEP (0.5/yr). The total number of warmings is

statistically indistinguishable and averages to approx. 2.8 warmings per year.

The corresponding monthly distributions of major, minor, and final warming events for the

different simulation runs are shown in Fig. 6.11. The major warming distributions are quite similar

across the different simulations. Only the Februar and the November frequencies in WACCM-QBO

are significantly lower than those of WACCM and WACCM-SST. The frequencies of final warmings

are slightly higher in the artifical runs, as already observed in Table 6.11. However, they maximize

in April in agreement with WACCM. Larger differences are observed for minor warmings. WACCM

produces realistic minor warming distributions whereas WACCM-QBO simulates much more minor

warmings in mid-winter and WACCM-SST simulates more minor warmings in early winter than

WACCM. From the overall frequencies (see Table 6.8) and the monthly distributions (see Fig. 6.11)

it can be concluded that including the QBO is more important than including SST variability to
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Figure 6.11: Monthly distributions in events/year of the three warming classes for WACCM (left),
WACCM-QBO (middle), and WACCM-SST (right). The error bars represent the standard error of
mean.

Table 6.9: Relative impact in percent of the input factors on the MLP response for major warmings
according to Eq. 6.9 and the different WACCM sensitivity runs.

Input WACCM WACCM-QBO WACCM-SST

T 30 24.1 24.2 21.2
PC1 28.4 27.2 29.2
QBO 19.4 10.1 24.4
ENSO 15.3 22.4 13.7
SFL 12.8 16.0 11.4

generate realistic SSW frequencies.

In order to quantify the statistical importance of these factors, the impact according to Eq. 6.9

on the neural network response for major warmings is shown in Table 6.9, omitting minor and final

warmings for simplicity. As expected, the QBO impact (10.1%) for WACCM-QBO is now much

lower than that for WACCM, making ENSO and SFL relatively more important. The opposite is

observed for WACCM-SST, where the ENSO impact is now smaller than that for WACCM, making

the QBO impact higher than that for WACCM. SFL impact for WACCM-SST is approx. the same as

for WACCM. The QBO impact on WACCM-QBO and the ENSO impact on WACCM-SST are small

but far from negligible. This means that the neural network is still assigning statistical importance

to these factors for discriminating between major and minor warmings, even though they are not

part of the corresponding simulation runs. This is surprising and could be caused by the short data

record and the relatively low number of major stratospheric warmings on this record. Also, a possible

overfitting during the training of the neural network can not be ruled out.

6.10 Concluding Remarks

This study classifies stratospheric warmings by considering Arctic stratospheric temperature anoma-

lies together with atmospheric forcings (or external factors) which influence the polar vortex, namely

the QBO, ENSO, and the solar cycle (SFL). The classification procedure is applied to data from the
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ERA-40/ERA-Interim (ERA) reanalyses and the NCEP/NCAR (NCEP) reanalysis for 52 consecu-

tive winters from 1958 to 2010. Optimal lags of the external factors are determined using linear

discriminant analysis.

Three supervised learning approaches (LDA, LSVM, MLP) are introduced and compared with

respect to their ability to classify stratospheric warmings. It is shown that the nonlinear MLP

outperforms the linear methods (Table 6.1). This is in agreement with previous work showing that

the external factors nonlinearly influence the polar vortex evolution [e.g., Garfinkel and Hartmann,

2007; Calvo et al., 2009; Richter et al., 2011]. The MLP is therefore used as the method of choice

to classify stratospheric warmings in major, minor, and major final warming events. This approach

extends and combines the zonal wind measure and the NAM approach applied in previous studies.

It incorporates the polar cap temperature and significant external factors simultaneously leading to

a continuous probability measure, indicating the amount of deviation from the climatological mean

state.

It is shown how an appropriate training sample (Fig. 6.2) can be calculated. Using this train-

ing sample, the optimal MLP architecture is determined using methods from information theory

(Fig. 6.3). Using various performance measures, the classification procedure is successfully val-

idated (Table 6.2). It is shown how resulting stratospheric warming probabilities (Fig. 6.4) are

post-processed.

The statistical impact of the input factors on the individual output classes is computed (Ta-

ble 6.3). It is shown that the atmospheric variability factors are an essential part of the classification

procedure as they discriminate between minor and major stratospheric warmings. They are less

important for final warmings and show only a small impact on the undisturbed state (Table 6.3).

Inspite of the absence of any linear correlations between the external factors, there are nonlinear

combinations that help distinguish between warming classes. The QBO was found to have the

largest impact, followed by ENSO and the solar cycle. This ranking was also found by previous work

[e.g., Labitzke and Kunze, 2009b; Camp and Tung, 2007a,b; Mitchell et al., 2011] that investigated

the influence of these forcings on the polar vortex.

It is shown that detected major and final warming events lead to a vortex breakdown and a

reversal of the zonal flow at 60◦N (Fig. 6.5) except for a few cases (two in ERA, three in NCEP).

Reasonable distributions of stratospheric warming events by month and year of occurrence and

intensity are presented (Fig 6.6 and Fig 6.7), which are in agreement with previous work made by

Charlton and Polvani [2007] and Labitzke and Naujokat [2000] who also compiled climatologies of

stratospheric warming events. On average, major warmings show intensities that are twice as large

as those of minor or final warmings. Final warmings last as long as major warmings but twice as

long as minor warmings. There are largely positive, significant correlations greater than 0.6 between

intensity and duration of the warming events (Table 6.5).

Marginalized probability distributions depending on QBO and ENSO, for both solar maximum

and solar minimum conditions, are presented (Fig. 6.8). The results contain the linear QBO-SFL

relationships presented by Camp and Tung [2007a] and Labitzke and Kunze [2009b]. However, it is
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shown that the interrelationships between the external factors are nonlinear as previously suggested.

QBO-SFL relationships are nonlinearly modulated by ENSO [Calvo et al., 2009]. It appears that

El Niño-like conditions [Camp and Tung, 2007b] during QBO west favor the occurrence of major

warmings and vice versa during QBO east. This pattern is more prominent for solar maximum

than for solar minimum. For solar minimum, El Niño-like conditions and QBO east also point to

large major warming probabilities. It is found that major warmings are generally more likely during

solar minimum conditions. For solar minimum, there are only two regions that do not favor major

warmings, which are small but positive ENSO values during QBO east and small but negative ENSO

values during QBO west. This pattern also depends on the strength of the particular QBO phase.

As discovered by Butler and Polvani [2011], major warmings are more likely during El Niño-like

and La Niña-like conditions as opposed to neutral ENSO conditions. An exception to this is only

observed for El Niño-like conditions during solar maximum and QBO east. In addition, it is shown

that the extraordinary major warming of the winter 08/09 lies close to the significant climatological

area that indicates a possible vortex breakdown. Therefore, this event is part of the nonlinear rules

learned by the MLP. A three dimensional animation through the winter of the probabilities indicated

in Fig. 6.8 can be found under http://nathan.gfz-potsdam.de/doc/sswanim.gif2.

Using the current neural network framework, stratospheric warming events in REF-B1 chemistry

climate model simulations could be succesfully classified. It was shown how major warming frequen-

cies (Table 6.6) and corresponding monthly distributions (Fig. 6.9) in EMAC, MRI, and WACCM

agree well with results presented in chapter 4 of SPARC CCMVal [2010]. A major warming frequency

of 0.8/yr was found in EMAC, 0.4/yr in MRI, and the more realistic frequency of 0.6/yr in WACCM.

It was found that the monthly WACCM distributions for major, minor, and final warmings agree best

with warming distributions computed from the reanalyses. Monthly major warming distributions in

EMAC and MRI simulations are too low during mid-winter. However, their minor warming distribu-

tions appear to be realistic. Concerning the importance of the external factors, a similar ranking as

for the reanalyses was found for EMAC and WACCM assining most impact to the QBO, followed by

ENSO, and the solar cycle (Table 6.7). For MRI, the ENSO impact is largest, followed by the solar

cycle, and the QBO. Using these external factors, probability distributions for the major warming

state were calculated (Fig. 6.10). Even though some important relationships between the external

factors and vortex variability could be recovered, the estimation of a robust proabability pattern was

not successful. This indicates significantly different nonlinear interrationships between the external

factors across the CCMs. However, it is promising that the WACCM pattern for solar minimum is

similar to the corresponding ERA pattern for the major warming state (see Fig. 6.8).

In order to measure the sensitivity of the external factors to the frequencies of stratospheric

warmings and to the neural network classification, two additional artificially forced WACCM simu-

lations were analyzed. These simulations were equally forced as the WACCM REF-B1 run except

that 1) The QBO is not nudged resulting in a constant easterly phase (WACCM-QBO), and 2) Cli-

matological SSTs are prescribed resulting in neutral ENSO phase conditions (WACCM-SST). The

2Alternatively: http://wekuw.met.fu-berlin.de/~ChristianBlume/doc/sswanim.gif

http://nathan.gfz-potsdam.de/doc/sswanim.gif
http://wekuw.met.fu-berlin.de/~ChristianBlume/doc/sswanim.gif
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warming frequencies found in these simulations are quite similar to those estimated from WACCM

(Table 6.8). Largest differences are found for WACCM-QBO which led to less major and more final

warmings on the 45 year period. From the frequencies and the monthly distributions (Fig. 6.11),

it was seen that including the QBO is more important than including SST variability to generate

realistic SSW frequencies. The impact of the input factors on the neural network response for major

warmings was computed (Table 6.9). Even though the QBO impact for WACCM-QBO and the

ENSO impact for WACCM-SST were reduced compared to WACCM, they are not negligible which

could be caused by a the short data record and a possible overfitting of the neural network. To rule

out the latter point, cross validation should be applied in a future analysis and compared to results

obtained with information criteria.

Several further improvements of the current statistical framework are possible. The introduction

of the geopotential height into the MLP input layer would further enhance the classification results,

as it provides direct information about the polar vortex strength. Introducing a memory of one or

two days would also improve the classification but, at the same time, would exponentially increase

computation time. Incorporating volcanic influences may also improve the classification procedure.

It is shown that a statistical model with the current set of input factors needs to recognize nonlinear

patterns to reliably classify stratospheric warmings. However, there are not only neural networks

that can cope with this challenge. One may also think of applying e.g., support vector machines

with nonlinear kernels or nonlinear functional discriminant analysis.



Chapter 7

Forecasting Polar Stratospheric Variability

It was shown in the previous chapter that stratospheric warming events, as the main manifestation

of polar stratospheric variability, can be reliably classified if a nonlinear statistical method is used for

pattern recognition while incorporating significant external factors. The study in the present chapter1

investigates statistical models with respect to their ability to model and forecast polar stratospheric

variability. Four partly nonstationary, nonlinear models are assessed, previously introduced in Chap-

ter 3: linear discriminant analysis (LDA); a cluster method based on finite elements (FEM-VARX); a

neural network, namely a multi-layer perceptron (MLP); and support vector regression (SVR). These

methods model time series by incorporating all significant external factors simultaneously, including

ENSO, QBO, the solar cycle, volcanoes, to then quantify their statistical importance.

When making polar stratospheric forecasts, general circulation model runs consisting of multiple

observation constrained ensemble members are performed. These forecasts are reliable on a daily

scale but on a seasonal scale they quickly become computationally very expensive and loose their

forecast skill [Gerber et al., 2009; Kuroda, 2010; Dörnbrack et al., 2012]. This study investigates

statistical models that are mathematically much simpler and demand significantly less computer

power, and even though they do not simulate physical processes explicitly, one can learn about

underlying relationships. A wide class of partly nonstationary and nonlinear statistical models are

considered with respect to their ability to model and seasonally forecast geopotential and temperature

anomalies representing variability in the polar middle stratosphere from 10 hPa to 30 hPa. In contrast,

common statistical methods analyzing polar stratospheric variability are linear [e.g., Camp and Tung,

2007b; Crooks and Gray, 2005] and do not consider more than a few atmospheric forcing factors at

the same time.

The statistical models are trained for the time period from 07/01/1980 through 06/31/2005

where training denotes the process of minimizing a method specific cost function that quantifies the

deviation from the truth. Once trained, the statistical methods are used for hindcasting the period

from 07/1/2005 to 04/30/2011. The sensitivity of the statistical models is tested with respect

to small changes in the external factors. While making reasonable assumptions about the external

1This chapter, except for Section 7.4, was published with a few minor changes in Blume and Matthes [2012].
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factors, the statistical model with the best generalization performance is used to forecast the winter

2011/12. The forecast performance is validated with actual observations from that winter.

7.1 Data and External Factors

This work makes use of two reanalysis data sets resolving the stratosphere, available up to 0.1 hPa

from 1979 to present. These data sets are the ERA-Interim (hereafter ERA) reanalysis [Simmons

et al., 2006] and the MERRA reanalysis [Rienecker et al., 2011], both considered from 7/1/1980

through 6/31/2011. ERA will be used to train the statistical models on the period from 7/1/1980

through 6/31/2005 and to test the models in a hindcast experiment from 7/1/2005 through

6/31/2011. MERRA is used to validate the final results but not further utilized. Please refer

to Section 4.2 for a more detailed description of these data sets.

Two daily target geopotential and temperature time series are computed so as to represent the

variability in the polar middle stratosphere. Anomalies of the area-weighted average on the polar

cap (60◦N–90◦N) are computed at 10, 20, and 30 hPa. A subsequent principal component analysis

[Jolliffe, 2002] of the three time series reveals that the first principal component (P1) explains more

than 90 % of the overall variance in both ERA and MERRA. Therefore, only P1 was retained for

both geopotential (P1Z) and temperature (P1T). P1Z and P1T are both positive for weak and

warm vortex events and negative for strong and cold vortex conditions. P1T was recently used in

Blume et al. [2012] to classify sudden stratospheric warmings events while incorporating important

external forcings.

A polar cap average of geopotential anomalies is equivalent to the Northern Annual Mode

(NAM) [Baldwin and Dunkerton, 2001], only reversed in sign. The NAM is a popular scalar index

to measure polar stratospheric variability [e.g., Thompson, 2003; Baldwin and Thompson, 2009].

The NAM is the leading principal component of geopotential anomalies north of 20◦N. Tthe polar

cap method is, however, simpler and the resulting time series for geopotential and temperature

are positively correlated (R = 0.8) [Baldwin and Thompson, 2009], pointing in the same direction

during extreme vortex events. P1Z and P1T are physically closely correlated. A lead-lag correlation

analysis between P1Z and P1T reveals that there is a correlation of approx. 0.7 when lagging P1T

with 10 days whereas lagging P1Z leads to only 0.3. For instance during a sudden stratospheric

warming, the temperature anomaly usually appears first and the actual vortex breakdown a few days

later. In addition, P1T reflects the strong stratospheric cooling (overturning) proceeding most major

warmings. For simplicity, P1Z is referred to hereafter as geopotential and P1T as temperature.

This analysis makes use of nine physical external factors which describe large-scale phenomena

important for the polar stratosphere. Their purpose is to improve model variability and to obtain

insight into relationships and impacts of the various forcings. The factors representing variability in

sea surface temperatures (SSTs) are the El Niño- Southern Oscillation (ENSO) [Trenberth, 1997],

the Pacific Decadal Oscillation (PDO) [MacDonald and Case, 2005], and the Atlantic Multidecadal

Oscillation (AMO) [Delworth and Mann, 2000]. Deser et al. [2010] reviews variabilities in sea surface
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Figure 7.1: The different external factors in green as used in this study, omitting sine, cosine, and
trend terms for simplicity. Blue denotes the training and red the hindcast period.

temperature and describes how corresponding indices can be computed. In this study, they have

been calculated with an EOF analysis of detrended SST anomalies from 60◦ S to 60◦N with ENSO

being the leading EOF (see Section 2.2.3).

Furthermore, the first two principal components of equatorial stratospheric zonal wind anomalies

(QBO1 and QBO2) [Wallace et al., 1993] are included. Factors representing tropospheric high-

latitude blockings [Martius et al., 2009; Woollings and Hoskins, 2008] are the first two principal

components of geopotential anomalies between 35◦N and 85◦N at 500 hPa (BLOC1 and BLOC2).

BLOC1, as the leading principal component, is equivalent to the NAM in 500 hPa and represents

blockings in both the Atlantic and Pacific sectors simultaneously. Moreover, the F10.7 cm radio

flux representing solar variability (SFL; ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA) and the

aerosol optical depth (AOD; http://data.giss.nasa.gov/modelforce/strataer) representing

volcanic eruptions are included. The external factors as used in this study are described in Section 2.2.

Additionally, three baseline factors representing the seasonal cycle (one sine and one cosine with

a period of one year) and a linear trend term are included. Since the different external factors have

different magnitudes and physical units, they are normalized on the full period from 1980 to 2011,

such that the minimum is at −1 and the maximum at +1. To reduce short-term fluctuations and

extreme values, the daily external factors are low-pass filtered using a 5-day running mean.

In order to obtain an idea on how the different factors vary with time, their time series are

visualized in Fig. 7.1. The time series of the sine, the cosine, and the trend term were omitted for

ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA
http://data.giss.nasa.gov/modelforce/strataer
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simplicity. It is noted that the factors vary on very different timescales from days (e.g. BLOC1) to

decades (e.g. AMO). Others vary on both scales such as SFL and factors such as AOD represent

only singular events.

In order to improve regression results, optimal time lags of each of the nine physical external

factors were calculated using a lead-lag correlation analysis. Every external factor was correlated

with geopotential (temperature) for different lags from 0 to 365 days. The largest statistically

significant correlation on this period indicates the optimal lag. Zero lags are obtained for PDO,

BLOC1, BLOC2, and AOD for both geopotential and temperature. For ENSO, 96 (82) days; for

AMO 8 (185) days; for QBO1 173 (137) days; for QBO2 0 (264) days; and for SFL 0 (50) days are

computed for geopotential and temperature, respectively.

7.2 Optimal Model Architecture

All models but LDA depend on a set of free tuning parameters that needs to be determined which is

called the model architecture. The optimal model architecture (combination of tuning parameters)

aims at meeting the principle of Occam’s Razor [Ariew, 1976] stating that the simplest model is

the preferred if it contains just as much information as any of the more complicated models. There

are two major branches found in the literature of information theory [Burnham and Anderson, 2002]

aiming at selecting the optimal model which are information criteria and cross-validation. The

approach to be used depends on the statistical method and the specific application. Please refer to

Section 3.7 for an overview of model selection.

For FEM-VARX, the optimal architecture was determined with the use of the Akaike information

criterion [Akaike, 1974; Horenko, 2011] where the parameter setting leading to the smallest criterion

is preferred. The Bayesian information criterion [Schwarz, 1978] applied to FEM-VARX led to a

far too simple model (K = 2) with only little explanatory power on the training period and was

therefore rejected. For MLP and SVR, a 5-fold cross-validation [Kohavi, 1995] was conducted in

which the training data were partitioned into 5 equally-sized contiguous subsets (folds). The model

architecture with the largest correlation calculated from the tested subsets has been selected. It is

only possible to use cross-validation for SVR model selection. Cross-validation was chosen for MLP

because this study aims at forecasting variability.

In the following, the optimal values are given in parentheses, for geopotential and temperature,

respectively. For FEM-VARX, K (5, 5) denotes the number of clusters and C (146, 112) the

persistency threshold. For MLP, L1 (8, 3) and L2 (5, 0) denote the number of neurons in the first

and second hidden layer, respectively. For SVR, γ (1, 0.2) denotes the radial scaling parameter and

C (0.3, 0.3) the trade-off parameter. Please refer to Chapter 3 for a description of the statistical

methods and their parameters.

LDA and SVR only lead to global solutions, whereas FEM-VARX and MLP might run into local

minima during training. In order to reduce this effect, a total of 30 models were trained for FEM-

VARX and MLP. For FEM-VARX, K is fixed and values of C were chosen slightly different from the
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Figure 7.2: Geopotential results for the training period (left) and the hindcast period (right) for
each of the statistical models together with the correlation coefficient R (in parentheses) calculated
between the particular model and truth (gray). The hindcast is shown for the full hindcast period
whereas the training results are only shown for a representative period (last six years). Labeled is
the first of January of the particular year. The 95 % confidence interval of the correlation factors
are ±0.02 for the training and ±0.04 for the hindcast period, computed with bootstrap based on
case resampling (see Section 3.8).

optimal value. For MLP, those pairs of L1 and L2 were chosen that were ranked highest according

to the cross-validation. The regression and forecast results are the average across these realizations.

7.3 Training and Hindcast Period

The statistical models are trained with data from the training period (1980–2005) while being set

up with optimal model architectures as described above. After being trained, the models are used

to hindcast the period from 2005 through 2011, meaning that the models are evaluated with the

available external factors from this period. The result of this procedure is presented for geopotential

in Fig. 7.2, where the truth is shown in gray. The correlation coefficient between each model

and truth is given in parentheses. The training period is modeled well (R ≈ 0.9) by all models

except LDA (R ≈ 0.3). FEM-VARX possesses the highest explanatory power over the training

period. Please note that all external factors are used in a resolution of a few days. For the hindcast

period a large drop in correlation is observed for all methods, largest for SVR. Only FEM-VARX

(R = 0.34) and MLP (R = 0.42) lead to satisfactory results on the hindcast period. They are able to

approximate most anomalies and hindcast the general behavior in 5 out of 6 winters. Looking more

closely, significant differences between truth and hindcast become evident. The most obvious is the

sudden stratospheric warming in January 2009. This is an extraordinary strong warming [Labitzke

and Kunze, 2009a] during solar minimum and QBO west which was not expected according to the

Solar-QBO relationships by Labitzke and Kunze [2009b] and Camp and Tung [2007a]. This is an

example of variability that cannot be explained using the current statistical models reflecting the

chaotic nature of the system. However, the present set of external factors might not be optimal and

needs further investigation.
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Figure 7.3: Individual hindcast results of the different statistical models (red) along with the truth
(black). Also shown is the correlation coefficient R between model and truth. The shaded area
(gray) denotes a 95% confidence interval computed with Gaussian process sampling as described
in Section 3.8. For FEM-VARX and MLP, the bootstrap sampling was applied to each of the 30
realizations which were subsequently combined using the model averaging procedure presented in
Section 3.7.3.

The temperature results (not shown) are similar to the geopotential results with slightly smaller

correlations. For the training period, correlations of 0.25 (LDA), 0.53 (SVR), 0.86 (MLP), and

0.92 (FEM-VARX) are obtained. For the hindcast period, correlations of 0.22 (LDA), 0.16 (SVR),

0.25 (MLP), and 0.24 (FEM-VARX) are computed for temperature. These correlations, except for

SVR, are statistically indistinguishable. However, the same ranking of the different models as for

geopotential is still obtained.

It can be seen that it is possible to statistically model and hindcast polar stratospheric variability.

The MERRA reanalysis is utilized to validate the regression results by evaluating each statistical

model with MERRA data on both, the training and the hindcast period. This leads to very similar

results and correlation coefficients compared to ERA (not shown). The ERA results can be considered

as robust and trustworthy.

7.4 Model Sensitivity

This section aims at estimating the sensitivity of each model response with respect to small changes

in the external factors. This is done on the hindcast period but is also representative for the training
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period. The sensitivity is quantified using the bootstrap method based on Gaussian process sampling

as described in Section 3.8. To summarize, in Gaussian process sampling every external factor is

randomly altered according to a Gaussian distribution, independently for each time step. After having

calculated 1000 randomly generated sets of external factors (bootstraps), the statistical model can

be evaluated 1000 times. Finally, a confidence interval is calculated for the mean response from

the different model responses. This can be somewhat compared to an operational weather forecast

where not only a single run is computed but rather an ensemble of runs which makes it possible to

assign an uncertainty to a forecast for each time step.

Since there is only a single model available for LDA and SVR, the boostrapping sampling was

only applied once to these models. For FEM-VARX and MLP, however, the bootstrap sampling

was computed for each of the 30 realizations which were subsequently combined using the model

averaging procedure presented in Section 3.7.3. Therefore, the resulting uncertainty range for FEM-

VARX and MLP is a combination of the differences between the 30 model realizations and the

bootstrap sampling applied to each of these realizations.

The individual hindcast results of the different statistical models are presented in Fig. 7.3. The

shading in gray denotes the 95% confidence interval computed with the bootstrap sampling. It is

observed that LDA and SVR are robust against changes in the external factors. Whereas the LDA

uncertainty is constant all throughout (because LDA is a linear method), the SVR uncertainties are

slightly higher during winter than during summer, reflecting the larger winter variability in the polar

stratosphere. This is also true for the uncertainties found in the FEM-VARX and MLP response.

While their uncertainties are rather small during summer they become quite large during winter. The

confidence intervals of FEM-VARX and MLP are by a factor of 7 larger than those of LDA and SVR.

This is mainly caused by the 30 model realizations that were incorporated for FEM-VARX and MLP.

In fact, the single model bootstrap sampling errors are of the same order as those found for SVR.

It is interesting to note that the truth is mostly within the 95% confidence of the 30 realizations.

Interestingly, only the sudden warming in January 2009 would even leave a 4σ confidence range

during its maximum for both FEM-VARX and MLP, highlighting once more this extraordinary event.

The use of independent model realizations is a powerful and straightforward way of estimating model

uncertainties. It can be generally recommended when using statistical models that may run into

local minima, such as FEM-VARX and MLP.

7.5 Impact of External Factors

The statistical importance (or impact) of each of the external factors on the statistical models is

calculated (compare Section 3.9). The impact Ik is the standard deviation of the difference between

model responses so that Ik = σ(Y − Y (k)), where Y is the original model response and Y (k) is

the model response for external factor k held constant at its median. Ik represents the averaged

response deviation from the equilibrium response given by Y . The relative impact is then simply Ik

divided by the sum of all impacts for one statistical model. This is shown in Fig. 7.4 for geopotential
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Figure 7.4: Relative impact of the external factors on each of the statistical models for geopotential
(left) and temperature (right). The average impact (gray) is calculated as a weighted mean over
the different models where the weights are calculated from the correlation coefficients (see left panel
of Fig. 7.2) on the training period. The error bars of the FEM-VARX and MLP impacts denote the
95% confidence interval calculated from the 30 model realizations.

and temperature along with a weighted average over all four models. The weights were determined

from the correlation coefficients of the training period, meaning that FEM-VARX is given the largest

weight and LDA the smallest. It is observed that the impacts of FEM-VARX, MLP, and SVR are very

similar, whereas LDA misinterprets the importance of factors, such as the impact of high-latitude

blockings (BLOC1) on the geopotential or the solar cycle (SFL) on the temperature. LDA assumes

linear and stationary relationships which is not valid for the polar stratosphere [e.g., Calvo et al.,

2009; Richter et al., 2011].

Apart from LDA, the impacts in geopotential and temperature are very similar across the different

models. A large impact of the QBO terms and a medium impact of SFL are observed in agreement

with e.g., Holton and Tan [1982], Labitzke and Kunze [2009b] and Camp and Tung [2007a]. QBO1

is more important than QBO2 for geopotential and vice versa for temperature. The ENSO impact on

vortex variability is moderate, as also found by Camp and Tung [2007b] and Mitchell et al. [2011].

The AMO and PDO impacts are of similar magnitude. There are only two sufficiently powerful

volcanic eruptions (El Chichón in 1982 and Mt. Pinatubo in 1991) [Robock, 2000]. Therefore,

the impact of the aerosol optical depth (AOD) index is very small for this period. It is worth

noting that the AOD impacts vary significantly across the four models reflecting a large uncertainty

for this forcing, possibly caused by the small number of eruptions important for the stratosphere.

Surprisingly, the two factors representing tropospheric high-latitude blockings (BLOC1/2) show a

relatively small importance. Especially for the modeling of temperature, they can be omitted.

However, the BLOC1 impact on geopotential is of the same order as the SFL impact and needs to

be accounted for. However, as stressed by Woollings and Hoskins [2008], BLOC1 represents high-

latitude blockings in both the Atlantic and Pacific sectors simultaneously and cannot be used as a

proxy for all blocking situations. Another challenge with blockings is that they are shown to precede

SSWs but they also appear without an SSW following [Martius et al., 2009], making it difficult to

use them for statistical modeling and therefore resulting in small statistical impacts. The sine and
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Figure 7.5: MLP forecast for the winter 2011/12, holding the external factors constant and varying
only the sine and cosine terms. The assumptions about the external factors are partly received
from predictions made by the NOAA and partly from scientific reasoning (see text). The forecast is
shown for geopotential (left) and temperature (right) for three different conditions of BLOC1. The
hatched area denotes the 95% confidence interval calculated from the 30 model realizations. Please
note the additional uncertainty imposed by the only moderate hindcasting performance (see right
panel of Fig. 7.2).

cosine terms largely influence the model response, which reflects the strong seasonal dependence of

the dynamics in the polar stratosphere. The linear trend term was also found to be relatively strong

(≈ 10%).

7.6 The Winter 2011/12 - Forecast

MLP performs best over the hindcast period (see Fig. 7.2) and is therefore used to predict the winter

2011/12. As this winter lies in the future, there have to be made assumptions about the external

factors while taking into account the optimal lags from Section 7.1. For SST variability along with

SFL, predictions from the NOAA climate prediction center (http://www.cpc.ncep.noaa.gov) are

used. This leads to −0.5 for ENSO, 0 for AMO, −0.3 for PDO, and −0.5 for SFL. Please note that

the external factors are normalized between −1 and +1 for the period from 1980 to 2011. BLOC2

has a very small impact (see Fig. 7.4) which is why it is set to zero. AOD is held at −1, as future

volcanic eruptions that might affect the stratosphere are unknown. The trend term is held at one

(its value in 2011), as an approximate value for the extension of only one winter. By extending the

QBO oscillation with a period of 28 months, 0.8 is obtained for QBO1 and 0 for QBO2.

Figure 7.5 shows the resulting MLP forecast for the winter 2011/12 by only varying the sine

and cosine terms, for geopotential and temperature and for three different conditions of BLOC1.

A value of −1 represents extremely pronounced high-latitude blocking situations [Woollings and

Hoskins, 2008], whereas +1 represents no high-latitude blockings at all. For moderate values of

BLOC1, the synoptic situation remains unclear and regional blocking situations may still occur. It is

shown in Fig. 7.5 that the geopotential forecast changes significantly with varying BLOC1. However,

http://www.cpc.ncep.noaa.gov


CHAPTER 7. FORECASTING POLAR STRATOSPHERIC VARIABILITY 123

for minimum and average BLOC1 conditions, the geopotential forecast is well above one standard

deviation. This also holds for the temperature forecast, which is almost unaffected by BLOC1

changes, indicating the small statistical importance of BLOC1 on the temperature response (see

Fig. 7.4). To summarize, both forecasts tend to be positive and well above one sigma, indicating

extreme variability and a warm stratospheric winter with a weak stratospheric vortex. Since the

anomalies in Fig. 7.5 are quite large denoting extreme conditions, a sudden stratospheric warming

is likely to take place in late January, early February 2012. The temperature anomaly leads and is

proceeded by the geopotential anomaly.

The winter 2011/12 will most probably coincide with a westerly QBO in 50 hPa and weak solar

activity (NOAA). Hence, the finding contrasts the Solar-QBO relationship found by Labitzke and

Kunze [2009b], which predicts a cold and undisturbed polar stratosphere under these conditions.

Correspondingly, Camp and Tung [2007a] found that solar minimum conditions and a westerly QBO

point to the least disturbed vortex state. Moreover, work made by e.g., Camp and Tung [2007b]

and Mitchell et al. [2011] indicates that a warm and disturbed polar stratosphere is more likely to

take place during warm ENSO phases (El Niño) than during cold ENSO phases (La Niña). This

is also in contrast to the present forecast, since the ENSO index is most likely to be moderately

negative for the winter 2011/12 according to the NOAA predictions. However, since the impacts of

the individual external factors do not add up linearly, a nonlinear statistical method is certainly more

appropriate. This analysis, in addition to being nonlinear, incorporates all the significant external

factors simultaneously.

7.7 The Winter 2011/12 - Observations

After the statistical forecast was made, the winter 2011/12 has passed, making it now possible

to directly compare the prediction of the polar vortex conditions with actual observations. The

NCEP/NCAR reanalysis [Kalnay et al., 1996] is used as a reference as it provides a gridded, freely

available data set until almost present day. This is shown in Fig. 7.6 for geopotential and temperature

which represent polar cap anomalies and were computed as described in Section 7.1. Hence, they

are comparable to the statistical forecast presented in Fig. 7.5. In order to measure directly if the

vortex broke down, the zonal mean zonal wind at 60◦N and 10 hPa is shown on the right panel of

Fig. 7.6. During a vortex breakdown, i.e. a sudden stratospheric warming, the zonal wind is smaller

than zero (easterlies).

It is observed in Fig. 7.6 that the polar vortex in early winter was stronger and colder than

usual, indicated by the negative temperature anomalies in November and December 2011. Also the

zonal wind is slightly stronger than the climatology during early winter with a maximum of 48 m/s

indicating a strong polar vortex. Then, suddenly, the temperature rises by almost 3σ at the end

of December within a few days. The geopotential follows approx. two weeks after and both reach

maximum values of 2.5σ (geopotential) and 3.5σ (temperature) in mid January to then decrease to

climatological values within approx. four weeks (geopotential) and two weeks (temperature). The
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Figure 7.6: Observed polar stratospheric variability of the winter 2011/12 until March 31st for
geopotential and temperature (left) and the zonal mean zonal wind at 60◦N and 10 hPa (right).

zonal wind follows somewhat the progression of the geopotential and reaches a first minimum of

8 m/s in mid January. The zonal wind, however, does not drop below values of 6 m/s for the rest

of the actual winter so that no vortex breakdown, i.e. no major stratospheric warming took place.

At the end of March, the transition toward the stratospheric summer circulation is observed.

There was no vortex breakdown, but the vortex conditions of the winter 2011/12 were extreme.

The vortex was anomalously weak from mid January to mid February and anomalously warm from end

of December to end of January. This is a classical example of a minor warming during mid-winter

[Labitzke and Naujokat, 2000]. Therefore, a winter 2011/12 with warm and weak stratospheric

vortex conditions was predicted correctly in Section 7.6. Even the temperature maximum for mid

January was predicted correctly as shown in Fig. 7.5. The forecast for the geopotential is already

large in mid January (for BLOC1=-1,0) but does not peak until February. It is notable that the

magnitudes of the forecast (except for BLOC1=1) are similar to those found in observations. In

addition to correctly forecasting weak and warm vortex conditions in Section 7.6, a vortex breakdown

for late January, early February was also predicted. This did not take place as mentioned earlier and

was not forecasted correctly. However, the vortex remained the weakest from mid January to mid

February, as observed in Fig. 7.6 for the geopotential and the zonal wind.

7.8 Concluding Remarks

A novel statistical treatment of variabilities in the polar middle stratosphere was presented, making

use of four independent and different statistical models. For the first time, partly nonstationary and

nonlinear statistical methods were trained with polar stratospheric geopotential and temperature

anomalies incorporating all significant external factors simultaneously (Fig. 7.1). It was shown that,

with the help of external factors, FEM-VARX and MLP are able to model and satisfactorily hindcast

the variabilities (Fig. 7.2). With the help of several model realizations along with bootstrap sampling,

reasonable confidence intervals could be calculated, enclosing most variability (Fig. 7.3). However,
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a degree of internal chaotic variability remains, seen in the sudden stratospheric warming of January

2009, that cannot be forecasted using the current statistical models and the current set of external

factors.

The statistical impact of each of the external factors on the statistical models was computed

(Fig. 7.4). It was shown that the QBO factors, the seasonal terms, and the trend term show the

greatest impact. The solar cycle and the SST variabilities have a medium impact along with high-

latitude large-scale blockings (BLOC1). Volcanic eruptions (AOD) only point to a small but more

uncertain statistical importance. It was observed that relative impacts of external factors are very

similar for FEM-VARX, MLP, and SVR, whereas those of LDA differ significantly from the model-

averaged impact. Therefore, LDA should not be used for a study like this as it does not weight the

external factors correctly.

Since the multi-layer perceptron (MLP) showed the best generalization performance it was used

to predict the winter 2011/12 under reasonable assumptions about the external factors (Fig. 7.5). It

predicts a disturbed and warm polar stratosphere, with a sudden stratospheric warming likely to take

place during late January, early February 2012. This is in contrast to previous studies which expect

a cold and less disturbed polar stratosphere given the same external factors (weak solar, QBO west,

La Niña). However, standard analysis is based on linear models and does not consider more than

a few external factors at the same time. The prediction is based on a nonlinear statistical method

incorporating all significant external factors simultaneously.

After this statistical forecast was made, the winter 2011/12 has passed so that the statistical

forecast could be compared to actual observations (Fig. 7.6). It was found that the prediction

of warm and weak vortex conditions was correct. The prediction of a vortex breakdown was not.

However, a strong minor warming was observed during mid-winter and the zonal flow slowed down

and was the smallest from mid January to mid February. Hence, the forecast for the winter 2011/12

was correct to a large extent and shows the great potential in using nonlinear statistical models for

the modeling and forecasting of polar stratospheric variability.

There are several improvements that could be made to this analysis. There may exist other,

currently not included external factors that may improve the statistical forecasting of polar strato-

spheric variability. For instance, a different and possibly more regional blocking index should be

tested within the current framework. In the current study, a set of factors was held constant and the

optimal model architecture was computed for each statistical method. However, it would be favor-

able to optimize on the set of external factors plus the internal model setting. For each tested set

of external factors, the optimal model setting would have to be estimated using information criteria

or cross-validation. This is usually computationally expensive but may be feasible for a reasonable

number of training events and external factors.

Instead of a linear lag correlation analysis, the lags should be computed separately for each

statistical model, with a grid search technique using cross-validation. Unfortunately, these lag

calculations would be computationally extremely expensive. It will also be interesting to decrease

the temporal resolution of the considered time series to see if the modeling improves. Additionally,
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the nonlinear interrelationships between external factors should be further investigated using the

introduced methods.



Chapter 8

Conclusions and Outlook

This study focused at applying advanced, purely data-driven statistical approaches to the modeling

and forecasting of stratospheric variability on different temporal and spatial domains. In contrast to

simulations with chemistry-climate models, statistical methods are mathematically simpler, compu-

tationally less expensive, and weight external factors according to their importance. The statistical

methods were trained with historical data from observations, reanalyses, and model simulations and

were then used to forecast variability into the future. For the first time, four partly nonlinear, non-

stationary statistical learning approaches were compared with respect to their ability to model and

forecast stratospheric variability. In addition, the statistical importance of the external factors on

each of the statistical methods was quantified. This work aims at answering three major questions

raised in the introduction: 1) What is gained by applying more complex statistical methods, as

opposed to simple, linear methods? 2) Can statistical methods be used to forecast stratospheric

behavior? 3) Which of the statistical approaches is best suited to tackle stratospheric problems?

The stratosphere is governed by forcings and modes of variability that are shown to result in a

complex, generally nonlinear and nonstationary response, particularly during winter when upward-

propagating waves can interact with the mean flow (see Chapter 2). In this work and in contrast to

previous studies, a wide class of statistical methods was applied that are potentially able to cope with

these properties. The considered methods (see Chapter 3), are linear discriminant analysis (LDA),

a cluster method based on finite elements (FEM-VARX), a neural network, namely the multi-layer

perceptron (MLP), and the support vector machine (SVM). LDA is also referred to as multiple

linear regression when applied to regression problems. LDA is a linear method which means that

it is only able to derive linear relationships between external factors and its response. In contrast,

MLP and SVM are able to infer functions that can nonlinearly map between external factors and

response. LDA, MLP, and SVM are stationary methods meaning that their response does not

depend on time, whereas FEM-VARX allows for non-stationary modeling due to a time-dependent

jump process switching between persistent states called clusters.

The statistical methods used in this work, except LDA, depend on a set of tuning parameters

referred to as the model architecture, which may be, e.g., the number of clusters in FEM-VARX

or the number of hidden neurons in the MLP. For every application, an optimal model architecture

127
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has to be derived for each statistical method. Once this optimal model is found, it is trained with

historical data and can subsequently be used to recognize novel, previously unknown patterns. The

latter is referred to as forecasting. There are two major branches of model selection (finding an

optimal model architecture) applied in this study, information criteria and cross-validation. Both try

to meet the principle of Occam’s Razor which states that the simplest model is the preferred model

if it contains just as much information as any of the more complicated models. Occam’s Razor aims

at finding the optimal trade-off between approximating the training data and generalizing to unseen

data (forecasting). The model selection procedure to be used depends on the application and the

statistical method itself (see Section 3.7). Instead of choosing only a single model, one may also

select a set of models which are averaged to obtain better forecast results.

Aside from the advanced learning approaches, a number of mathematical tools were introduced in

Chapter 3 and used all throughout this work, the most prominent being principal component analysis

(PCA). PCA is utilized for reducing dimensionality in high dimensional fields, and to understand

important variabilities in underlying data (see Section 3.1). The uncertainty of eigenvalues resulting

from a PCA can be computed with bootstrap based on case resampling (see Section 3.8). Bootstrap

is also used to compute uncertainties of correlation coefficients and statistical model responses. The

difference between an altered and an equilibrium model response is used in this work to estimate the

statistical importance (or impact) of external factors on modeled variabilities (see Section 3.9.2).

For the simple case of LDA, this reduces to the regression coefficient times the standard deviation

of the corresponding factor.

Due to their specific importance for indicating changes in dynamics and composition, strato-

spheric monthly temperature and ozone were statistically modeled (see Chapter 5). The data to be

modeled were deseasoned and zonally averaged. The introduced statistical methods were trained

with the help of external factors known to influence stratospheric processes, including variability

in SSTs, the QBO, the annular modes (AM), the solar cycle (SFL), volcanic eruptions (AOD),

and a trend term. The trend term was linear for temperature and Effective Stratospheric Chlorine

(ESC = Chl + 60·Br) for ozone (see Section 2.3). Variability was modeled in observations (RANDEL,

NIWA), reanalyses (ERA, MERRA), and REF-B1 CCM simulations (EMAC, WACCM, MRI) (see

Chapter 4). Since the dimensionality of the data to be modeled was large, i.e. global stratosphere

in the zonal mean, PCA was used to efficiently reduce dimensionality, prior to the actual statistical

modeling, while still retaining 90% of the overall variance (see Fig. 5.1, Fig. 5.2, and Table 5.1).

After estimating optimal model architectures (see Table 5.2), the regression performance of the

different methods was assessed. It was found that SVR clearly outperformed the remaining methods.

LDA, FEM-VARX, and MLP did not perform significantly different in terms of explained variance

for both temperature and ozone (see Fig. 5.7, Fig. 5.8, and Table 5.3). An extensive analysis of

the individual impacts of the different external factors on temperature and ozone variability was

undertaken with respect to the different data sets. To summarize, the impacts on temperature (see

Fig. 5.9) were rather similar across the data sets. The impacts for LDA were mostly close to the

mean impact calculated across the different statistical models. The statistical models mostly agreed
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and only showed large differences in the impacts for the linear trend term and the annular modes.

For ozone (see Fig. 5.10), the ESC impact is more uncertain between the different statistical models,

particularly for NIWA. The LDA impact for ozone was generally close to the mean impacts except

for the annular modes and the seasonal influence (SI).

To finally quantify natural variability, the individual impacts were averaged across the statistical

models and data sets to obtain a robust estimate including an uncertainty range (see Fig. 5.11). It

was found that the most important factors for stratospheric temperature are the QBO (20%), SSTs

(15%), and the two annular modes (15% each for NAM and SAM). The least important factors

are SFL, AOD, and SI with each having around 7% impact. The impact of the trend term is of

the same order as the SST impact. The impacts of SSTs, QBO, SFL, AOD, and SI on ozone are

not significantly different, only showing larger uncertainties due to larger disagreements across the

different ozone data sets. Only the impact of the annular modes (6% each) on ozone is significantly

smaller and the ESC impact (29%) significantly larger. It was found that these impacts agree

with previous work that investigated the impact of external factors on stratospheric variability [e.g.

SPARC CCMVal, 2010, Chapter 8]. By adding up the different natural impacts, the overall natural

variability can be quantified. For temperature, the natural factors combined explain 85±7% of the

total temperature variability, implying that there is at least 8% variability that is anthropogenically

caused by the emissions of greenhouse gases and ozone depleting substances (see Section 2.3). For

ozone, the natural factors are responsible for 71±10% variability indicating that at least 19% is of

anthropogenic origin due to the emissions of ozone depleting substances (see Section 2.3).

The regional importance depending on latitude and height of the external factors was also

estimated (see Fig. 5.12). The typical well known structures could be recovered with QBO, SFL,

and AOD being especially important for the tropics, whereas SSTs and the annular modes are

more important for the extratropics. The solar impact is particularly large in the upper tropical

stratosphere and the AOD impact in the lower tropical stratosphere. These impacts refer to the

most prominent, direct influences of the external factors. As a final task, the statistical models

were used to compute statistical forecasts up to the year 2100 under reasonable assumptions about

the external factors. It was found that statistical models efficiently forecast long-term trends in

temperature (see Fig. 5.13) and ozone (see Fig. 5.14). Even a simple method like LDA, performs

just as good as the more complex statistical models. Overall, LDA leads to robust results for this

problem and does not perform significantly worse than the other models. Even though SVR explains

more variance, it does not lead to more robust impacts of the external factors. The wide application

of LDA in the stratospheric community to regression problems with monthly data appears to be well

justified. However, it should be noted that including all four methods in this analysis ensures that

natural variability can be estimated including robust uncertainties. One challenge in this study is

that the number of training events, i.e. the number of steps in time, is quite small. The training

period from 1980 to 2005 consists of a total of only 312 months which is why FEM-VARX and MLP

do not perform significantly better than the linear regression technique. This drastically changes

when more training events become available.
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A prominent example of dynamical wave-mean flow interactions during winter are sudden strato-

spheric warmings (SSWs). SSWs are dramatic extreme events characterized by a great temperature

increase on daily time scales and a breakdown of the polar vortex. In Chapter 6 and published

in Blume et al. [2012], statistical learning approaches were applied to the classification of SSWs

in reanalysis data for 52 consecutive winters from 1958 to 2010. Three statistical methods were

compared with respect to their ability to classify stratospheric warmings with the help of a polar

cap temperature anomaly along with three important external factors (ENSO, QBO, SFL) known

to influence the stratospheric vortex. The nonlinear MLP clearly outperformed (see Table 6.1) the

linear methods (LDA, linear SVM) so it was further used to classify stratospheric warmings in major,

minor, and final warming events. After deriving a training sample (see Fig. 6.2) and selecting the

optimal model (see Fig. 6.3), the MLP was trained and evaluated with data from the ERA-40/ERA-

interim and the NCEP/NCAR reanalysis. It was shown that the MLP nonlinearly combines the

temperature anomaly along with ENSO, QBO, and SFL to classify stratospheric warmings correctly.

In agreement with previous work [e.g., Labitzke and Kunze, 2009b; Camp and Tung, 2007a,b;

Mitchell et al., 2011], it was shown that vortex variability in reanalyses is mainly governed by the

QBO, followed by ENSO and the solar cycle (see Table 6.3). In addition, nonlinear probability pat-

terns for the major warming case were computed for solar minimum and maximum conditions (see

Fig. 6.8). Important relationships between QBO, ENSO, and solar cycle could be recovered. In addi-

tion, it was shown how interrelationships are highly nonlinear, meaning that QBO-SFL relationships

are nonlinearly modulated by ENSO. The SSW classification using a neural network was successfully

applied to reanalyses data (see Table 6.4 and Fig. 6.5). An extensive compilation of major, minor,

and final warming climatologies was compiled for monthly (see Fig. 6.6) and yearly (see Fig 6.7)

distributions concerning frequency and intensity. It was shown that classification results are similar

between ERA and NCEP data past 1979 but significant differences appear during the pre-satellite

era before 1979.

The classification procedure using the nonlinear neural network was applied to the three CCM

simulations EMAC, MRI, and WACCM (see Chapter 4.3) for the time of 1960 to 2005. It was shown

how major warming frequencies (Table 6.6) and corresponding monthly distributions (Fig. 6.9) agree

well with results presented in chapter 4 of SPARC CCMVal [2010]. Concerning the importance of

the external factors, a very similar ranking as for the reanalyses was found for EMAC and WACCM

assigning most impact to the QBO, followed by ENSO, and the solar cycle (Table 6.7). For MRI,

the ENSO impact is largest, followed by the solar cycle, and the QBO. Using these external factors,

probability distributions for the major warming state were calculated (Fig. 6.10). Even though some

important relationships between the external factors and vortex variability could be recovered, the

estimation of a robust probability pattern was not successful. This implies that interrelationships

between QBO, ENSO, and SFL are significantly different among the CCMs.

In order to measure the sensitivity of the external factors to the frequencies of stratospheric

warmings and to the neural network classification, two additional artificially forced WACCM simula-

tions were analyzed. These simulations were equally forced as the WACCM REF-B1 run except that
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1) The QBO is not nudged resulting in a constant easterly phase (WACCM-QBO), and 2) Climato-

logical SSTs are prescribed resulting in neutral ENSO phase conditions (WACCM-SST). From the

frequencies and the monthly distributions (Fig. 6.11) it was seen that including the QBO is more

important than including SST variability to generate realistic SSW frequencies. The impact of the

input factors on the neural network response for major warmings was computed (Table 6.9). Even

though the QBO impact for WACCM-QBO and the ENSO impact for WACCM-SST were reduced

compared to WACCM, they are not negligible which could be caused by the short data record (45

years) and a possible overfitting of the neural network.

Polar stratospheric variability is a prominent aspect of the middle atmosphere. The statistical

modeling and forecasting of polar stratospheric variability in reanalysis data was performed in Chap-

ter 7 and published in Blume and Matthes [2012]. The considered methods were LDA, FEM-VARX,

MLP, and SVR which modeled geopotential and temperature anomalies representing polar variability

of the middle stratosphere. It was shown that, with the help of external factors, FEM-VARX and

MLP are able to model and satisfactorily hindcast the variabilities (Fig. 7.2). With the help of

several model realizations, along with bootstrap sampling, reasonable confidence intervals could be

calculated, enclosing most variability (Fig. 7.3). However, a degree of internal chaotic variability

remains, seen in the sudden stratospheric warming of January 2009, which cannot be forecasted

using the current statistical models and the current set of external factors. The statistical impact of

each of the external factors on the statistical models was computed (Fig. 7.4). Relative impacts of

external factors are similar for FEM-VARX, MLP, and SVR, whereas those of LDA differ significantly

from the model-averaged impact. Therefore, LDA should not be used for a study like this as it does

not weight the external factors correctly. Since the multi-layer perceptron (MLP) showed the best

generalization performance, it was used to predict the winter 2011/12 under reasonable assumptions

about the external factors (Fig. 7.5). It predicts a disturbed and warm polar stratosphere, with a

sudden stratospheric warming likely to take place during late January, early February 2012. After

the winter 2011/12 was observed (Fig. 7.6) it can be concluded that the prediction of warm and

weak vortex conditions was correct. The prediction of a vortex breakdown was not. However, a

strong minor warming was observed during mid-winter and the zonal flow slowed down and was at

the smallest level from mid January to mid February. Hence, the forecast for the winter 2011/12

was correct to a large extent and shows the great potential in using nonlinear statistical models for

the modeling and forecasting of polar stratospheric variability.

By applying statistical methods to the modeling of stratospheric variability, external forcings

and internal modes are weighted according to their statistical importance. Doing a comparable

study using a climate model is computationally not feasible. It was observed that the main drivers

of stratospheric variability are the Quasi-Biennial Oscillation, variability in sea surface temperature

(e.g. ENSO), the annular modes, and anthropogenic influence due to the emission of Greenhouse

gases and ozone depleting substances. A generally smaller but still significant impact is caused

by the 11-yr solar cycle and volcanic eruptions. It was shown that these impacts vary regionally,

depending on height and latitude, and between different variables. For instance, The impact of the
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solar cycle on polar stratospheric temperature is larger than that on the geopotential in this region.

One assumptions being made by statistical methods is that the external factors (the features) are

independent. However, factors such as the QBO and ENSO influence each other to a certain extent.

Therefore, one needs to be careful when drawing conclusions from statistical impacts. This imposed

uncertainty can be quantified by applying a range of statistical models to the same problem.

In this thesis, a standard linear (LDA) statistical method and three advanced nonlinear (MLP,

SVM) and nonstationary (FEM-VARX) methods were applied. In Chapter 5, they were applied to

model monthly temperature and ozone in the global stratosphere. The LDA regression performance

was found to be similar to those of MLP and FEM-VARX, but SVR performed better. In terms

of impact and forecast performance, LDA let to more robust results than the advanced models.

Therefore, for the statistical modeling of stratospheric monthly data, the application of complex

statistical models is not reasonable. This is caused by the small number of training events (monthly

data). The application of the popular multiple linear regression analysis to the modeling of monthly

stratospheric variability is therefore well justified. This changes when more training events become

available. Chapter 6 classified stratospheric warmings using daily data and compared linear methods

(LDA, LSVM) with a nonlinear method (MLP). The nonlinear neural network (MLP) performed

significantly better than the linear methods for this application. Due to the much higher number

of training events (factor of 30), the MLP was able to learn the nonlinear patterns and links that

connect the external factors with stratospheric vortex variability. Due to the small number of external

factors, it was possible to visualize the nonlinear patterns. Daily stratospheric vortex variability was

also statistically modeled in Chapter 7, but with a regression approach and all significant external

factors. The advanced models outperformed LDA on the training period, but only FEM-VARX and

MLP were significantly better than LDA on the hindcast period. Even though the effect of overfitting

is the smallest for LDA, making it a robust model, its forecast performance is very limited. In addition,

the statistical impacts from LDA were significantly different from those computed with FEM-VARX,

MLP, and SVR. The fact that FEM-VARX and MLP perform well reveals once more that the polar

stratosphere is governed by processes that result in a non-stationary (FEM-VARX) and nonlinear

(MLP) response. A method that can cope with both of these properties would be favorable. The

three major questions stated in the beginning can now be answered.

What is gained by applying more complex statistical methods as opposed to simple, linear

methods? If presented with monthly data, there is no significant information gain and a linear

statistical method is sufficient and more robust. If there are many training events (e.g. daily data),

than more complex (nonlinear, nonstationary) methods lead to more reasonable statistical impacts

and better performances on the training and the validation period. However, more advanced methods

come with a set of tuning parameters that need to be carefully selected using information criteria

and cross-validation (model selection).

Can statistical methods be used to forecast stratospheric behavior? They can be used to

forecast variability to a certain extent. It was found that long-term statistical forecasts agree well

with those simulated by sophisticated CCMs. Also, statistical forecasts for the polar stratosphere on
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the seasonal scale are very promising. However, there is internal variability that cannot be forecasted

with the current methods and external factors.

Which of the statistical approaches is best suited to tackle stratospheric problems? It was

shown that different statistical methods perform different for varying applications. It is always

recommended to compare a range of statistical methods for a specific application. However, if it

is known that relationships between external factors and response are linear than a standard linear

method will suffice. If these relationships are known to be nonlinear and nonstationary, as the case

for the polar stratosphere, than a nonlinear (e.g., MLP, SVM) or nonstationary (e.g., FEM-VARX)

method should be applied. A sufficient amount of training events has to be available for the latter.

From the applications in this thesis, the methods of FEM-VARX and MLP were most promising

when dealing with daily data.

There is a range of possible improvements for future statistical modeling and forecasting of the

kind presented in this thesis: 1) There may exist other, currently not included external factors that

may improve the statistical modeling. In addition, other statistical models that were not considered in

this thesis should be investigated. 2) In this study, a set of factors was held constant and the optimal

model architecture was computed for each statistical method. However, it would be favorable, but

computationally expensive, to optimize on both the set of external factors and the internal model

setting by using information criteria or cross-validation. 3) Instead of a linear lag correlation analysis

performed independently for each external factor, the lags should be computed separately for each

statistical model across all factors with a grid search technique using cross-validation. Unfortunately,

these lag calculations would be computationally expensive. 4) It would be interesting to see if other

temporal resolutions (such as weekly) would improve modeling and forecasting.

There are three major branches to which the introduced statistical models can contribute,

considering stratospheric variability: Quantifying impacts of external factors, understanding nonlinear

interrelationships between external factors, and forecasting on seasonal, interannual, and decadal

scales. It has been shown in this thesis that there is great potential for statistical models to cope

with these challenges. They should not be thought of as to replace GCM or CCM simulations but

rather to complement them. For instance, the importance of external forcings quantified with CCM

sensitivity simulations can be validated and confirmed by applying statistical models. Moreover, an

operational forecast for the polar stratosphere during winter, as made by the ECMWF, could be

enhanced by performing statistical forecasts using nonlinear, nonstationary statistical methods that

incorporate external factors known to influence the stratosphere.
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Abbreviations

AIC Akaike Information Criterion

AM Annular Mode

AMO Atlantic Multidecadal Oscillation

AOD Aerosol Optical Depth

BIC Bayesian Information Criterion

BLOC Index representing high-latitude blockings

BLOC1 First principal component of 500 hPa geopotential anomalies from 35◦N to 85◦N

BLOC2 Second principal component after BLOC1

CCM Chemistry-Climate Model

CCMVal Chemistry-Climate Model Validation Activity

CFC Chlorofluorocarbon

EMAC ECHAM5/MESSy Atmospheric Chemistry model

ENSO El Niño- Southern Oscillation

EOF Empirical orthogonal function

ERA ECMWF re-analysis

ESC Effective stratospheric chlorine

EV Explained variance

FEM-VARX Finite element method plus vector auto-regression with external factors

FVX FEM-VARX

GHG Greenhouse gas

LDA Linear discriminant analysis

LSVM Linear support vector machine

MERRA Modern Era Retrospective Analysis for Research and Applications

MLP Multilayer Perceptron

MLR Multiple Linear Regression

MPE Mean Prediction Error

MRI Meteorological Research Institute model

NAM Northern Annular Mode

NAO North-Atlantic Oscillation

NASA National Aeronautics and Space Administration

NCAR National Center for Atmospheric Research

NCEP National Center for Environmental Prediction
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NIWA National Institute of Water and Atmospheric Research

NOAA National Oceanic and Atmospheric Administration

NPO/WP North Pacific Oscillation- West Pacific teleconnection pattern

ODS Ozone depleting substances

PCA Principal Component Analysis

PDO Pacific Decadal Oscillation

QBO Quasi-Biennial Oscillation

QBO1 First principal component of equatorial stratospheric zonal mean zonal wind anomalies

QBO2 Second principal component after QBO1

ROC Receiver operating characteristic

SAM Southern Annular Mode

SAO Semiannual Oscillation

SFL 11-yr solar cycle

SI Seasonal influence

SPARC Stratospheric Processes And their Role in Climate

SSE Sum of squared errors

SST Sea surface temperature

SSW Sudden Stratospheric Warming

SVC Support Vector Classification

SVM Support Vector Machine

SVR Support Vector Regression

TRE Linear trend term

TSI Total solar irradiance

UV Ultra-violet

WACCM Whole Atmosphere Community Climate Model

WCRP World Climate Research Program

WMO World Meteorological Organization
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